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Abstract

Convex sets of probability distributions are also called
credal sets. They generalize probability theory with
special regard to the relaxation of the precision re-
quirement about the probability values. Classification,
i.e., assigning class labels to instances described by a
set of attributes, is a typical domain of application of
Bayesian methods, where the naive Bayesian classi-
fier is considered among the best tools. This paper
explores the classification model obtained when the
naive Bayesian classifier is extended to credal sets.
Exact and effective solution procedures for classifica-
tion are derived, and the related dominance criteria
are discussed. A methodology to induce the classifier
from data is proposed.

Keywords. Imprecise probabilities, credal sets, clas-
sication, naive Bayesian classification, Bayesian net-
works.

1 Introduction

The relationship between polytopic credal sets (credal
sets, for short) of discrete distributions, Bayesian net-
works (BNs) and classification is studied in this pa-
per. Credal sets [13] are polytopes of distributions and
can also be seen as the convex hull of a finite number
of distributions. Credal sets provide a framework to
formalize uncertain domains in a more flexible way
as compared to probability theory. In fact, although
credal sets keep their roots in the axioms of proba-
bility, their contemporary treatment of many distri-
butions allows the precision requirement of probabil-
ity theory to be relaxed. The precision requirement is
related to the need of precisely defining the probabil-
ity values in a probabilistic model. Very often, for a
number of reasons (ignorance about the phenomenon,
economic or temporal constraints, etc.), the latter is
not a realistic assumption. Therefore, many authors
consider precision the most critical point for the ap-
plication of probability theory.

An application of probability theory is the task of clas-
sification. Classification is a typical machine learning
task, where class labels must be assigned to instances
described by a set of attributes. For example, when
the problem is the recognition of hand-written char-
acters, the class labels are the alphabetical symbols,
while the attributes can be the boolean variables cor-
responding to the pixels of a b/w digital image. In
this case, doing classification is equivalent to output
the character that best matches the image described
by the joint state of the pixels. In general, the classifi-
cation task is of basic importance in the fields of data
analysis and pattern recognition. Bayesian methods
are very effective in the field of classification. In partic-
ular, it is recognized that the naive Bayesian classifier
(NBC, section 2.2) is competitive with the state-of-
the-art classifiers [4, 6]. The naive Bayesian classifier
is a particular case of Bayesian network. A Bayesian
network is a graphical model for the decomposition of
a joint probability distribution, which is currently the
leading model for probabilistic reasoning [10]. Classi-
fiers based on the more general paradigm of Bayesian
networks have also been proposed [7].

At the same time, Bayesian networks have been inves-
tigated in relationship with credal sets [2, 3, 5]. In this
case, the graphical model is extended to treat sets of
distributions instead of a single joint distribution and
can be called credal net. Credal nets realize the bridge
between credal sets and probabilistic reasoning in the
form of Bayesian networks.

This paper analyzes the task of classification when
it is realized by a naive Bayesian classifier extended
to credal sets. To this purpose, first, the main con-
cepts are introduced in section 2; here a survey of
credal sets, Bayesian networks and their relationship
is given. Furthermore, classification is described with
regard to its implementation with a naive Bayesian
classifier. Then, the extension of naive Bayesian clas-
sification to credal sets is developed (section 3) and
two algorithms are derived; the first algorithm (sec-



tion 3.1) computes posterior probability intervals for
the classification variable; such intervals allow the
states of the classification variable to be (partially)
ranked through the stochastic dominance criterion
(section 3.3). However, since not all dominances are
captured by stochastic dominance when credal sets
are used (section 3.4), the more general criterion of
credal dominance is proposed. The second algorithm
allows credal dominance to be tested. Section 4 de-
scribes an example of naive credal classification. Sec-
tion 5 shows that the proposed method for naive clas-
sifiers can be directly extended to the more general
Bayesian networks classifiers, if the patterns to clas-
sify do not present missing values. Finally, an inducer
for naive credal classifiers (NCCs) is proposed in sec-
tion 6, where also the results of some experiments on
real datasets are reported.

2 Basic Concepts

This section briefly introduces the main concepts dis-
cussed in the paper, that is, credal sets, Bayesian net-
works and the NCC.

2.1 Credal Sets and Bayesian Networks

In the present paper, the term credal set is used for a
closed and bounded geometric region described by lin-
ear constraints, i.e., a polytope, where every point is
a probability distribution. Credal set theory general-
izes probability to uncertainty about the distribution:
more precisely, it assumes that probability is a proper
way of dealing with uncertain domains, but criticizes
the requirement of precision in the probability val-
ues required by probability theory. This brings to the
more general view of sets of distributions. The coher-
ence with the axioms of probability is maintained for
every distribution in the set; however, the joint be-
havior of the credal set determines many new charac-
teristics of the theory, such that credal sets cannot be
seen simply as an extension of classical (point) prob-
ability.

