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Abstract: Debris flows represent a very destructive natural hazafelgtaig buildings, transport
infrastructures, and, very often, causing human losseimtain regions. That makes the iden-
tification of potential source areas of debris flows insideagenshed particularly important. In
this paper we present a general identification proceduredbas thecredal network(that is an
imprecise probabilistic graphical model generalizing 8sign networks) originally introduced
by Antonucci et al. [2004]. That model is significantly impeal by a more refined description
of the meteorological and hydrological processes cortiriguo the debris flow initiation. As a
counterpart of such improvement, the model pays a slightase in terms of computational time
for identifications. That does not prevent its extensivatigly distributed, application to whole
basins, thanks to a preliminary deterministic analysis thjgcts local areas where the triggering
of a debris flow cannot take place. The overall proceduresietefor a debris flow prone wa-
tershed in Southern Switzerland. The model detects thes &mghe basin more prone to debris
flow initiation and also shows that different rainfall retyseriods produce different patterns of
hazard in the basin. That makes it possible with this proaetiudetermine the return period of
the critical rainfall that triggers debris flow as a resultcbBnnel-bed failure in a specific point
along the drainage network.

Keywords: Debris Flow; Geomorphologic Theory; Geographic InforrmatBystem; Imprecise
Probabilities; Credal Networks.

1 INTRODUCTION

Debris flowg(Section 2) represent a very destructive natural hazafiet;tafg buildings, transport
infrastructures, and, very often, causing human lossesountain regions. As recently pointed
out by Berti and Simoni [2005], the triggering mechanismd #re causal relationships for the
whole process are still partially unknown. Thus, human etigetogether with an analysis of his-
torical data are still necessary to support any deternigmsbdel for the identification of potential
source areas of debris flow.

A credal networkwhich is an imprecise probabilistic graphical model ascdesd in Section 3)
has been introduced by Antonucci et al. [2004] in order tefino a single coherent framework
the model of Takahashi [1991] with expert qualitative judnts and historical data. In this paper
we first improve this probabilistic model with a more refinegbcription of thedrainage network
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delineation and thenaximum peak runofformation (see Section 4). We also allow for more
freedom in the description of the observation of the trigggefactors by showing how sets of
probability mass functions can model the so-calieft evidencgrovided by vague observations.

Overall, such improved flexibility in the modeling phase l@asounterpart when we compute
the level of risk corresponding to the available evidenceygropriate updating algorithm. The
required computational time slightly increases. Nevéeg® we show that our approach can be
properly employed for spatially distributed identificatéoon extensive areas. This is made faster
by the rejection of the points of the basin where the geormaggiical conditions prevent any
debris flow initiation. Finally, with the support of a detl GIS analysis, we test this procedure
for a debris flow prone watershed in Southern Switzerlandt{@e5). The results indicate that
the model detects the areas of the basin more prone to delwimftiation and produces different
hazard patters according to different rainfall events.

2 DeBRIS FLoOws

Debris flows are gravity-induced mass movement intermedi@tween landslides and water
floods. They are composed of a mixture of water and sedimehtamtharacteristic mechanical
behavior varying with water and soil content. According tws@ [1984], prerequisite conditions
for most debris flows include an abundant source of uncaestgld fine-grained rock and soil
debris, steep slopes, a large but intermittent source ofton@i (rainfall or snowmelt), and sparse
vegetation. As mentioned in Griffiths et al. [2004], sevénskstigation have focused on debris
flows initiation and frequency. Benda and Dunne [1997] apphed the modeling of spatial and
temporal variability of sediment yields, Glade [2005] feed on existing links between debris-
flow hazard and geomorphology. Several hypotheses haveftwenlated to explain mobiliza-
tion of debris flows and this aspect still represents a rebeféeld. The triggering mechanism of
the identification procedure presented in this paper iscbasehe theoretical model proposed by
Takahashi [1991], although a more sophisticated explanatf the triggering of debris flow by
channel-bed failure has been recently proposed by ArmamidiGregoretti [2005], which con-
sider the exposure of a single particle to the stream flow exlicitly, the flow velocity profile.
For the purposes of this study the Takahashi’s theory isdegkas appropriate and this triggering
theory is further coupled with geological, hydro-meteogital and topographic factors, which
all contribute to the definition of channel-bed failure. Orifinately, not all the triggering factors
considered by this model can be directly observed in the.figdtkahashi's theory will therefore
offer the deterministic skeleton for our model that will Imésigrated with probabilistic knowledge
according to the methods described in the following section

