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Abstract

Gaussian processes (GPs) are an important tool in machine learning and
statistics. However, off-the-shelf GP inference procedures are limited to
datasets with several thousand data points because of their cubic com-
putational complexity. For this reason, many sparse GPs techniques have
been developed over the past years. In this paper, we focus on GP regres-
sion tasks and propose a new approach based on aggregating predictions
from several local and correlated experts. Thereby, the degree of correla-
tion between the experts can vary between independent up to fully cor-
related experts. The individual predictions of the experts are aggregated
taking into account their correlation resulting in consistent uncertainty
estimates. Our method recovers independent Product of Experts, sparse
GP and full GP in the limiting cases. The presented framework can deal
with a general kernel function and multiple variables, and has a time and
space complexity which is linear in the number of experts and data sam-
ples, which makes our approach highly scalable. We demonstrate superior
performance, in a time vs. accuracy sense, of our proposed method
against state-of-the-art GP approximations for synthetic as well as sev-
eral real-world datasets with deterministic and stochastic optimization.

Keywords: Gaussian processes, probabilistic regression, expert fusion.
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1 Introduction

Gaussian processes (GPs) are a class of powerful probabilistic method used in
many statistical models due to their modelling flexibility, robustness to over-
fitting and availability of well-calibrated predictive uncertainty estimates with
many applications in machine learning and statistics. However, off-the-shelf GP
inference procedures are limited to datasets with a few thousand data points
N , because of their computational complexity O(N3) and memory complex-
ity O(N2) due to the inversion of a N ×N kernel matrix [1]. For this reason,
many GP approximation techniques have been developed over the past years.
There are at least two different approaches to circumvent the computational
limitation of full GP. On the one hand, there are sparse and global methods [1–
4] based on Mg � N so-called (global) inducing points, which cover sparsely
the input space and optimally summarizing the dependencies of the training
points. This results in a low-rank approximation of the kernel matrix of size
Mg×Mg, which is less expensive to invert. These methods consistently approx-
imate full GP, for instance the authors in [5] have shown that it converges to
full GP as Mg → N . However, all these methods are still cubic in the number
of global inducing points Mg and for many applications - in particular in higher
dimensions - the amount of inducing points has to be rather large to capture
the pattern of the function properly. A lot of work has been done to optimize
the locations of the inducing inputs e.g. [5–7], which allows to have less induc-
ing points but more optimization parameters. This optimization procedures
were further improved by stochastic optimization e.g. [8–11], which allows to
update the parameters in mini-batches and thus speed up the inference. Opti-
mization of these (variational) parameters helps to scale GP approximations,
however, the large number of optimization parameters makes these methods
hard to train and they are still limited to Mg global inducing points.
On the other hand, there are independent and local models based on aver-
aging predictions from J independent local experts/models resulting in a
block-diagonal approximation of the kernel matrix. The final probabilistic
aggregation is then based on a product of the individual predictive densities,
thus they are called Product of Experts (PoEs), see [12–17]. PoE methods
provide fast and rather accurate predictions, because they have fewer hyper-
parameters than inducing point methods and are locally exact. However, the
predictive aggregation of complete independent experts leads to unreliable
uncertainty estimates and less accurate predictions in regions between experts.
Further, also a rigorous connection to full GP is missing. Beside the mentioned
local and global methods, there are also numerical approaches, for instance
by exploiting parallelism in specialized hardware [18]. For a more thorough
overview of GP approximations we refer to [1, 19].
Our approach aims to overcome these limitations by introducing a framework
based on J correlated experts, so that it approximates full GP in two orthog-
onal directions: sparsity and locality. Thereby, our model is a generalization
of the independent PoEs and sparse global GPs by introducing local corre-
lations between experts. These experts correspond to local and sparse GP
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models represented by a set of local inducing points, which are points on the
GP summarizing locally the dependencies of the training data. The degree of
correlation C between the experts can vary between independent up to fully
correlated experts in a consistent way, so that our model recovers independent
PoEs, sparse global GP and full GP in the limiting cases. Our method exploits
the conditional independence between the experts resulting in a sparse and low-
rank prior as well as posterior precision (inverse of covariance) matrix, which
can be used to efficiently obtain local and correlated predictions from each
expert. These correlated predictions are aggregated by the covariance intersec-
tion method [20], which is useful for combining consistently several estimates
with unknown correlations. The resulting predictive distribution is a smooth
weighted average of the predictive distributions of the individual experts. Our
algorithm works with a general kernel function and performs well in higher
dimensional input spaces. The number of hyperparameters to optimize of our
method is the same as for full GP, which are just a few parameters (depend-
ing on the kernel). These parameters can be similarly estimated via the log
marginal likelihood, which is analytically and efficiently computable for our
model. In our inference, also log normal priors can be incorporated leading to
maximum-a-posteriori estimates for the hyperparameters.
Compared to the number of global inducing point Mg, which is usual much
smaller than the number of data points N , our approach allows a much higher
of total local inducing points in the order of N which helps to cover the space
and therefore model more complicated functions. Compared to the indepen-
dent PoEs, the performance can already significantly improve by modelling
just a few of the pairwise correlations between the experts. Our method shares
also some similarities with other sparse precision matrix GP approximations.
The works [21, 22] exploit a band precision matrix together with univariate
kernels, whereas [23] propose a precision structure according to a tree. The
authors [24, 25] use a more general precision matrix structure, however they
need to know the prediction points in advance and are only well suited for low
dimensional data (i.e. 1D and 2D), which is usually not useful in the context
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of machine learning, where the dimension is higher and predictions are needed
after training.
In Section 2, we briefly review full GP for regression and sparse and global as
well as independent and local approaches for GP approximation. In Section
3, we propose our method Correlated Product of Experts (CPoEs), where we
introduce the graphical model (3.1) of our method and explain the local and
sparse character of the prior approximation (3.2). Further, we discuss how to
make inference (3.3) and prediction (3.4) in our model. In Section 3.5, we
show that the quality of our approximation consistently improves in terms of
Kullback-Leibler-(KL)-divergence (B11) w.r.t. full GP for increasing degree of
correlation. Further, we present deterministic and stochastic hyperparameter
optimization techniques (3.6). In Section 4 we compare against state-of-the-art
GP approximation methods in a time versus accuracy sense, for synthetic as
well as several real-world datasets. Moreover, comparison to non-GP regression
methods are provided. We demonstrate superior performance of our proposed
method for different (non-trivial) kernels in multiple dimensions. Section 5
concludes the work and presents future research directions.

2 GP Regression

Suppose we are given a training set D = {yi, Xi}Ni=1 of N pairs of inputs
Xi ∈ RD and noisy scalar outputs yi generated by adding independent
Gaussian noise to a latent function f , that is yi = f(Xi) + εi, where
εi ∼ N

(
0, σ2

n

)
. We denote y = [y1, . . . , yN ]T the vector of observations and

with X = [XT
1 , . . . , X

T
N ]T ∈ RN×D. We model f with a Gaussian Process,

i.e. f ∼ GP(m, kθ) with mean m(X) and a covariance function (or kernel)
kθ(X,X ′) for any X,X ′ ∈ RD, where θ is a set of hyperparemeters. For the
sake of simplicity, we assume m(X) ≡ 0 and a squared exponential (SE) ker-
nel with individual lengthscales for each dimension if not otherwise stated,
however, the mean function can be arbitrary and the covariance any posi-
tive definite kernel function (see, e.g., [1], Chap. 4). For any input matrix
A = [A1; . . . ; AM ] ∈ RM×D consisting of rows Ai ∈ RD, we define the GP

output value a = f (A) = [f(A1), . . . , f(AM )]
T

= [a1, . . . , aM ]
T ∈ RM , so

that the joint distribution p (a) = p (a1, . . . , aM ) is Gaussian N (a|0,KAA)
with a kernel matrix KAA ∈ RM×M , where the entries [KAA]ij = KAiAj

correspond to the kernel evaluations kθ(Ai, Aj) ∈ R. In particular, the joint

distribution p(f , f∗) of the training values f = f (X) = [f(X1), . . . , f(XN )]
T

and a test function value f∗ = f(X∗) at test point X∗ ∈ RD is Gaussian
N
(
0,K [X; X∗][X; X∗]

)
, where [X; X∗] is the resulting matrix when stacking

the matrices above each other. For GP regression, the Gaussian likelihood
p (y|f) = N

(
y|f , σ2

nI
)

can be combined with the joint prior p(f , f∗), so that
the predictive posterior distribution can be analytically derived [1]. Alterna-
tively, the posterior distribution over the latent variables given the data can
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be explicitly formulated as

p (f |y) ∝ p (f ,y) =

J∏
j=1

p
(
yj |f j

)
p
(
f j |f1:j−1

)
, (1)

where the data is split into J mini-batches of size B, i.e. D =
{
yj ,Xj

}J
j=1

with inputs Xj ∈ RB×D, outputs yj ∈ RB and the corresponding latent

function values f j = f(Xj) ∈ RB . In (1) we used the notation fk:j indi-

cating [fk, . . . ,f j ] and the conditionals p
(
f j |f1:j−1

)
can be derived from

the joint Gaussian, where we define p (f1|f1:0) = p(f1). Given the poste-
rior p(f |y), the predictive posterior distribution from above is equivalently
obtained as p (f∗|y) =

∫
p (f∗|f) p (f |y) df via Gaussian integration (B7).

The corresponding graphical model is depicted in Fig. 1(a)i) and 1(b)i),
respectively.
The GP depends via the kernel matrix on the hyperparameters θ, which are
typically estimated by maximizing the log marginal likelihood log p (y|θ) =
logN

(
y|0,KXX + σ2

nI
)
. Although GP inference is an elegant probabilistic

approach for regression, the computations for inference and parameter opti-
mization require the inversion of the matrixKXX+σ2

nI ∈ RN×N , which scales
as O(N3) in time and O(N2) for memory which is infeasible for large N .
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Fig. 1: Graphical models of different GP approaches.

2.1 Global Sparse GPs

Sparse GP regression approximations based on global inducing points reduce
the computational complexity by introducing Mg � N inducing points a ∈
RMg that optimally summarize the dependency of the whole training data
globally, as illustrated in the graphical model in Fig. 1(a)ii) and is denoted in
the following as SGP(Mg). Thereby the inducing inputs A ∈ RMg×D are in the
D-dimensional input data space and the inducing outputs a = f(A) ∈ RMg

are the corresponding GP-function values. Similarly to full GP in Eq. (1), the
posterior over the inducing points p(a|y) ∝

∫
p (a,f ,y) df can be derived
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from the joint distribution

p (a,f ,y) =

J∏
j=1

p
(
yj |f j

)
p
(
f j |a

)
p(a), (2)

where the usual Gaussian likelihood p
(
yj |f j

)
= N

(
f j , σ

2
nI
)

and the Gaus-

sian conditional p
(
f j |a

)
are used. Based on the joint distribution in (2), the

posterior p(a|y) can be derived from which prediction can be performed using
the predictive conditional p (f∗|a) as more precisely explained in Appendix E.1
and illustrated in Figure 1(b)ii). Batch inference in these sparse global models
can be done in O(M2

gN) time and O(MgN) space ([3]).
In order to find optimal inducing inputs A and hyperparameters θ, a sparse
variation of the log marginal likelihood similar to full GP can be used [5–7]. For
larger datasets, stochastic optimization has been applied e.g. [8–11] to obtain
faster and more data efficient optimization procedures. For recent reviews on
the subject we refer to [1, 3, 19].

2.2 Local Independent GPs

Local approaches constitute an alternative to global sparse inducing point
methods, which exploit multiple local GPs combined with averaging techniques
to perform predictions. In this work we focus on Product of Expert (PoE) [14],
where individual predictions from J experts based on the local data yj are
aggregated to the final predictive distribution

p (f∗|y) =

J∏
j=1

gj
(
p
(
f∗j |yj

))
, (3)

where gj is a function introduced in order to increase or decrease the impor-
tance of the experts and depends on the particular PoE method [12, 14, 16, 17,
19]. Note, in particular, the generalized PoE (GPoE) [12], where the weights
are set to the difference in entropy of the local prior and posterior. The indi-
vidual predictions p

(
f∗j |yj

)
are based on a local GP, for which the implicit

joint posterior can be formulated as

p (f |y) ∝ p (f ,y) =

J∏
j=1

p
(
yj |f j

)
p
(
f j
)
, (4)

where the corresponding graphical model is depicted in Figure 1iii) and more
details are provided in Appendix E.2. Other important contributions in this
field are distributed local GPs [13], parallel hierarchical PoEs [26], and local
experts with consistent aggregations [15, 27]. A different category of averaging
techniques are for instance mixture of experts [28, 28, 29]), which basically
replace the product in (3) by a sum. A particularly interesting approach is deep
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structured mixtures of GPs [29], which exploits a sum-product network of local
and independent GPs. Moreover, simple baseline methods for local methods
are the minimal variance (minVar) and the nearest expert (NE) aggregation,
where only the prediction from the expert with minimal variance and nearest
expert is used, respectively. Although both methods show often surprisingly
good performance, they suffer from the important disadvantage that there are
serious discontinuities at the boundaries between the experts (see for instance
Fig. 2) and thus often not useful in practice. This is also the main limitation
of all local methods based only on the prediction of one single expert (e.g.
deep structured mixture GPs [29]), which was the main reason for introducing
smooth PoEs with combined experts. We refer to [19] for a recent overview.
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Fig. 2: Different GP approximations (with comparable time complexity) indicated
with predictive mean (solid blue) and 95%-credible interval (dotted blue) compared
to full GP (black and shaded blue area). The number in the right bottom corner
indicates the KL-divergence (B11) to full GP. In the last plot, our method Correlated
Product of Expert (CPoE) is presented for a degree of correlation C = 2 and sparsity
γ = 1. We provide a second example in Figure A6 and a discussion about the relation
of our method to deep structured mixture GPs [29] is given in Section A.5.

3 Correlated Product of Experts

In this section, we present our GP regression method Correlated Product of
Expert CPoE(C, γ), which is a generalization of the independent PoEs and
sparse global GPs. The first generalization is the introduction of correlations
between the experts, which can be adjusted by the parameter 1 ≤ C ≤ J and
allows to interpolate between local and global models. Secondly, similar to the
sparse global approximation, our method allows to sparsify the inducing points
by sparsity parameter 0 < γ ≤ 1. We refer to Table 1 in the Appendix for an
overview of the used notation.
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3.1 Graphical Model

Assuming N = BJ data samples which are divided into J ordered partitions

(or experts) of size B, i.e. D =
{
yj ,Xj

}J
j=1

with inputs Xj ∈ RB×D and

outputs yj ∈ RB . We denote f j = f(Xj) ∈ RB the corresponding latent

function values on the GP f . We abbreviate y = y1:J ∈ RN ,X = X1:J ∈
RN×D and f = f1:J ∈ RN .

Definition 1 (Local Inducing Points) We refer to local inducing points
{
aj ,Aj

}J
j=1

with inducing inputs Aj ∈ RL×D and the corresponding inducing outputs aj =

f(Aj) ∈ RL of size L = bγBc with 0 < γ ≤ 1.

These L local inducing points (aj ,Aj) of expert j serve as local summary
points for the data

(
yj ,Xj

)
, where the sparsity level can be adjusted by γ. If

γ = 1, the inducing inputs Aj correspond exactly to Xj and correspondingly
aj = f j . We abbreviate a = a1:J ∈ RM , where M = LJ , for all local inducing

outputs with the corresponding local inducing inputs A = A1:J ∈ RM×D.
Next, we model connections between the experts by a set of neighbour experts
according to the given ordering.

Definition 2 (Predecessor and Correlation Index Sets) Let φi(j) ∈ {1, . . . , j − 1}
the index of the ith predecessor of the jth expert. For a given correlation parameter

1 ≤ C ≤ J , we introduce the predecessor set πC(j) =
⋃Ij
i=1 φi(j) satisfying

πC(j) ⊂ {1, . . . , j − 1} and πC+1(j) = πC(j) ∪ φC+1(j),

such that the size of the set Ij = |πC(j)| = min(j− 1, C − 1). Further, we define the
region of correlation with the correlation indices as ψC(j) = πC(j) ∪ j if j > C
and ψC(j) = ψC(C) = {1, . . . , C} otherwise, so that |ψC(j)| = C for all j.

The purpose of these predecessor and correlation indices is to model the local
correlations among the experts of degree C. If for all j the indices πC(j) are
the C − 1 previous indices, we say that the predecessors are consecutive and
non-consecutive otherwise. If C is clear from the context, πC(j) and ψC(j) are
abbreviated by π(j) and ψ(j), respectively. Details about the specific choices
of the ordering, partition, inducing points and predecessor indices are given in
Section 3.6.1.

Definition 3 (Graph) We define a directed graph G(V,E) with nodes V = a∪f ∪y
and directed edges

E = { {(aπiC(j),aj)}
Ij
i=1 ∪ {(aψiC(j),f j)}

C
i=1 ∪ (f j ,yj) }

J
j=1,

where πiC(j) and ψiC(j) denote the ith element in the corresponding set.
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The directed graph G is depicted in Fig. 4aii), where the local inducing points
of the jth expert are connected with the inducing points of the Ij experts in
πC(j). Further, the function values f j are connected in the region of correla-
tion ψC(j) to the local inducing points. The graph G = (V,E) can be equipped
with a probabilistic interpretation, in particular, each node v ∈ V and each
incoming edge (vi,v) ∈ E for all predecessors i = 1, . . . , I can be interpreted
as a conditional probability density p (v|v1, . . . ,vI).

Proposition 1 (Graphical Model; Proof 1) We define a graphical model correspond-
ing to the graph G(V,E) with the conditional probability distributions

p
(
yj |f j

)
= N

(
yj |f j , σ

2
nI
)
, (5)

p
(
f j |aψ(j)

)
= N

(
f j |Hjaψ(j),V j

)
(6)

p
(
aj |aπ(j)

)
= N

(
aj |F jaπ(j),Qj

)
, (7)

where (5) is the usual Gaussian likelihood for GP regression with noise variance
σ2
n, (6) the projection conditional and (7) the prior transition. Thereby, the matri-

ces are defined as Hj = KXjAψ(j)
K−1
Aψ(j)Aψ(j)

∈ RB×LC , V j = Diag[KXjXj
−

KXjAψ(j)
K−1
Aψ(j)Aψ(j)

KAψ(j)Xj
] ∈ RB×B, F j = KAjAπ(j)

K−1
Aπ(j)Aπ(j)

∈

RL×LIj , and Qj = KAjAj−KAjAπ(j)
K−1
Aπ(j)Aπ(j)

KAπ(j)Aj ∈ RL×L with F 1 = 0

and Q1 = KA1A1
.

The two conditional distributions (6) and (7) can be derived from the true joint
prior distribution p(a,f ,y) as shown in Proof 1. Alternatively, a generalization
of this model can be obtained when using a modified projection distribution
p
(
f j |aψ(j)

)
, so that for C → J and γ < 1 our model recovers a range of

well known global sparse GP methods as described in Section A.1 and Prop.
5. In any case, these local conditional distributions lead to the following joint
distribution.

Definition 4 (Joint Distribution) For the graphical model corresponding to graph
G, the joint distribution over all variables f ,a,y can be written as

qc,γ(f ,a,y) =
J∏
j=1

p
(
yj |f j

)
p
(
f j |aψ(j)

)
p
(
aj |aπ(j)

)
.

In the case γ = 1 and thus a = f , the joint distribution simplifies (Proof 2) to

qc,1(f ,y) =

J∏
j=1

p
(
yj |f j

)
p
(
f j |fπ(j)

)
.

We use q = qc,γ instead of p in order to indicate that it is an approximate
distribution. The joint distributions in Def. 4 and the corresponding graphical
model in Fig. 4a allow interesting comparisons to other GP models in Fig. 1
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and the corresponding formulas (1), (2), (4). Whereas the conditioning set for
full GP are all the previous latent values f1:j−1, for sparse GPs some global
inducing points a and for local independent experts the empty set, we propose
to condition on the C − 1 predecessors fπ(j) (or a sparsified version in the
general case). From this point of view, we can notice that our probabilistic
model is equal to full GP, sparse GP and PoEs under certain circumstances,
which are more precisely formulated in Prop. 5.

3.2 Sparse and Local Prior Approximation

The conditional independence assumptions between the experts induced by the
predecessor structure πC lead to an approximate prior qc,γ(a) and approximate
projection qc,γ(f |a) yielding a sparse and local joint prior qc,γ(a,f ,y).

Proposition 2 (Joint Prior Approximation, Proof 4) The prior over all local
inducing points a in our CPoE model is

qc,γ(a) =

J∏
j=1

p
(
aj |aπ(j)

)
= N

(
a|0,S−1

C

)
,

with prior precision SC = S = F TQ−1F ∈ RM×M , where Q = Diag [Q1, . . . ,QJ ] ∈
RM×M and F ∈ RM×M is given as the sparse lower triangular matrix in Fig. 5.
Moreover, the projection is

qc,γ(f |a) =

J∏
j=1

p
(
f j |aψ(j)

)
= N

(
f |Ha,V

)
,

where H ∈ RN×M defined in Figure 5 and V = Diag
[
V 1, . . . ,V J

]
∈ RN×N .

Together with the exact likelihood p (y|f) =
∏J
j=1 p(yj |f j) = N

(
y|f , σ2

nI
)

determines the joint approximate prior

qc,γ(a,f ,y) = p(y|f) qc,γ(f |a) qc,γ(a).

Note that the joint prior qc,γ(a,f ,y) is Gaussian N (0,W ) with dense covari-
anceW and sparse precision Z = W−1 as shown in Fig. C7 in the Appendix. If
the predecessor set is consecutive, the matrix F is a lower band (block)matrix
with bandwidth C and in the non-consecutive case each row has exactly C
non-zero blocks. The sparsity pattern of F is inherited to the prior precision
S = F TQ−1F , which is also a sparse matrix (see Fig. 3). For the consecutive
case, S is a block-band matrix with bandwidth 2C − 1. Note that, the inverse
S−1 is dense. The likelihood matrix H is exact in the corner up to indices C
which ensures that our model recovers sparse global GP in the limiting case
C = J . The quality of the approximation of our CPoE(C, γ) model is dis-
cussed in Section 3.5, where we show that qc,γ(a,f ,y) converges to the true
prior p(a,f ,y) for C → J .
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3.3 Inference

For our model it is possible to infer analytically the posterior qc,γ(a|y) and the
marginal likelihood qc,γ(y) used later for prediction and for hyperparameter
estimation, respectively.

Proposition 3 (Posterior Approximation; Proof 12) From the joint distribution, the
latent function values f can be integrated out yielding

qc,γ(a,y) =

∫
qc,γ(f ,a,y) df = qc,γ(y|a)qc,γ(a) = N (y|Ha,V )N

(
a|0,S−1

)
with V = V + σ2

nI ∈ RN×N . The posterior can be analytically computed by

qc,γ(a|y) =
qc,γ(a,y)

qc,γ(y)
∝ qc,γ(a,y) = N (a|µ,Σ) = N−1(a|η,Λ),

with Σ−1 = Λ = T + S ∈ RM×M , µ = Ση ∈ RM , η = HTV −1y ∈ RM and
T = HTV −1H ∈ RM×M .

