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1 Introduction

Debris flows are among the most dangerous and destructive natural hazards
that affect human life, buildings, and infrastructures. Starting from the ’70s,
significant scientific and engineering advances in the understanding of the pro-
cesses have been achieved [4, 7]. Yet, human expertise is still fundamental for
hazard identification, as many aspects of the whole process are poorly under-
stood; and the acquisition of evidence about the areas under consideration
can only be done vaguely in practice, making it difficult to apply models.

This paper presents a credal network model of debris flow hazard for
the Ticino canton, southern Switzerland. Credal networks [5] are imprecise-
probability models based on the extension of Bayesian networks [9] to sets of
probability mass functions (see Sec. 2.2). Imprecise probability [11] is a very
general theory of uncertainty that measures chance and uncertainty without
sharp probabilities.

The model represents expert’s causal knowledge by a directed graph, con-
necting the triggering factors for debris flows (Sec. 3.1). Probability intervals
are used to quantify uncertainty on the basis of historical data, expert knowl-
edge, and physical theories. They are also used to carefully model the vague
acquisition of evidence, which is a basis to draw credible conclusions.

The model presented here aims at supporting experts in the prediction
of dangerous events of debris flow. We have made preliminary experiments
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enumeration software lrs. The authors of these public software tools are gratefully
acknowledged. This research was partially supported by the Swiss NSF grant 2100-
067961.
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in this respect by testing the model on historical cases of debris flows. The
case studies highlight the good capabilities of the model: for all the areas the
model produces significant probabilities of hazard. Uncertain cases present
large probability intervals.

2 Background

2.1 Debris Flows

Debris flows are composed of a mixture of water and sediment. Three types of
debris flow initiation are relevant: erosion of a channel bed due to intense rain-
fall, landslide, or destruction of a previously formed natural dams. Prerequisite
conditions for most debris flows include an abundant source of unconsolidated
fine-grained rock and soil debris, steep slopes, a large but intermittent source
of moisture, and sparse vegetation [3].

Several hypotheses have been formulated to explain mobilization of debris
flows. Takahashi [10] modelled the process as a water-saturated inertial grain
flow governed by the dispersive stress concept of Bagnold. In this study we
adopt Takahashi’s theory as the most appropriate to describe the types of
event observed in Switzerland. The mechanism to disperse the materials in
flow depends on the properties of the materials (grain size, friction angle),
channel slope, flow rate and water depth, particle concentration, etc., and,
consequently, the behavior of flow is also various.

2.2 Methods

Credal Sets and Probability Intervals

We restrict the attention to random variables which assume finitely many val-
ues (also called discrete or categorical variables). Denote by X the possibility
space for a discrete variable X, with x a generic element of X . Denote by
P (X) the mass function for X and by P (x) the probability of x. Let a credal
set be a closed convex set of probability mass functions. PX denotes a generic
credal set for X. For any event X ′ ⊆ X , let P (X ′) and P (X ′) be the lower
and upper probability of X ′, respectively, defined by P (X ′) = minP∈PX

P (X ′)
and P (X ′) = maxP∈PX

P (X ′). Lower and upper (conditional) expectations
are defined similarly. Note that a set of mass functions, its convex hull and its
set of vertices (also called extreme mass functions) produce the same lower
and upper expectations and probabilities.

Conditioning with credal sets is done by element-wise application of Bayes
rule. The posterior credal set is the union of all posterior mass functions.
Denote by Py

X the set of mass functions P (X|Y = y), for generic variables X
and Y . We say that two variables are strongly independent when every vertex
in P(X,Y ) satisfies stochastic independence of X and Y .
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Let IX = {Ix : Ix = [lx, ux] , 0 ≤ lx ≤ ux ≤ 1, x ∈ X} be a set of probability
intervals for X. The credal set originated by IX is {P (X) : P (x) ∈ Ix, x ∈
X ,

∑
x∈X P (x) = 1}. IX is said reachable or coherent if ux′ +

∑
x∈X ,x�=x′ lx ≤

1 ≤ lx′ +
∑

x∈X ,x�=x′ ux, for all x′ ∈ X . IX is coherent if and only if the related
credal set is not empty and the intervals are tight, i.e. for each lower or upper
bound in IX there is a mass function in the credal set at which the bound is
attained [2].