3 CREDAL SETS AND CREDAL NETWORKS FOR UNCERTAIN REASONING

If a complete deterministic model of the relations betweeme variables cannot be pro-
vided, probabilistic approaches should be consideredaastProbabilistic graphical models like
Bayesian nets seem to be particularly suited for situatidmsre some conditional independence
relations hold between the different variables. Here, wesittercredal nets(Cozman [2000]),
which are a generalization of Bayesian nets based on thefoedtal notion o€redal set

Given a categorical random variabl,® we denote byt the set of the possible values &f,
while = denotes a generic element &% The notation(X = x) denotes an event that is true
if and only we know thatX is in the stater. This is clearly the most informative scenario we
can consider forX. Otherwise, our knowledge about the actual stat& afan be modeled by a
probability mass functio®(X'). There are also situations where a singlecisenumerical value
for the probabilityP(X = z) cannot be easily assessed. In these cases, a more reabsit m
of our knowledge abouX could be acredal setK (X), i.e., a closed convex set of probability
mass functions ovekX . As noted by Reichert [1997], sudtmprecise probabilitfWalley [1991])
approach offers important advantages for environmentdies, where a vague prior knowledge

LAll the quantities considered in this paper are regardecaindam variables which assume only finitely many values.
Therefore, in the case of continuous variables, a disatiiz should be preliminary done.
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of processes is very usual, due to incomplete observatitimeegbrocess or to the impossibility of
gathering enough data. Furthermore, expert knowledge aalitative beliefs can be more easily
considered in the general framework of sets of probabilijridutions.

A credal setK(X) can be specified by a set pfobability intervalsIx := {I, : I, :=

s, ug],0 < Iy < up < 1,z € X}, from which K(X) is clearly obtained fror{P(X) :
P(x) € I,z € X,) . P(x) = 1}. Accordingly, we can ask experts to assess sets of proba-
bility intervals (and more generally linear constraintspyababilities). Probability intervals can
be also inferred from data by th@precise Dirichlet modehccording to Walley [1996], a gener-
alization of Bayesian learning from multinomial data basedn imprecise probability model of
prior ignorance.

Inference over a credal set is intended as the computatidowsdr and upper expectations
over all the mass functions of a credal set. For example therlgrobability is defined as
P(x) := minp(x)ex(x) P(x), and similarly for the upper probability’(x). Remarkably, a
set of mass functions, its convex hull andatdreme mass functiopsoduce the same lower and
upper expectations and probabilities. Conditioning wittdal sets is done by element-wise appli-
cation of Bayes' rule. The posterior credal set is the unicallgosterior mass functions. Denote
by K (X|y) the set of mass functio3(X|Y = y), for generic variableX andY".

A credal networks a graphical model where each node (or variable) of a diceatyclic graph is
associated with a credal set for any configuration of thealsdeis parents (see Cozman [2000]);
informally, credal nets are equivalent to sets of Bayese&warks with the same graph. The graph
codes strong dependencies by the so-cateshg Markov conditionevery variable is strongly
independent of its non-descendant non-parents givenrignsa A generic variable, or node of the
graph,X; holds the collection of conditional credal sét§X;|rx,), one for each possible joint
staterx, of its parentdly,. We assume that the credal sets of the netseparately specified
Walley [1991]: this implies that selecting a mass functimni a credal set does not influence the
possible choices in others. A credal network defines a joedal seti (X), which is called the
strong extensioof a credal network. This is the convex hull of the set of joimss functions
P(X)=P(Xy,...,X:), over thet variables of the net, that factorize according to:

t
P(a1,...,z) = [[ Plailpa(X:) V(@1,....z0) € Xiy &, 1)

i=1

Herepa (X;) is the assignment to the parentsf consistent with(z1, ..., z;); and the con-
ditional mass function®(X; |pa (X;)) are chosen in all the possible ways from the respective
credal sets.