The posterior precision matrix Σ−1 = T + S inherits the sparsity pattern of
the prior, since the addition of the projection precision T = HTV −1H has
the same sparsity structure, as depicted in Figs. 3 and 6. On the other hand,
the posterior covariance Σ is dense, therefore it will be never explicitly fully
computed. Instead, the sparse linear system of equations Σ−1µ = η can be
efficiently solved for µ = Ση. Further, in our CPoE model, the marginal likeli-
hood qc,γ(y|θ) can be analytically computed by

∫
qc,γ(y,a) da = N (0,P ) (see

Proof 9) with the (dense) matrix P = HS−1HT +V ∈ RN×N , which is used
in Section 3.6.2 for hyperparameter optimization. The posterior approxima-
tion qc,γ(a|y) as well as the approximate marginal likelihood qc,γ(y) converge
to the true distributions p (a|y) and p (y), respectively, for C → J . In partic-
ular, they correspond exactly to the posterior and marginal likelihood of full
GP and sparse global GP with bγNc inducing points for C = J, γ = 1 and
C = J, γ < 1, respectively.

= +

HV −1

HTFF T Q−1Σ−1

prior precision Sposterior precision projection and likelihood precision T

Fig. 6: Sparse posterior precision approximation.

3.4 Prediction

The final predictive posterior distribution is obtained by an adaptation of
the PoE aggregation in (3). The main idea is to consistently aggregate
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weighted local predictions form the experts, such that the correlations between
them are taken into account resulting in a smooth and continuous predictive
distribution.

Proposition 4 (Prediction Aggregation; Proof 17) Similarly to the PoE aggregation
(3), we define the final predictive posterior distribution for a query point x∗ ∈ RD as

qc,γ(f∗|y) =

J∏
j=C

qc,γ(f∗j |y)β∗j , (8)

involving the local predictions qc,γ(f∗j |y) = N
(
m∗j , v∗j

)
and weights β∗j ∈ R

defined in Prop. 8 and Def. 5, respectively. Moreover, the distribution qc,γ(f∗|y) =

N (m∗, v∗) with m∗ = v∗
∑J
j=C β∗j

m∗j
v∗j

and 1
v∗

=
∑J
j=C

β∗j
v∗j

is analytically

available. The final noisy prediction is p (y∗|y) = N
(
m∗, v∗ + σ2

n

)
.

The graphical model corresponding to this prediction procedure is depicted in
Fig. 4b and A3 in the Appendix. Further, the local predictions qc,γ(f∗j |y) in
Equation (8) are based on the region ψ (j), where the correlations are mod-
elled and can be computed as qc,γ(f∗j |y) =

∫
p
(
f∗j |aψ(j)

)
qc,γ(aψ(j)|y) daψ(j)

involving the local posteriors qc,γ(aψ(j)|y) = N
(
µψ(j),Σψ(j)

)
and the pre-

dictive conditional p
(
f∗j |aψ(j)

)
, as thoroughly shown in Proposition 8 in

the Appendix. Thereby, the local posteriors with mean µψ(j) and covariance
entries Σψ(j) could be obtained from the corresponding entries ψ (j) of µ
and Σ. However, computing explicitly some entries in the dense covariance Σ
based on the sparse precision Σ−1 is not straightforward since in the inverse
the blocks are no longer independent. However, we can exploit the particular
sparsity and block-structure of our precision matrix and obtain an efficient
implementation of this part, which is key to achieve a competitive performance
of our algorithm. More details are given in the Appendix in Section A.2.

Definition 5 (Aggregation Weights) The input depending weights β∗j = βj(X∗) at
query point X∗ model the impact of expert j. In particular, the unnormalized weights

β̄∗j = H[p (f∗)]−H[p
(
f∗j |y

)
] =

1

2
log

(
v∗0
v∗j

)
,

are set to the difference in entropy H (B10) before and after seeing the data similarly
proposed by [12]. Thereby, the predictive prior is p (f∗) = N (0, v∗0) with v∗0 =
kX∗X∗ and the predictive posterior defined in Prop. 8. The normalized weights are

then obtained by β∗j = b−1β̄Z∗j where b =
∑J
j=C β̄

Z
∗j and Z = log(N)C.

These weights bring the flexibility of increasing or reducing the importance of
the experts based on the predictive uncertainty. However, independent of the
particular weights, our aggregation of the predictions is consistent since it is
based on the covariance intersection method [20], which is useful for combin-
ing several estimates of random variables with known mean and variance but
unknown correlation between them.
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3.5 Properties

Proposition 5 (Equality; Proof 3) Our model correlated Product of Experts
CPoE(C, γ) is equal to full GP for C = J and γ = 1. For γ < 1, our model cor-
respond to sparse global GP with Mg = bγNc inducing points. Further, with C = 1
and γ = 1, our model is equivalent to independent PoEs. That is, we have

CPoE(J, 1) = GP; CPoE(J, γ) = SGP(bγNc); CPoE(1, 1) = GPoE∗,

where SGP refers to the FITC model [7] and GPoE∗ correspond to GPoE [12] with
slightly different weights (Z = 1) in the prediction.

In Section A.1 in the Appendix we present a generalization of our model, so
that CPoE(J, γ) correspond to a range of other well known versions of sparse
global GP by changing the projection distribution and adding a correction
term in the log marginal likelihood similarly discussed in [11] for the global
case. For instance, we can extend our model analogously to the variational
version of [5].
For correlations between the limiting cases C = 1 and C = J , we investigate
the difference in KL of the true GP model with CPoE(C, γ) and CPoE(C2, γ)
for 1 ≤ C ≤ C2 ≤ J . For that reason, we define the difference in KL between
the true distribution of x and two different approximate distributions, i.e.

D(C,C2)[x] = KL[p (x) || qc,γ(x)]−KL[p (x) || qc2,γ(x)].

Similarly, the difference in KL for a conditional distribution is defined in Eq.
(B15). Using these definitions, we show that the approximation quality of the
prior qc,γ(a) and projection approximation qc,γ(f |a) monotonically improves
for C → J , so that the KL between the true joint distribution p(a,f ,y) and
our approximate joint distribution qc,γ(a,f ,y) is decreasing for C → J .

Proposition 6 (Decreasing KL; Proof 6) For any predecessor structure πC and
any 0 < γ ≤ 1 and 1 ≤ C ≤ C2 ≤ J , the difference in KL of the marginal prior,
projection and data likelihood are non negative, i.e.

D(C,C2)[a] ≥ 0, D(C,C2)[f |a] ≥ 0, D(C,C2)[y|f ] = 0,

so that the joint difference in KL is also non-negative

D(C,C2)[a,f ,y] = D(C,C2)[a] + D(C,C2)[f |a] + D(C,C2)[y|f ] ≥ 0.

Moreover, we can quantify the approximation quality, in particular D(C,C2)[a] =

1
2 log

|QC |
|QC2

| and D(C,C2)[f |a] = 1
2 log

|V̄ C |
|V̄ C2

| .

The last statement demonstrates that our CPoE model is a sound GP prior
precision approximation, which converges monotonically to the true prior for
C → J . The decreasing KL of the joint prior is depicted in Fig. 7 together
with the decreasing KL of the posterior, marginal likelihood and predictive
posterior. More details and proofs are given in Appendix C.
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Fig. 7: Decreasing KL[p||q] between true distribution p of full GP and approximate
distribution q = qc,γ of CPoE for increasing values of C and γ for the joint prior,
posterior, marginal likelihood and predictive posterior for synthetic GP data (N =
1024, D = 2, SE kernel).

3.6 Computational Details

3.6.1 Graph

The graphical model in Section 3.1 is generically defined and several choices
are left for completely specifying the graph G(V,E) for a particular dataset: the
partition method, the ordering of the partition, the selection of the predecessors
and the local inducing points. We tried to make these choices as simple and
straightforward as possible with focus on computational efficiency, however,
there might be more sophisticated heuristics. Concretely, we use KD-trees
[30] for partitioning the data D into J regions and the ordering starts with
a random partition which is then greedily extended by the closest partition
in euclidean distance (represented by the mean of the inducing points). The
L ≤ B inducing inputs Aj ∈ RL×D of the jth partition (or expert) can be in
principle arbitrary, however, in this work they are chosen as a random subset
of the data inputs Xj ∈ RB×D of the jth expert for the sake of simplicity.
For the predecessors (block-)indices πC , the C − 1 closest partitions among
the previous (according to the ordering) predecessors in euclidean distance are
greedily selected. These concepts are illustrated for a toy example in Fig. 8.

3.6.2 Hyperparameter Estimation

In Section 3, we introduced CPoE for fixed hyperparameters θ where implicitly
all distributions are conditioned on θ, however, we omitted the dependencies
on θ in the most cases for the sake of brevity. Similar to full GP, sparse GP or
PoEs, the log marginal likelihood (LML) can be used as an objective function
for optimizing the few hyperparameters θ. The log of the marginal likelihood
of our model formulated in Section 3.3 is L(θ) = log q (y|θ) = logN (0,P )
with P = HS−1HT + V which can be efficiently computed as detailed in
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Fig. 8: Toy example for partition, local inducing points, predecessors and directed
graph illustrated for D = 2 with J = 5 experts/partitions each with B = 4 samples,
γ = 0.75 and thus L = 3 local inducing points. In a) the ordered partition with the
data (black), local inducing points (green) and their mean (blue) are depicted. In
b) and c) the directed graph for C = 2 and C = 3 are shown with corresponding
predecessors π2(1) = {}, π2(2) = {1}, π2(3) = {1}, π2(4) = {2}, π2(5) = {3}
and π3(1) = {}, π3(2) = {1}, π3(3) = {1, 2}, π3(4) = {2, 3}, π3(5) = {3, 4},
respectively. In the previous example, π3 is consecutive and π2 is non-consecutive.

Section A.3 and can be used for deterministic optimization with full batch y
for moderate sample size N . However, in order to scale this parameter opti-
mization part to larger number of samples N in a competitive time, stochastic
optimization techniques exploiting subsets of data have to be developed sim-
ilarly done for the global sparse GP model (SVI [9]; REC [11]; IF [10]). We
adapt the hybrid approach IF of [10] where we can also exploit an independent
factorization of the log marginal likelihood which decomposes into a sum of J
terms, so that it can be used for stochastic optimization. This constitutes a
very fast and accurate alternative for our method as shown in the Appendix
A.3 and will also be exploited in Section 4 for large data sets. Alternatively to
the log marginal likelihood (LML) maximization as presented above, the max-
imum a posteriori (MAP) estimator for θ can be used. This means, that some
suitable prior on the hyperparameters are introduced, as explained in Section
A.3.3 and an example is presented in Section 4.4.

3.6.3 Complexity

The time complexity for computing the posterior and the marginal likelihood
in our algorithm is dominated by J operations which are cubic in LC (inver-
sion, matrix-matrix multiplication, determinants). This leads to O(NB2α3)
and O(NBα2) for time and space complexity, respectively, where we define
the approximation quality parameter α = Cγ. Similarly, for Nt testing points
the time and space complexities are O(NBα2Nt) and O(NαNt) (an approach
to remove the dependency of N is outlined in A.4). In Table 1, the asymptotic
complexities of our model together with other GP algorithms are indicated.
It is interesting that for α = 1, our algorithm has the same asymptotic com-
plexity for training as sparse global GP with Mg = B global inducing points
but we can have M = LJ = γBJ = γN total local inducing points! Thus, our
approach allows much more total local inducing points M in the order of N
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full GP sparse GP PoE CPoE

time O(N3) O(NM2
g ) O(NB2) O(NB2α3)

space O(N2) O(NMg) O(NB) O(NBα2)

timet O(N2Nt) O(M2
gNt) O(NBNt) O(NBNtα

2)
spacet O(NNt) O(MgNt) O(NNt) O(NNtα)

#pars |θ| MD + |θ| |θ| |θ|

Table 1: Complexity for training, pointwise predictions for Nt points and number
of optimization parameters for different GP algorithms.

(e.g. M = 0.5N with C = 2) whereas for sparse global GP usually Mg � N .
This has the consequence that the local inducing points can cover the input
space much better and therefore represent much more complicated functions.
As a consequence, there is also no need to optimize the local inducing points
resulting in much fewer parameters to optimize. Consider the following exam-
ple with N = 10′000 in D = 10 dimensions. Suppose a sparse global GP model
with Mg = 500 global inducing points. A CPoE model with the same asymp-
totic complexity has a batch size B = Mg = 500 and α = 1. Therefore, we
have J = N

B = 20 experts and we choose C = 2 and γ = 1
2 such that we

obtain L = γB = 250 local inducing points per experts and M = γN = 5′000
total local inducing points! Further, the number of hyperparameters to opti-
mize with a SE kernel is for global sparse GP MgD + |θ| = 5012, whereas for
CPoE there are only |θ| = 12. For an extended version of this section consider
A.4 in the Appendix.

4 Comparison

In this section, we compare the performance with competitor methods for GP
approximations using synthetic and several real world datasets as summa-
rized in Table 3a. Moreover, we provide a comparison to non-GP regression
methods as well as an application about probabilistic time series prediction
both exploiting non-trivial kernels. More details about the experiments and
implementations are provided in Sections A.6, A.7 and F in the Appendix.

4.1 Synthetic Data

First, we examine the accuracy vs. time performance of different GP algorithms
for fixed hyperparameters in a simulation study with synthetic GP data. We
generated N = 8192 data samples in D = 2 with 5 repetitions from the sum
of two SE kernels with a shorter and longer lengthscale such that both global
and local patterns are present in the data (compare Fig. A5). In Fig. 9 the
mean results are shown for the KL and RMSE to full GP, the 95%-coverage
and the log marginal likelihood against time in seconds. The results for sparse
GP with increasing number of global inducing points M are shown in blue,
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the results for minVar, GPoE and BCM for increasing number of experts J
are depicted in red, cyan and magenta, respectively. For CPoE, the results for
increasing correlations C are shown in green. We observe superior performance
of our method compared to competitors in terms of accuracy compared to full
GP vs. time. Moreover, one can observe that the confidence information of
our model are reliable already for small approximation orders since it is based
on the consistent covariance intersection method. A precise description of the
experiment is provided in Section A.7.1 in the Appendix.
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Fig. 9: Average accuracy vs. time performance of different GP algorithms.

4.2 Real World Data

Second, we benchmark our method with 10 real world datasets as summarized
in Table 3a and more details are given in Section A.7.2 in the Appendix (e.g.
how to access and pre-process the data). For the 5 smaller datasets in the
first block we use deterministic parameter optimization for which the average
results over 10 training/testing splits are depicted in Table 2. In particular,
the KL to full GP (left) and time (right) for different GP methods are shown.
Similarly, the average accuracy and times for the 4 larger datasets in the second
block where stochastic parameter optimization is exploited can be found in
Table A4 in the Appendix.
In general, the local methods perform better than the global sparse method.
Further, the performance of our correlated PoEs is superior to the one of
independent PoEs for all datasets. In particular, the KL to full GP can be
continuously improved for increasing degree of correlation, i.e. larger C val-
ues. The time for CPoE(1) is comparable with the independent PoEs and
for increasing C, our approximation has a moderate increase in time with a
significant decrease in KL. For more details about the experiments consider
Section A.7.2 in the Appendix and more results including standard deviations
are provided in Appendix F.
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KL time

concrete mg space abalone kin concrete mg space abalone kin

fullGP 0.0 0.0 0.0 0.0 0.0 7.3 25.5 114.8 237.9 161.5
SGP(100) 352.9 9.9 108.1 15.6 603.7 36.4 14.4 46.6 58.9 42.2
minVar 122.2 19.4 63.6 25.1 211.0 1.5 2.0 7.2 6.4 9.3
GPoE 174.4 54.2 98.0 50.3 342.3 1.4 1.9 7.2 6.3 9.4
GRBCM 224.6 69.1 105.6 36.4 129.8 1.7 2.3 6.5 7.6 11.9
CPoE(1) 111.1 12.2 63.0 16.8 152.4 1.5 2.1 7.8 6.4 9.2
CPoE(2) 89.6 8.4 36.5 8.1 79.9 2.1 2.8 10.6 7.5 12.9
CPoE(3) 82.2 7.8 36.3 6.2 46.9 2.5 3.1 12.9 9.3 19.8
CPoE(4) 79.5 7.6 36.0 4.7 32.8 2.8 3.3 14.9 10.4 27.8

Table 2: Average KL to full GP (left) and time (right) for different GP methods
and 5 datasets with 10 repetitions. More results are provided in Appendix F.

N D Ntest J

concrete 927 8 103 4
mg 1247 6 138 8
space 2797 6 310 8
abalone 3760 8 417 16
kin 5192 8 3000 16

kin2 7373 8 819 16
cadata 19640 8 1000 64
sarcos 43484 21 1000 128
casp 44730 9 1000 128

elecdemand 2184 3 15288 13

(a) Description of datasets.

KL KL IN KL OUT time

full GP 0.0 0.0 0.0 404.3

SGP(100) 120.9 110.5 146.7 56.3
SGP(200) 114.9 65.6 238.3 75.2
minVar 503.0 406.5 744.5 20.7
GPoE 328.0 336.0 307.9 20.4
GRBCM 393.4 382.1 421.8 28.2

CPoE(1) 289.5 255.1 375.5 20.5
CPoE(2) 113.1 108.5 124.3 36.8
CPoE(3) 86.4 61.9 147.6 39.7
CPoE(4) 58.3 59.4 55.5 52.9

(b) KL to full GP and time of different methods.

Table 3: Summary of used datasets and results for the elecdemand time series.

4.3 Comparison to non-GP methods

Third, we compare our probabilistic regression method CPoE to other
popular non-GP regression methods, in particular, dense neural net-
works (MLPs), eXtreme Gradient Boosting (XGboost) and linear regres-
sion1. We use three different architectures for the neural networks, that
is, MLP(100, 100), MLP(500, 500), MLP (100, 100, 100), where the num-
bers in the parentheses correspond to the number of hidden nodes
per hidden layer. Moreover, we used ADAM optimizer with learning
rate 0.01. For XGboost(max depth, n estimators, learning rate), we use
XGboost(3, 100, 0.1). All these hyperparameters are chosen in primary exper-
iments so that those methods obtain advantageous test performance. For our
CPoE method, we use a SE kernel as in the previous sections, and in addition,
we run the algorithm with a more flexible kernel, namely

kθ(x1,x2) = kSM1(x1,x2)+kSM2(x1,x2)+kMLP (x1,x2)+kLIN (x1,x2), (9)

where kSMi is a spectral-mixture kernel [31], kMLP an (infinite) wide 1-hidden-
layer neural network kernel [32] and kLIN a linear kernel. We run full GP for

1We use the algorithms in https://scikit-learn.org.

https://scikit-learn.org


20 Correlated Product of Experts

concrete mg space abalone kin cadata sarcos casp

fullGP-SE 0.311 0.511 0.471 0.635 0.267
fullGP-FLEX 0.254 0.509 0.455 0.638 0.28

CPoE(1)-SE 0.333 0.508 0.506 0.637 0.31 0.476 0.099 0.597
CPoE(2)-SE 0.326 0.512 0.49 0.634 0.292 0.47 0.1 0.59
CPoE(3)-SE 0.323 0.513 0.489 0.634 0.28 0.47 0.099 0.59

CPoE(1)-FLEX 0.266 0.511 0.631 0.687 0.334 0.456 0.094 0.525
CPoE(2)-FLEX 0.259 0.515 0.446 0.669 0.315 0.423 0.094 0.522
CPoE(3)-FLEX 0.255 0.516 0.444 0.659 0.303 0.42 0.092 0.522

MLP(100-100) 0.289 0.525 0.482 0.652 0.287 0.456 0.117 0.591
MLP(500-500) 0.292 0.522 0.475 0.761 0.284 0.485 0.097 0.577
MLP(100-100-100) 0.285 0.531 0.476 0.762 0.299 0.485 0.106 0.585
XGboost 0.323 0.545 0.543 0.65 0.667 0.474 0.251 0.767
LinReg 0.626 0.633 0.645 0.66 0.765 0.605 0.27 0.854

Table 4: Average RMSE for our CPoE methods compared to non-GP regression
methods. The methods ending with SE were run with a squared-exponential and a
flexible kernel (9), respectively. Best method (beside GP full) is indicated in bold.

smaller datasets as comparison. The average RMSE, ABSE and time results
are provided in Tables 4, F22 and F23, respectively. For instance in Table 4,
we can observed that the GP approximation methods using either a SE kernel
or a more flexible kernel achieve competitive performance.
Finally, we would like to emphasize that our probabilistic CPoE model pro-
vides a predictive distribution, that is, it models the predictive uncertainty
and can thus provide reliable credible-intervals. Computing also the predictive
variances is a harder task than only computing the predictive means, as the
most other regression algorithms do. Therefore, the slightly higher compu-
tational times (Table F23) for similar accuracy (Tables 4 and F22) are very
reasonable in our opinion. More detailed results are given in Tables F15-F21
and on github.2

4.4 Time series application

In this section, our method is applied on time series data with covariates
using a non-stationary kernel together with priors on the hyperparameters
as discussed in Section A.3.3 by using MAP estimation. A recent work [33]
demonstrates that GPs constitute a competitive method for modelling time
series using a sum of kernels including priors on the hyperparameters, which
are previously learnt from a large set of different time series. We adapt their
idea by using the same priors and a slightly modified kernel. In particular, for
two data points x1 = [t1, x1,2, . . . , x1,D] and x2 = [t2, x2,2, . . . , x2,D], we model
the kernel as the sum of 4 components

kθ(x1,x2) = kP1(t1, t2) + kP2(t1, t2) + kSM (t1, t2) + kSE(x1,x2),

2https://github.com/manschuer/CPoE/experiments/comparison non GP.ipynb

https://github.com/manschuer/CPoE/blob/main/experiments/comparison_non_GP.ipynb


Correlated Product of Experts 21

where kP1 and kP1 are standard periodic kernels with period p1 and p2, respec-
tively, kSM a spectral-mixture kernel and kSE a squared-exponential kernel.
Note that, the former 3 kernels only depend on the first variable corresponding
to time, whereas the SE-kernel depends on all variables, thus models the influ-
ence of the additional variables. With our CPoE model it is straightforward
to handle time series with covariates, as opposed to other time series meth-
ods [33–36]. We demonstrate the MAP estimation for θ on the elecdemand
time series ([37], Table 3a), which contains the electricity demand as response
y together with the time as the first variable x1, the the corresponding tem-
perature as x2 and the variable whether it is a working day as x3 which is
depicted in the plots in Fig. 10 on the left, where we shifted the first and third
variable in the second plot for the sake of clarity. Similarly as in the previous
section, we run full GP, SGP, PoEs and CPoE and optimized the hyperparam-
eter deterministically using the MAP as objective function taking into account
the priors. The results are provided in Table 3b and in Fig. 10 on the right,
which again show very competitive performance also for a general kernel with
priors on the hyperparameters. More details about the experiment is given in
Section A.7.3 in the Appendix.
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Fig. 10: Time series data with covariates and prior on hyperparameters.