As far as graphical models are concerned, Bayesian
networks are the current leading model for proba-
bilistic reasoning [10]. A Bayesian network is a cou-
ple (G,P) where G = (N, A) is a directed acyclic
graph, whose nodes (V) are interpreted as variables
and whose arcs (A) express the direct dependences
between them. Each variable (node) X € Qx has
a conditional distribution, P [X |Pa(X)], for every
possible state Pa (X) of its direct predecessor nodes
(parents). It is possible to show that the joint distri-
bution over the variables of the graph is obtained by
multiplying the conditional distributions of the nodes:
P[Xy,..., Xu] = [Lien PXi|Pa(X5)].

Credal sets can be put over Bayesian networks by al-
lowing a credal set to be used in the place of each
conditional distribution of the net. That is, a credal
network is a couple (G, p), where G is like above with
the difference that each node X now maintains as
many (credal) sets pia(x) of conditional distributions
as many joint states Pa (X) of the nodes’ parents ex-
ist. g is the set of all the possible joint distributions
P over the variables of the net, which is obtained by
making any possible choice of the conditional distri-
butions in the credal sets local to the nodes,

- P[Xl’ "7Xn]: HieNP[Xi‘Pa(Xi)]v
YT\ st PLX[Pa(X))] € oY =1 [

Remark 1 Notice that there are other possible ways
of extending Bayesian metworks to sets of distribu-
tions. For example, instead of defining a polytope for
each joint state of a mode’s parents, it would be pos-
sible to use a single, higher-dimensional, polytope for
each node. In particular, consider the naive classifier;
according to the first definition of credal mets, node
A; has a collection of |Q¢| credal sets: pgi, CeQc.
For a given state ¢ of C, the generic vector in the
credal set is [P[A; ‘C”AVLEQA,L.' Instead, with the sec-
ond definition of credal nets, there would be a sin-
gle set, where the generic element would be a vector
like [P [A; ‘C]]AiGQA,i,CEQC' The latter definition is
more general, since it includes the former case and
gives the further chance of using constraints between
different conditional distributions of the same node.
However, the effects of such a greater generality are
not clear and, moreover, the implications on computa-
tional complexity are strong. This is discussed in sec-
tion 3.2.3. For the above reasons, this paper adopts
the initial definition of credal nets.

Making inference in a credal net is similar to the
Bayesian net case, that is, computing the posterior
probability of a variable given a set of instantiated
nodes, called the evidence nodes. More precisely, if E
is the set of evidence nodes, such that £ = e is their
known state, the inference (or updating) is defined as
the computation of P [X |E = e], for anode X in the
graph. But notice that whereas in a Bayesian network
P[X |E = e] is a number, it is an interval for a credal
net. In fact, it is: P[X|E=e] < P[X|E=e¢] <

P[X |E = e], where the extremes of the interval are

the solutions respectively to the minimization and
maximization problems below,

P[X|E=e] = min PIX|E=¢], (1)
P[X 1,0, Xn]Ep
PX|E=e] = max P[X|E=c¢]. (2

PIX1,., X, ]€p



The interval expresses the ignorance about the poste-
rior probability that logically follows from the igno-
rance about the joint distribution that is part of the
credal net model. Exactly solving problems of type
(1) and (2) is a difficult task in the general case. The
only known algorithm [2] has an exponential worst
case complexity also for singly-connected nets. Re-
stricting the attention to a subset of credal nets can
help to develop more effective algorithms; for exam-
ple, singly-connected credal nets with binary variables
admit a solution algorithm which is linear to the size
of the graph [5]. The present paper emphasizes that
classification is a field that constitutes another exam-
ple in which an efficient inference algorithm can be
realized. This is due to the particular type of compu-
tation to be realized in the network.

With special regard to solution algorithms, a ba-
sic property of credal networks is that problems (1),
(2) can be transformed to combinatorial optimization
problems. In other words, it is possible to compute
the minimum and the maximum by examining a fi-
nite number of points. In particular, for each credal
set in the network, it is sufficient to consider the (fi-
nite) subset of extreme points. The extreme points
correspond to the vertices of the polytope represented
by the credal set. For this reason, the distributions
corresponding to vertices of the polytopes are called
extreme distributions.

2.2 Naive Bayesian Classification

The naive Bayesian classifier is the particular case of
Bayesian network depicted in figure 1.

Figure 1: The Naive Bayesian Classifier

The naive classifier has a single root node (C') which
corresponds to the classification variable and its chil-
dren nodes are the attribute variables. Each node X
in the network has the usual conditional distributions
P[X |Pa(X)] of the node given the state of the par-
ent(s), Pa (X), which are estimated from data or from
other types of knowledge. Given a particular instance,
Ay = a1,..., A, = ay, of the attribute variables,
the classification is made by computing the posterior
probability P [C'|aq,...,a,] for each value of C' and

by picking up the value with maximum probability,
¢ =argmaxc P[Clag,...,a,].