3.1 Updating Credal Networks

Credal networks are often usedegpert systemsThe available evidential informatiang about
the variablesX x that have been observed is first gathered. Then, we compripo#ierior lower
(and upper) probabilities for a queried varialg, say P(X,|zg) (and similarly for the upper)
with respect to the network strong extension. The evideXige= z g is said to bestrongas it
provides completely informative information about thetstaf their variables. Updating of credal
networks with strong evidence is a hard task, but a numbeppfoximate (and even exact in
some special cases) algorithms can be employed.

Moreover, it is possible to consider situations where tiseilteof the observation of a variable is
vague, and we cannot obtain a strong evidence about thed$tite observed variable. Never-

theless, suchoft evidencabout the state of the variable could be expressed by a getlalhis

is a generalization of Jeffrey’s updating to imprecise piulity. This soft evidence can be easily
embedded in the structure of a credal network if the obsevaedble is a root node: it suffices

to replace the unconditional credal set for the variabléwiat corresponding to the observation.
This approach will be applied to the credal network for deffilow evaluation presented in this
paper in order to model the vague observatioGodnulometry
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4  SPATIALLY DISTRIBUTED IDENTIFICATION OF SOURCE AREAS

Antonucci et al. [2004] proposed a credal network for a gfgpint analysis of debris flow initia-
tion. We present a significantly improved version of that elabtained with a refined description
of the meteorological and hydrological processes cortiriguo the debris flow initiation. The
new credal network is based on the directed acyclic grapliginlFand expresses the causal rela-
tionships between the topographic and geological chaistits, and hydrological preconditions,
which are recognized as triggering factors. The key nodesdid as shadowed nodes in Fig. 1)
of the network are th&ffective Soil Water Capacityvhich reflects the influences of the soil and
the geological characteristics of the area,Blasin Response Functiprelated to the topographic
properties of the watershed and whose footprint can be etécthe hydrologic response of the
basin, thePeak Flow which summarizes the interactions among the hydro-melegical factors
and topographic and geologic preconditions, Timeoretical Debris Thicknessbtained by the
Takahashi’s theory, and thivailable Debris Thicknessvhich considers the influence of the to-
pography on the debris availability. The leaf nddevable Debris Thicknessvhich is defined as
the depth of debris likely to be transported downstreamnduai flood event, is our proxy for the
risk level in the specific point along the drainage networlerehwe have collected evidence about
the triggering factors. The rang@s10cm, 10-30cm, >30cm for that thickness are assumed to
indicate respectively a low, medium and high level of risktHis section only topics related to the
novel improvements of the credal network regarding $tream Power Indeand theMaximum
Peak Runoffare described in detail, while for a more comprehensivergeim of each node the
reader is referred to Antonucci et al. [2004].

Stability of a Debris Cluster The effect of a water depth on the movable debris quantity is
based on the equilibrium of forces acting on a debris clustder different conditions. According
to Takahashi [1991], the local slogefor which debris-flow formation can take place obeys the
following constraint:

* *

CA e < tand <
———tan an
%—&—C*A - ~— 1+ c*A

tan ¢, (2

whereg is theFriction Anglecorresponding to the actual level@fanulometry ¢* is the volume
concentration of the particles, arxlis the ratio between the mixture and the water density. For
the points of the basin whose valuesfodnd6f do not satisfy the constraint in Eq. (2), either the
cluster is not completely saturated and, if unstable at kighe angles, produces a landslide or
the process that takes place is the ordinary solid trangpa@trich et al. [2006]), and therefore we
drop the relative point from the potential source areasisfithzard without any further analysis.