5 Conclusion

In this paper, we introduce a novel GP approximation algorithm CPoE, where
the degree of approximation can be adjusted by a locality and a sparsity param-
eter, so that the proposed method recovers independent PoEs, sparse global
GP and full GP. Thereby, our method consistently approximates full GP, in
particular, we proved that increasing the correlations between the experts
decreases monotonically the KL of the joint prior of full GP to them of our
model. The presented algorithm has only a few hyperparameters, which allows
an efficient deterministic and stochastic optimization. Further, our presented
algorithm works with a general kernel, with several variables and also priors
on the hyperparameters can be included. Moreover, the time and space com-
plexity is linear in the number of experts and number of data samples, which



22 Correlated Product of Experts

makes it highly scalable. This is demonstrated with efficient implementations,
so that a dataset with several ten thousands of samples can be processed in
around a minute on a standard laptop. In several experiments with synthetic
and real world data, superior performance in a accuracy vs. time sense com-
pared to state-of-the-art methods, is demonstrated, which makes our algorithm
a competitive GP regression approximation method.
Our approach could be enhanced in several directions. The first improvement
would be more practical. While the current implementation of our algorithm
works very competitively for moderate large datasets (on a standard laptop),
further work has been done to scale it up to very large datasets. The current
limitations are particularly factorizing the sparse block Cholesky matrices. We
are convinced, that the theoretical properties of our algorithm - in particular
the linearity in the number of experts and data samples - enables large scale
implementations when exploiting more low level linear algebra tools. Another
interesting direction would be to investigate the connection of our sparse pre-
cision matrix to state space systems, such that sequential learning algorithm
could be exploited, which is briefly outlined in D. Further, it would be inter-
esting to apply variational methods to our model, so that a connection to full
GP in a posterior sense might be established, where some ideas are outlined
in A.1.
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Appendix A Extensions and Details

A.1 Generalized CPoE

Alternatively to the graphical model defined in Def. 4 (and more precisely in
Prop. 1 with Proof 1) which recovers sparse global GP model FITC [7] in
the limiting case C → J (as shown in Prop. 5), we present in this section a
generalization of our CPoE model such that it recovers other sparse global
GP models such as VFE [5] or PEP [6]. As shown by the authors in [11] for
the global case, these model differ in the training only by the choice of the
projection matrix V j in Def. 4 and in the hyperparameter optimization by
a modification of the log marginal likelihood L(θ) = log q (y|θ) in Section
3.6.2. These two changes can also be made for our local sparse CPoE model.
In particular, using V j and λj according to the values in Table A2 in the
projection conditional

p
(
f j |aψ(j)

)
= N

(
f j |Hjaψ(j),V j

)
and in a lower bound to the log marginal likelihood

L̃(θ) = L(θ)−
J∑
j=1

λj(θ)

and l̃j(θ) = lj(θ)−λj(θ) in the deterministic and stochastic case, respectively,
generalizes the CPoE method such that for C → J we recover the mentioned
method global methods in Table A2. Thereby, we used

Dj = KXjXj
−KXjAψ(j)

K−1
Aψ(j)Aψ(j)

KAψ(j)Xj

which is the difference of the true and local approximated covariance.
The setting in VFE [5] is particularly interesting, since it constitutes in the

global case a direct posterior approximation derived via a variational maxi-
mization of the lower bound of the log marginal likelihood. Moving a bit away
from the true marginal likelihood of full GP has the effect that overfitting
(w.r.t. full GP) can not happen when optimizing the hyperparameters with
the lower bound. This is particularly important when all inducing inputs are
optimized as it is usually recommended in sparse global methods which is not
the case for our model since it allows to have a number of inducing points in
the order of the number of data samples. In the adapted ’local VFE’ CPoE
model when using V j = 0 and minimize also λj = tr{Dj} has the effect
that the model is locally variationally optimal, however, it would be interest-
ing to directly derive a lower bound analogously to [5] so that the posterior
of our CPoE model is rigorously connected to full GP. Since this is not a
straight-forward extension, we postpone this task to future work. Below, we
present the connection to full GP for this adapted model in the joint prior
sense analogously to Prop. 6 for the local FITC model.
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variable domain explanation

N N+ number of data samples

D N+ number of variables/dimension of data
J {1, . . . , N} number of experts/partitions
B {1, . . . , N} size of expert/partition
L {1, . . . , B} number of local inducing points
M {1, . . . , N} number of total local inducing points
C {1, . . . , J} degree of correlation
γ (0, 1] sparsity parameter
α (0, J] approximation quality parameter
yi R individual data output

yj RB data output of expert j

yk:j RB(j−k1+) data output of experts k up to j
y∗ R pointwise noisy prediction output

y RN all data output

xi RD individual data indput

Xj RB×D data input of expert j

Xk:j RB(j−k+1)×D data input of experts k up to j

X RN×D all data input

x∗ RD query input for prediction

fj RB latent function outputs of expert j

fk:j RB(j−k+1) latent function outputs of experts k up to j

f RN all latent function outputs
f∗ R pointwise (latent) prediction output

f(Xj) RB GP evaluation for input matrix

aj RL local inducing outputs of expert j

ak:j RL(j−k+1) local inducing outputs of experts k up to j

a RM all local inducing outputs

Aj RL×D local inducing inputs of expert j

Ak:j RL(j−k+1)×D local inducing inputs of experts k up to j

A RM×D all local inducing inputs
Ij {1, . . . , C − 1} number of predecessors of expert j
φi(j) {1, . . . , j − 1} ith predecessor of expert j

π(j) {1, . . . , j − 1}Ij predecessor index set

π+(j) {1, . . . , j}Ij+1 predecessor index set including j

ψ(j) {1, . . . ,max(j, C)}C correlation index set

σ2
n R+ observation noise variance

θ R|θ| kernel hyperparameters including σ2
n

kθ(x,x′) R kernel evaluation for 2 query points

KAB RMa×Mb kernel matrix of two query matrices
p(z) R evaluation of (true) probability density
q(z) R evaluation of approximated probability density

S RM×M prior precision matrix

T RM×M projection precision matrix

Σ−1 RM×M posterior precision matrix

Σ RM×M posterior covariance matrix

µ RM posterior mean vector

µψ(j) RCL local posterior mean

Σψ(j) RCL×CL local posterior covariance

F RM×M prior transition matrix

Q RM×M prior noise matrix

H RN×M projection matrix

V RN×N projection noise matrix

V RN×N projection noise matrix including observation noise

P RN×N marginal likelihood covariance matrix

J2 N+ number of prediction experts

β̄∗j R+ unnormalized predictive weight of expert j at x∗
β∗j R+ normalized predictive weight of expert j at x∗
m∗j R predictive mean of expert j at x∗
v∗j R+ predictive variance of expert j at x∗
D[C,C2] R+ difference in KL between two approximate models

Table 1: Overview of notation.



Correlated Product of Experts 29

V j λj

DTC 0 0
FITC Diag[Dj ] 0
PITC Dj 0
VFE 0 1

2σ2
n
tr[Dj ]

PEP αDiag[Dj ]
1−α
2α

∑
i log

(
1 + α

σ2
n
D

(i)
j

)
PEPB αDj

1−α
2α

∑
i log |I+

α
σ2
n
Dj |

Table A2: Generalizations of CPoE model.

Proposition 7 (Local VFE) Using a deterministic projection q(f j |aψ(j)) =

N
(
f j |Hjaψ(j),V j

)
in the graphical model in Def. 4 and Prop. 1, that is, setting the

covariance V j = 0 in the projection step recovers global VFE for C → J . Moreover,
the difference in KL to full GP of the joint prior is also decreasing. In particular,
the difference in KL of the prior of the local VFE model for 1 ≤ C ≤ C2 ≤ J is

D(C,C2)[a] =
1

2
log
|QC |
|QC2

| ≥ 0.

Further, the difference in KL of the projection is

D(C,C2)[y|a] =
1

2σ2
n
tr{V̄ C − V̄ C2

} ≥ 0.

The overall prior approximation quality is

D(C,C2)[a,y] =
1

2
log
|QC |
|QC2

| +
1

2σ2
n
tr{V̄ C − V̄ C2

}

where

tr{V̄ C} =

N∑
i=1

KXiXi
−KXiAψ(ji)

K−1
Aψ(ji)

Aψ(ji)
KAψ(ji)

Xi
.

Compared to the FITC model is the difference in the trace instead of the
fraction of the log-determinants.

A.2 Solving Linear System & Partial Inversion

For solving the sparse linear system Σ−1µ = η in Prop. 3, sparse Cholesky
decomposition is exploited, that is, MΣ−1MT = LLT =: Y is computed so
that ν and µ can be efficiently obtained via solving Lν = η and LTµ = ν,
respectively, where M is a so-called fill-reduction permutation matrix such
that the Cholesky matrix L is as sparse as possible and thus µ = M−1µ. Note
that M is computed only via the structure on the block level which is only
J dimensional instead of JL. Additionally to the mean µ, also some entries
Σψ(j) in the covariance matrix Σ has to be explicitly computed, which are
needed for computing local predictions used in Section 3.4.
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Proposition 8 (Local Predictions, Proof 18) The local prediction qc,γ(f∗j |y) =
N
(
m∗j , v∗j

)
of the jth expert are based on the region ψ (j), where the correlations

are modelled and can be computed as

qc,γ(f∗j |y) =

∫
p
(
f∗j |aψ(j)

)
qc,γ(aψ(j)|y) daψ(j) = N

(
h∗µψ(j),h

T
∗Σψ(j)h∗ + v∗

)
involving the local posteriors qc,γ(aψ(j)|y) = N

(
µψ(j),Σψ(j)

)
and the predictive

conditional p
(
f∗j |aψ(j)

)
= N

(
h∗aψ(j), v∗

)
(which is exactly defined in Proof 18).

For computing the local posteriors qc,γ(aψ(j)|y) = N
(
µψ(j),Σψ(j)

)
, we need

to compute the entries Σψ(j) in the covariance matrix Σ, which correspond to

the non-zeros in the precision matrix Σ−1. Computing efficiently these entries
is not straightforward since in the inverse the blocks are no longer independent.
However, we can exploit the particular sparsity and block-structure of our
precision matrix and obtain an efficient implementation of this part which is
key to achieve a competitive performance of our algorithm.
Computing some entries in Z = Y −1 is also known as partial inversion. We
adapted the approach in [38] where the recursive equations with J blocks for
computing the full inverse Z are provided

ZBj = −ZCjLBjL
−1
Aj

and ZAj = L−TAj L
−1
Aj
−ZTBjLBjL

−1
Aj

where the recursion starts from j = J with ZAJ = L−TAJ L
−1
AJ

.

ZAj

ZCj

ZT
Bj

ZBj

Z =

LBj

LAj

L =

Instead of computing the full inverse using this recursion, we exploited the
block-sparsity structure of our posterior precision matrix in order to gain sig-
nificant speed-up. We only computed the entries in the inverse Z which are
symbolically non-zero in L. In Algorithm 1 in the Appendix we provide efficient
pseudo-code using sparse-block-matrices in the block-sparse-row format.

Alternatively for computing the Cholesky factor of Σ−1 = S +HV −1H,
we could directly exploit that the prior precision S = F TQ−1F is already
decomposed into a upper/lower-triangular form since F lower triangular. How-
ever, when updating the Cholesky factor with HV −1H needs quadratic time
in the number of nonzeros for each expert.
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Algorithm 1 Partial Sparse Block Inversion

Require: Cholesky matrix L of size JB×JB in block-sparse-row (bsr) format
with J × J total blocks, block-size B and N non-zero blocks. Data array d
of size N ×B ×B, the column-block-indices r of size N , row-block-pointer
p of length J + 1, and lookup table M of dimension J × J .

Ensure: The lower part of the symmetric partial inversion is computed in
bsr-format with the same row-block-indices r and row-block-pointer p and
data array z of size N ×B ×B.
for i ∈ {J, . . . , 1} do

L−1
A ← d[M [i, i], :, :]−1

z[M [i, i]]← (L−1
A )T · L−1

A

for j ∈ {r[p[i+ 1]], r[p[i+ 1]− 1], . . . , r[p[i]]} do
Q← 0
for l ∈ {r[p[i]], r[p[i] + 1], . . . , r[p[i+ 1]]} do

R← z[M [j, l]]
if l > j then

R← RT

end if
Q← Q+R · d[M [l, i]] · L−1

A

end for
z[M [i, j]]← z[M [i, j]]−Q

end for
end for

A.3 Hyperparameter Estimation

In Section 3, we introduced CPoE for fixed hyperparameters θ where implicitly
all distributions are conditioned on θ, however, we omitted the dependencies
on θ in the most cases for the sake of brevity. Similar to full GP, sparse GP or
PoEs, the log marginal likelihood (LML) can be used as an objective function
for optimizing the few hyperparameters θ.

A.3.1 Deterministic Optimization

The log of the marginal likelihood of our model formulated in Section 3.3 can
be written as

L(θ) = log q (y|θ) = logN (0,P ) = −1

2

(
yTP−1y + log |P |+N log 2π

)
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with P = HS−1HT + V . Since P is dense, we can apply the inversion (B2)
and determinant lemma (B3) to P and exploit |F | = 1 yielding

L(θ) = −1

2

(
yTV −1y − µTΣ−1µ+ log

|Σ−1| |V |
|S|

+N log 2π

)
= −1

2

(
yTV −1y − µTΣ−1µ+ log |Σ−1| |V | |Q|+N log 2π

) (A1)

so that all involved quantities Σ−1, V andQ are sparse. For efficient parameter
minimization, the derivative of the log marginal likelihood with respect to each
parameter in θ is needed for which the derivations are provided in Appendix
C.3. Thereby also some parts of the covariance matrix Σ are needed which
is explained in Section A.2. Alternatively to the marginal likelihood, we can
maximize a lower bound of it which is a generalization of our model so that we
recover a range of well known sparse global GP models for C → J as discussed
is Section A.1. [6, 11].

For moderate sample size N , deterministic optimization with full batch
y can be performed. That means, the log marginal likelihood for the whole
data is computed for which the sparse system of equations with the sparse
posterior precision as well as the partial inversion of the posterior covariance

has to be solved. In particular, the functions for computing L(θ) and ∂L(θ)
∂θ for

each θ and full data y are repetitively called by a numerical minimizer. Fig.
A1 illustrates the performance of this deterministic batch hyperparameter
optimization where the convergence for the log marginal likelihood, average
KL divergence, 95%-coverage (both quantities exactly defined in Appendix
F) for different number of experts J compared to full GP are depicted. The
N = 2048 data samples are generated with a D = 2-dimensional SE-kernel
and the test KL and coverage mean values are reported for Ntest = 1000
samples with 5 repetitions. We used γ = 1 and C ∈ {1, . . . , 7}. We observe
that the log marginal likelihood and KL are getting better for increasing C,
and the deterministic parameter estimates converge to the ones of full GP
for increasing function calls. It is interesting to observe that also for smaller
C values, the coverage of our methods are consistent. In particular, they are
slightly too big, meaning our confidence information are conservative. This
is due to the aggregation based on the covariance intersection method with
normalized weights, which guarantees consistent second order information.

A.3.2 Stochastic Optimization

The presented method in the previous section works fine for small datasets,
however, in order to scale this parameter optimization part to larger number
of samples N in a competitive time, stochastic optimization techniques has to
be exploited similarly done for the global sparse GP model (SVI [9]; REC [11];
IF [10]). In the approximation method REC [11], the recursive derivatives are
exactly propagated which would also be possible for our model, however, it
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Fig. A1: Convergence of deterministic batch hyperparameter optimization for
increasing C and trace of the parameters (solid) compared to the optimal values of
full GP (dotted).

turned out that in practice the differences in accuracy are very small when
using instead the hybrid approach IF of [10]. Thereby, the independent fac-
torization of the log marginal likelihood is used for the computations of the
optimization part, whereas the exact posterior is used for inference and predic-
tion. Adapted to our setting, the independent factorized log marginal likelihood
log q (y|θ) can be approximated by

log q (y|θ) ≈ log

J∏
j=1

∫
q
(
yj |aj

)
q (aj) daj

= log

J∏
j=1

∫
N (Hjaj ,V j)N

(
0,S−1

j

)
daj

=

J∑
j=1

logN (0,P j) =: L̃(θ)

where P j = HjS
−1
j H

T
j + V j with Sj = K−1

AjAj
. The difference compared

to the deterministic case in (A1) and to [10] for the global sparse model is
the independent prior q (aj) instead of q (a) and p (a), respectively. In the
approximate case, we can write

L̃(θ) = −1

2
N log(2π) +

J∑
j=1

lj(θ)

with lj(θ) = − 1
2

(
yTj P

−1
j yj + log |P j |

)
which has the advantage that it decom-

poses into the J terms lj in the sum, so that it can be used for stochastic
optimization. This constitutes a very fast and accurate alternative for our
method as shown in Figure A2 and is exploited in Section 4 for large data sets.

A.3.3 Prior on Hyperparameters

Alternatively to the log marginal likelihood (LML) maximization as presented
above, the maximum a posteriori (MAP) estimator for θ can be used. It is the
log of the posterior distribution p (θ|y) ∝ p (y|θ) p (θ) where p (θ) is a suit-
able prior on the hyperparameters yielding log p (θ|y) = log p (y|θ)+log p (θ) .



34 Correlated Product of Experts

In the following, we assume p (θ) =
∏
j p (θj) and a log-normal prior for each

hyperparameter p (θj) = logN
(
θj |νj , λ2

j

)
for means νj and variances λ2

j .
For the deterministic case, the MAP estimator can be straightforwardly com-
puted by just adding the log prior on θ to the batch log marginal likelihood, i.e.
log p (θ|y) = L(θ) + log p (θ). Similarly for the stochastic case, the stochastic

MAP can be decomposed as log p (θ|y) ≈
∑J

j=1

(
lj(θ) + 1

J log p (θ)
)
, where

lj(θ) is the jth term in the stochastic marginal likelihood , so that it can be
used again for stochastic mini-batch optimization. An example using priors for
the hyperparameters is presented in Section 4.4.
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Fig. A2: Convergence of stochastic vs. deterministic hyperparameter optimization
of our model CPoE. This experiment compares the convergence of stochastic vs.
deterministic hyperparameter optimization for the log marginal likelihood and the
trace of the 10 parameters θj for the dataset cadata with Ntot = 20640 and D = 8.
We used 5 different splits with N = 0.9Ntot training data and the rest for testing.
The values for our algorithm are C = 2, J = 64, γ = 1 and learning rate δ = 0.01. In
the right plot, the dotted horizontal lines and the solid traces correspond to the final
deterministic value and the current stochastic values, respectively. We note that the
stochastic LML and trace of hyperparameters converge faster to a very similar value
as in the deterministic case.

A.4 Complexity

The time complexity for computing the posterior and the marginal likeli-
hood in our algorithm is dominated by J operations which are cubic in
LC (inversion, matrix-matrix multiplication, determinants). This leads to
O(J(LC)3) = O(J(BCγ)3) = O(NB2α3) where we define the approxima-
tion quality parameter α = Cγ. Similarly for the needed space O(J(LC)2) =
O(J(BCγ)2) = O(NBα2). For Nt testing points, the time for (pointwise)
predictions is dominated by J inversions of matrices with dimension LC and
matrix multiplications with dimensions LC×LC×Nt leading to O(J(LC)3 +
J(LC)2Nt) = O(J(BγC)3 +J(BγC)2Nt) = O(NB2α3 +NBα2Nt) where the
operations independent of the test points can be precomputed in the infer-
ence part leading to O(NBα2Nt) for testing. Similarly for the space. A further
reduction in complexity would be achieved if the product over all experts
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in Prop. 4 is approximated only with the W < J nearest experts, leading
to O((LC)2NtW ) = O((BγC)2NtW ) = O(N W

J Bα
2Nt) time complexity for

testing. This might be interesting if we want to make fast predictions for
many points Nt. For reasonable values of W , for instance W = 1, W = C or
W = Z = log(N)C (used in prediction aggregation), preliminary experiments
show very comparable performance. Note that the consistency properties for
covariance intersection method are preserved as long as the weights are normal-
ized over the used W experts. Table 1 compares the asymptotic complexities
with other GP algorithms.

J = 5

J2 = J − C + 1

C

5

4

3

2

1

Fig. A3: Prediction Aggre-
gation in CPoE(C, γ) model
with J base experts and J2 =
J − C + 1 predictive experts.

It is interesting that for α = 1, our algo-
rithm has the same asymptotic complexity for
training as sparse global GP with Mg = B
global inducing points but we can have Ml =
LJ = γBJ = γN total local inducing points!
Thus, our approach allows much more total
local inducing points M in the order of N (e.g.
M = 0.5N with C = 2) whereas for sparse
global GP usually Mg � N . This has the conse-
quence that the local inducing points can cover
the input space much better and therefore rep-
resent much more complicated functions. As
a consequence, there is also no need to opti-
mize the local inducing points resulting in much
fewer parameters to optimize. Consider the fol-
lowing example with N = 10′000 in D = 10
dimensions. Suppose a sparse global GP model
with Mg = 500 global inducing points. A CPoE
model with the same asymptotic complexity has
a batch size B = Mg = 500 and α = 1. There-
fore, we have J = N

B = 20 experts and we choose C = 2 and γ = 1
2 such that we

obtain L = γB = 250 local inducing points per experts and M = γN = 5′000
total inducing points! Further, the number of hyperparameters to optimize for
a SE kernel is for global sparse GP MgD+ |θ| = 5012, whereas for CPoE there
are only |θ| = 12.
For our method, the time and space complexity is linear in the number of
samples N and the number of experts J which makes our approach highly scal-
able. The approximation quality parameter α = Cγ appears cubic/quadratic
in the time/space complexity. The optimal approximation quality (and thus
equivalent to full GP) is achieved for α = J which implies C = J and γ = 1.
However, it is clear that this is not feasible for big datasets and thus some
moderate values of C and γ have to be selected to trade off time and accuracy
which is illustrated in the Appendix in Table A3 and Fig. A4.
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C = 1

 = 1.0

C = 2 C = 3 C = 4 C = 5

  = 0.75

  = 0.5

  = 0.25

Fig. A4: Influence of the approximation order C and sparseness parameter γ to
the non-zeros and size of the posterior precision matrix Σ−1. for an example with
synthetic GP data with D = 2, N = 8192, J = 64 and B = 128 and a SE-kernel.
Compare also Table A3.