The naive classifier is quite a simple model and this
is due to strong independency assumptions; the at-
tributes must be conditionally independent given the
state of the classification variable (this corresponds
to the absence of an arc between any couple of at-
tributes). This requirement is met very rarely in ap-
plications. However, such a classifier is used much,
since it is empirically well-known — and some recent
theoretical insights tend to justify such evidence [4, 6]
— that the naive Bayesian classifier predictive perfor-
mance is competitive with the state-of-the-art classi-
fiers (literature also tends to relax the above inde-
pendence requirements, by allowing the dependences
between the attribute variables to be stated using the
more general framework of Bayesian networks [7]).

3 Naive Credal Classification

As with any other BN, credal sets can be applied
to the naive classifier by substituting the conditional
distributions P [C],P[A;|C] (i = 1,...,n,C € Q¢)
with the credal sets pc,pgi t=1,...,n,C € Qp).
Then, the focus is on the way the classification
should be realized. In the sequel, first, it is ana-
lyzed the straight extension of the point probabil-
ity procedure to credal sets. This implies to com-
pute P[C|A4,...,A,] YVC € Q¢ (section 3.1) and
to compare them (section 3.3). Recall that the above
posterior probabilities are generally intervals; there-
fore their comparison is addressed with the stochastic
dominance criterion. The latter is discussed in section
3.4 where it is shown that it cannot identify all the
dominances expressed by credal sets. For this reason,
a more general criterion, called credal dominance, is
proposed. At the light of credal dominance, an alter-
native procedure for classification is derived in section

3.4.

3.1 Interval Computation

Suppose that the current instance of the attribute
variables is A; = aq,...,A4, = a,. As explained in
section 2.1, two problems must be solved:

min P[C|Ay =ay,..., Ap = an], (3)
P[C,AL,...,An)Ep
max P[C|A1=ay,..., A =ay]. (4)

P[C,Ar,..., Anl€p

Consider the minimization, the maximization is anal-
ogous. Furthermore, consider the computation of the
posterior probability for a fixed value ¢ of C. The ob-
jective function can be rewritten applying the defini-



tion of conditional probability and using the marginal-
ization as follows,

Plclay,...,a,] =
Plc,aq,...,a,
[PC - (5)
ZCGQ(' [ y Aty .. 'aan]

(ZCGQC P[C, al,..j ,an]>_1 _ -

Plc,ay, ... an

-1
P|C,ay,...,ay
<1+ZCG‘Q"\{C} (G ]> , (7)

Pleyay,. .. ap)

.an] # 0 for the
(6); notice that

where it is assumed P[c,ay,...
passage from Eq. (5) to Eq.

if Ple,ay,...,a,] = 0, it is clear from Eq. (5)
that Plclay,...,a,] = 0 (the case when also
Play,...,a,] = 0 is not considered, because it

would imply an undefined conditional probability
Plclay,...,an]).

Finally, Eq. (7) is written according to the topology
of the graph,

Plclay,...,an] =

(1 n Zceﬂc\{c}P[C] [Tiey Plai |C]>_ ®)

P ATy Place]

Now, the minimization problem (3) is written by sub-
stituting its objective function with the right member
of Eq. (8),

min min
PlClepc PlAi|Clep ,CEQ0,i=1,...,n

(1 n Zceﬂc\{c} P[CITT;_, Plai|C] ) - 9

P e [Tizy Plaile]

Notice that since the objective is now expressed by
means of the local conditional distributions, also the
minimization is taken over the possible conditional
distributions in the credal sets local to the nodes.
Let us now focus on the inner minimization problem
only: the goal is the mazximization of the fractional
function inside the parentheses, since this is equiv-
alent to minimizing the reciprocal. First of all, no-
tice that it is possible to minimize the denominator
and to maximize the numerator separately, in fact
they do not share any term. Second, notice that
the quantities P [a; |C] (C € Q¢,i=1,...,n) are in-

dependent one another! because they are defined by
means of disjoint sets of constraints. This means that
the choice of a conditional distribution P [a;|C] in
pii can be made without taking into account the
choice of any other conditional distribution. The ob-
servations above allow the inner optimization to be
solved. Consider the denominator case. Plc] is a
non-negative number; therefore, the denominator is
minimized when the product [[;_, P [a;|c] is min-
imized. This is obtained by setting any P la;|c] to
its minimum, i.e. [[;_, P[a;|c]. An analogous argu-
ment holds for the numerator; P [C] is non-negative
VC € Q¢, and the sum is made by terms that can be
optimized separately. Hence, the numerator is maxi-
mized when the product of the conditional distribu-
tions is set to []i_; P [a; |C] VC € Qe (e3-

Problem (9) becomes,

min
P[Clepc

i -1
14 ZCGQC\{C} P[C]]]iy Pla: |C]
PleTlizy Blailc] '

(10)
The next step is the application of the combinatorial
property of the problem, cited in section 2.1. For any
given node X, denote with @;a(x) the finite subset of
pia(X) made by its extreme points. Problem (10) is

equivalent to the combinatorial problem (11),

min
P[Clepc

- Ycecacie PICI T, Plai|C] -
PdTLiZ Plaile] ’
(11)

which is simply solved by enumerating the extreme
distributions in p. Of course, it is also necessary to
know the extremes of P [a; |C] (C € Q¢,i=1,...,n)
in order to apply formula (11). This is ob-
tained by solving problems minpa,jcjep, P [a:|c]
and maxpy,ic1eps Plai|C] VO € Qc \ {c}, Vi =
1,...,n, which can again be done enumerating the
extreme distributions in the respective feasible sets.

