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Abstract
At the core of Bayesian probability theory, or dually
desirability theory, lies an assumption of linearity of
the scale in which rewards are measured. We revisit
two recent papers that extend desirability theory to the
nonlinear case by letting the utility scale be represented
either by a general closure operator or by a binary
general (nonlinear) classifier. By using standard results
in logic, we highlight the connection between these
two approaches and show that this connection allows
us to extend the separating hyper plane theorem (which
is at the core of the duality between Bayesian decision
theory and desirability theory) to the nonlinear case.
Keywords: closure operators, classifiers, desirability,
belief structure

1. Introduction
At the core of Bayesian probability theory, or dually desir-
ability theory, lies an assumption of linearity of the scale
in which rewards are measured. It is well-known in utility
theory that linearity is a strong assumption, being violated
for instance in domains with budget constraints, problems
with lack of liquidity, wealth effects and risk-aversion.
There have been few works that studied extensions of

linear-desirability theory to account for the above issues
[16, 17, 18, 24]. These papers are related to a long line of
works that proposed alternative theories that accommodate
systematic departures from expected utility, while retaining
much of its mathematical properties, a classical reference
is [10].
Recently, [15] proposed a unifying theoretical framework

to extend linear-desirability theory to the nonlinear case by
letting the utility scale be represented by a general closure
operator. This framework retains the overall logical structure
of linear-desirability theory, which is based on the following
axioms: (i) gaining money is desirable; (ii) losing money is
undesirable; but replaces the linearity axiom with: (iii) the
value of money is measured on a logically consistent utility
scale (determined by a general closure operator).
A more operational approach to extend linear-desirability

to the nonlinear case was pursued in [6]. This approach

starts from the observation that the logical consistency
of a set of linearly-desirable gambles can be checked by
solving a binary linear classification problem. Then the
authors extend desirability to the nonlinear case by instead
considering a binary nonlinear classification problem. This
framework imposes the logical constraints of desirability
theory by forcing the classifier to separate the non-negative
gambles (gainingmoney is desirable) from the negative ones
(losing money is undesirable). Moreover, theoretical results
and numerical algorithms are provided to learn classifiers
from a dataset made of accepted and rejected gambles for
three closure operators: conic hull, convex hull and the
so-called orthant-hull (or monotonic-hull).
The works [15, 6] show that the previous approaches

to nonlinear-desirability [16, 18] can be seen as particular
cases of these formulations.
Independently, [11], working with a finite set of alter-

natives in the framework of [12], defined the concept of
preference ordering respecting a classifier and provided a
connection between classifiers and closure operators. This
result somehow generalises the duality of convex sets and
support half-spaces in convex geometry. It is also worth to
point out that the approach followed by [11] just exploits
the relationship between closure operators and their closed
belief models.
In the current manuscript, we extend the work [11] to sets

of gambles. The main difference is that we further require
the closure operators (equivalently, the classifiers) to satisfy
a monotonicity property: if 𝑓 ≥ 𝑔 (where ≥ is the pointwise-
order in ℝ) then the gamble 𝑓 should be more desirable
than the gamble 𝑔. The appropriateness of monotonicity is
justified by the fact that a set of gambles is more than just a
set of alternatives, their value is measured in an ordinal scale.
This connection allows us to straightforwardly extend the
separating hyperplane theorem (which is at the core of the
duality between Bayesian decision theory and desirability
theory) to the nonlinear case.
Since the connections provided in this manuscript follow

by standard basic results in lattice theory and algebraic
logic, we formalise these results in the framework of belief
structures introduced by [9].
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2. Preliminaries
2.1. Linear-Desirability Theory