KL C=1 C=2 C=3 C=4 C=5

γ = 1/4 12.3 5.0 1.3 0.9 0.7
γ = 1/2 12.2 4.9 1.0 0.8 0.6
γ = 3/4 12.1 4.9 0.9 0.7 0.5
γ = 1 12.1 4.8 0.9 0.6 0.4

time C=1 C=2 C=3 C=4 C=5

γ = 1/4 0.2 0.4 0.9 1.2 1.4
γ = 1/2 0.4 0.7 1.9 2.7 3.8
γ = 3/4 0.9 2.4 4.1 5.7 9.1
γ = 1 1.5 3.0 6.4 12.4 15.7

Table A3: KLs to full GP (above) and times (below) of our method CPoE for
varying C and γ for experiment in Section 3.6.3. Compare also Fig. A4 .

RBF local RBF global sum

Fig. A5: Generated data with a sum of two SE-kernels with local and global
lengthscales for experiment in Section 4.
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A.5 Relation to Deep Structured Mixtures of GPs

There are several approaches exploiting local experts, as discussed in Section
2.2. In particular, the recent approach Deep Structured Mixtures of Gaussian
Processes (DSMGP) [29] shares some similarities with our approach. However,
our approach has a main advantages against DSMGP, namely, the continu-
ous predictive distribution, as illustrated in Figure A6. In the following, we
briefly summaries their approach, discuss the similarities and differences to
our approach, and compare them in two illustrative experiments.
The GP approximation approach DSMGP exploits a sum-product network
of local GPs, which corresponds to a mixture of independent base experts
as in the ordinary PoEs. This approach allows analytic posterior inference,
however, in order to compute efficient predictions, the posterior of the DSMGP
is projected to the closest GP, i.e. the GP with minimal KL divergence from the
DSMGP. This has the effect that the aggregated predictive distribution might
discontinuous, as illustrated in Figure A6. This is a common disadvantage of
local aggregation methods based on predictions form a single region. DSMGP
uses independent base experts similarly as the local PoE methods discussed in
Section 2.2. However, the predictions are averaged by a mixture over different
partitions of the input space. On the other hand, our approach directly models
correlations between the base experts, which recovers the exact dependencies
between the different partitions, leading to smooth predictions.
We compared both methods on two illustrative examples. In particular, we
used the data from the main example on the GitHub repository3 of their
approach, which is illustrated on the left in Figure A6. The N = 100 data sam-
ples are generated from a sine and the number of splits per product nodes is
K = 4, the number of children per sum node is V = 3, and the minimum num-
ber of experts is M = 20 corresponding to J = 5 base experts. We optimized
the hyperparameters with full GP and fixed them for all approximation meth-
ods. The results for this kind of data are consistent with the findings in [29],
where DSMGP can improve over the other local independent methods (min-
Var, GPoE, BCM). However, the global sparse method and in particular our
method CPoE with C = 2 significantly outperforms DSMGP, as demonstrated
with the KL to full GP. Similarly, we run their algorithm on the example of
Figure 2, where the generated data has a smaller lengthscale and bigger obser-
vation noise. The parameters for DSMGP were set to K = 4, V = 3, M = 10,
which correspond to J = 6 independent experts. This more complex setting
illustrates the main limitation of DSMGP with the discontinuous predictions,
as depicted in Figure A6 on the right. Moreover, this is also reflected in the
accuracy in term of KL to full GP. We run some preliminary comparisons of
the experiment depicted in Figure 9, with similar performance as obtained in
the both examples shown in Figure A6. This comparison can be found on our
github repository.4 However, it is hard to compare the running times of both
algorithms based on Python and Julia, respectively. Therefore, it would require

3https://github.com/trappmartin/DeepStructuredMixtures
4 https://github.com/manschuer/CPoE/experiments/comparisonDSM py.ipynb

https://github.com/trappmartin/DeepStructuredMixtures
https://github.com/manschuer/CPoE/blob/main/experiments/comparisonDSM_py.ipynb
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to reimplement their algorithm in Python for proper empirical comparisons in
a time vs. accuracy sense.

0.0 0.2 0.4 0.6 0.8 1.0
3

2

1

0

1

2 Sparse GP(25)

KL to full GP = 5.48
1.0 0.5 0.0 0.5 1.0

4

3

2

1

0

1

2

3

4

Sparse GP(25)

KL to full GP = 6.74

0.0 0.2 0.4 0.6 0.8 1.0
3

2

1

0

1

2 minVar

KL to full GP = 30.78
1.0 0.5 0.0 0.5 1.0

4

3

2

1

0

1

2

3

4

minVar

KL to full GP = 7.62

0.0 0.2 0.4 0.6 0.8 1.0
3

2

1

0

1

2 GPoE

KL to full GP = 116.98
1.0 0.5 0.0 0.5 1.0

4

3

2

1

0

1

2

3

4

GPoE

KL to full GP = 10.43

0.0 0.2 0.4 0.6 0.8 1.0
3

2

1

0

1

2 BCM

KL to full GP = 84.51
1.0 0.5 0.0 0.5 1.0

4

3

2

1

0

1

2

3

4

BCM

KL to full GP = 10.06

0.0 0.2 0.4 0.6 0.8 1.0
3

2

1

0

1

2 CPoE(2)

KL to full GP = 0.57
1.0 0.5 0.0 0.5 1.0

4

3

2

1

0

1

2

3

4

CPoE(2)

KL to full GP = 0.14

mean full GP data 95%-CI full GP

0.0 0.2 0.4 0.6 0.8 1.0
3

2

1

0

1

2 Deep Structured Mixture GP

KL to full GP = 21.45
1.0 0.5 0.0 0.5 1.0

4

3

2

1

0

1

2

3

4

Deep Structured Mixture GP

KL to full GP = 15.31

mean 95%-CI full GP data full GP

Fig. A6: The data and the example on the left corresponds exactly to the example
provided on the GitHub repository of the method DSMGPs, wheres the example on
the right correspons to the Example in Figure 2.

A.6 Implementation Details

All experiments were run on a standard Laptop (IntelCore i7, 8 CPU 1.9GHz).
Our code is implemented in Python and is available on GitHub5. It contains

5https://github.com/manschuer/CPoE

https://github.com/manschuer/CPoE
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several examples6 7 how to use it together with experiments from this paper.
For solving the sparse linear system of equations, we used Cholmod [39] in the
Python package scikit-sparse which relies on sparse Cholesky decomposition.
It would be advantageous to use/implement a sparse block Cholesky decom-
position and solver which exploits directly our structure. This was indeed
needed for computing some entries in the posterior covariance, since with
available implementation of partial matrix inversion we could not exploit the
block sparsity and thus did not obtain competitive performance as discussed
in Section A.2. An efficient implementation of this part is presented in Algo-
rithm 1.
In our current implementation the size of each partition has to be equal;
which is in theory not necessary, but it allows more efficient implementations
since then the block character can be easily exploited in the computation of
the sparse posterior precision. Using the KD-tree construction with J = 2K ,
the sizes of the partitions differ at most by 1. Thus, if the partitions are not
equal, the number of local inducing points are set to L = min(Bj)

J
j=1.

Our implementation exploits the kernel and likelihood functions of GPy
[40]. For the optimization of the hyperparameters we used the L-BFGS-B
algorithm in the Python package scipy in the deterministic full batch case.
For stochastic optimization we used the stochastic optimizer ADAM [41]
(implemented from scratch) with appropriate learning rates which are learnt
in preliminary experiments.

For the competitor methods we used the implementation in GPy [40] for full
and sparse global GP (the approach of [5]). For PoE, GPoE, BCM, RBCM
and GRBCM we implemented the corresponding aggregation algorithms
based on the GPy implementations for the independent experts in Python
for the sake of comparisons. For the stochastic version of SGP, the hybrid
information filter approach in [10] and their implementations are used. We
also run the approaches REC [11] and SVI [9], however the former approach
shows superior accuracy vs. time performance in preliminary experiments.
For the sparse global GP model there is the choice of optimized or fixed
inducing points. For the same number of inducing points the accuracy is
obviously better with optimized inducing points, however taking into account
the time for optimizing them, we found in the experiments with batch opti-
mization (i.e. also smaller datasets) that the fixed random subset approach
was superior. Therefore we report here the results for fixed (random subset of
data) inducing points in the deterministic case and optimized in the stochas-
tic case. The reason for that is that the sparse global approximation with
unknown inducing inputs has MD + |θ| (variational) parameters to optimize
in the batch version. In the stochastic version REC & IF there are as well
MD+ |θ| parameters, whereas SVI has even M + 0.5M2 +MD+ |θ| number
of parameters since the posterior mean and covariance has to be optimized.

6https://github.com/manschuer/CPoE/experiments/example 1D.ipynb
7https://github.com/manschuer/CPoE/experiments/example 2D.ipynb

https://github.com/manschuer/CPoE/blob/main/experiments/example_1D.ipynb
https://github.com/manschuer/CPoE/blob/main/experiments/example_2D.ipynb
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On the other hand, full GP has only a few kernel hyperparameters |θ| to opti-
mize. Similarly, our method CPoE (and also independent PoEs) inherit this
property because there is no necessity to optimize the local inducing points
since the total amount of them can be in the order of N . This is also true
for the stochastic version of our algorithm. Assume for instance D = 8 and
M = 100, the number of parameters with a SE kernel for full GP and CPoE
are only |θ| = 10 parameters to optimize, whereas for batch SGP, REC & IF
810 and even 5910 for SVI. For fixed inducing points, SGP and IF also only
have |θ| = 10 hyperparameters which allows to have more inducing points but
speed-up the optimization a lot and makes the accuracy vs. time comparison
more competitive.

We used the KD-partition for our method as discussed in 3.1 while in the
PoE-literature [12–16], often K-Means is used for partitioning. However, for
large J and N this is quite inefficient and often the partition sizes for each
expert differs significantly which introduces an imbalance among the experts
in the prediction aggregation as well as in the stochastic optimization. There-
fore we also used the KD-tree partition for these algorithms for the sake of
comparisons.

For assessing the quality of the different algorithms in the next sections, we
report the two quantities the Kullback-Leibler-(KL)-divergence to full GP
and the Continuous Ranked Probability Score (CRPS) both depending on the
pointwise predictive distributions p (f∗|y). The reported values correspond
always to an average of Ntest prediction points which are not contained in the
training data.

A.7 Experiments

In this section, we provide more details about the experiments in Section 4.

A.7.1 Synthetic Data

In this simulation study with synthetic GP data, we examine the accuracy vs.
time performance of different GP algorithms for fixed hyperparameters. We
generated N = 8192 data samples in D = 2 with 5 repetitions from the sum
of two SE kernels with a shorter and longer lengthscale (ls = 0.125, vs = 0.2
and ll = 0.5, vl = 1.1; see Fig. A5) such that both global and local patterns
are present in the data. In Fig. 9 the mean results are shown for the KL and
RMSE to full GP, the 95%-coverage and the log marginal likelihood against
time in seconds.
For the sparse GP, we use different number of fixed global inducing points M =
{50, . . . , 1000} for which the results are shown in blue.8 From the PoE-family,
the results for minVar, GPoE and BCM are depicted for different number of

8We also run sparse GP with optimized inducing points, however the performance compared to
time was worse.
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CRPS time

kin2 cadata sarcos casp kin2 cadata sarcos casp

SGP(500) 0.183 0.253 0.069 0.329 112.1 346.9 730.1 632.9
SGP(1000) 0.166 0.252 0.063 0.325 244.1 727.6 1718.5 1362.5
minVar 0.173 0.257 0.052 0.294 14.4 28.2 71.3 45.8
GPoE 0.193 0.289 0.086 0.302 14.4 28.3 71.4 45.6
GRBCM 0.164 0.262 0.060 0.310 16.5 33.5 84.6 59.4
CPoE(1) 0.163 0.259 0.052 0.289 13.8 24.5 45.4 45.1
CPoE(2) 0.155 0.251 0.051 0.287 18.9 33.4 67.3 70.3
CPoE(3) 0.151 0.249 0.051 0.282 31.7 52.0 134.3 123.8

Table A4: Average CRPS (left) and time (right) for different GP methods and 4
datasets with 5 repetitions. More details and results are provided in Sections A.7.2
and F in the Appendix.

experts J = {1, 2, 4, . . . , 128} in red, cyan and magenta, respectively. For our
correlated PoEs, the results for the correlations C = {1, . . . , 12} are shown in
green for J = 32 and γ = 0.5.
In the first two plots, the superior performance of our method compared to
competitors in accuracy to full GP vs. time can be observed. Our method
constitutes a fast and accurate method for a range of different approximation
qualities. Moreover, in the third plot, one can observe that the confidence
informations are reliable already for small approximation orders since it is
based on the consistent covariance intersection method. This experiment is
available in a notebook9 on github.

A.7.2 Real World Data

In this section, we provide more details about the experiments with real world
data as summarized in Section 4. The used datasets in this paper, as summa-
rized in Table 3a, are from public data repositories and can be downloaded
as shown in a jupyter notebook 10 on github. In particular, it shows where
and how to download the raw datasets, which variables are used as input
and the target variables, where we followed the remarks on the repositories
or other authors previously worked with these datasets. Finally, the prepro-
cessing of the data is shown, where we standardized all variables to mean
zero and standard deviation of one (for elecdemand see details below). We
use N = min(0.9Ntot, 1000) data sample for training, the rest for testing;
except for kin and elecdemand we run experiments with Ntest = 3000 and
Ntest = 15288 such that we could also run full GP a standard Laptop. For
each dataset we fixed the number J of experts (given in Table 3a) such that
the partitions/mini-batches have a reasonable size (≈ 500).
For the deterministic SGP we used M = 100 and for the stochastic SGP
M ∈ {500, 1000} inducing points (more results are provided in Appendix F).

9https://github.com/manschuer/CPoE/experiments/syntheticData.ipynb
10 https://github.com/manschuer/CPoE/experiments/download data.ipynb

https://github.com/manschuer/CPoE/blob/main/experiments/syntheticData.ipynb
https://github.com/manschuer/CPoE/blob/main/experiments/download_data.ipynb
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For our method CPoE we run the algorithm for C ∈ {1, 2, 3, 4} for the small
and C ∈ {1, 2, 3} for the large datasets with always γ = 1. For the stochastic
versions we used learning rates δ = 0.03 for the dataset kin2 and δ = 0.01 for
the remaining for all methods. The maximum number of epochs is set to 15
together with a relative stopping criteria of 1e−2. We use a SE-kernel with a dif-
ferent lengthscale per dimension and initialized all hyperparameters to 1, and
the global inducing point to a random subset of the data. These experiments
are provided at github. 11 12

A.7.3 Application

This section contains additional details to the application described in Section
4.4, where our method is applied to the elecdemand time series [37], which
contains the half-hourly measured electricity demand together with the corre-
sponding temperature and the variable whether it is a working day for 1 year.
In particular, the preprocessed dataset contains the standardized electricity
demand (mean=0, sd=1) as the response variable y, the normalized time as
the first variable X1 ∈ [0, 1], the standardized temperature and indicators as
X2 and X3, respectively. The data is depicted in the first two plots in Fig. 10,
where we shifted the first and third variable in the second plot for the sake
of clarity. We removed the last day resulting in 364 days = 52 weeks = 13
”months” consisting of 4 weeks. In each of the 13 ”months”, we used the first
3 weeks for training and the last week for testing the out-of-sample accuracy.
In order that it is possible to run full GP as comparison, we only used every
6th sample (corresponding to a measurement every 3h) of the training weeks
for the actual training and the remaining for testing the in-sample accuracy.
This gives N = 2184, NIN = 10920 and NOUT = 4368 samples as depicted in
the first plot in Fig. 10.
With our CPoE model it is straightforward to handle time series with covari-
ates, as opposed to other time series methods [33–36]. The kernel kθ depends
on several hyperparameters θ, for which we use the parametrization in [33].
We assume a log-normal prior on θ as described in Section A.3.3 in which
the corresponding means and variances are taken from Table 1 in [33]. Sim-
ilarly as in the previous section, we run full GP, SGP and PoEs and CPoE
and optimized the hyperparameter deterministically using the MAP as objec-
tive function taking into account the priors. For SGP we used M ∈ {100, 200}
fixed inducing points, for PoEs and CPoE we used J = 13 partitions which
are obtained by splitting the first variable into J blocks. For CPoE we used
C ∈ {1, 2, 3, 4} and γ = 1. The results are provided in Table 3b which again
shows very competitive performance also for a general kernel with priors on
the hyperparameters.

11 https://github.com/manschuer/CPoE/experiments/realData1.ipynb
12 https://github.com/manschuer/CPoE/experiments/realData2.ipynb

https://github.com/manschuer/CPoE/blob/main/experiments/realData1.ipynb
https://github.com/manschuer/CPoE/blob/main/experiments/realData2.ipynb
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Appendix B Useful properties

B.0.1 Inversion Lemma

Given invertible matrices A ∈ RB×B , C ∈ RM×M and matrices U ∈ RB×M ,
V ∈ RM×B , it holds

(A+UCV )
−1

= A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1. (B2)

B.0.2 Determinant Lemma

Given invertible matrices A ∈ RB×B , C ∈ RM×M and matrices U ∈ RB×M ,
V ∈ RM×B , it holds

|A+UCV | = |C−1 + V A−1U ||C||A|. (B3)

B.0.3 Block Inversion

Given an invertible, symmetric block matrix

M =

[
A B

BT D

]
,

the inverse can be computed as

M−1 =

[
A−1 +A−1BZ−1BTA−1 −A−1BZ−1

−Z−1BTA−1 Z−1

]
(B4)

with Z = D −BTA−1B.

B.0.4 Block Determinant

Given an invertible, symmetric block matrix

M =

[
A B

BT D

]
,

the determinant can be computed as

|M | = |A| |D −BTA−1B| = |D| |A−BD−1BT |. (B5)

B.0.5 Conditional Gaussians

From the joint Gaussian [a, b]T ∼ N
(
0,K [A,B][A,B]

)
, the conditional can be

computed as follows

a|b ∼ N
(
KABK

−1
BBb,KAA −KABK

−1
BBKBA

)
= N

(
HABb,V

B
AA

)
(B6)
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B.0.6 Marginalization/Integration

Given the densities p (a) = N (µ,Σ) and p (b|a) = N (Fa+ v,Q), then

p (b) =

∫
p (a, b) da =

∫
p (b|a) p (a) da = N

(
Fµ+ v,FΣF T +Q

)
(B7)

B.0.7 Gaussian & Bayes

Given the densities p (a) = N (µ,Σ) and p (b|a) = N (Fa+ v,Q), applying
Bayes’ formula yields

p (a|b) = N
(
P
(
F TQ−1(b− v) + Σ−1µ

)
,P
)
, (B8)

with P =
(
Σ−1 + F TQ−1F

)−1
.

B.0.8 Product of Gaussians

Assume J Gaussians pJ(x) = N
(
x|µj ,Σj

)
and aj ∈ R. Then the product

can be written as

J∏
j=1

pj(x)aj = N (x|µ,Σ) (B9)

with

Σ =

(
J∑
j=1

ajΣ
−1
j

)−1

and µ = Σ

(
J∑
j=1

ajΣ
−1
j µj

)

as long as Σ positive-semi-definite (if aj ≡ 1 then always the case).

B.0.9 Entropy of Gaussian

The Entropy H of p(x) = N (x|µ,Σ) with |x| = B is defined as

H[x] = H[p(x)] =
1

2
(log |Σ|+B(1 + log 2π)) , (B10)

where we use log as the natural logarithm and thus the entropy is measured
in nats (natural units).

B.0.10 Kullback-Leibler-Divergence (KL)

The KL between p0(x) and p1(x) is defined as

KL[p0(x) | p1(x)] =

∫
p0(x) log

p0(x)

p1(x)
dx. (B11)
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B.0.11 KL between 2 Gaussians

The Kullback-Leibler-Divergence (KL) between p0(x) = N (µ0,Σ0) and
p1(x) = N (µ1,Σ1) with |x| = B can be computed by

KL[p0(x) | p1(x)] =
1

2

(
tr(Σ−1

1 Σ0)−B

+(µ1 − µ0)TΣ−1
1 (µ1 − µ0) + log

|Σ1|
|Σ0|

)
.

(B12)

B.0.12 Difference in KL of Gaussian with Zero Mean

The difference in KL between p1(x) = N (0,Σ1) and p2(x) = N (0,Σ2) with
same base distribution p0(x) = N (0,Σ0) can be computed by

KL[p0(x) | p1(x)]−KL[p0(x) | p2(x)] =
1

2

(
tr((Σ−1

1 −Σ−1
2 )Σ0) + log

|Σ1|
|Σ2|

)
.

(B13)

B.0.13 General Difference in KL

Let 1 ≤ C < J and 0 < γ ≤ 1 be fixed. For any C2 ∈ {C, . . . , J} we define
the difference in KL, denoted as D(C,C2)[x], between the true distribution of
x and two different approximate distributions, i.e.

D(C,C2)[x] = KL[p (x) || qc,γ(x)]−KL[p (x) || qc2,γ(x)] = Ep(x)

[
log

qc2,γ(x)

qc,γ(x)

]
(B14)

using the definition of KL (B11). Similarly, we define the the difference in KL,
denotes as D(C,C2)[x|y], of a conditional distribution x|y to be

KL[p (x|y) || qc,γ(x|y)]−KL[p (x|y) || qc2,γ(x|y)]

=Ep(y)

[
Ep(x|y)

[
log

qc2,γ(x|y)

qc,γ(x|y)

]]
.

(B15)

which follows from the the definition of KL (B11).

Appendix C Proofs and Additional Results

C.1 Additional Results

Proposition 9 (Marginal Likelihood; Proof 13) The marginal likelihood is

qC,γ(y|θ) = qC,γ(y) =

∫
qC,γ(y,a) da = N (0,P )

with P = HS−1HT + V ∈ RN×N where all dependencies on θ of the matrices are
omitted.
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Fig. C7: Covariance W and precision Z = W−1 of joint prior approximation
qc,γ(a,f ,y = N (0,W ) of CPoE model. Compare Proof 19 and Figures C8 and C9
for comparison.
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Fig. C8: Covariance W and precision Z = W−1 of joint prior of different GP
models. Compare Figure C7 for the corresponding covariance and precision matrices
for CPoE model. Note that we used H = KXAK

−1
AA and V̄ the same as in the

local CPoE.
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Fig. C9: Marginalized precision corresponding to qc,γ(a,f) = N
(
0,Z−1

a,f

)
,

qc,γ(a,y) = N
(
0,Z−1

a,y

)
and qc,γ(f ,a) = N

(
0,Z−1

f ,y

)
, respectively. Thereby we

used the notation V = V̄ + σ2
nI, T̄ = HT V̄

−1
H and T = HTV −1H. Note that

the corresponding dense covariance matrices are directly obtained from W in Fig.
C7 by selecting the corresponding entries.