Following the same argument, it is straightforward
to obtain the formula solving problem (4), which is
reported below,

max
P[Clepe

(1 . Zoeacvq PIOTT, Plai[C] ) -
PIIT P laile] |
(12)

'Observe that this is a different concept as compared
to probabilistic independence.



3.2 Complexity

The purpose of this section is to analyze the complex-
ity of doing classification with credal nets. In partic-
ular, the complexity of the combinatorial solution of
problems (11) and (12) is discussed; furthermore, a
different exact solution procedure is proposed for the
cases when the combinatorial approach is too expen-
sive. Finally, a brief analysis is carried out with regard
to the classification complexity with the more general
model described in the remark 1.

3.2.1 Combinatorial Procedure

In order to apply formulas (11) and (12), it is nec-
essary, first, to compute the extreme values of the
conditional distributions of the model. Suppose that
the extreme distributions of the credal sets are al-
ready known?, and that the maximum number of ex-
treme distributions in a set is k. Hence, the com-
binatorial computation of the extremes of P [a;|C]
takes O (k) time. This must be repeated VC € Q¢
and Vi = 1,...,n, yielding to O (nk|Q¢]).

With regard to formulas (11) and (12), when the val-
ues of the conditional probabilities are fixed, the ex-
pression in parentheses is computed in time O (|Q¢]).
The latter must be repeated for each extreme distribu-
tion in P, in order to evaluate the optimum, yielding
to O (k|Q¢c|). The total complexity is the sum of the
two expressions above, i.e.,

O (nk 90]). (13)

Observe that the complexity is linear with every in-
dependent quantity making up expression (13), i.e., it
is linear to n, k and |Q¢|.

3.2.2 Linear Programming Procedure

Among the three quantities in formula (13), n and
|Q¢| are directly under the control of the model
builder; instead, k£ can be any integer, depending on
the constraints that define the credal sets®. If k is not
too large, the combinatorial approach is efficient; but
there are cases when k can be, like when a credal set
is defined via interval constraints [1]. In this case, k
can be formally bounded on the basis of the size of a
variable’s domain. For example, if the variable has 10
possible states, k can be 1260 at most; for 11 states,
k < 2722. As the number of states grow, k& can be
quite large and the combinatorial approach leading

2The extreme distributions can be computed given the
contraints (and vice versa).

3Except for the case when a variable is binary; in this
case k can be 2 at most.

to complexity (13) may be significantly slowed down.
This should not be perceived as a limitation to the
applicability of credal classification. In fact, there is
no need to use explicitly the extreme distributions if
more sophisticated approaches based on linear pro-
grams (LPs) are adopted. The latter directly use the
constraints representation of the polytopes and can
solve problem (9) exactly and efficiently (the maxi-
mization is analogous): first, the computation of an
extreme of Pla; |C], Vi = 1,...,n and VC € Q¢, is
an LP. A linear program is usually solved efficiently
also for very large domains with the simplex method;
furthermore it is a task polynomially bounded when
an interior point method is used. Second, observe that
problem (10) is a fractional linear program, because
the values of the conditional probabilities are fixed
and only the probabilities of the states of C' are vari-
ables. Fractional linear problems can be turned to
LPs by changing variables ([11], section 2.2.2).

3.2.3 About More General Models

In the derivation of the solution procedure, in section
3.1, the passage from Eq. (9) to Eq. (10) is a sig-
nificant point both for complexity and for the nature
of problem itself. In fact, it states that the optimal
values of the conditional distributions P [A;|C] can
be fixed to P [a; |C] and P [a; |c], VO € Q¢ \ {c} and
Vi = 1...n, independently on each other and on the
chosen distribution P[C] € pc. On one hand, this
makes the combinatorial computation viable, and on
the other, it allows the problem to be described within
the framework of fractional linear programming.