We briefly review standard linear-desirability theory. A
gamble is a bounded function from a space of possibility 𝛺
toℝ, denoted byL.We denote a set of gambles that a subject,
Alice, finds desirable with 𝐴 ⊆ L. These are the gambles
that she is willing to accept and thus commits herself to the
corresponding transactions. The crucial question is how to
provide a criterion for a set 𝐴 of gambles, representing an
assessment of desirability, to be regarded rational. A general
way to formalise rationality is to regard L as an algebra of
formulas on top of which to define a logic. This leads us
directly to formulate rationality as logical consistency.
Let L+ be the subset of the non-negative gambles ex-

cluded the zero gamble. Negative gambles are defined by
L− := −L+, and we shall also use L★0 := L★ ∪ {0}, with
★ = +,−, and L< := { 𝑓 ∈ L | sup 𝑓 < 0}.
First of all, since positive gambles may increase Alice’s

utility without ever decreasing it, we first have that:

(A0) L+ should always be desirable.

This defines the tautologies of the calculus. Moreover,
whenever 𝐴 are desirable for Alice, then any gamble whose
desirability is implied by the gambles in 𝐴 should also be
desirable. This implication corresponds to the deductive
closure 𝐾 of a set of desirable gambles 𝐴, given by:

(A1) 𝐾 (𝐴) := posi(L+ ∪ 𝐴).

where posi is the conic hull operator.
Finally, deductive coherence is defined as follows:

Definition 1 (Coherence postulate) A set D := 𝐾 (𝐴) of
desirable gambles is coherent if and only if

(A2) D ∩ {0} = ∅.

Axioms (A0–A2) lead to the so-called theory of desirable
gambles [23],1 here referred to by linear-desirability theory.
If we replace L+ with L+

0 in A0 and A1, the conic hull
operator with its ‘topological closure’ in A1, and finally {0}
with L< in A2, we obtain the so-called theory of almost
desirable gambles (or linear-almost-desirability theory).

2.2. Belief Structures

Wepresent and slightly generalise the framework introduced
in [9]. The modification is simply due to the fact that we
conceptually separate the notion of closure operator and
that of consistency.2

1Given (A0–A1), (A2) is equivalent to L−
0 ∩ D = ∅.

2In doing so, we can for instance naturally cover the case of linear-
desirability.

Let (S, v) be a complete lattice over a non-empty set S,
whose elements are called belief models. Its supremum is
denoted by 1S , and its infimum by 0S . Typically S is the
collection of sets of formulas defined over an appropriate
language, and thus 1S = S and 0S = ∅.
A map 𝐾 : S → S is a closure operator over S if it

satisfies the following properties:

(K1–Extensiveness) 𝐴 v 𝐾 (𝐴);

(K2–Monotonicity) if 𝐴 v 𝐴′ then 𝐾 (𝐴) v 𝐾 (𝐴′);

(K3–Idempotency) 𝐾 (𝐾 (𝐴)) = 𝐾 (𝐴).

for all 𝐴, 𝐴′ ∈ S. It is immediate to verify that:

Proposition 2 Let L be a topological ordered vector
space3 and S := ℘(L). The following are closure operators
on (S, ⊆):

𝐾𝑝𝑜 (𝐴) := posi(𝐴 ∪ L+), (1)
𝐾𝑐𝑜 (𝐴) := conv(𝐴 ∪ L+), (2)
𝐾𝑜𝑟 (𝐴) := { 𝑓 ∈ L | (∃𝑔 ∈ 𝐴 𝑓 ≥ 𝑔) ∨ 𝑓 ∈ L+}, (3)
𝐾𝑝𝑜 (𝐴) := cl

(
posi(𝐴 ∪ L+

0 )
)
, (4)

𝐾𝑐𝑜 (𝐴) := cl
(
conv(𝐴 ∪ L+

0 )
)
, (5)

𝐾𝑜𝑟 (𝐴) := cl{ 𝑓 ∈ L | (∃𝑔 ∈ 𝐴 𝑓 ≥ 𝑔) ∨ 𝑓 ∈ L+
0 }. (6)

where posi is the conic hull, conv is the convex hull, and cl
is the topological closure.