Proposition 10 (Prior Approximation II; Proof 15) Alternatively to Proposition 2,

the prior approximation q (a) = N
(
a|0,S−1

)
can be equivalently written as

q (a) =

J∏
j=1

p
(
aj |aπ(j)

)
=

J∏
j=1

N
(
aπ+(j)|0,S

−1
(j)

)
with S(j) = F̃

T
j Q
−1
j F̃ j , F̃ j =

[
−F j I

]
and π+(j) = π(j) ∪ j. Further, the prior

precision matrix can also be written as

S =

J∑
j=1

S(j)

where S(j) ∈ RM×M is the augmented matrix consisting of S(j) ∈ RLC×LC at the

entries [π+(j),π+(j)] and 0 otherwise.

Proposition 11 (Prior Approximation III; Proof 16) Alternatively to Prop. 2 and
Prop. 10 the prior approximation q (a) can be equivalently written as

q (a) =

J∏
j=1

p
(
aj ,aπ(j)

)
p
(
aπ(j)

) =

J∏
j=C

p
(
aπ+(j)

)
p
(
aπ(j)

)
which is a Gaussian N

(
a|0,S−1

)
with prior precision

S =

J∑
j=1

K
−1
Aπ+(j)Aπ+(j)

−K−1
Aπ(j)Aπ(j)

where K
−1
AφAφ ∈ RM×M is the augmented matrix consisting of K−1

AφAφ
∈ RT×T at

the entries [φ,φ] and 0 otherwise with T = |φ|.
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Proposition 12 (Exact Diagonal of Prior; Proof 14) The precision matrix SC of
the prior approximation qC(a) is exact on the diagonal, that is,

tr(SCKAA) = JL

where JL is the dimension of the matrices.

Proposition 13 (Band-Diagonal Approximation) In the consecutive case, i.e.
ψ (j) = {j − C + 1, . . . , j}, the block-entries

S−1
[ψ(j),ψ(j)] = KAA[ψ(j),ψ(j)],

are equal which means that the block-band-diagonals −C + 1, . . . , 0, . . . , C − 1 of the
both matrices are the same. For the case C = J it holds S−1 = KAA.

Proposition 14 (Decreasing Prior Entropy; Proof 10) For any predecessor structure
πC as in Def. 2, the entropy H of the approximate prior qC(a) is decreasing for
C → J , in particular

H [q1(a)] ≥ · · · ≥ H
[
qj(a)

]
≥ · · · ≥ H [qJ (a)]

where it holds H [qJ (a)] = H [p(a)] and

H[qj(a)] =
1

2
log |QC |+

M

2
(1 + log 2π).

Similar results can be obtained for the joint prior qC(a,f ,y).

From the last proposition we know that increasing the degree of correlation
C add always more information to the prior. In particular, the prior of com-
plete independent PoEs (i.e. C = 1) encodes the least of information since
all correlations between the experts are missing, whereas the prior of full GP
incorporates the most information since all correlations are modeled.

Proposition 15 (Prior Quality II) The prior approximation quality improvement
D(C,T )[a] in Prop. 6 can be equivalently written as

D(C,T ) =
1

2
log
|SC+T |
|SC |

=
1

2

J∑
j=1

log
|Qj|πj | |Qφj |πj |
|Qj∪φj |πj |

=
1

2

J∑
j=1

log
|KAj∪πjAj∪πj

| |KAφj∪πjAφj∪πj
|

|KAj∪φj∪πjAj∪φj∪πj
| |KAπjAπj

|

where πj = πC(j), φj = ∪C+T
i=C+1φi(j) and Qϕ1|ϕ2

= KAϕ1
Aϕ1

−
KAϕ1Aϕ2

K−1
Aϕ2

Aϕ2
KAϕ2Aϕ1

.

C.2 Proofs

Proof 1 (Proof of Prop. 1; Joint Distribution) . The matrices in the conditional
distributions (6) and (7) in Prop. 1 can be obtained via Gaussian conditioning (B6)
from the assumed joint densities

p
(
f ij ,aψ(j)

)
= N

(
0,K[Xi

j ; Aψ(j)][X
i
j ; Aψ(j)]

)
;
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p
(
aj ,aπ(j)

)
= N

(
0,K[Aj ,Aπ(j)][Aj ,Aπ(j)]

)
,

resulting in

Hj = KXjAψ(j)
K−1
Aψ(j)Aψ(j)

;

V j = Diag[KXjXj
−KXjAψ(j)

K−1
Aψ(j)Aψ(j)

KAψ(j)Xj
];

F j = KAjAπ(j)
K−1
Aπ(j)Aπ(j)

;

Qj = KAjAj −KAjAπ(j)
K−1
Aπ(j)Aπ(j)

KAπ(j)Aj

with F 1 = 0 and Q1 = KA1A1
.

Proof 2 (Proof used in Def. 4; Joint Distribution II) In the case γ = 1, thus aj = f j
and a = f , the joint distribution can be written as q (f ,a,y) = q (f ,f ,y) = q (f ,y)
is

q (f ,y) =

J∏
j=1

p
(
yj |f j

)
p
(
f j |aψ(j)

)
p
(
aj |aπ(j)

)

=

J∏
j=1

p
(
yj |f j

)
p
(
f j |fψ(j)

)
p
(
f j |fπ(j)

)

=

J∏
j=1

p
(
yj |f j

) p(f jfψ(j)

)
p
(
fψ(j)

) p
(
f j |fπ(j)

)

=

J∏
j=1

p
(
yj |f j

)
p
(
f j |fπ(j)

)
since

p
(
f j ,fψ(j)

)
p
(
fψ(j)

) =
p
(
f j ,f j ,fψ(j)\j

)
p
(
f j ,fψ(j)\j

) = 1.

Proof 3 (Proof of Prop. 5; Equality to Full GP ) Full GP: For γ = 1, the joint
distribution of our model is formulated in Def. 4 and Proof 2. For C = J , we have

qJ (f ,y) =

J∏
j=1

p
(
yj |f j

)
p
(
f j |fπJ (j)

)
,

where the predecessor set πJ (j) correspond to {1, . . . , j − 1} and thus the condi-
tional variables fπ(j) = f1:j−1. The posterior qJ (f |y) is proportional to the joint
distribution qJ (f ,y) (see Proof 12), thus we have

qJ (f |y) ∝
J∏
j=1

p
(
yj |f j

)
p
(
f j |f1:j−1

)
which is equal to the posterior distribution of full GP (1). Also the hyperparam-
eter optimization is the same since the marginal likelihood qJ (y) can be derived
from the joint qC(f ,y) (see Proof 13). Further, in the prediction step, for C = J
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we have J2 = C − J + 1 = 1 predictive expert which is based on the full region
ψ(J) = {1, . . . , J}. Therefore we conclude that the two models in considerations are
the same.

Sparse global GP: Similarly, for C = J but γ < 1, we have

qJ (f ,y) =

J∏
j=1

p
(
yj |f j

)
p
(
f j |aψ(j)

)
p
(
aj |aπ(j)

)

=

J∏
j=1

p
(
yj |f j

)
p
(
f j |a1:J

)
p
(
aj |a1:−j−1

)
=

J∏
j=1

p
(
yj |f j

)
p
(
f j |a

)
p (a)

= p (y|f) p (f |a) p (a)

so that the posterior correspond to that of sparse GP in (2.1). The prediction
simplifies also to 1 predictive expert based on the full region. Also the marginal
likelihood is the same for C = J and could be adapted as illustrated in Section A.1.

Independent local GP: For C = γ = 1 we have

q1(f ,y) =

J∏
j=1

p
(
yj |f j

)
p
(
f j |f�

)
=

J∏
j=1

p
(
yj |f j

)
p
(
f j
)

which is equal to (4). Prediction and hyperparameters similar as above.

Compare also Figure C8 for the sparsity pattern of these methods.

Proof 4 (Proof of Prop. 2; Prior Approximation) Here we prove the first part for
the prior over a, the second part is proved in Proof 5.

Using Prop. 10 (with Proof 15), the prior q (a) can be equivalently written as

J∏
j=1

N
(
aπ+(j)|0,S

−1
(j)

)
∝ −1

2
aTπ+(j)F̃

T
j Q
−1
j F̃ jaπ+(j)

with S(j) = F̃
T
j Q
−1
j F̃ j ∈ RLC×LC and F̃ j =

[
−F j I

]
∈ RL×LC . This LC-

dimensional Gaussian for aπ+(j) can be augmented to a M -dimensional Gaussian
for a proportional to

− 1

2
aT F̄

T
j Q̄
−1
j F̄ ja ∝ N

(
a|0,

(
F̄
T
j Q̄
−1
j F̄ j

)−1
)

where Q̄
−1
j ∈ RM×M a zero matrix except Q−1

j ∈ RL×L at the entries

[π+(j),π+(j)]. Further, the matrix F̄ j ∈ RM×M has one sparse row at j, that is,

0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...

0 · · · −F 1
j 0 −F ij · · · −F

Ij
j I · · · 0

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 0 0


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where F ij ∈ RL×L is the ith part of F j ∈ RL×L(C−1) which correspond to the

contribution of the ith predecessor πi(j).
By using the property in (B9), the original product q(a) is then

J∏
j=1

N
(
a|0,

(
F̄
T
j Q̄
−1
j F̄ j

)−1
)

= N

a|0,
 J∑
j=1

F̄
T
j Q̄
−1
j F̄ j

−1


= N
(
a|0,

(
F TQ−1F

)−1
)

= N
(
a|0,S−1

)
with Q−1 = Diag[Q−1

1 , . . . ,Q−1
J ] and F correspond then to the matrix depicted in

Fig. 5. Note that S is positive definite since Q−1 positive definite because each Q−1
j

is positive definite which concludes the proof.

Proof 5 ((Sub)proof of Prop. 2 (Projection Approximation) ) The projection
q (f |a) = qC(f |a) is

qC(f |a) =

J∏
j=1

p
(
f j |aψ(j)

)
=

J∏
j=1

N
(
f j |Hjaψ(j),V j

)
,

where Hj ∈ RB×LC and V j ∈ RB×B . The log of this density in f j ∈ RB is
proportional to

∝ −1

2
(f j −Hjaψ(j))

TV
−1
j (f j −Hjaψ(j))

which can be equivalently written as

−1

2
(Ijf − H̄ja)T V̄

−1
j (Ijf − H̄ja)

with V̄ j ∈ RM×M with V j at [ψ(j),ψ(j)] and H̄j ∈ RBJ×M the following matrix

0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...

0 · · · H1
j 0 Hi

j · · · H
C−1
j HC

j · · · 0

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 0 0


where jth row not empty with Hi

j ∈ RB×L the ith entry in Hj which correspond

to to ψi(j). Further, Ij ∈ RBJ×BJ a zero matrix with I ∈ RB×B at [j, j]. For the
original product of the projections

qC(f |a) =

J∏
j=1

N
(
0|ITj f − H̄ja, V̄ j

)
,

using the product rule of Gaussians in (B9), we obtain

N

0|V
J∑
j

V̄
−1
j

(
Ijf − H̄ja

)
,

 J∑
j

V̄
−1
j

−1

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= N

0|V V −1
J∑
j

(
Ijf − H̄ja

)
,V

 = N

0|
J∑
j

(
Ij
)
f −

J∑
j

(
H̄j

)
a,V


= N

(
0|If −Ha,V

)
= N

(
f |Ha,V

)
.

Since V positive definite this concludes the statement.

Proof 6 (Proof of Prop. 6; Decreasing Prior KL) We first show the decomposition

D(C,T )[f ,a,y] = D(C,T )[a] + D(C,T )[f |a] + D(C,T )[y|f ].

Starting with the definition in Def. B14 we get

D(C,T )[f ,a,y]

= Ep(f ,a,y)

[
log

qC+T (f ,a,y)

qC(f ,a,y)

]
= Ep(y|f)p(f |a)p(a)

[
log

qC+T (y|f)qC+T (f |a)qC+T (a)

qC(y|f)qC(f |a)qC(a)

]
=

∫
p(y|f)p(f |a)p(a) log

qC+T (y|f)qC+T (f |a)qC+T (a)

qC(y|f)qC(f |a)qC(a)
da df dy

=

∫
p(a)

(∫
p(f |a)

[∫
p(y|f) log

qC+T (y|f)

qC(y|f)
dy · · ·

+ log
qC+T (f |a)

qC(f |a)

]
df + log

qC+T (a)

qC(a)

)
da

=

∫
p(a) log

qC+T (a)

qC(a)
da+

∫
p(a)

∫
p(f |a) log

qC+T (f |a)

qC(f |a)
df

+

∫
p(f)

∫
p(y|f) log

qC+T (y|f)

qC(y|f)
dy df

= Ep(a)

[
log

qC+T (a)

qC(a)

]
+ Ep(a)

[
Ep(f |a)

[
log

qC+T (f |a)

qC(f |a)

]]
+ Ep(f)

[
Ep(y|f)

[
log

qC+T (y|f)

qC(y|f)

]]
= D(C,T )[a] + D(C,T )[f |a] + D(C,T )[y|f ],

where we used the definitions in Def. B14. We also immediately see that

D(C,T )[y|f ] = 0

since qC(y|f) = qC+T (y|f) = p(y|f) is exact. The proofs for D(C,T )[a] ≥ 0 and
D(C,T )[f |a] ≥ 0 are given in Proof 7, 8 and 8, respectively.

Proof 7 (Proof of Subproof I of Proof 6) We prove

D(C,T )[a] = Ep(a)

[
log

qC+T (a)

qC(a)

]
≥ 0.

We abbreviate q1(a) = qC(a) and q2(a) = qC+T (a). The difference D(C,T )[a] is∫
p(a) log

q2(a)

q1(a)
da =

∫
p(a) log

∏J
j=1 p

(
aj |aπ2(j)

)
∏J
j=1 p

(
aj |aπ1(j)

) da
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=

∫
p(a)

J∑
j=1

log
p
(
aj |aπ2(j)

)
p
(
aj |aπ1(j)

) da =

J∑
j=1

∫
p(a) log

p
(
aj |aπ2(j)

)
p
(
aj |aπ1(j)

) da

We recall property (iii) in Def. 2, thus we have π2(j) = π1(j) ∪ φ(j) where φ(j) is
the additional predecessor of expert j in the model 2 compared to model 1. In the
following, we abbreviate π1(j) = π(j) yielding

J∑
j=1

∫
p(a) log

p
(
aj |aπ(j),aφ(j)

)
p
(
aj |aπ(j)

) da

=

J∑
j=1

∫
p(a) log

p
(
aj |aπ(j),aφ(j)

)
p
(
aφ(j)|aπ(j)

)
p
(
aj |aπ(j)

)
p
(
aφ(j)|aπ(j)

) da

=

J∑
j=1

∫
p(a) log

p
(
aj ,aφ(j)|aπ(j)

)
p
(
aj |aπ(j)

)
p
(
aφ(j)|aπ(j)

) da

=

J∑
j=1

∫
p(ãj) log

p
(
aj ,aφ(j)|aπ(j)

)
p
(
aj |aπ(j)

)
p
(
aφ(j)|aπ(j)

) dãj

=

J∑
j=1

I
(
aj ,aφ(j)|aπ(j)

)
≥ 0

where ãj = aj ∪aφ(j) ∪aπ(j) and I
(
aj ,aφ(j)|aπ(j)

)
the conditional mutual infor-

mation which is always positive [42, p. 30] and therefore concludes the first part of
the proof.

Proof 8 (Subproof II of Proof 6) We prove

D(C,T )[f |a] = Ep(a)

[
Ep(f |a)

[
log

qC+T (f |a)

qC(f |a)

]]
≥ 0.

We abbreviate q1(f |a) = qC(f |a) and q2(f |a) = qC+T (f |a). The difference
D(C,T )[f |a] is∫

p(a)

∫
p(f |a) log

q2(f |a)

q1(f |a)
df da =

∫
p(a,f) log

∏J
j=1 p

(
f j |aψ2(j)

)
∏J
j=1 p

(
f j |aψ1(j)

) df da

=

∫
p(a,f)

J∑
j=1

log
p
(
f j |aψ2(j)

)
p
(
f j |aψ1(j)

) df da =

J∑
j=1

∫
p(a,f) log

p
(
f j |aψ2(j)

)
p
(
f j |aψ1(j)

) df da

We recall the definition of ψC(j) in Def. 2, where we have ψC(j) =
πC(j) ∪ {j, . . . , C} if j < C and ψC(j) = πC(j) ∪ j otherwise. Further, we have
π2(j) = π1(j) ∪ φ(j) where φ(j) is the additional predecessor of expert j in the
model 2 compared to model 1. Therefore, we have ψ2(j) = ψ1(j) ∪ φ(j) for all j.

[Proof: If j < C, we have π1(j) = π2(j) since φ(j) empty. Therefore, we have
ψ1(j) = π1(j) ∪ {j, . . . , C} = π2(j) ∪ {j, . . . , C} = ψ2(j) for all j = 1, . . . , C − 1.
If j ≥ C, we have ψ1(j) = π1(j) ∪ j and ψ2(j) = π2(j) ∪ j = π1(j) ∪ φ(j) ∪ j =
ψ1(j) ∪ φ(j) for all j = C, . . . , J . ]
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We abbreviate ψ1(j) = ψ(j) and substitute ψ2(j) = ψ(j) ∪ φ(j) yielding

J∑
j=1

∫
p(a,f) log

p
(
f j |aψ(j),aφ(j)

)
p
(
f j |aψ(j)

) df da

=

J∑
j=1

∫
p(a,f) log

p
(
f j |aψ(j),aφ(j)

)
p
(
aφ(j)|aψ(j)

)
p
(
f j |aψ(j)

)
p
(
aφ(j)|aψ(j)

) da

=

J∑
j=1

∫
p(a,f) log

p
(
f j ,aφ(j)|aψ(j)

)
p
(
f j |aψ(j)

)
p
(
aφ(j)|aψ(j)

) da

=

J∑
j=1

∫
p(ãj ,f j) log

p
(
f j ,aφ(j)|aψ(j)

)
p
(
f j |aψ(j)

)
p
(
aφ(j)|aψ(j)

) dãj

=

J∑
j=1

I
(
f j ,aφ(j)|aψ(j)

)
≥ 0

where ãj = aφ(j)∪aψ(j) and I
(
f j ,aφ(j)|aψ(j)

)
the conditional mutual information

which is always positive [42, p. 30] and therefore concludes the first part of the proof.

Moreover, the difference in the joint prior is

D(C,T )[f ,a,y] = D(C,T )[f ,a] = D(C,T )[a] + D(C,T )[f |a]

=
1

2
log

|V̄ C ||S−1
C |

|V̄ C+T |S−1
C+T ||

=
1

2
log
|V̄ C ||QC+T |
|V̄ C+T |QC ||

≥ 0.

Proof 9 (Subproof III of Proof 6; Prior KL) For the second part, we use (B13)
where the difference in KL of 2 Gaussians with zero mean and same base distribution
is formulated. In our case we have

1

2

(
tr((SC − SC+T )KAA) + log

|SC+T |
|SC |

)
where the trace is 0 by Prop. 12 and thus D(C,T ) = 1

2 log
|SC+T |
|SC | . Since SC =

F TQ−1F and |F | = 1, we have D(C,T ) = 1
2 log

|QC |
|QC+T |

which concludes the proof.

Proof 10 (Proof of Prop. 14; Decreasing Prior Entropy) For the third part of the
statement, the entropy H of qC(a) is

H[qC(a)] =
1

2
(− log |SC |+ JL(1 + log 2π)) =

1

2
(log |QC |+ JL(1 + log 2π))

where we used Eq. (B10) and |F | = 1. The second part follows from Prop. 5. Using
Proof 9 which states

D(C,T ) =
1

2
log

|QC |
|QC+T |

≥ 0,
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it follows

log |QC | ≥ log |QC+T |

for any T ∈ {1, . . . , C − 1} and therefore

H[qC+T (a)] ≤ H[qC(a)]

which concludes the proof.

Proof 11 ((Sub)Proof of Prop. 3; Marginalized Joint Distribution) From the joint
distribution in Def. 4 over all variables, the latent function values f can be integrated
out resulting in

q (a,y) =

∫
q (f ,a,y) df =

∫
p (y|f) q (f |a) df q (a) ,

where the integral can be computed via (B7) yielding

q (a,y) =

∫
p (y|f) q (f |a) df =

∫
N
(
y|f , σ2

nI
)
N
(
f |Hf ,V

)
df = N (y|Ha,V )

with V = V + σ2
nI and thus

q (a,y) = q (y|a) q (a) = N (y|Ha,V )N
(
a|0,S−1

)
which concludes the proof.

Proof 12 (Proof of Prop.3; Posterior Approximation) The posterior approximation
is

q (a|y) =
q (a,y)

q (y)
∝ q (a,y) = q (y|a) qC(a)

where the first equality comes from the definition of conditional probabilities, the
proportionality because the marginal likelihood q(y) is independent of a and the last
equality exploits Proof 11. Since

q (y|a) qC(a) = N (y|Ha,V )N
(
a|0,S−1

)
,

the desired posterior distribution can be analytically computed via (B8) yielding

q (a|y) = N (a|µ,Σ) ,

with Σ =
(
HTV −1H + S

)−1
, µ = Ση and η = HTV −1y.

Proof 13 (Proof of Prop. 9; Marginal Likelihood ) The marginal likelihood q(y) is
obtained by integrating (B7) over the joint distribution q (y,a) in Prop. 2 leading to

q (y) =

∫
q (y,a) da =

∫
q (y|a) q (a) da =

∫
N (Ha,V )N

(
0,S−1

)
da = N (0,P )

where P = HS−1HT + V .
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Proof 14 (Proof of Prop. 12; Exact Diagonal of Prior ) Using Prop. 11, the trace
can be written as

tr (SKAA) = tr

 J∑
j=1

K
−1
Aπ+(j)Aπ+(j)

−K−1
Aπ(j)Aπ(j)

KAA


=

J∑
j=1

tr
(
K
−1
Aπ+(j)Aπ+(j)

KAA

)
− tr

(
K
−1
Aπ(j)Aπ(j)

KAA

)
.

By construction of the matrices K
−1
Aφ,Aφ , they contain the matrix K−1

Aφ,Aφ
at the

entries [φ, φ]. Therefore, the resulting product when multiplying with KAA is a
matrix with identity IT at the position [φ, φ] with T = |φ| and 0 at the diagonal
where not φ. The quantity above is then

J∑
j=1

L|π+(j)| − L|π (j) | =
J∑
j=1

L (min(j, C)−min(j − 1, C − 1)) = JL.