Such nice properties are lost, for example, by passing
to the more general model described in the remark
1. In fact, in that case, Vi = 1...n, the quantities
P[A;|C], C € Q¢, are not mutually independent (be-
cause there can be constraints between them). There-
fore, the argument that justifies the passage from Eq.
(9) to Eq. (10) cannot be applied. The first con-
sequence is that a combinatorial approach can still
work but with much higher complexity that, in facts,
renders the method not viable. The combinatorial
approach can be realized by doing all the combina-
tions of the extreme points of the attribute variables’
convex sets; but this implies a fast combinatorial ex-
plosion of the number of points to treat. The second
consequence is a seeming failure of the non-linear ap-
proach, too; in fact, since the values P [A; |C] are not
mutually independent, they cannot be fixed, i.e., they
are variables in problem (9). Hence, the latter cannot
be reduced to a fractional linear program, being the
ratio of two polynomials over a linear set. This moves
the problem to a difficult side of the global optimiza-
tion field. In the author’s knowledge, literature does



not present any general effective procedure to globally
optimize such problems [11, 12].

3.3 Stochastic Dominance

Section 3.1 provides the means to compute the prob-
ability interval where P [C'|aq,...,ay] lies, VC € Qc¢.
The second step of classification is the choice of the
value ¢* € Q¢ that maximizes P [C|ay,...,a,]. As
opposed to ordinary classification, credal classification
also faces the problem of doing such a choice when
the probability is defined as an interval. Optimal-
ity is not always defined when intervals are present.
This is related to the observation that the set of
intervals { P [C'|a1,...,a,] | C € Q¢ } cannot always
be totally ordered. An objective criterion for com-
paring probability intervals is the so-called stochas-
tic dominance: given two intervals, I; = [ay,b;] and
I, = [ag,bs], I> dominates Iy iff as > b;. The ratio-
nale behind the criterion is that since each probability
in I is greater or equal to any probability in I, the
event associated to I is, at least, as probable as the
event related to I;. Unfortunately, stochastic domi-
nance generally implies only a partial order; if I; and
I overlap, they cannot be compared. Therefore, there
does not always exist an interval that dominates all
the others, which is necessary for optimality; the only
objective output of the system can be the set of the
undominated states of C, which in some cases can be a
singe state, though not in general. In a sense, credal
classification can be interpreted as a more cautious
procedure as compared to Bayesian classification. In
fact, it does not provide a single answer, when there
are not the conditions for doing that.

3.4 Credal Dominance

So far, the analysis has focused on the computation
of the ignorance intervals for the states of C', with the
aim of comparing them using stochastic dominance.
It is useful to observe that the potentially available
information with credal sets is greater than that pro-
vided by intervals; the credal set for P [C'|ay,...,an],
say @& 7", generally conveys greater knowledge
than that given by the separate intervals for the pos-
terior probabilities of C. In fact, the credal set can
also represent possible constraints between the above
probabilities, which disappear with the interval view.
Therefore, it is natural to wonder if a comparison cri-
terion different from stochastic dominance can better
exploit the knowledge that is proper of credal sets.

Consider the following example. Suppose that Q¢ =
{e1,¢0,c3} and that ¢ “" has only three ex-
treme distributions: [.4,.4,.2], [.5,.4,.1] and [.5, .5,0],
where the j-th elements of the vectors represent

P[C =c¢jlay,...,a,]. The intervals for the posterior
probability of ¢1, co and c3 are, respectively, [.4,.5],
[.4,.5] and [0,.2]. Then, stochastic dominance allows
the state cs to be discarded, but not the other two
states to be compared, i.e., stochastic dominance pro-
duces two undominated states, ¢; and co. But it is
easy to see that for any distribution in the credal set,
itis P[C=cila1,...,an] > P[C=calay,...,a,],
i.e., co is dominated. In other words, for the credal
set at hand, there is only one dominant state, but
this fact is hidden when intervals and stochastic dom-
inance are used. Thus, we are lead to the definition of
a dominance criterion for credal sets.

Definition 1 Let X be a discrete variable and x1, xo
two states in the domain of X. Consider the dis-
tribution P[X |E] € pg, where E represents what
is known and ©¥ is a non-empty set of distribu-
tions. The state x1 is said to be credal-dominant

as compared to xo, x1 = xo, if for any distribution
PIX|E|€epk, P[X=x,|E] > P[X =3 |E].

Credal dominance is a straightforward generalization
of stochastic dominance to sets of distributions. No-
tice that stochastic dominance implies credal domi-
nance, whereas the converse is not true, as the ex-
ample above shows. That is, not all dominances are
discovered by stochastic dominance; hence, the lat-
ter can be seen as an approximation to credal domi-
nance. Now, the point is if the computation of credal
dominance can be realized in an effective way. Before
addressing the naive classification case, it is useful
to observe that, in general, credal dominance can be
checked in a combinatorial way; when pg is a poly-
tope, 1 = x9 < P[X =x1|E] > P[X =23 |F]
VP[X |E] € $%. In one sense (=) the proof is trivial;
the other sense (<) is easily proved by using the fact
that any distribution in % is a convex combination
of the extreme distributions.