Drainage Network Delineation and Debris Availability Many authors have dealt with the
capability ofLocal SlopeandUpstream Contributing Areto account for topographic control on
erosion and deposition potential in complex terrain andhlie use of slope and contributing
area for channel network extraction, based on critical anghslope-area threshold (e.g., Prosser
and Abernethy [1996]). In this study, such a method was usedtract the channelized portion
of the Digital Elevation Model(DEM), where debris flow initiation can appear, accordingh®
following equation:

SPI=+vA-0, 3

whereSPI denotes thé&tream Power Indeand A is the upstream area. The threshold value of
S PI has been identified by trials, comparing the extracted métwith the drainage network on
the map, where also many ephemeral channel in the upperfgtag basin were included in the
network. That index can be used as an indicator of the loaakport capacity of a single reach
along the network and, therefore, to identify channel reackiere debris material preferentially
accumulates (Dalla Fontana and Marchi [2003]). Clearly, alailability of an abundant debris
thickness in the drainage network is a fundamental pretiondor debris initiation and we there-
fore developed a conceptual framework for a qualitativéuataon of the debris availability in the
river bed. We assume that the debris availability is a fumctf the convenience capacity of the
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Figure 1. The directed acyclic graph of the credal network for hazdehiification. The gray
nodes denote the new factors or those for which a new quatiific has been proposed with
respect to the original network in Antonucci et al. [2004].dAshed border denotes the nodes
observed in the case study of Section 5.

river network associated to thteP 7. Cells with SPI value exceeding the threshold for channel
initiation correspond very often to areas where bedrockergenand local slope is quite high,
and therefore the sediment deposition is zero or very lowth@rcontrary, in cells wher§ P

is much less than the selected threshold level, high depesitstead of erosion is expected and
we therefore assume a high availability of debris matefitlese principles supported by expert
knowledge have been used for an interval-valued probébitigantification of the nodAvailable
Debris Thickness

Maximum Peak Runoff According to the model of the initiation mechanism consédiin this
study, the soil failure is induced by surface runoff and,ssgjuently, the maximum discharge and
the corresponding water depth must be estimated. Rodrigueze and Rinaldo [1997] investi-
gated how the variation of the characteristics of streanmcbkis expressed as a function of the
discharge by a power law at a given cross section and alsg gterchannel network. The param-
eters were estimated by using a few collected cross-sedtita) randomly distributed along the
drainage network.

The maximum runoff along the drainage network was calcdlateording to the well-established
theory of thelnstantaneous Unit HydrograpfiUH), expressed as the convolution integral of
the effective rainfall input. The hydrograph shape strgrdgpends on the geomorphological
features of the river basin, therefore, theomorphologic Instantaneous Unit Hydrogra(@iUH,
Rodriguez-Iturbe and Valdes [1979]) presents obvious iatagges in ungauged watersheds, since
the GIUH only depends on the morphological characterisifahe watershed and the drainage
network. According to this theory, the maximum peak rur@ffs obtained using the following:

T'AHt)-H@{t* —t,)] 0<t,<r.
Q= 4)
I'A tp > T,
where!’ is the effective rainfall intensity/ (¢) represents the integral of the GIUH from the be-
ginning of the storm¢* is the critical duration at the considered point, and it isirection of the
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rainfall durationt,,, while 7. is the concentration time. Effective rainfall intensitydstermined
using the well establisheBCS Curve Numbeénfiltration method and the rainfall intensity mod-
eled by multiscaling power law relationship. The criticafdtiont* associated with the extreme
peak runoff is independent of the return period and of thefadliintensity; the corresponding
rainfall volume is calculated for the rainfall duration

5 A CASE STuDY: DISTRIBUTED APPLICATION TO A RIVER BASIN

The case study we present in this section refers to the AogsarCreek in the Blenio Valley,
an area located in the North-Eastern part of the Ticino GarBouthern Switzerland. This area
was selected because of the potential hazard caused by fletws to communication lines and
villages. That creek is a small tributary of the Brenno riwftaracterized by a high altitude range
(from 530m up to 2580m a.s.l.) of the Simano Peak. Debris torrents are usuallgered by
intense rainfall, following a period of abundant precipdga. Eight historical debris flow events
were recorded in that area during the last 150 years. Mosharhtcaused high damages to
infrastructures on the alluvial fan, transporting sevéhalusand cubic meters of material. For
instance, during the last event in August 2003, a volume ofiabs’000m® were estimated on
the alluvial fan, and a similar pattern was observed in 198B1987. That represents a relatively
high frequency of debris flow events. Accordingly, the teggg factors appear to be already
effective in many parts of the basin with storm events of lowd enedium return period.

Figure 2: Acquarossa Creek Basin (are8Km?, length3.1Km).