Given two closure operators 𝐾1 and 𝐾2 over the same S,
we write 𝐾1 ≤S 𝐾2 (or simply 𝐾1 ≤ 𝐾2 when S is clear
from the context) if 𝐾1 (𝐴) v 𝐾2 (𝐴), for every 𝐴 ∈ S. In
such case we say that 𝐾1 is weaker than 𝐾2.
A belief model is closed if 𝐾 (𝐴) = 𝐴. The family of all

closed belief models of S is denoted by S𝐾 . Hence observe
that:

Proposition 3 Given two closure operators 𝐾1 and 𝐾2
over the same S, the following are equivalent

1. 𝐾1 ≤S 𝐾2

2. S𝐾2 ⊆ S𝐾1
Moreover, the set of all closure operators over S forms a
complete lattice under ≤S .

The next Proposition states a well known correspondence
between closure operators and so-called topped intersection
structures (or closure systems) (see e.g. [7, Thm 7.3])

3From now on we always assume that the topology is the order
topology.
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Proposition 4 Let 𝐾 : S → S be a closure operator on
a complete lattice (S, v). Then the family of closed belief
models S𝐾 is closed under arbitrary infima and contains
0S and 1S . Moreover, if A is any collection of elements of
S which is closed under arbitrary infima and contains 0S
and 1S , there is a unique closure operator 𝐾A : S → S
such that S𝐾A = A.

A subset (predicate) C ⊂ S𝐾 of closed belief models is
called a consistency set (or predicate) if

(C1) C is closed under arbitrary non-empty infima;

(C2) 1S ∉ C.

We say that a belief model 𝐴 ∈ S is consistent if 𝐾 (𝐴) ∈ C.

Definition 5 A belief structure is a quadruple 𝔅 := (S, v
, 𝐾, C) where

• (S, v) is a complete lattice

• 𝐾 : S → S is a closure operator

• C is a consistency set.

We say that a belief structure 𝔅 is classical whenever 𝐾 =

𝐾C , where C := C ∪ {1S}, and paraconsistent4 otherwise.
The idea is that a belief structure is classical whenever
the deductive closure of every inconsistent belief model
is trivial. Paraconsistent belief structures are structures
in which, for closed models, being inconsistent is not
tantamount to being trivial. Stated otherwise, inconsistency
is not ‘explosive’.
An example of classical belief structure is the linear-

almost desirability theory. Linear-desirability is, on the
other hand, a paraconsistent belief structure.
The ordered structure (C, v), where the partial order is

inherited from S is a complete meet-semi-lattice. Hence it
is immediate to verify that

Proposition 6 Let 𝔅 be a belief structure and 𝐴 ∈ S. If 𝐴
is consistent, then

𝐾 (𝐴) = inf{𝐶 ∈ C | 𝐴 v 𝐶}

Notice however that (C, v) is not necessarily a complete
lattice, and in particular it may have no maximal elements.
The (possibly empty) collection of these maximal elements
is denoted byM := {𝑀 ∈ C | ∀𝐶 ∈ C, (𝑀 v 𝐶 ⇒ 𝑀 =

𝐶}.
Finally, 𝔅 is said to be strong if (C, v) is dually atomic,

that is ifM ≠ ∅ and for every 𝐶 ∈ C, 𝐶 = inf{𝑀 ∈ M |
𝐶 v 𝑀}. Both the theory of almost desirable gambles and
of desirable gambles are strong belief structures [23, 3].
The following representation result is immediate

4The term comes from paraconsistent logics, see e.g. [19].

Proposition 7 Let 𝔅 be a strong classical belief structure.
Then it holds that

𝐾 (𝐴) = inf{𝑀 ∈ M | 𝐴 v 𝑀},

for every 𝐴 ∈ S.