Let us develop the particular case of the NCC. Con-
sider two states of C, namely ¢; and co. We want to
check if

P[C:Cl‘al,...,an] ZP[C:CQ‘GIV'WG’”] (14)

holds for all the joint distributions in g. The question
is equivalent to solving the following problem,

P[C:Cl |a17"'7an]

, 15
P[C,A{r,l.%.r,lAn]e@ P[C =colay,...,an] (15)

where, for the moment, P[C =ca|ay,...,a,] is as-
sumed positive. If the optimum of problem (15) is



greater of equal to 1, the answer to the credal dom-
inance question is affirmative; in fact, it means that
the inequality (14) is always true. Whenever the op-
timum is strictly lower than 1, the inequality (14) is
false, at least for the joint distribution in @ where the
optimum is attained, and ¢; > cg is not verified (but
it might still be ¢z > ¢1).

Problem (15) can be solved according to an argument
completely analogous to that used for problem (3).
In particular, problem (15) is initially rewritten as
minpc 4, A.lep Plc1,a1,...,an] [Plca,aq,. .., a,),
by deleting the probability of the considered instance;
then, it is represented according to the topology of the
graph and the values of the conditional probabilities
are fixed, as follows,

win Pl I Plailer]
PlClepc Plea] [[iq P laicz]

(16)

Finally, if the combinatorial approach is chosen, the
solution of problem (16) is obtained enumerating the
extreme distributions of p¢, after computing the ex-
tremes of the conditional distributions; otherwise, the
LP-based solution procedure can be used, by comput-
ing the extremes of the conditional distributions by
LPs and then solving the remaining fractional linear
program (16). Notice that problem (16) allows only
c1 > co to be checked; testing co > ¢y requires the
minimization of the reciprocal objective to be solved.

A simple extension also solves the case when for some
distributions in the set o, P[co] [T, P lai|c2] = 0.
The latter happens if either P [co] = 0or P [a; [c2] =0
for some ¢ = 1,...,n. Consider the case P [cy] = 0,
the other case is analogous. If P [¢a] = 0 for all the dis-
tributions P [C] € p¢c, P [C = ¢z |ay, ..., a,]is always
zero, therefore the inequality (14) always holds; other-
wise the distributions corresponding to P [cp] = 0 can

be discarded, because the problem is a minimization.

From the above analysis it also follows that credal
dominance between two states (i.e., checking both the
directions of the inequality) can be computed even
more quickly than stochastic dominance. In fact, two
optimization problems must be solved, and the overall
time required is lower than for problems (3) and (4)
together. Compare, for instance, problem (16) with
problem (10); problem (16) is solved more quickly, be-
cause it only has O(n) terms at the numerator versus
the O(n|Q¢|) terms of problem (10). For symmetry,
the same is true for the remaining couple of problems.

Conversely, it seems possible that computing the set
of undominated states of C is more expensive us-
ing credal dominance than using stochastic domi-
nance. With stochastic dominance, 2 |Q¢| optimiza-

tions like problems (10) allow all the intervals for
C to be computed; then, O(|Q¢|?) interval compar-
isons select the stochastic-undominated states. With
credal dominance, O(|Qc|?) optimizations like prob-
lem (16) are required, which is clearly more expensive
than O(|QC\2) interval comparisons; however, each
optimization is simpler than the corresponding one
with stochastic dominance, as outlined above. The
precise definition of the data structures to use and
a more careful organization of the procedures can
lead to a deeper comparison of the relative compu-
tational weights of the two different approaches. For
the moment, let us investigate the complexity of an-
other computation, i.e., how to compute the credal-
dominant state of C, if it exists. This is useful when a
single dominant state is required. Such task is carried
out solving only O (|Q2¢|) instances of problem (16).

The solution is obtained with a procedure in two
steps. In the first step, two states of C, ¢; and co, are
considered; ¢; > ¢y is tested by solving problem (16).
If ¢; = ¢ holds, cg is discarded because it cannot be
dominant; for the same reason, if ¢; > ¢ is false, ¢ is
discarded. Therefore the set of states to analyze is de-
creased of 1 state at least. The procedure is repeated
on the new set of states until its cardinality is lower or
equal to 1, which happens after |Q2¢|—1 optimizations.
Afterwards, if the set is empty there is no dominant
state, for definition; otherwise, if the set contains a
single state, the latter has verified the necessary con-
dition to be credal-dominant. The sufficiency (second
step) is verified by testing its credal-dominance over
all the states of C' not already compared with it in the
first step; this is obtained with |2¢| — 1 optimizations
at most. The overall number of optimizations (step 1
+ step 2) is then O(|Q¢|).

4 An Example

This section introduces an easy example to show the
principles of credal classification with regard to the
solution procedure described in section 3.1. The ex-
ample is made simple for clarity; the probabilities are
arbitrary.

An insurance company wants to assess the risk
it incurs about the car insurance for a new cus-
tomer. The risk (R) is classified as low, medium,
high, and is related to the number and type of car
accidents that must be expected by such a cus-
tomer. The company decides to infer the risk on
the basis of two attributes of the customer: the
age (A € {young, middle-aged, old}) and the city
(T' € {Venezia (VE), Treviso (TV), Milano (MI)})
where the customer lives.