The Imprecise Dirichlet Model

We infer probability intervals from data by the imprecise Dirichlet model,
a generalization of Bayesian learning from multinomial data based on soft
modelling of prior ignorance. The interval estimate for value x of variable
X is given by [# (x)/(N + s), (# (x) + s)/(N + s)], where # (x) counts the
number of units in the sample in which X = x, N is the total number of units,
and s is a hyperparameter that expresses the degree of caution of inferences,
usually chosen in the interval [1, 2] (see Walley’s work for details [12]). Note
that sets of probability intervals obtained using the imprecise Dirichlet model
are reachable.

Credal Networks

A credal network is a pair composed of a directed acyclic graph and a collection
of conditional credal sets. Each node in the graph is identified with a random
variable (we use the same symbol to denote them and we also use “node” and
“variable” interchangeably). The graph codes strong dependencies by the so-
called strong Markov condition: every variable is strongly independent of its
nondescendant non-parents given its parents. A generic variable, or node of
the graph, Xi holds the collection of credal sets Ppa(Xi)

Xi
, one for each possible

joint state pa (Xi) of its parents Pa(Xi). We assume that the credal sets of
the net are separately specified [11]: this implies that selecting a mass function
from a credal set does not influence the possible choices in others.

Denote by P the strong extension of a credal network. This is the
convex hull of the set of joint mass functions P (X) = P (X1, . . . , Xt),
over the t variables of the net, that factorize according to P (x1, . . . , xt) =
∏t

i=1 P (xi |pa (Xi) ) ∀(x1, . . . , xt) ∈×t
i=1Xi. Here pa (Xi) is the assignment

to the parents of Xi consistent with (x1, . . . , xt); and the conditional mass
functions P (Xi |pa (Xi) ) are chosen in all the possible ways from the respec-
tive credal sets. The strong Markov condition implies that a credal network is
equivalent to its strong extension. Observe that the vertices of P are joint mass
functions. Each of them can be identified with a Bayesian network [9], which
is a precise graphical model. In other words, a credal network is equivalent to
a set of Bayesian networks.
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Computing with Credal Networks

We focus on the task called updating, i.e. the computation of P (X|E = e)
and P (X|E = e). Here E is the vector of variables of the network in a known
state e (the evidence), and X is any other node. The updating is intended to
update prior to posterior beliefs about X. The updating can be computed by
(i) exhaustively enumerating the vertices Pk of the strong extension; and by
(ii) minimizing and maximizing Pk(X|E = e) over k, where Pk(X|E = e) can
be computed by any updating algorithm for Bayesian networks (recall that
each vertex of the strong extension is a Bayesian network).

The exhaustive approach can be adopted when the vertices of the strong
extension are not too many. In general, non-exhaustive approaches must be
applied as the updating problem is NP-hard with credal nets [6] also when the
graph is a polytree.3 In the present work the type of network, jointly with the
way evidence is collected, make the exhaustive approach viable in reasonable
times. Note that the exhaustive algorithm needs credal sets be specified via
sets of vertices.4

3 The Causal Model of Debris Flows

3.1 Qualitative Influences

The network in Fig. 1 expresses the causal relationships between the topo-
graphic and geological characteristics, and hydrological preconditions, already
sketched in Sec. 2.1. The causal graph is the result of an analysis of litera-
ture on debris flows and expert’s considerations5 (see [1] for details). We are
mostly interested in the leaf node, which is the depth of debris likely to be
transported downstream during a flood event.

3.2 Quantification of Uncertainty

Quantifying uncertainty means to complement the causal graph in Fig. 1 with
probabilistic information, in order to create a global probabilistic model for
the variables of the graph. This is actually done locally, by specifying the
probabilistic relationship between a node and its parents.

In the application under consideration, variables are continuous apart from
G, P , H, and U . Credal nets currently deal only with categorical variables, so
we discretized the continuous variables. The credal sets of the net were then
specified as follows. Sets of probability mass functions were specified for G, P ,

3A polytree is a directed graph with the characteristic that forgetting the direc-
tion of arcs, the resulting graph has no cycles.