Proof 15 (Proof of Prop. 10; Prior Approximation II) The prior approximation is

q(a) =

J∏
j=1

p
(
aj |aπ(j)

)
=

J∏
j=1

N
(
aj |F jaπ(j),Qj

)
for which the quadratic term inside the exponential of the individual Gaussian can
be written as

− 1

2
(aj − F jaπ(j))

TQ−1
j (aj − F jaπ(j))

− 1

2

[
aTπ(j) a

T
j

] [−F Tj
I

]
Q−1
j

[
−F j I

] [aπ(j)

aj

]
which correspond to a Gaussian

N
(
aπ+(j)|0,S

−1
(j)

)
with S(j) = F̃

T
j Q
−1
j F̃ j ∈ RLC×LC and F̃ j =

[
−F j I

]
∈ RL×LC which proves the

first part. We can augment this Gaussian for aπ+(j) ∈ RLC to

− 1

2
aT S̄

−1
(j)a ∝ N

(
a|0, S̄−1

(j)

)
over a ∈ RM where S̄(j) ∈ RM×M is the augmented matrix consisting of S(j)at the

entries [π+(j),π+(j)] and 0 otherwise. Using (B9), the original product q(a) is then

J∏
j=1

N
(
a|0, S̄−1

(j)

)
= N

a|0,
 J∑
j=1

S̄(j)

−1


and thus S =
∑J
j=1 S̄(j) positive definite which concludes the proof.

Proof 16 (Proof of Prop. 11; Prior Approximation III) The prior q(a) can be written
as

q(a) =

J∏
j=1

p
(
aj |aπ(j)

)
=

J∏
j=1

p
(
aj ,aπ(j)

)
p
(
aπ(j)

) =

J∏
j=1

p
(
aπ+(j)

)
p
(
aπ(j)

)
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=

J∏
j=1

N
(
aπ+(j)|0,KAπ+(j)Aπ+(j)

)
N
(
aπ(j)|0,KAπ(j)Aπ(j)

)
Similarly to the Proof 15, we can augment the CL-dimensional and the (C −
1)L-dimensional Gaussian in the nominator and denominator, respectively, to M -

dimensional Gaussians with covariance K
−1
AφAφ consisting of K−1

AφAφ
at the entries

[φ,φ] and 0 otherwise. This gives with (B9)

J∏
j=1

N
(
a|0,KAπ+(j)Aπ+(j)

)
N
(
a|0,KAπ(j)Aπ(j)

)
=N

a|0,
 J∑
j=1

K
−1
Aπ+(j)Aπ+(j)

−K−1
Aπ(j)Aπ(j)

−1
 ,

which concludes the proof with S =
∑J
j=1K

−1
Aπ+(j)Aπ+(j)

−K−1
Aπ(j)Aπ(j)

which is

positive definite.

Proof 17 (Proof of Prop. 4; Prediction Aggregation) The predictive posterior
distribution is defined as

p (f∗|y) =

J∏
j=C

p
(
f∗j |y

)β∗j .
Since the local predictions p

(
f∗j |y

)
= N

(
m∗j , v∗j

)
are all univariate Gaussians, we

obtain via the product rule of Gaussians in (B9) directly

m∗ = v∗j

J∑
j=C

β∗j
m∗j
v∗j

and
1

v∗
=

J∑
j=C

β∗j
v∗j

.

Using the usual likelihood p (y∗|f∗) = N
(
f∗, σ

2
n

)
yields with (B7) the final noisy

prediction p (y∗|y) =
∫
p (y∗|f∗) p (f∗|y) df∗ = N

(
m∗, v∗ + σ2

n

)
. Note that, in Def-

inition 5 of the weights, we introduced a scaling factor Z. This Z in the exponent
of the normalization of the weights has a sharpening effect, so that the informative
experts have even more weight compared to the non-informative experts for more
data N and more correlations C. This is a heuristic but showed quite robust perfor-
mance in experiments. Moreover, the consistency properties are more relevant than
the particular weights.

Proof 18 (Proof of Prop. 8; Local Predictions) The predictive conditional

p
(
f∗j |aψ(j)

)
can be again derived via (B6) from the assumed joint

p
(
f∗j ,aψ(j)

)
= N

(
0,K[x∗,Aψ(j)][x∗,Aψ(j)]

)
leading to N

(
h∗aψ(j), v∗

)
with

h∗ = Kx∗Aψ(j)
K−1
Aψ(j)Aψ(j)
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and
v∗ = Kx∗x∗ −Kx∗Aψ(j)

K−1
Aψ(j)Aψ(j)

KAψ(j)x∗ .

Moreover, the local posteriors q
(
aψ(j)|y

)
= N

(
µψ(j),Σψ(j)

)
are obtained from

the corresponding entries ψ(j) of the mean µ and covariance Σ (via partial inversion
A.2) in Prop, 3. Finally, the local predictions p

(
f∗j |y

)
in Prop. (8) can then be

computed with Gaussian integration (B7) yielding

q
(
f∗j |y

)
=

∫
p
(
f∗j |aψ(j)

)
p
(
aψ(j)|y

)
daψ(j)

which correspond to the desired quantities

N
(
m∗j , v∗j

)
= N

(
h∗µψ(j),h

T
∗Σψ(j)h∗ + v∗

)
.

Proof 19 (Proof for Figure C7; Joint Prior Covariance) For the joint prior

qC(a,f ,y) = N ([a; f ; y] | 0,W γ)

with covariance

W γ =

Σaa Σaf Σay
Σfa Σff Σfy
Σya Σyf Σyy


corresponding to Fig. C7, we show that we recover the marginal and conditional dis-
tributions qC(a), qC(f |a) and p(y|f). For qC(a), the marginalization correspond to

selecting the corresponding mean and covariance, i.e. N (a|0,Σaa) = N
(
a|0,S−1

)
.

For qC(f |a), we use Eq. (B6) yielding

N
(
f |ΣfaΣ−1

aaa,Σff −ΣfaΣ−1
aaΣaf

)
= N

(
f |Ha, (HS−1HT + V )−H(S−1HT

)
= N

(
f |Ha,V

)
since ΣfaΣ−1

aa = (HS−1)S = H. Similarly for p(y|f), with Eq. (B6) we get

N
(
y|ΣyfΣ−1

fff ,Σyy −ΣyfΣ−1
ffΣfy

)
= N

(
y|If , (HS−1HT + V )− I(HS−1HT + V )

)
= N

(
y|f , σ2

nI
)

since ΣyfΣ−1
ff = I.

C.3 Derivative of LML

The log marginal likelihood in Section 3.6.2 in Eq. (A1) is proportional to

−1

2
yTV −1y +

1

2
µTΣ−1µ− 1

2
log |Σ−1| − 1

2
log |V | − 1

2
log |Q|.
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In the following, we provide the partial derivative with respect to θ for each
additive term.

∂

∂θ

[
−1

2
yTV −1y

]
=

1

2
yTV −1 ∂V

∂θ
V −1y

∂

∂θ

[
1

2
µTΣ−1µ

]
=
∂ηT

∂θ
µ− 1

2
µT

∂Σ−1

∂θ
µ

∂

∂θ

[
−1

2
log |Σ−1|

]
= −1

2
tr

{
Σ
∂Σ−1

∂θ

}
In the last expression the whole posterior covariance is needed, however,
it turns out that only the entries which are non-zero in the precision are

needed. The right term in the last expression equals sum
{

Σ� ∂Σ−1

∂θ

}
, where

� denotes the pointwise multiplication. Therefore it is enough to only com-

pute sum
{

Σ� ∂Σ−1

∂θ

}
, where Σ is the partial inversion (for more derails A.2)

which is sparse as well and already computed for the local predictions in Prop.
8.

∂

∂θ

[
−1

2
log |V |

]
= −1

2
sum

{
V −1 � ∂V

∂θ

}

∂

∂θ

[
−1

2
log |Q|

]
= −1

2
sum

{
Q−1 � ∂Q

∂θ

}

The derivatives ∂Σ−1

∂θ , ∂V
∂θ and ∂Q

∂θ can be computed via chain rule of
derivatives.

Appendix D Sequential Algorithm

The probabilistic equations in Section 3 can be equivalently formulated as

aj = F jaπ(j) + γj ;

f j = Hjaψ(j) + νj ;

yj = f j + εj ,

with γj ∼ N
(
0,Qj

)
, νj ∼ N

(
0,V j

)
and εj ∼ N

(
0, σ2

nI
)
. Instead to the

inference procedure described in Prop. 3, the posterior could be alternatively
computed with sequential algorithms. Assuming C = 2 and π (j) = {j − 1},
the Kalman Filter and Smoother (e.g. [43]) provide an equivalent solution to
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the posterior distribution in Prop. 3. For C > 2 and general neighbourhood
set, the Gaussian (loopy) belief propagation algorithm or Gaussian expectation
propagation (e.g. [43]) might constitute an interesting approach for sequen-
tial/online and distributed learning procedures. Together with the competitive
results in the application to time series with covariates makes this idea very
promising for future work.

Appendix E More Details about GPR

In this section we provide more details for Section 2.
Suppose we are given a training set D = {yi,xi}Ni=1 of N pairs of inputs

xi ∈ RD and noisy scalar outputs yi generated by adding independent
Gaussian noise to a latent function f(x), that is yi = f(xi) + εi, where
εi ∼ N

(
0, σ2

n

)
. We denote y = [y1, . . . , yN ]T the vector of observations and

with X = [xT1 , . . . ,x
T
N ]T ∈ RN×D.

We can model f with a Gaussian Process (GP), which defines a prior over
functions and can be converted into a posterior over functions once we have
observed some data (consider e.g. [1]). To describe a GP, we only need to spec-
ify a mean m(x) and a covariance function kθ(x,x′) where θ is a set of a few
hyperparemeters. Thereby, kθ is a positive definite kernel function (see [1]), for
instance the squared exponential (SE) kernel with individual lengthscales for

each dimension, that is kθ(x,x′) = σ2
0 exp

(
− 1

2 (x− x′)T L−1 (x− x′)
)

with

L = Diag
[
l21, . . . , l

2
D

]
and {σ0, l1, . . . , lD} ∈ θ. For the sake of simplicity, we

assume m(x) ≡ 0, however it could be any function. Given the training values

f = f (X) = [f(x1), . . . , f(xN )]
T

and a test latent function value f∗ = f(x∗)
at a test point x∗ ∈ RD, then the joint distribution p(f , f∗) is Gaussian
N
(
0,K [X; x∗][X; x∗]

)
. Thereby, we use the notation [A1; A2] for the result-

ing matrix after stacking A1 ∈ RN1×D and A2 ∈ RN1×D above each other
and K ∈ RM1×M2 denotes the kernel covariance matrix with entries [KAB]ij
corresponding to the kernel evaluation kθ(ai, bj) with the corresponding rows
ai, bj for any A ∈ RM1×D and B ∈ RM2×D.
Typically, in GP regression, the likelihood is Gaussian, that is, p (y|f) =
N
(
y|f , σ2

nI
)
, and with Bayes theorem (B8) we obtain analytically the

predictive posterior distribution p (f∗|y) = N (f∗|µ∗,Σ∗) with µ∗ =

Kx∗X

(
KXX + σ2

nI
)−1

y and Σ∗ = Kx∗x∗ −Kx∗X

(
KXX + σ2

nI
)−1

KXx∗ .
Alternatively to the standard derivation shown above, the posterior distribu-
tion over the latent variables f given the data y can be explicitly formulated
as

p (f |y) ∝ p (f ,y) = p (y|f) p (f) =

J∏
j=1

p
(
yj |f j

)
p
(
f j |f1:j−1

)
, (E16)
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where the data is split into J mini-batches of size B, i.e. D =
{
yj ,Xj

}J
j=1

with inputs Xj ∈ RB×D, outputs yj ∈ RB and the corresponding latent func-

tion values f j = f(Xj) ∈ RB . In (1) we used the notation fk:j indicating

[fk, . . . ,f j ] and the conditionals p
(
f j |f1:j−1

)
can be derived from the joint

Gaussian p
(
f j ,f1:j−1

)
= N

(
0,K [Xj ; X1:j−1][Xj ; X1:j−1]

)
via Gaussian condi-

tioning (B6). The corresponding graphical model of (1) is depicted in Figure
1(a)i). Given the posterior over f |y, the predictive posterior distribution from
above is equivalently obtained as p (f∗|y) =

∫
p (f∗|f) p (f |y) df via Gaus-

sian integration (B7) where p (f∗|f) is derivable from the joint via (B6). The
graphical model of the prediction procedure is depicted in Figure 1(b)i). We
present this alternative two stage procedure to highlight later connections to
our model with full GP.

E.1 Global Sparse GPs

Sparse GP regression approximations based on global inducing points reduce
the computational complexity by introducing M � N inducing points a ∈ RM
that optimally summarize the dependency of the whole training data globally,
compare the graphical model in Figure 1b). Thereby the inducing inputs A ∈
RM×D are in the D-dimensional input data space and the inducing outputs
a = f(A) ∈ RM are the corresponding GP-function values. In the following,
this model is denoted by SGP(M). Similarly to full GP in Eq. (1), the posterior
over the inducing points p(a|y) ∝

∫
p (a,f ,y) df can be derived from the

joint distribution

p (a,f ,y) = p (y|f) p (f |a) p(a) =

J∏
j=1

p
(
yj |f j

)
p
(
f j |a

)
p(aj |a1:j−1), (E17)

where the usual Gaussian likelihood p
(
yj |f j

)
= N

(
f j , σ

2
nI
)

is used

and p
(
f j |a

)
can be derived from the joint Gaussian p

(
f j ,a

)
=

N
(
0,K [Xj ; A][Xj ; A]

)
with (B6). Using the posterior computed via (2)

together with the predictive conditional p (f∗|a) derived by (B6) from
the assumed joint p (f∗,a) = N

(
0,K [x∗,A][x∗,A]

)
and integrating∫

p (f∗|a) p
(
f j ,a

)
da via (B7) provides an approximation to the predictive

posterior of full GP. Batch inference in these sparse global models can be done
in O(M2N) time and O(MN) space (e.g. [3]).
In order to find optimal inducing inputs A and hyperparameters θ, a sparse
variation of the log marginal likelihood similar can be used e.g. [5–7]. In partic-
ular, the authors in [5] proposed to maximize a variational lower bound to the
true GP marginal likelihood which has the effect that the sparse GP predic-
tive distribution converges to the full GP predictive distribution as the number
of inducing points increases. For larger datasets, stochastic optimization has
been applied e.g. [8–11] to obtain faster and more data efficient optimization
procedures. For recent reviews on the subject consider e.g. [1, 3, 19].
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E.2 Local Independent GPs

An alternative to the global sparse inducing point methods constitute local
approaches, which exploit multiple local GPs combined with averaging tech-
niques to boost predictions. Beside other averaging techniques (e.g. mixture
of experts [28, 28, 29]), the Product of Expert (PoE) scheme was proposed by
[14], where individual predictions p

(
f∗j |yj

)
from J experts based on the local

data yj are aggregated to the final predictive distribution

p (f∗|y) =

J∏
j=1

gj
(
p
(
f∗j |yj

))
, (E18)

where gj is a function depending on the particular PoE method discussed below
and is in the original work of [14] just the identity. Note that we present here
the version of PoEs where the noiseless predictions f∗j are aggregated instead
of noisy aggregation with y∗j as described in some work of PoEs. The individ-
ual predictions p

(
f∗j |yj

)
are local GP fits

∫
p
(
f∗j |f j

)
p
(
f j |yj

)
df j involving

the predictive conditionals p
(
f∗j |f j

)
derived by (B6) from the assumed joint

p
(
f∗j ,f j

)
= N

(
0,K [x∗,Xj ][x∗,Xj ]

)
and the local posteriors p

(
f j |yj

)
∝

p
(
yj |f j

)
p
(
f j
)
, where the individual prior p

(
f j
)

= N
(
0,KXjXj

)
. Together

with the usual Gaussian likelihood p
(
yj |f j

)
= N

(
f j , σ

2
nI
)
, the final noisy

predictive distribution p (y∗|y) can be obtained via
∫
p (y∗|f∗) p (f∗|y) df∗.

Similarly to Eqs. (1) and (2), the implicit posterior in all PoE method is

p (f |y) ∝ p (f ,y) = p (y|f)

J∏
j=1

p
(
f j
)

=

J∏
j=1

p
(
yj |f j

)
p
(
f j
)
, (E19)

where the corresponding graphical model is depicted in Figure 1iii).
The function gj in (E18) takes as argument the predictive distribution p∗j :=
p
(
f∗j |yj

)
which depends implicitly also on x∗. In the original work [14] the

authors used the identity gj(p∗j) = p∗j which produce underconfident pre-
diction variances [19]. In order to mitigate this issue, the aggregation weights

gj(p∗j) = p
1/J
∗j were proposed [12] but still resulting in too large predic-

tive uncertainty estimates [19]. The reason is that the experts are all equally
weighted, however, the predictions at a particular point x∗ are not equally
reliable, therefore in the generalized PoE (GPoE) [12] some varying weights
βj(x∗) were introduced to quantify the contribution of the expert j at x∗.

Thus, gj(p∗j) = p
βj(x∗)
∗j with weights set to the difference in entropy between

the expert’s prior and posterior, that is, β̄∗j = 1
2 log

(
v∗0
v∗j

)
. This has the effect

of increase or decreasing the importance of the experts based on the corre-
sponding prediction uncertainty v∗0 and v∗j . However, these general weights
can produce overconfident uncertainty estimates, therefore the authors in [12]

proposed also an version with normalized weights such that
∑J

j β̄j(x∗) = 1.
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In the following, PoE and GPoE refer to the version with normalized weights.
Other important contributions in this field are BCM [16] and its robustified
version RBCM [12], GRBCM [17], distributed local GPs [13], hierarchical PoEs
[26], and local experts with consistent aggregations [15, 27]. We refer to [19]
for a recent overview.

Simple baseline methods are the minimal variance (minVar) and the near-
est expert (NE) aggregation, where only the prediction from the expert with
minimal variance or nearest expert is used, respectively. Although both these
method show often surprisingly good performance, they suffer from an huge
disadvantage, namely that there are serious discontinuities at the boundaries
between the experts (see for instance Fig. 2) and thus often not useful in prac-
tice. This is also the main limitation of all local methods based only on the
prediction of one expert (e.g. [23–25, 44]) and it was one of the reason for
introducing smooth PoEs with combined experts. Since in basically all cases
minVar is better than NE (which is also consistent with the findings in [15]),
we only compare our method to minVar and not NE for the sake of simplicity.

Appendix F Tables

Here we provide more results for the experiments in Section 4 and the
datasets in Table 3a. In the following, we report different average quanti-
ties for several test points x∗, y∗ corresponding to the predictive distributions
p (y∗|y) = N (m∗, v∗). The considered quantities are Kullback-Leibler-(KL)-
divergence (KL) to full GP, Continuous Ranked Probability Score (CRPS) and
95%-coverage (COV), root mean squared error (RMSE), absolut error (ABSE),
negative log probability (NLP) , root mean squared error to full GP (ERR) and
log marginal likelihood (LML).
We use the KL to compare the closeness of predictive distributions of dif-
ferent GP approximation models to the one of full GP N (m, v). Since both
are univariate Gaussians, the KL (N (m, v) ‖ N (m∗, v∗)) can be computed as
1
2

(
log v∗

v + v
v∗

+ (m−m∗)2
v∗

− 1
)

.

The CRPS can be used to assess the respective accuracy of two probabilistic
forecasting models. In particular, it is a measure between the forecast CDF F∗
of N (m∗, v∗) and the empirical CDF of the observation y∗ and is defined as
CRPS(F∗, y∗)

∫
(F (z)− 1z≥y∗)

2
dz.

The 95%-confidence interval can be computed as c1,2 = m∗ ± 1.96
√
v∗. The

95%-coverage is then defined as COV = 1c1≤y∗≤c2 .

The negative log probability is −p (y∗|y) = 1
2 log (2πv∗) + (y∗−m∗)2

2v∗
.