The credal sets of the NCC are defined with the fol-
lowing purpose. About the customer’s age, it is sup-
posed that the middle-aged persons have better be-
havior, as compared both to young and old people;
about the risk of the cited Italian cities, the ranking
is, Venezia < Treviso < Milano. The credal sets, de-
fined by means of (proper and reacheable, see [1]) in-
terval constraints, for ease of treatment, are reported
in tables 1, 2 and 3.

R Intervals
low [.77,.85]
medium [.10,.15]
high [.05,.08]
Table 1: P[R]
R
A low medium high
young [.15,.22] [.27,.32] [.60,.70]
middle-aged [.50,.55] [.33,.38] [.05,.15]
old [.28,.34] [.34,.38] [.20,.30]
Table 2: P[A|R]
R
T low medium high
VE [.70,.72] [.15,.20] [.02,.06]
TV [.18,.20] [.60,.65] [.22,.28]
MI [.08,.10] [.20,.25] [.66,.72]
Table 3: P[T|R]

For example, table 1 expresses the fact that the great-
est part of customers are known to be low-risk, in a
percentage that varies from 77% to 85%; a minor-
ity are medium-risk people (in the range 10% - 15%);
and that few people (5% - 8%) are high-risk. Ta-
ble 2 mainly expresses that when the risk is low, the
most probable age is middle-age; when it is medium,
the three states of A have similar probability, whereas
when the risk is high, people are most probably young,
otherwise old.

Now, formulas (11) and (12) are applied; they re-
quire the extremes of the conditional probabilities
P[A;|C]. Such extremes are readily available when
using reacheable intervals. The above formulas also
require the extreme distributions of P [C] (P [R] in the
present example). Such distributions are computed on
the basis of the intervals with simple procedures [1].

Let us consider the case of an old person, living in
Venezia. Formulas (11) and (12) yield the three prob-
ability intervals in Table 4. Table 4 shows that, in this
case, stochastic dominance implies a total order on the

R Intervals
low [.922,.975]
medium [.024,.070]
high [.001,.009]

Table 4: P[R|A = old,T = VE]

states of R, and the customer is classified low-risk. A
different situation happens when the case of a young
person, in Milano, is considered. Intuitively, the sub-
ject should be high-risk, because each attribute is in
the worst condition. Formulas (11) and (12) produce
the intervals in table 5.

R Intervals
low [.150,.426]
medium  [.085,.290]
high [.435,.693]

Table 5: P[R|A = young,T = MI]

Notice that there in only a partial order between the
states of R, however, it is still possible to obtain a
single dominant state, i.e., state high. The last case
is about a young person who leaves in Treviso. This
is slightly more difficult to classify, intuitively, since
there are opposite tendencies in the attributes: being
a young person makes risk higher, but the risk should
be lowered down by living in a city with moderate
traffic. Applying Eq. (11) and (12), the intervals in
table 6 are obtained. This time a single dominant
state is not available, however, the high-risk state can
be disregarded, because it is dominated by the low-
risk one.

R Intervals
low [.307,.621]
medium  [.238,.525]
high [.100,.267]

Table 6: P[R|A = young, T =TV]

5 Observations

The first important observation is that the exten-
sion of the NBC to credal sets implies the exten-
sion of the more general Bayesian networks classi-
fiers, too. A Bayesian network classifier (BNC) [7]
is a Bayesian network with nodes C, A4, ..., A,, such
that the portion of graph related to the classification
variable is like in figure 1, and the part related to
nodes {A;y,...,A,} is a generic BN. It is well known
that any BN with some evidence nodes (E) is equiv-
alent to the network obtained by removing the arcs
departing from E [10]. In a BNC, E = {A4,,..., A,},



if the considered instance has not missing data, and
the removal of the arcs departing from the attributes
turns the model to a NBC. Hence, the classification
of an instance on a BNC with credal sets (credal net-
works classifier, CNC) reduces to the computation on
a NCC, which is solved by the procedures in the above
sections. The modelling capability obtained in this
way seems quite general.

The second observation is about the potential uses of
credal classification, which seems to embrace a wide
area of different applications. For example, it can
be used to do sensitivity analysis; building classifiers
on the basis of experts’ opinions fits naturally in the
credal classification paradigm; credal classifiers can
be used when the probabilities are estimated from
databases with missing data; in general, ignorance
about the domain is allowed to be included in the
model, in order not to be forced to improperly reduce
to the case of a single distribution.