4We used the software tool lrs (http://cgm.cs.mcgill.ca/∼avis/C/lrs.html) to
produce extreme mass functions from probability intervals.

5The second author of this paper acted as domain expert during all the work.
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Fig. 1. The causal graph.

H, C ′, U , N , S, and A, by inferring probability intervals from data using the
GEOSTAT database [8] and the imprecise Dirichlet model (with s=2). The
expert provided interval probabilities for the nodes R1, R2, X, L, and M .
The remaining nodes were originally continuous, depending in a deterministic
way from their parents according to physical models in the literature. The
discretization of these nodes naturally created precise probability mass func-
tions for them. (The width and number of discretization classes, about 6 on
average, was suggested by the domain expert.) In the following we sketch how
this is done in a special case. More general cases related to the graph in Fig. 1
were reduced to such a special case.

Consider a graph made by the continuous variables X1, . . ., Xn, and Y .
Let X1, . . ., Xn be root nodes in the graph, holding unconditional densities
p1, . . ., pn, and Y be direct successor of X1, . . ., Xn. Assume that the re-
lationship between Y and its parents is described by a function of the form
y = f(x1, . . . , xn). Now let Y be discretized using the bins ŷ(k) = (yk, yk+1].
Call Ŷ the discretized variable. We have Ŷ = ŷ(k) if and only if y ∈ ŷ(k). We
use a similar notation for the discretization of the parent nodes.

We are interested in obtaining the probability mass functions for the dis-
cretized variables X̂1, . . ., X̂n, and Ŷ . The case of the parent nodes is easier.
For a generic parent X̂j , the probability of X̂j = x̂

(k)
j follows simply by inte-

grating pj over x̂
(k)
j . In the case of Ŷ , we first have to express the function f

as the degenerate conditional density p(y|x1, . . . , xn) = δ[y − f(x1, . . . , xn)],
where δ is Dirac’s delta function. Then the joint density for the considered
variables becomes p(y, x1, . . . , xn) =

∏n
j=1 [pj(xj)] · δ[y− f(x1, . . . , xn)]. Joint

probabilities for the discretized variables are computed by integrating the
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joint density: P (ŷ(k), x̂
(k1)
1 , . . . , x̂

(kn)
n ) =

∏n
j=1[

∫
x̂
(kj)
j

dxj ·pj(xj)]
∫

ŷ(k) dy ·δ[y−
f(x1, · · · , xn)], from which P (ŷ(k)|x̂(k1)

1 , . . . , x̂
(kn)
n ) follows immediately.

4 Modelling Vague Observations

The causal model of debris flow is extended here to model vague observations
of channel depth and grain size (or granulometry) of debris material. Indeed,
channel depth and granulometry are typically known only partially, and this
is a serious limit to the real application of physical theories, also considered
that these two variables are very important to determine the hazard.

We focus on granulometry. (The observation of channel depth is treated
in analogous way.) We model the fact than the observer may not be able to
distinguish different granulometries. To this extent we add a new node to the
net called OM , which becomes parent of M . OM represents the observation of
M . There are five possible granulometries, m1 to m5. We define the possibility
space for OM as the power set of M = {m1, . . . ,m5}, with elements oM′ ,
M′ ⊆ M. The observation of granulometry is set to oM′ when the elements
of M′ cannot be distinguished. P (m|oM′) is defined as follows: it is set to
zero for all states m ∈ M such that m /∈ M′; and for all the others it is
vacuous, i.e. the interval [0, 1] (the intervals defined this way must then be
made reachable). This expresses the fact that we know that m ∈ M′, and
nothing else.

5 Case Studies

We validate the model in a preliminary way by an empirical study involving
six areas of the Ticino canton. The credal network is fed with the information
about the areas (Tab. 1), the estimated rainfall intensity on them for a return
period of 10 years, and the geomorphological characteristics of the watershed.
The network is thus expected to predict the probability of a debris flow event
with the defined frequency level. In this way, we aim at verifying whether the
network would have been a valuable tool to prevent considerable events of
debris flows, which actually happened in the areas under consideration.