In order to gather evidential information about the georhotpgical characteristics of the basin,
a highly precise DEM based on airborne laser scanning pegtlbg the Swiss Federal Office of
Topography has been employed. That offers a spatial résolot4 meters, which is comparable
with the typical channel width; that defines a drainage nétved 6310 cells. Most of the mor-
phological data used for our identification analysis (s)dlosv-direction and flow-accumulation)
were derived from this dataset, and the SPI was calculatedes. (3).

Finally, regarding the observation of the granulometryetdfsurvey was conducted. The river
bed and lateral debris levees were analyzed in order tordeterthe grain-size distribution of
the debris material. A significant difference was obsenrgedtfe grain-size distributions obtained
from several samples. We have therefore decided to splltdka into two sub-regions of “uni-
form” granulometry, and describe the outcome of the sargptin asoft evidencenodeled as a
new unconditional credal sets for the corresponding nodlkedrcredal network, according to the
procedure described in Section 3.1.

In order to avoid unnecessary computations, for each pditiieobasin, we have preliminarily
checked whether or not the observed slope and the valueg dfittion angle compatible with
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the soft observation of the granulometry were compatiblién wie constraint in Eq. (2). This
deterministic pre-analysis detedts0 pixels where only ordinary sediment transport is possible
and 135 pixels that are already unstable without complete soilraéittn. For the remaining
6005 pixels, we have computed the posterior lower and upper pibities for the movable debris
thickness corresponding to observed geomorphologicédrimend rainfall intensity for a return
period of 10, 30 and 100 years. These computations have beetiyeperformed by exhaustive
approaches based on the iteration of standard algorithnisafgesian networks as our credal net-
work is equivalent to about 500 Bayesian networks. The nétwgothus expected to predict the
probability of a debris flow event with the defined frequeneyel at each point of the drainage
network. In this way, we aim at verifying whether the netwarduld have been a valuable tool to
predict considerable events of debris flows, which actuzlypened in the areas under consider-
ation, and, more important, to identify the points wheredhbbris flow is most likely to occur in
the future. Figure 3 reports the results of the inferencegss for respectively0 and100 years
return period rainfall event.

We observe that, according to the outputs of the credal pétjsiflows are more likely to initiate
on the main channel, even in the lower part of the basin. Iy taging a field survey conducted
immediately after the debris flow event on August 2003, weepked typical evidences of bed
erosion and channel-bed failure in the lower part of the nechi@nnel, up to an altitude of 700
m a.s.l; this observation is effectively confirmed by oules Regarding the role of the return
period in our tests, we observe an increase of the numbenggdaus points, that spread upstream
along the drainage network: for higher return periods evemall upstream area is sufficient to
produce a peak runoff that can trigger a debris flow. The momiresults of the credal net
will be further compared and quantitatively evaluated bplgipg the model to other watersheds,
where detailed geomorphological maps are obtainable altldieservations of availability and
characteristics of debris material along the drainage otivave been recently collected.

Figure 3: Spatially distributed identifications for the basin in Fig2 and rainfall return periods
of 10 (left) and100 (right) years. Points for which the credal net predicts tveer class of risk
are depicted in gray, while black refers to points where didévels of risk cannot be excluded.

6 CONCLUSIONS AND OUTLOOKS

We have presented a model for automatic identification ofimigal source areas of debris flows
based orcredal networks Our network provides a refined description of the mete@jiokd and
hydrological processes contributing to the debris flowiatibn, and allows to model alseague
observations of the triggering factors. The identificagiwacedure can be extensively applied to
whole basins, and unnecessary computations are avoidedeas where the geomorphological
conditions are not compatible with debris flow initiations A spatially distributed case study,
we tested our model for a debris flow prone watershed in Soutbeitzerland and the obtained
results agree with field observations collected after thedabris flow event of 2003. The model
is able to detect the areas inside the basin more prone tésdtdw initiation and also shows
that different rainfall return periods produce differemizard patterns. That makes it possible to
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determine the return period of the critical rainfall thaggrers debris flow as a result of channel-
bed failure in a specific point along the drainage network. aAsossible development of the
present work, we intend to design a post-processing preedduour simulations that produces
integral risk indicators based on neighborhood relationergy the detected dangerous points.
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