For all quantities except LML (large values are better) and COV (should be
close to 0.95), small values mean better predictions.
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time LML KL ERR CRPS RMSE ABSE NLP COV

fullGP 7.3 ± 0.6 -314.2 ± 5.1 0.0 ± 0.0 0.0 ± 0.0 0.162 ± 0.004 0.311 ± 0.011 0.218 ± 0.005 0.47 ± 0.12 0.92 ± 0.01
SGP(25) 6.4 ± 0.6 -595.4 ± 10.7 440.3 ± 19.6 0.314 ± 0.008 0.234 ± 0.005 0.422 ± 0.01 0.324 ± 0.005 1.11 ± 0.04 0.96 ± 0.01
SGP(50) 14.5 ± 2.6 -539.6 ± 10.2 405.0 ± 31.3 0.291 ± 0.012 0.222 ± 0.004 0.402 ± 0.008 0.308 ± 0.005 1.01 ± 0.03 0.95 ± 0.01
SGP(100) 36.4 ± 2.9 -494.6 ± 7.8 352.9 ± 29.5 0.264 ± 0.011 0.211 ± 0.004 0.384 ± 0.007 0.292 ± 0.006 0.92 ± 0.03 0.95 ± 0.01
minVar 1.5 ± 0.1 -389.8 ± 2.9 122.2 ± 13.1 0.156 ± 0.012 0.175 ± 0.004 0.335 ± 0.011 0.236 ± 0.005 0.61 ± 0.09 0.92 ± 0.01
GPoE 1.4 ± 0.1 -389.8 ± 2.9 174.4 ± 9.4 0.166 ± 0.01 0.186 ± 0.004 0.342 ± 0.01 0.255 ± 0.007 0.68 ± 0.05 0.96 ± 0.01
BCM 1.4 ± 0.1 -389.8 ± 2.9 338.1 ± 32.7 0.185 ± 0.012 0.195 ± 0.005 0.354 ± 0.01 0.265 ± 0.007 1.16 ± 0.12 0.82 ± 0.01
RBCM 1.4 ± 0.1 -389.8 ± 2.9 427.9 ± 35.0 0.166 ± 0.013 0.187 ± 0.005 0.342 ± 0.011 0.249 ± 0.006 1.43 ± 0.21 0.79 ± 0.01
GRBCM 1.7 ± 0.1 -465.0 ± 3.1 224.6 ± 30.3 0.202 ± 0.011 0.19 ± 0.004 0.352 ± 0.01 0.262 ± 0.006 0.71 ± 0.05 0.92 ± 0.01
CPoE(1) 1.5 ± 0.0 -397.0 ± 2.8 111.1 ± 12.5 0.146 ± 0.011 0.175 ± 0.004 0.333 ± 0.011 0.237 ± 0.006 0.59 ± 0.09 0.93 ± 0.01
CPoE(2) 2.1 ± 0.1 -345.1 ± 5.6 89.6 ± 14.3 0.124 ± 0.013 0.172 ± 0.004 0.326 ± 0.011 0.232 ± 0.006 0.6 ± 0.1 0.91 ± 0.01
CPoE(3) 2.5 ± 0.1 -337.0 ± 5.5 82.2 ± 14.3 0.116 ± 0.013 0.17 ± 0.004 0.323 ± 0.01 0.231 ± 0.005 0.59 ± 0.1 0.91 ± 0.01
CPoE(4) 2.8 ± 0.1 -339.4 ± 5.0 79.5 ± 13.9 0.111 ± 0.012 0.171 ± 0.004 0.324 ± 0.011 0.232 ± 0.005 0.6 ± 0.1 0.91 ± 0.01

Table F5: Results for dataset concrete.

time LML KL ERR CRPS RMSE ABSE NLP COV

fullGP 25.5 ± 1.1 -994.2 ± 1.1 0.0 ± 0.0 0.0 ± 0.0 0.283 ± 0.002 0.511 ± 0.004 0.39 ± 0.005 1.49 ± 0.02 0.94 ± 0.0
SGP(25) 7.5 ± 0.7 -1082.8 ± 0.9 93.49 ± 3.86 0.232 ± 0.005 0.316 ± 0.003 0.561 ± 0.004 0.445 ± 0.005 1.68 ± 0.02 0.94 ± 0.0
SGP(50) 9.7 ± 1.4 -1042.7 ± 5.2 41.4 ± 5.59 0.146 ± 0.012 0.299 ± 0.003 0.537 ± 0.003 0.416 ± 0.006 1.59 ± 0.01 0.94 ± 0.0
SGP(100) 14.4 ± 0.8 -1009.6 ± 1.2 9.86 ± 1.73 0.069 ± 0.006 0.285 ± 0.002 0.514 ± 0.004 0.395 ± 0.005 1.51 ± 0.02 0.94 ± 0.0
minVar 2.0 ± 0.2 -1025.8 ± 1.1 19.39 ± 1.78 0.101 ± 0.005 0.282 ± 0.002 0.508 ± 0.005 0.39 ± 0.003 1.48 ± 0.02 0.93 ± 0.0
GPoE 1.9 ± 0.1 -1025.8 ± 1.1 54.22 ± 1.64 0.162 ± 0.003 0.301 ± 0.002 0.535 ± 0.004 0.424 ± 0.006 1.6 ± 0.01 0.96 ± 0.0
BCM 1.9 ± 0.1 -1025.8 ± 1.1 257.61 ± 8.81 0.209 ± 0.005 0.313 ± 0.003 0.555 ± 0.006 0.422 ± 0.004 2.02 ± 0.04 0.82 ± 0.0
RBCM 1.9 ± 0.1 -1025.8 ± 1.1 38.35 ± 1.56 0.132 ± 0.003 0.295 ± 0.003 0.528 ± 0.005 0.408 ± 0.005 1.56 ± 0.02 0.92 ± 0.0
GRBCM 2.3 ± 0.2 -1048.9 ± 1.7 69.12 ± 6.48 0.196 ± 0.01 0.307 ± 0.004 0.551 ± 0.007 0.431 ± 0.006 1.64 ± 0.02 0.94 ± 0.0
CPoE(1) 2.1 ± 0.1 -1025.8 ± 1.1 12.18 ± 0.92 0.079 ± 0.003 0.284 ± 0.002 0.51 ± 0.004 0.393 ± 0.003 1.49 ± 0.02 0.94 ± 0.0
CPoE(2) 2.8 ± 0.1 -1010.1 ± 1.5 8.44 ± 0.66 0.066 ± 0.003 0.285 ± 0.002 0.512 ± 0.004 0.394 ± 0.004 1.5 ± 0.02 0.93 ± 0.0
CPoE(3) 3.1 ± 0.1 -1007.0 ± 1.5 7.83 ± 0.58 0.064 ± 0.002 0.285 ± 0.002 0.513 ± 0.004 0.394 ± 0.004 1.5 ± 0.02 0.93 ± 0.0
CPoE(4) 3.3 ± 0.1 -1004.8 ± 1.5 7.59 ± 0.63 0.062 ± 0.003 0.285 ± 0.002 0.513 ± 0.004 0.393 ± 0.004 1.5 ± 0.02 0.93 ± 0.0

Table F6: Results for dataset mg.

time LML KL ERR CRPS RMSE ABSE NLP COV

fullGP 114.8 ± 4.3 -2113.6 ± 5.6 0.0 ± 0.0 0.0 ± 0.0 0.255 ± 0.005 0.471 ± 0.01 0.348 ± 0.007 1.3 ± 0.04 0.95 ± 0.0
SGP(50) 34.8 ± 4.8 -2319.6 ± 7.4 137.62 ± 7.41 0.259 ± 0.009 0.288 ± 0.005 0.531 ± 0.012 0.395 ± 0.007 1.57 ± 0.04 0.95 ± 0.0
SGP(100) 46.6 ± 6.1 -2242.4 ± 7.5 108.14 ± 6.24 0.229 ± 0.008 0.279 ± 0.005 0.514 ± 0.012 0.382 ± 0.007 1.5 ± 0.04 0.95 ± 0.0
SGP(150) 56.6 ± 6.8 -2205.9 ± 6.6 90.94 ± 6.01 0.21 ± 0.009 0.275 ± 0.005 0.508 ± 0.012 0.376 ± 0.007 1.47 ± 0.04 0.94 ± 0.0
minVar 7.2 ± 0.2 -2312.6 ± 6.8 63.58 ± 2.93 0.19 ± 0.01 0.272 ± 0.006 0.508 ± 0.016 0.374 ± 0.008 1.41 ± 0.04 0.95 ± 0.0
GPoE 7.2 ± 0.2 -2312.6 ± 6.8 98.01 ± 3.06 0.2 ± 0.013 0.279 ± 0.006 0.515 ± 0.02 0.378 ± 0.008 1.49 ± 0.03 0.97 ± 0.0
BCM 7.2 ± 0.2 -2312.6 ± 6.8 222.78 ± 4.12 0.2 ± 0.008 0.28 ± 0.007 0.511 ± 0.016 0.38 ± 0.008 1.75 ± 0.1 0.87 ± 0.01
RBCM 7.2 ± 0.2 -2312.6 ± 6.8 635.61 ± 21.61 0.194 ± 0.011 0.285 ± 0.007 0.513 ± 0.018 0.378 ± 0.008 2.54 ± 0.18 0.77 ± 0.01
GRBCM 6.5 ± 0.2 -2397.3 ± 6.2 105.64 ± 5.13 0.24 ± 0.008 0.284 ± 0.005 0.525 ± 0.012 0.391 ± 0.007 1.5 ± 0.04 0.95 ± 0.01
CPoE(1) 7.8 ± 0.2 -2316.1 ± 6.8 62.99 ± 2.94 0.186 ± 0.011 0.272 ± 0.006 0.507 ± 0.018 0.372 ± 0.008 1.41 ± 0.04 0.96 ± 0.0
CPoE(2) 10.6 ± 0.2 -2164.9 ± 6.7 36.45 ± 3.02 0.142 ± 0.011 0.264 ± 0.005 0.491 ± 0.015 0.361 ± 0.008 1.36 ± 0.04 0.95 ± 0.0
CPoE(3) 12.9 ± 0.2 -2165.9 ± 6.7 36.27 ± 2.99 0.141 ± 0.01 0.263 ± 0.005 0.49 ± 0.014 0.361 ± 0.008 1.36 ± 0.04 0.95 ± 0.0
CPoE(4) 14.9 ± 0.2 -2166.2 ± 6.7 36.03 ± 3.0 0.14 ± 0.01 0.263 ± 0.005 0.489 ± 0.014 0.361 ± 0.008 1.36 ± 0.04 0.95 ± 0.0

Table F7: Results for dataset space.

time LML KL ERR CRPS RMSE ABSE NLP COV

fullGP 237.9 ± 12.2 -3722.3 ± 7.4 0.0 ± 0.0 0.0 ± 0.0 0.34 ± 0.005 0.635 ± 0.012 0.459 ± 0.006 1.92 ± 0.04 0.94 ± 0.0
SGP(20) 21.9 ± 2.5 -3785.3 ± 5.8 27.8 ± 4.1 0.15 ± 0.01 0.343 ± 0.004 0.635 ± 0.011 0.463 ± 0.005 1.93 ± 0.03 0.95 ± 0.0
SGP(50) 26.4 ± 3.6 -3758.7 ± 7.6 22.4 ± 3.9 0.14 ± 0.01 0.342 ± 0.004 0.633 ± 0.011 0.461 ± 0.006 1.93 ± 0.03 0.94 ± 0.0
SGP(100) 58.9 ± 7.0 -3746.9 ± 7.4 15.6 ± 3.5 0.11 ± 0.01 0.34 ± 0.005 0.631 ± 0.012 0.457 ± 0.006 1.92 ± 0.04 0.94 ± 0.0
minVar 6.4 ± 0.4 -3847.3 ± 7.2 25.1 ± 1.5 0.15 ± 0.0 0.346 ± 0.005 0.647 ± 0.013 0.466 ± 0.006 1.94 ± 0.04 0.94 ± 0.0
GPoE 6.3 ± 0.4 -3847.3 ± 7.2 50.3 ± 1.0 0.19 ± 0.0 0.353 ± 0.004 0.652 ± 0.011 0.478 ± 0.006 1.99 ± 0.02 0.96 ± 0.0
BCM 6.3 ± 0.3 -3847.3 ± 7.2 1838.2 ± 46.8 0.16 ± 0.0 0.373 ± 0.006 0.642 ± 0.011 0.473 ± 0.006 5.33 ± 0.24 0.67 ± 0.01
RBCM 6.3 ± 0.3 -3847.3 ± 7.2 1147.4 ± 64.8 0.12 ± 0.0 0.362 ± 0.006 0.638 ± 0.012 0.466 ± 0.006 4.01 ± 0.21 0.73 ± 0.01
GRBCM 7.6 ± 0.4 -3864.0 ± 7.6 36.4 ± 1.9 0.18 ± 0.0 0.353 ± 0.004 0.661 ± 0.011 0.477 ± 0.005 1.98 ± 0.03 0.94 ± 0.0
CPoE(1) 6.4 ± 0.4 -3848.6 ± 7.3 16.8 ± 0.6 0.12 ± 0.0 0.342 ± 0.004 0.638 ± 0.012 0.463 ± 0.005 1.92 ± 0.03 0.95 ± 0.0
CPoE(2) 7.5 ± 0.3 -3737.3 ± 7.0 8.1 ± 0.5 0.08 ± 0.0 0.341 ± 0.005 0.636 ± 0.012 0.463 ± 0.006 1.92 ± 0.04 0.94 ± 0.0
CPoE(3) 9.3 ± 0.5 -3736.5 ± 7.2 6.2 ± 0.6 0.07 ± 0.0 0.341 ± 0.005 0.636 ± 0.012 0.461 ± 0.006 1.92 ± 0.04 0.94 ± 0.0
CPoE(4) 10.4 ± 0.3 -3733.7 ± 7.0 4.7 ± 0.5 0.06 ± 0.0 0.34 ± 0.005 0.635 ± 0.012 0.46 ± 0.006 1.91 ± 0.04 0.94 ± 0.0

Table F8: Results for dataset abalone.
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time LML KL ERR CRPS RMSE ABSE NLP COV

fullGP 161.5 ± 3.6 -1232.1 ± 7.4 0.0 ± 0.0 0.0 ± 0.0 0.148 ± 0.001 0.267 ± 0.001 0.207 ± 0.001 0.17 ± 0.01 0.94 ± 0.0
SGP(100) 42.2 ± 6.5 -4033.6 ± 27.1 603.7 ± 9.4 0.4 ± 0.01 0.265 ± 0.003 0.476 ± 0.005 0.369 ± 0.004 1.35 ± 0.02 0.96 ± 0.0
SGP(200) 49.8 ± 3.3 -3141.3 ± 17.8 408.4 ± 3.7 0.29 ± 0.0 0.218 ± 0.001 0.392 ± 0.001 0.303 ± 0.001 0.96 ± 0.0 0.96 ± 0.0
SGP(300) 54.8 ± 2.2 -2732.8 ± 13.5 323.1 ± 5.0 0.25 ± 0.0 0.201 ± 0.001 0.363 ± 0.001 0.281 ± 0.001 0.8 ± 0.01 0.96 ± 0.0
minVar 9.3 ± 0.2 -2820.5 ± 9.0 211.0 ± 2.3 0.2 ± 0.0 0.183 ± 0.001 0.333 ± 0.001 0.256 ± 0.001 0.59 ± 0.01 0.94 ± 0.0
GPoE 9.4 ± 0.1 -2820.5 ± 9.0 342.3 ± 2.6 0.23 ± 0.0 0.202 ± 0.001 0.354 ± 0.002 0.278 ± 0.002 0.84 ± 0.01 0.99 ± 0.0
BCM 9.4 ± 0.1 -2820.5 ± 9.0 1629.2 ± 24.7 0.25 ± 0.0 0.218 ± 0.002 0.367 ± 0.002 0.278 ± 0.002 3.45 ± 0.07 0.64 ± 0.0
RBCM 9.4 ± 0.2 -2820.5 ± 9.0 939.3 ± 17.4 0.2 ± 0.0 0.193 ± 0.001 0.331 ± 0.002 0.253 ± 0.001 2.06 ± 0.05 0.71 ± 0.0
GRBCM 11.9 ± 0.2 -2981.3 ± 9.6 129.8 ± 3.0 0.14 ± 0.0 0.168 ± 0.001 0.303 ± 0.001 0.235 ± 0.001 0.43 ± 0.01 0.94 ± 0.0
CPoE(1) 9.2 ± 0.1 -2822.7 ± 8.9 152.4 ± 1.7 0.15 ± 0.0 0.17 ± 0.001 0.307 ± 0.001 0.237 ± 0.001 0.46 ± 0.0 0.97 ± 0.0
CPoE(2) 12.9 ± 0.1 -1811.2 ± 11.1 79.9 ± 1.3 0.11 ± 0.0 0.161 ± 0.001 0.29 ± 0.001 0.225 ± 0.001 0.33 ± 0.01 0.95 ± 0.0
CPoE(3) 19.8 ± 0.3 -1466.0 ± 9.9 46.9 ± 1.0 0.09 ± 0.0 0.155 ± 0.001 0.279 ± 0.001 0.217 ± 0.001 0.26 ± 0.01 0.95 ± 0.0
CPoE(4) 27.8 ± 0.2 -1363.8 ± 9.2 32.8 ± 1.0 0.07 ± 0.0 0.153 ± 0.001 0.276 ± 0.001 0.215 ± 0.001 0.24 ± 0.01 0.94 ± 0.0

Table F9: Results for dataset kin.

time LML CRPS RMSE ABSE NLP COV

SGP(250) 77.7 ± 0.4 -4163.9 ± 23.7 0.207 ± 0.002 0.366 ± 0.004 0.282 ± 0.002 0.93 ± 0.01 0.98 ± 0.0
SGP(500) 112.1 ± 1.2 -3242.2 ± 12.6 0.183 ± 0.001 0.324 ± 0.002 0.252 ± 0.001 0.67 ± 0.01 0.98 ± 0.0
SGP(1000) 244.1 ± 2.9 -2534.7 ± 9.0 0.166 ± 0.001 0.294 ± 0.002 0.23 ± 0.001 0.46 ± 0.01 0.98 ± 0.0
minVar 14.4 ± 0.5 -3388.8 ± 7.9 0.173 ± 0.002 0.314 ± 0.004 0.242 ± 0.002 0.48 ± 0.02 0.94 ± 0.0
GPoE 14.4 ± 0.5 -3388.8 ± 7.9 0.193 ± 0.001 0.34 ± 0.003 0.267 ± 0.002 0.76 ± 0.01 0.99 ± 0.0
BCM 14.4 ± 0.5 -3388.8 ± 7.9 0.21 ± 0.001 0.35 ± 0.003 0.266 ± 0.002 3.6 ± 0.1 0.63 ± 0.0
RBCM 14.4 ± 0.5 -3388.8 ± 7.9 0.188 ± 0.001 0.318 ± 0.003 0.244 ± 0.002 2.39 ± 0.09 0.69 ± 0.0
GRBCM 16.5 ± 0.4 -3388.8 ± 7.9 0.164 ± 0.001 0.294 ± 0.003 0.229 ± 0.002 0.37 ± 0.02 0.94 ± 0.0
CPoE(1) 13.8 ± 0.2 -3393.9 ± 8.0 0.163 ± 0.001 0.292 ± 0.003 0.226 ± 0.002 0.38 ± 0.01 0.97 ± 0.0
CPoE(2) 18.9 ± 0.3 -2076.6 ± 12.9 0.155 ± 0.001 0.278 ± 0.002 0.217 ± 0.001 0.27 ± 0.01 0.95 ± 0.0
CPoE(3) 31.7 ± 0.6 -1655.2 ± 8.7 0.151 ± 0.001 0.27 ± 0.002 0.211 ± 0.001 0.21 ± 0.01 0.95 ± 0.0

Table F10: Results for dataset kin2 for the stochastic versions.

time LML CRPS RMSE ABSE NLP COV

SGP(250) 70.9 ± 3.7 -3905.6 ± 23.3 0.207 ± 0.002 0.373 ± 0.004 0.287 ± 0.002 0.85 ± 0.02 0.96 ± 0.0
SGP(500) 86.1 ± 1.8 -2968.6 ± 11.7 0.181 ± 0.001 0.325 ± 0.003 0.252 ± 0.001 0.57 ± 0.01 0.96 ± 0.0
SGP(1000) 143.6 ± 3.6 -2277.2 ± 8.6 0.162 ± 0.001 0.292 ± 0.002 0.225 ± 0.001 0.36 ± 0.01 0.96 ± 0.0
minVar 13.8 ± 0.2 -3384.5 ± 7.8 0.173 ± 0.002 0.314 ± 0.004 0.241 ± 0.002 0.48 ± 0.02 0.94 ± 0.0
GPoE 13.8 ± 0.2 -3384.5 ± 7.8 0.193 ± 0.001 0.34 ± 0.002 0.267 ± 0.002 0.75 ± 0.01 0.99 ± 0.0
BCM 13.8 ± 0.2 -3384.5 ± 7.8 0.209 ± 0.001 0.35 ± 0.003 0.266 ± 0.002 3.63 ± 0.07 0.63 ± 0.0
RBCM 13.8 ± 0.2 -3384.5 ± 7.8 0.187 ± 0.001 0.317 ± 0.003 0.243 ± 0.001 2.38 ± 0.06 0.69 ± 0.0
GRBCM 18.8 ± 0.4 -3608.7 ± 8.4 0.164 ± 0.001 0.294 ± 0.002 0.229 ± 0.002 0.38 ± 0.02 0.94 ± 0.0
CPoE(1) 16.2 ± 0.8 -3389.8 ± 8.0 0.162 ± 0.001 0.292 ± 0.003 0.225 ± 0.002 0.37 ± 0.01 0.97 ± 0.0
CPoE(2) 21.5 ± 0.7 -2071.4 ± 13.0 0.155 ± 0.001 0.278 ± 0.002 0.217 ± 0.001 0.26 ± 0.01 0.95 ± 0.0
CPoE(3) 34.3 ± 0.9 -1650.7 ± 8.3 0.15 ± 0.001 0.27 ± 0.002 0.211 ± 0.001 0.21 ± 0.01 0.94 ± 0.0

Table F11: Results for dataset kin2 for the deterministic batch version.

time LML CRPS RMSE ABSE NLP COV

SGP(250) 248.6 ± 0.6 -15182.0 ± 35.7 0.254 ± 0.003 0.48 ± 0.009 0.335 ± 0.004 1.42 ± 0.03 0.95 ± 0.0
SGP(500) 346.9 ± 3.4 -15074.6 ± 37.2 0.253 ± 0.003 0.478 ± 0.009 0.333 ± 0.004 1.41 ± 0.03 0.95 ± 0.0
SGP(1000) 727.6 ± 3.5 -14961.2 ± 31.4 0.252 ± 0.003 0.476 ± 0.009 0.332 ± 0.004 1.4 ± 0.03 0.95 ± 0.0
minVar 28.2 ± 1.0 -15387.4 ± 17.5 0.257 ± 0.003 0.491 ± 0.009 0.337 ± 0.005 1.42 ± 0.04 0.94 ± 0.0
GPoE 28.3 ± 1.0 -15387.4 ± 17.5 0.289 ± 0.003 0.534 ± 0.009 0.371 ± 0.004 1.64 ± 0.02 0.96 ± 0.0
BCM 28.5 ± 0.9 -15387.4 ± 17.5 0.321 ± 0.004 0.536 ± 0.01 0.373 ± 0.004 20.72 ± 1.0 0.45 ± 0.0
RBCM 28.5 ± 0.9 -15387.4 ± 17.5 0.303 ± 0.005 0.515 ± 0.01 0.358 ± 0.004 15.98 ± 0.9 0.51 ± 0.01
GRBCM 33.5 ± 1.2 -15387.4 ± 17.5 0.262 ± 0.003 0.499 ± 0.009 0.346 ± 0.004 1.44 ± 0.03 0.94 ± 0.0
CPoE(1) 24.5 ± 0.1 -15404.2 ± 17.8 0.259 ± 0.004 0.492 ± 0.01 0.335 ± 0.005 1.43 ± 0.04 0.95 ± 0.0
CPoE(2) 33.4 ± 0.2 -13645.5 ± 19.8 0.251 ± 0.003 0.479 ± 0.009 0.328 ± 0.004 1.36 ± 0.04 0.94 ± 0.0
CPoE(3) 52.0 ± 0.5 -13483.2 ± 15.6 0.249 ± 0.004 0.476 ± 0.01 0.324 ± 0.004 1.34 ± 0.04 0.94 ± 0.0

Table F12: Results for dataset cadata.
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time LML CRPS RMSE ABSE NLP COV

SGP(250) 473.4 ± 1.0 9370.3 ± 60.7 0.0746 ± 0.0005 0.1407 ± 0.0008 0.097 ± 0.001 -0.39 ± 0.01 0.95 ± 0.0
SGP(500) 730.1 ± 1.1 12112.0 ± 68.2 0.0695 ± 0.0003 0.1304 ± 0.001 0.09 ± 0.001 -0.49 ± 0.01 0.95 ± 0.0
SGP(1000) 1718.5 ± 1.8 16034.0 ± 91.6 0.0628 ± 0.0003 0.1172 ± 0.0009 0.081 ± 0.0 -0.64 ± 0.01 0.96 ± 0.0
minVar 71.3 ± 23.1 27128.2 ± 20.2 0.0516 ± 0.0008 0.1024 ± 0.0034 0.067 ± 0.001 -1.88 ± 0.04 0.93 ± 0.0
GPoE 71.4 ± 23.2 27128.2 ± 20.2 0.0862 ± 0.0004 0.1322 ± 0.0013 0.096 ± 0.001 -0.57 ± 0.01 1.0 ± 0.0
BCM 71.5 ± 23.2 27128.2 ± 20.2 0.095 ± 0.001 0.1544 ± 0.001 0.115 ± 0.001 7.86 ± 0.3 0.48 ± 0.01
RBCM 71.6 ± 23.2 27128.2 ± 20.2 0.0726 ± 0.0009 0.1196 ± 0.0013 0.086 ± 0.001 11.45 ± 0.47 0.5 ± 0.01
GRBCM 84.6 ± 23.0 27128.2 ± 20.2 0.06 ± 0.0007 0.1102 ± 0.001 0.079 ± 0.001 -0.52 ± 0.08 0.79 ± 0.01
CPoE(1) 45.4 ± 0.2 -41213.2 ± 883.2 0.0516 ± 0.0005 0.0998 ± 0.0019 0.067 ± 0.001 -1.86 ± 0.02 0.96 ± 0.0
CPoE(2) 67.3 ± 0.4 -37867.5 ± 911.8 0.0509 ± 0.0006 0.0977 ± 0.0015 0.067 ± 0.001 -1.8 ± 0.02 0.93 ± 0.0
CPoE(3) 134.3 ± 1.2 -37204.6 ± 949.1 0.0507 ± 0.0005 0.0975 ± 0.0011 0.067 ± 0.001 -1.78 ± 0.02 0.92 ± 0.0