6 An Inducer for Credal Classifiers

The present section discusses the construction of an
inducer for the NCC. An inducer is an algorithm that
builds a classifier from a dataset [8]; this is a relevant
topic, since classification is a typical data mining task.
The literature of imprecise probabilities can directly
be exploited to this extent: Walley shows how to com-
pute lower and upper probabilities for an event, given
a dataset, on the basis of an imprecise Dirichlet model
[14]. For a generic state x; of a discrete variable X,
the interval is,

Moy S] : (17)

Na,
N+s N+s

where n;; is the number of occurrences of the state x;,
N is the number of observations and s > 0 is a hyper-
parameter (observe that the interval contains the ob-
served frequency of z; Vs > 0). The hyperparameter s
determines how quickly the lower and upper probabil-
ities converge as more data become available; larger
values of s produce more cautious inferences. Wal-
ley suggests two candidate values for s, i.e. s =1 or
s = 2, also if no definite statement about s is claimed.

An inducer was implemented on the basis of the above
result, i.e., each NCC model probability was defined
as an interval, according to (17). It is worth observing
that, whenever the dominant state exists, the classi-
fication of the induced NCC agrees with the NBC’s.
To see this, consider that: the interval (17) always
contains the observed frequency (i.e., the probability
used by the NBC), therefore each credal set of the
NCC contains the related distribution used by the

NBC, and hence the NBC posterior distribution for
C is contained in the NCC posterior credal set of C;
when a state is credal-dominant, it is dominant for all
the distributions in the posterior credal set of C.

For the above observation, the difference between the
induced NCC and NBC lies in the patterns that the
NCC cannot uniquely classify. In the experiments, the
induced NCC was tested on the “breast”, “corral” and
“german” datasets from UCI repository [9]. All three
datasets have 2 levels of the classification variable;
therefore for a given pattern of the attributes there
are only two cases, either a single dominant state ex-
ists or no dominant state exists. The chosen policy
about the latter cases was to reject them. Using such
a procedure, the comparison of the NCC and the NBC
must be made on the basis of the rejected patterns. It
seems reasonable to require that the NBC prediction
performance on the rejected patterns is 50% or lower
(recall that there are only 2 levels for C), in order to
judge the NCC superior over the NBC.

Experimental methodology. The datasets were
preprocessed by removing the observations with miss-
ing values, and by discretizing them, when needed.
Then, in order to evaluate the predictive performance
of the classifier, each dataset was randomly split into a
training set for supervised learning and a test set. This
procedure was repeated a number of times to improve
the accuracy of the estimates. More precisely, the ex-
perimental scheme was the so-called k-folds cross val-
idation [8] with k = 5; k-folds cross validation was
repeated up to obtaining that the standard deviations
of the sample means were lower than 1/3.

1 2 1 2 1 2

Dataset NBC NCC NCC R R N(R) N(R)

Breast 96.65 97.83 97.89 1.65 1.91 25.80 32.74
Corral 86.41 88.85 90.39 6.98 14.11 53.87 62.78
German 75.21 76.57 77.82 5.94 11.60 53.62 55.11

Table 7: The measured experimental percentages

Table 7 shows the percentages of the measured quan-
tities. Column NBC reports the predictive perfor-
mance of the NBC; column NCC displays the predic-
tive performance of the NCC on the set of unrejected
patterns; the percentage of rejected patterns is in col-
umn R; finally, N(R) is the performance of the NBC
on the rejected set. All the experiments were made
both for s =1 and s = 2.

Discussion. When C has 2 levels, predicting at 50%
is equivalent to guessing. Table 7 shows that the
choice s = 1 makes N(R) to be about 50% or lower
for all the datasets. This means that Walley’s intervals



allowed the NCC to reject patterns about which the
NBC just guesses or is wrong most of times. Clearly,
this also allowed the NCC performances to be greater
than the corresponding NBC ones. Using s = 2, the
NCC again improves its performance, but, discarding
more patterns (being more cautious), can reject also
patterns on which the NBC performs significantly (a
little) better than 50%, as in the “corral” case. The
behavior of the NCC for s = 1 seems quite appealing;
if larger experimental studies confirmed it, useless or
bad prediction performances might be avoided.

We can do two final remarks. First, the behavior of
credal classification should be also more evident and
useful when CNCs were used; in fact, given a dataset,
the CNCs model probabilities are more variables as
compared to the NCC case (hence Walley’s inter-
vals would be larger). Second, experimental analyses
might profit from using artificial databases generated
according to a known BNC; this would allow the ef-
fect of partial knowledge of the probability values to
be distinguished from the effects of the partial knowl-
edge about the dependency structure.

7 Conclusions

This paper proposes an approach to classification
based on the naive Bayesian classifier and on credal
sets. The application of credal sets to naive classifica-
tion is simple to realize and, moreover, allows uncer-
tainty about the probability values to be included in
the model. The approach seems a proper way of do-
ing classification, which preserves the advantages of
the classic Bayesian approach, while adding flexibil-
ity. The paper presents the basic tools to classify with
the NCC. Future research lines might address the top-
ics that the gained flexibility allows to be tackled, like
the combination of imprecise subjective and objective
knowledge, the treatment of missing data, robustness
analysis, etc., in order to develop an integrated plat-
form for credal classification.
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