2.3. Morphisms

In this Section, we introduce the appropriate concept of
morphism to compare belief structures. As noticed in [9],
what matters in a belief structure is its closure operator,
and thus the complete meet-semi lattice given by its closed
belief models, and its consistency set. We therefore define
the following.

Definition 8 Given two belief structures 𝔅0 and 𝔅1, a c-
homomorphism is an order-preserving function 𝑓 : S0 →
S1 with the additional properties

(H1) 𝑓 (𝐾0 (𝐴)) = 𝐾1 ( 𝑓 (𝐴));

(H2) if 𝐵 ∈ C0 then 𝑓 (𝐵) ∈ C1;

(H3) 𝑓 (inf (A)) = inf ({ 𝑓 (𝐴) : 𝐴 ∈ A});

for every belief model 𝐴 ∈ S0, every closed model 𝐵 ∈ S𝐾0 ,
and every family of closed belief models A ⊆ S𝐾0 .

A c-homomorphism 𝑓 is called a c-embedding if, in
addition, for every closed 𝐴, 𝐵 ∈ S𝐾0 it satisfies

(H4) 𝐴 v0 𝐵 iff 𝑓 (𝐴) v1 𝑓 (𝐵);5

(H5) 𝐴 ∈ C0 iff 𝑓 (𝐴) ∈ C1.

A c-embedding that is onto when restricted to S𝐾1 is called
a c-isomorphism.

2.4. Structures on Sets

In what follows we will be using S := ℘(L), for some
language L, meaning that the partial order v coincides with
the subset relation ⊆.
First, notice that whenever 𝔅 is a strong classical belief

structure, in this case Proposition 7 readily implies the
following separation property: 𝑎 ∉ 𝐾 (𝐴) iff 𝑎 ∉ 𝑀 for
some 𝑀 ∈ M such that 𝐴 ⊆ 𝑀 .
Let 𝔅 be a belief structure. A gamble belonging to

T := 𝐾 (∅) is called a tautology. A gamble ⊥ ∈ L for which
the equivalence

⊥ ∈ 𝐾 (𝐴) ⇔ 𝐾 (𝐴) ∉ C

holds for every 𝐴 ∈ S is called a falsum. The set of
all falsa of 𝔅 is denoted by F. In general we say that

5By reflexivity and anti-symmetry of v, condition (H4) yields that 𝑓
is injective on S𝐾0 .
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consistency is definable for a belief structure 𝔅 whenever
F ≠ ∅. Consistency is definable in the theory of desirable
gambles, and F = {0}. Consistency is also definable in
the theory of almost desirable gambles but F = { 𝑓 ∈ L |
sup 𝑓 < 0}. Contrary to the theory of desirable gambles,
the theory of almost desirable gambles is not paraconsistent;
it is classical and all its falsa ⊥ ∈ F satisfy the following
explosion law

⊥ ∈ 𝐾 (𝐴) ⇔ 𝐾 (𝐴) = 1S ,

where 1S = L.
Let 𝑎, 𝑏 ∈ L, and 𝐴 ∈ S.We define the following properties
(rules).

(C-rule) 𝑎 ∈ 𝐾 (𝐴) ⇒ 𝐾 (𝐴 ∪ {𝑏}) ∉ C;

(I-rule) 𝐾 (𝐴 ∪ {𝑎}) ∉ C ⇒ 𝑏 ∈ 𝐾 (𝐴).

When (C-rule) holds between 𝑎, 𝑏 ∈ L for every 𝐴 ∈ S, we
call 𝑏 a quasi-negation of 𝑎.6 If both (C-rule) and (I-rule)
hold for every 𝐴 ∈ S, we call 𝑏 a negation of 𝑎. We say that
a belief structure 𝔅 for which consistency is definable is
quasi-negative if every 𝑎 ∈ L which is neither a tautology
nor a falsum has a quasi-negation which is not a falsum.7
Structure 𝔅 is said to be negative, if every 𝑎 ∈ L has a
negation. Let 𝔅 be a (quasi-)negative belief structure, then
we say that 𝐴 ∈ C is nega-complete if, for every 𝑎 ∈ L,
either 𝑎 or some of its (quasi-)negation belongs to 𝐴.
The theory of desirable gambles is a negative belief

structure: for a given gamble 𝑓 , one of its negation coincides
with − 𝑓 . Moreover all its maximally consistent elements
are nega-complete.