The results of the analysis are in Tab. 2. We use the probabilities of defined
debris thickness to be transported downstream as an integral indicator of the
hazard level. In the discussion below we complement this information with
the classification of the areas in classes of hazard (d1, d2, d3) according to
the model (we do this by assuming 0-1 loss). From Tab. 2 we can see that
in case 1, for example, class d3 dominates the others, which means that the
posterior lower probability of d3 is strictly greater than the posterior upper
probability of both d1 and d2. This allows us to classify case 1 as d3. This
type of dominance, sometimes called interval dominance, is not as strong as
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Table 1. Details about the case studies.

Node Cases
1 2 3 4 5 6

G Gneiss Porphyry Limestone Gneiss Gneiss Gneiss
U Forest Forest Forest Vegetation Forest Bare soil
A 0.26 0.32 0.06 0.11 0.38 2.81
N 20.8 19.3 19.3 21.8 16.7 16.7
R1 0.9 0.6 0.7 0.9 0.9 0.8
R2 1.5 3.5 3.5 3.5 2.3 2.1
OM o{m2,m3} o{m1,m2,m3} o{m1,m2} o{m3,m4} o{m1,m2,m3} o{m3,m4,m5}
OL o{l1,l2} o{l2,l3} o{l1,l2} o{l2,l3,l4} o{l2,l3} o{l3,l4}

Table 2. Posterior probability intervals of the movable debris thicknesses (cm).

Thickness Cases
1 2 3 4 5 6

<10 (d1) [0.01,0.02] [0.08,0.30] [0.06,0.23] [0.19,0.53] [0.12,0.25] [0.00,0.01]
10–50 (d2) [0.01,0.03] [0.23,0.32] [0.19,0.41] [0.12,0.39] [0.15,0.20] [0.01,0.02]

>50 (d3) [0.95,0.98] [0.46,0.69] [0.36,0.76] [0.34,0.45] [0.58,0.70] [0.97,0.99]

possible: e.g., in the same case we deduce, by using intervals, that d1 and d2

are mutually undominated, whereas it actually holds that d2 dominates d1.
This can be assessed by the stronger concept of dominance called maximality
by Walley [11]. Maximality cannot generally be read off from intervals, as
interval dominance implies maximality-based dominance, by the converse is
not true. We neglect details on maximality here for lack of space except that
computation of maximality needs direct knowledge of the strong extension. In
the following we implicity refer to maximality when we talk about dominance.

The results show that cases 1 and 6 are the most extreme in terms of
high debris flow hazard level. In case 6, the relatively high upstream area
and the land cover justify the results. In case 1, the slope of the source area
plays probably the key role. In case 2, the probabilities of d1 and d2 are non-
negligible, although d3 dominates them; and the states d1 and d2 are mutually
undominated. Similar results hold for case 5. In both cases the observations
of granulometry and channel depth are identical and the upstream areas are
nearly the same. The higher local slope of case 2 explains the greater lower
probability of d2. Case 4 is the most difficult to interpret, since case d3 dom-
inates d2 but the system suspends judgment between d1 and d3. This can
plausibly be explained with the very small watershed area and the low com-
plexity level of the drainage network, probably reflected in a more uncertain
estimation of geomorphological parameters. In case 3, d2 dominates d1, but
we cannot decide between d2 and d3. We deduce that in case 3 the model is
very sensitive to the observed channel depth and granulometry, which should
be therefore carefully estimated during a field survey.

In summary, the results are recognized as compatible with the expert’s
understanding of the debris flow events of the case studies.
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6 Conclusions

We have presented a model for determining the hazard of debris flows based on
credal networks. The model unifies human expertise and quantitative knowl-
edge in a coherent framework. This overcomes a major limitation of preceding
approaches, and is a basis to obtain credible predictions, as shown by the ex-
periments. Credible predictions are also obtained thanks to the soft-modelling
made available by imprecise probability through credal nets.

The model was developed for the Ticino canton, in Switzerland. Extension
to other areas is possible as the model is largely independent of the specific
area. This can be accomplished by re-estimating the probabilistic information
inferred from data, which has local nature.

Debris flows are a serious problem, and developing formal models can
greatly help us avoiding their serious consequences. The encouraging evidence
provided in this paper makes credal networks to be models of debris flows
worthy of further investigation.
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