Table F13: Results for dataset sarcos.

time LML CRPS RMSE ABSE NLP COV

SGP(250) 443.2 ± 2.1 -53395.2 ± 80.2 0.334 ± 0.004 0.59 ± 0.008 0.475 ± 0.007 1.77 ± 0.02 0.96 ± 0.0
SGP(500) 632.9 ± 2.7 -52988.7 ± 58.9 0.329 ± 0.005 0.582 ± 0.008 0.467 ± 0.007 1.75 ± 0.02 0.96 ± 0.0
SGP(1000) 1362.5 ± 4.8 -52592.1 ± 46.9 0.325 ± 0.005 0.575 ± 0.008 0.459 ± 0.007 1.74 ± 0.02 0.96 ± 0.0
minVar 45.8 ± 1.0 -39976.0 ± 22.6 0.294 ± 0.003 0.607 ± 0.006 0.387 ± 0.003 1.4 ± 0.03 0.93 ± 0.0
GPoE 45.6 ± 0.8 -39976.0 ± 22.6 0.302 ± 0.003 0.6 ± 0.006 0.409 ± 0.005 1.43 ± 0.02 0.97 ± 0.0
BCM 45.7 ± 0.9 -39976.0 ± 22.6 0.316 ± 0.005 0.615 ± 0.009 0.416 ± 0.007 2.47 ± 0.1 0.82 ± 0.01
RBCM 45.7 ± 0.9 -39976.0 ± 22.6 0.312 ± 0.004 0.647 ± 0.008 0.425 ± 0.006 1.61 ± 0.05 0.91 ± 0.01
GRBCM 59.4 ± 1.1 -39976.0 ± 22.6 0.31 ± 0.004 0.642 ± 0.008 0.421 ± 0.005 1.5 ± 0.04 0.92 ± 0.01
CPoE(1) 45.1 ± 0.3 -40075.2 ± 22.1 0.289 ± 0.003 0.596 ± 0.006 0.38 ± 0.004 1.35 ± 0.03 0.94 ± 0.0
CPoE(2) 70.3 ± 0.6 -39571.2 ± 65.5 0.287 ± 0.004 0.589 ± 0.007 0.38 ± 0.005 1.36 ± 0.03 0.93 ± 0.0
CPoE(3) 123.8 ± 1.4 -39439.5 ± 98.8 0.282 ± 0.004 0.575 ± 0.008 0.372 ± 0.006 1.37 ± 0.04 0.92 ± 0.01

Table F14: Results for dataset casp.

time RMSE ABSE CRPS COV

fullGP-SE 12.52 ± 0.98 0.311 ± 0.011 0.218 ± 0.005 0.162 ± 0.004 0.92 ± 0.01
fullGP-FLEX 28.23 ± 7.99 0.254 ± 0.01 0.169 ± 0.005 0.128 ± 0.004 0.94 ± 0.01
CPoE(1)-SE 1.97 ± 0.06 0.333 ± 0.011 0.236 ± 0.006 0.175 ± 0.004 0.92 ± 0.01
CPoE(2)-SE 2.39 ± 0.06 0.326 ± 0.011 0.231 ± 0.006 0.171 ± 0.004 0.91 ± 0.01
CPoE(3)-SE 2.77 ± 0.11 0.323 ± 0.01 0.23 ± 0.005 0.17 ± 0.004 0.91 ± 0.01
CPoE(4)-SE 2.89 ± 0.06 0.324 ± 0.011 0.231 ± 0.005 0.171 ± 0.004 0.91 ± 0.01
CPoE(1)-FLEX 16.37 ± 1.11 0.266 ± 0.009 0.175 ± 0.005 0.133 ± 0.004 0.93 ± 0.01
CPoE(2)-FLEX 17.06 ± 1.14 0.259 ± 0.01 0.172 ± 0.005 0.13 ± 0.004 0.94 ± 0.01
CPoE(3)-FLEX 17.35 ± 1.09 0.255 ± 0.01 0.171 ± 0.005 0.129 ± 0.004 0.94 ± 0.01
CPoE(4)-FLEX 17.7 ± 1.1 0.255 ± 0.01 0.171 ± 0.005 0.129 ± 0.004 0.95 ± 0.01
MLP(100-100) 4.52 ± 0.39 0.289 ± 0.011 0.204 ± 0.005 0.0 ± 0.0 0.0 ± 0.0
MLP(500-500) 10.73 ± 0.62 0.292 ± 0.008 0.208 ± 0.004 0.0 ± 0.0 0.0 ± 0.0
MLP(100-100-100) 4.14 ± 0.18 0.285 ± 0.011 0.2 ± 0.006 0.0 ± 0.0 0.0 ± 0.0
XGboost 32.16 ± 1.87 0.323 ± 0.008 0.235 ± 0.007 0.0 ± 0.0 0.0 ± 0.0
LinReg 0.01 ± 0.0 0.626 ± 0.01 0.492 ± 0.009 0.0 ± 0.0 0.0 ± 0.0

Table F15: Comparison with non-GP methods for dataset concrete. Best method
(besides full GP) is indicated in bold.
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time RMSE ABSE CRPS COV

fullGP-SE 38.89 ± 1.93 0.511 ± 0.004 0.39 ± 0.005 0.283 ± 0.002 0.94 ± 0.0
fullGP-FLEX 161.63 ± 12.31 0.509 ± 0.004 0.388 ± 0.004 0.282 ± 0.002 0.93 ± 0.0
CPoE(1)-SE 2.37 ± 0.14 0.508 ± 0.005 0.39 ± 0.003 0.282 ± 0.002 0.94 ± 0.01
CPoE(2)-SE 2.81 ± 0.11 0.512 ± 0.004 0.393 ± 0.004 0.285 ± 0.002 0.93 ± 0.0
CPoE(3)-SE 3.13 ± 0.09 0.513 ± 0.004 0.394 ± 0.004 0.285 ± 0.002 0.93 ± 0.0
CPoE(4)-SE 3.38 ± 0.08 0.513 ± 0.004 0.393 ± 0.004 0.284 ± 0.002 0.93 ± 0.0
CPoE(1)-FLEX 24.06 ± 2.31 0.511 ± 0.005 0.388 ± 0.004 0.281 ± 0.003 0.93 ± 0.01
CPoE(2)-FLEX 24.68 ± 2.31 0.515 ± 0.005 0.391 ± 0.005 0.283 ± 0.003 0.93 ± 0.01
CPoE(3)-FLEX 25.37 ± 2.31 0.516 ± 0.005 0.392 ± 0.005 0.284 ± 0.004 0.93 ± 0.01
CPoE(4)-FLEX 26.14 ± 2.35 0.516 ± 0.005 0.391 ± 0.005 0.284 ± 0.004 0.93 ± 0.01
MLP(100-100) 3.83 ± 0.35 0.525 ± 0.004 0.398 ± 0.006 0.0 ± 0.0 0.0 ± 0.0
MLP(500-500) 11.97 ± 0.8 0.522 ± 0.004 0.397 ± 0.006 0.0 ± 0.0 0.0 ± 0.0
MLP(100-100-100) 4.84 ± 0.36 0.531 ± 0.006 0.403 ± 0.007 0.0 ± 0.0 0.0 ± 0.0
XGboost 0.65 ± 0.01 0.545 ± 0.008 0.405 ± 0.008 0.0 ± 0.0 0.0 ± 0.0
LinReg 0.01 ± 0.0 0.633 ± 0.006 0.509 ± 0.006 0.0 ± 0.0 0.0 ± 0.0

Table F16: Comparison with non-GP methods for dataset mg. Best method (besides
full GP) is indicated in bold.

time RMSE ABSE CRPS COV

fullGP-SE 137.76 ± 5.07 0.471 ± 0.01 0.348 ± 0.007 0.255 ± 0.005 0.95 ± 0.0
fullGP-FLEX 700.27 ± 255.47 0.455 ± 0.014 0.328 ± 0.007 0.238 ± 0.004 0.94 ± 0.0
CPoE(1)-SE 11.64 ± 0.59 0.506 ± 0.017 0.371 ± 0.008 0.27 ± 0.005 0.95 ± 0.0
CPoE(2)-SE 14.86 ± 0.53 0.49 ± 0.015 0.36 ± 0.008 0.263 ± 0.005 0.95 ± 0.0
CPoE(3)-SE 18.78 ± 0.56 0.489 ± 0.014 0.361 ± 0.008 0.263 ± 0.005 0.95 ± 0.0
CPoE(4)-SE 22.57 ± 0.56 0.489 ± 0.014 0.361 ± 0.008 0.263 ± 0.005 0.95 ± 0.0
CPoE(1)-FLEX 72.08 ± 4.54 0.631 ± 0.121 0.347 ± 0.012 0.252 ± 0.011 0.95 ± 0.01
CPoE(2)-FLEX 76.73 ± 4.55 0.446 ± 0.019 0.324 ± 0.005 0.236 ± 0.004 0.95 ± 0.0
CPoE(3)-FLEX 82.48 ± 4.6 0.444 ± 0.02 0.321 ± 0.005 0.234 ± 0.004 0.95 ± 0.0
CPoE(4)-FLEX 86.95 ± 4.57 0.449 ± 0.023 0.324 ± 0.006 0.236 ± 0.005 0.95 ± 0.01
MLP(100-100) 7.22 ± 0.68 0.482 ± 0.011 0.355 ± 0.008 0.0 ± 0.0 0.0 ± 0.0
MLP(500-500) 33.31 ± 2.41 0.475 ± 0.011 0.353 ± 0.008 0.0 ± 0.0 0.0 ± 0.0
MLP(100-100-100) 9.87 ± 1.13 0.476 ± 0.01 0.351 ± 0.006 0.0 ± 0.0 0.0 ± 0.0
XGboost 0.72 ± 0.01 0.543 ± 0.026 0.386 ± 0.007 0.0 ± 0.0 0.0 ± 0.0
LinReg 0.01 ± 0.0 0.645 ± 0.014 0.485 ± 0.008 0.0 ± 0.0 0.0 ± 0.0

Table F17: Comparison with non-GP methods for dataset space. Best method
(besides full GP) is indicated in bold.

time RMSE ABSE CRPS COV

fullGP-SE 327.61 ± 23.85 0.635 ± 0.012 0.459 ± 0.006 0.34 ± 0.005 0.94 ± 0.0
fullGP-FLEX 1008.11 ± 165.51 0.638 ± 0.013 0.461 ± 0.007 0.34 ± 0.005 0.94 ± 0.0
CPoE(1)-SE 8.92 ± 0.5 0.637 ± 0.012 0.459 ± 0.006 0.34 ± 0.005 0.94 ± 0.0
CPoE(2)-SE 10.44 ± 0.41 0.634 ± 0.012 0.458 ± 0.006 0.34 ± 0.005 0.94 ± 0.0
CPoE(3)-SE 12.62 ± 0.39 0.634 ± 0.012 0.458 ± 0.006 0.34 ± 0.005 0.94 ± 0.0
CPoE(4)-SE 16.35 ± 0.97 0.635 ± 0.012 0.459 ± 0.006 0.34 ± 0.005 0.94 ± 0.0
CPoE(1)-FLEX 130.92 ± 10.31 0.687 ± 0.019 0.487 ± 0.01 0.365 ± 0.009 0.96 ± 0.0
CPoE(2)-FLEX 133.52 ± 10.34 0.669 ± 0.016 0.48 ± 0.01 0.355 ± 0.007 0.95 ± 0.0
CPoE(3)-FLEX 137.64 ± 10.23 0.659 ± 0.014 0.474 ± 0.009 0.35 ± 0.006 0.95 ± 0.0
CPoE(4)-FLEX 141.31 ± 10.28 0.655 ± 0.013 0.471 ± 0.008 0.348 ± 0.006 0.94 ± 0.0
MLP(100-100) 19.19 ± 3.86 0.652 ± 0.014 0.469 ± 0.008 0.0 ± 0.0 0.0 ± 0.0
MLP(500-500) 166.5 ± 17.02 0.761 ± 0.012 0.53 ± 0.008 0.0 ± 0.0 0.0 ± 0.0
MLP(100-100-100) 33.85 ± 2.41 0.762 ± 0.017 0.527 ± 0.009 0.0 ± 0.0 0.0 ± 0.0
XGboost 0.74 ± 0.04 0.65 ± 0.011 0.466 ± 0.005 0.0 ± 0.0 0.0 ± 0.0
LinReg 0.02 ± 0.0 0.66 ± 0.009 0.488 ± 0.005 0.0 ± 0.0 0.0 ± 0.0

Table F18: Comparison with non-GP methods for dataset abalone. Best method
(besides full GP) is indicated in bold.
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time RMSE ABSE CRPS COV

fullGP-SE 178.61 ± 3.76 0.267 ± 0.001 0.207 ± 0.001 0.148 ± 0.001 0.94 ± 0.0
fullGP-FLEX 714.07 ± 18.51 0.28 ± 0.001 0.215 ± 0.001 0.154 ± 0.001 0.94 ± 0.0
CPoE(1)-SE 15.92 ± 0.77 0.31 ± 0.001 0.239 ± 0.001 0.172 ± 0.001 0.96 ± 0.0
CPoE(2)-SE 20.65 ± 0.57 0.292 ± 0.001 0.226 ± 0.001 0.162 ± 0.001 0.95 ± 0.0
CPoE(3)-SE 30.6 ± 1.03 0.28 ± 0.001 0.218 ± 0.001 0.155 ± 0.001 0.94 ± 0.0
CPoE(4)-SE 45.01 ± 1.33 0.276 ± 0.001 0.215 ± 0.001 0.153 ± 0.001 0.94 ± 0.0
CPoE(1)-FLEX 64.24 ± 2.05 0.334 ± 0.001 0.256 ± 0.001 0.185 ± 0.001 0.97 ± 0.0
CPoE(2)-FLEX 69.43 ± 2.02 0.315 ± 0.001 0.241 ± 0.001 0.174 ± 0.001 0.96 ± 0.0
CPoE(3)-FLEX 78.69 ± 2.1 0.303 ± 0.002 0.232 ± 0.001 0.167 ± 0.001 0.95 ± 0.0
CPoE(4)-FLEX 90.09 ± 2.11 0.297 ± 0.002 0.228 ± 0.001 0.164 ± 0.001 0.95 ± 0.0
MLP(100-100) 21.77 ± 1.0 0.287 ± 0.001 0.223 ± 0.001 0.0 ± 0.0 0.0 ± 0.0
MLP(500-500) 100.1 ± 5.9 0.284 ± 0.001 0.221 ± 0.001 0.0 ± 0.0 0.0 ± 0.0
MLP(100-100-100) 33.92 ± 2.19 0.299 ± 0.002 0.233 ± 0.001 0.0 ± 0.0 0.0 ± 0.0
XGboost 0.9 ± 0.05 0.667 ± 0.003 0.528 ± 0.002 0.0 ± 0.0 0.0 ± 0.0
LinReg 0.04 ± 0.0 0.765 ± 0.002 0.613 ± 0.002 0.0 ± 0.0 0.0 ± 0.0

Table F19: Comparison with non-GP methods for dataset kin. Best method (besides
full GP) is indicated in bold.

time RMSE ABSE CRPS COV

CPoE(1)-SE 73.17 ± 3.12 0.099 ± 0.002 0.066 ± 0.001 0.051 ± 0.001 0.95 ± 0.0
CPoE(2)-SE 107.82 ± 6.0 0.1 ± 0.002 0.068 ± 0.001 0.051 ± 0.001 0.93 ± 0.0
CPoE(3)-SE 197.54 ± 7.42 0.099 ± 0.001 0.069 ± 0.001 0.052 ± 0.0 0.92 ± 0.0
CPoE(1)-FLEX 205.74 ± 5.65 0.094 ± 0.002 0.062 ± 0.001 0.048 ± 0.0 0.95 ± 0.0
CPoE(2)-FLEX 244.57 ± 7.19 0.094 ± 0.002 0.061 ± 0.001 0.048 ± 0.0 0.94 ± 0.0
CPoE(3)-FLEX 346.93 ± 11.4 0.092 ± 0.002 0.061 ± 0.001 0.047 ± 0.0 0.94 ± 0.0
MLP(100-100) 64.83 ± 4.7 0.117 ± 0.001 0.084 ± 0.001 0.0 ± 0.0 0.0 ± 0.0
MLP(500-500) 407.75 ± 17.83 0.097 ± 0.001 0.069 ± 0.001 0.0 ± 0.0 0.0 ± 0.0
MLP(100-100-100) 104.19 ± 8.83 0.106 ± 0.001 0.076 ± 0.001 0.0 ± 0.0 0.0 ± 0.0
XGboost 4.72 ± 0.45 0.251 ± 0.002 0.183 ± 0.002 0.0 ± 0.0 0.0 ± 0.0
LinReg 0.28 ± 0.04 0.27 ± 0.003 0.193 ± 0.002 0.0 ± 0.0 0.0 ± 0.0

Table F20: Comparison with non-GP methods for dataset sarcos. Best method
(besides full GP) is indicated in bold.

time RMSE ABSE CRPS COV

CPoE(1)-SE 68.54 ± 1.67 0.597 ± 0.006 0.381 ± 0.004 0.289 ± 0.003 0.94 ± 0.0
CPoE(2)-SE 102.61 ± 1.54 0.59 ± 0.007 0.38 ± 0.005 0.288 ± 0.004 0.93 ± 0.01
CPoE(3)-SE 175.91 ± 3.32 0.59 ± 0.009 0.382 ± 0.006 0.289 ± 0.004 0.92 ± 0.01
CPoE(1)-FLEX 215.81 ± 4.6 0.525 ± 0.006 0.339 ± 0.003 0.261 ± 0.002 0.95 ± 0.0
CPoE(2)-FLEX 895.7 ± 563.48 0.522 ± 0.005 0.336 ± 0.003 0.259 ± 0.002 0.94 ± 0.0
CPoE(3)-FLEX 353.4 ± 4.53 0.522 ± 0.005 0.336 ± 0.003 0.259 ± 0.002 0.93 ± 0.0
MLP(100-100) 397.14 ± 34.0 0.591 ± 0.006 0.426 ± 0.006 0.0 ± 0.0 0.0 ± 0.0
MLP(500-500) 4710.19 ± 810.95 0.577 ± 0.015 0.399 ± 0.009 0.0 ± 0.0 0.0 ± 0.0
MLP(100-100-100) 639.71 ± 44.16 0.585 ± 0.006 0.406 ± 0.005 0.0 ± 0.0 0.0 ± 0.0
XGboost 2.55 ± 0.04 0.767 ± 0.007 0.615 ± 0.007 0.0 ± 0.0 0.0 ± 0.0
LinReg 0.14 ± 0.0 0.854 ± 0.009 0.714 ± 0.008 0.0 ± 0.0 0.0 ± 0.0

Table F21: Comparison with non-GP methods for dataset casp. Best method
(besides full GP) is indicated in bold.
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concrete mg space abalone kin cadata sarcos casp

fullGP-SE 0.218 0.39 0.348 0.459 0.207
fullGP-FLEX 0.169 0.388 0.328 0.461 0.215
CPoE(1)-SE 0.236 0.39 0.371 0.459 0.239 0.323 0.066 0.381
CPoE(2)-SE 0.231 0.393 0.36 0.458 0.226 0.318 0.068 0.38
CPoE(3)-SE 0.23 0.394 0.361 0.458 0.218 0.317 0.069 0.382
CPoE(1)-FLEX 0.175 0.388 0.347 0.487 0.256 0.288 0.062 0.339
CPoE(2)-FLEX 0.172 0.391 0.324 0.48 0.241 0.277 0.061 0.336
CPoE(3)-FLEX 0.171 0.392 0.321 0.474 0.232 0.273 0.061 0.336
MLP(100-100) 0.204 0.398 0.355 0.469 0.223 0.297 0.084 0.426
MLP(500-500) 0.208 0.397 0.353 0.53 0.221 0.312 0.069 0.399
MLP(100-100-100) 0.2 0.403 0.351 0.527 0.233 0.316 0.076 0.406
XGboost 0.235 0.405 0.386 0.466 0.528 0.329 0.183 0.615
LinReg 0.492 0.509 0.485 0.488 0.613 0.439 0.193 0.714

Table F22: Comparison for non-GP methods regarding ABSE. Best method (besides
full GP) is indicated in bold.

concrete mg space abalone kin cadata sarcos casp

fullGP-SE 12.5 38.9 137.8 327.6 178.6
fullGP-FLEX 28.2 161.6 700.3 1008.1 714.1
CPoE(1)-SE 2.0 2.4 11.6 8.9 15.9 84.1 73.2 68.5
CPoE(2)-SE 2.4 2.8 14.9 10.4 20.6 118.2 107.8 102.6
CPoE(3)-SE 2.8 3.1 18.8 12.6 30.6 246.0 197.5 175.9
CPoE(1)-FLEX 16.4 24.1 72.1 130.9 64.2 159.9 205.7 215.8
CPoE(2)-FLEX 17.1 24.7 76.7 133.5 69.4 195.0 244.6 895.7
CPoE(3)-FLEX 17.4 25.4 82.5 137.6 78.7 274.6 346.9 353.4
MLP(100-100) 4.5 3.8 7.2 19.2 21.8 82.9 64.8 397.1
MLP(500-500) 10.7 12.0 33.3 166.5 100.1 925.6 407.7 4710.2
MLP(100-100-100) 4.1 4.8 9.9 33.8 33.9 195.3 104.2 639.7
XGboost 32.2 0.6 0.7 0.7 0.9 1.2 4.7 2.6
LinReg 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.1

Table F23: Comparison for non-GP methods regarding time in seconds. Note that,
GPs provide predictive uncertainty estimates, which is a much harder task. There-
fore, these computational times for competitive accuracy are very reasonable in our
opinion.
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