3. Generalised Desirability Theories
In this section we focus on the case when the underlying
language is given by a topological ordered vector space.
For simplicity, we actually take L := ℝ |𝛺 | , with finite 𝛺
with dimension 𝑛 and equipped with the usual order, and
S := ℘(L).8

Definition 9 Let 𝔅 := (S, ⊆, 𝐾, C) be a belief structure
over L. We call it a generalised desirability theory (GDT
for short) whenever the following properties are satisfied:

(G1) 𝐾 (L+) = 𝐾 (0S) = L+ is the minimal element of its
consistency set C, and in particular 𝐾 (𝐴) ⊇ L+, for
every 𝐴 ∈ S

6Clearly if 𝑏 is a quasi-negation of 𝑎, 𝑎 is also a quasi-negation of 𝑏.
7Notice that in a quasi-negative belief structure, 𝑏 is a quasi-negation

of 𝑎 if and only if F ⊆ 𝐾 ( {𝑎, 𝑏}) , and a falsum is the negation of a
tautology (and vice-versa).

8In Section 2.1, we said that gambles are bounded real-valued func-
tions on𝛺. Note that, for finite𝛺, any gamble 𝑔 can be written as a vector
of its 𝑛 possible values (one for each 𝜔 ∈ 𝛺). Also notice that for ℝ𝑛,
the order topology and the standard topology are equivalent.

(G2) 𝐾𝑜𝑟 ≤ 𝐾 ,

(G3) 𝐾 (𝐴) ∈ C if and only if 𝐾 (𝐴) ∩ {0} = ∅.

Ageneralised almost desirability theory (GADT for short)
is defined analogously, simply changing properties (G1–
G3) similar to what is done in linear-desirability theory.
The ‘nonlinear (almost) desirability theories’ introduced in
[6, 15] are belief structures that are generalised (almost)
desirability theories.
Finally, following [20, Sections 1.3.3-4], we introduce

two operations on generalised desirability theories: condi-
tioning and marginalisation. Such operations generalise the
classical operations baring the same name so to cover also
the definitions of conditioning and marginalisation for the
nonlinear desirability theory discussed by [15].
Let 𝛥 ⊂ 𝛺, L ′ := ℝ |𝛥 | , S′ := ℘(L ′). Consider the map

d𝛥: L ′ → L defined as

d𝛥 (𝑔) (𝑥) :=
{
𝑔(𝑥) if 𝑥 ∈ 𝛥
0 else.

We then straightforwardly lift this map to the following
order preserving function d𝛥: S′ → S simply by setting
d𝛥 (𝐴) := {d𝛥 (𝑔) ∈ L | 𝑔 ∈ 𝐴}.
Conversely, consider the map c𝛥 : S → S′ defined as

c𝛥 (𝐴) := {𝑔 ∈ L ′ | d𝛥 (𝑔) ∈ 𝐴}. Notice that d𝛥 (c𝛥 (𝐴)) =
{ 𝑓 ∈ 𝐴 | 𝑓 = 𝑓 𝐼𝛥} ⊆ 𝐴.

Definition 10 Let 𝔅 := (S, ⊆, 𝐾, C) be a GDT over L and
𝔅′ := (S′, ⊆, 𝐾 ′, C′) a GDT over L ′. Assume that c𝛥 maps
closed belief models to closed belief models and that 𝐾 ◦ d𝛥
is a c-embedding such that

𝐴 =c𝛥 (𝐾 (d𝛥 (𝐴))),

for every closed belief model 𝐴 ∈ S′
𝐾 ′ . Then we call 𝔅′ a

conditioning belief structure of 𝔅 with respect to 𝛥, and c𝛥
the corresponding conditioning operator.

If 𝔅′ is a conditioning belief structure of 𝔅 with respect
to 𝛥, then by definition every closed belief model of 𝔅′ is
the conditional set of a closed belief model of𝔅. Moreover,
the following holds.

Proposition 11 The conditional set of a consistent closed
belief model of 𝔅 is a consistent closed belief model of 𝔅′.

Marginalisation and its properties can be introduced and
discussed analogously. Let 𝛾 : 𝛺 → 𝛥 be a surjective map.
We can define the 𝛾-lifting ↑𝛺𝛾 : L ′ → L as ↑𝛺𝛾 (𝑔) = 𝑔 ◦ 𝛾,
and extend it to sets of gambles in the obvious way by
setting ↑𝛺𝛾 (𝐴) := {↑𝛺𝛾 (𝑔) ∈ L | 𝑔 ∈ 𝐴}. As 𝛾 induces a
partition of 𝛺, by L𝛾 we denote gambles that are constant
on each partition. Obviously ↑𝛺𝛾 defines an isomorphism
between L𝛾 and L ′. Consider ↓𝛾

𝛥
: S → S′ defined as

↓𝛾
𝛥
(𝐴) := (↑𝛺𝛾 )−1 (𝐴 ∩ L𝛾).
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Definition 12 Let 𝔅 := (S, ⊆, 𝐾, C) be a GDT over L and
𝔅′ := (S′, ⊆, 𝐾 ′, C′) a GDT over L ′. Assume that ↓𝛾

𝛥
maps

closed belief models to closed belief models and that 𝐾◦ ↑𝛺𝛾
is a c-embedding. Then we call 𝔅′ the marginal belief
structure of 𝔅 with respect to 𝛾, and ↓𝛾

𝛥
the corresponding

marginalisation operator.

The 𝛾-marginal set of 𝐴 ∈ S is ↓𝛾
𝛥
(𝐴), and it is sometimes

identified with 𝐴 ∩ L𝛾 . If 𝔅′ is a marginal belief structure
of𝔅with respect to 𝛾, then by definition every closed belief
model of 𝔅′ is the marginal set of a closed belief model of
𝔅. Moreover, by reasoning exactly as for Proposition 11,
one can verify the following.

Proposition 13 The marginal set of a consistent closed
belief model of 𝔅 is a consistent closed belief model of 𝔅′.

4. On Closures and Weak Orders
In this section we are going to connect closure operators
and classifiers as well as derive a ‘general’ version of the
separating hyperplane theorem, with in mind an application
to GADTs.
Analogously to what done before, for simplicity we will

focus onL := ℝ𝑛, whose natural order is denoted by ≤, and
S := ℘(ℝ𝑛). By 𝟙𝑛 ∈ L we denote the constant gamble
(1, . . . , 1).

4.1. Dominance and Continuity

We first introduce some useful definitions.

Definition 14 Let 𝐾 be a closure operator over S.

• A set 𝐴 ∈ S satisfies dominance if, whenever 𝑔 ∈ 𝐴
and 𝑓 ≥ 𝑔, it holds that 𝑓 ∈ 𝐴; hence when every
closed belief model 𝐴 ∈ S𝐾 satisfies dominance, we
say that 𝐾 satisfies dominance.

• We say that 𝐴 ∈ S satisfies continuity (or is contin-
uous) whenever the fact that 𝑔 + 𝜖𝟙𝑛 ∈ 𝐴 holds for
every 𝜖 > 0 implies that 𝑔 ∈ 𝐴;9 hence if 𝐾 satisfies
dominance, we say that 𝐾 also satisfies continuity
whenever every closed belief model 𝐴 ∈ S𝐾 is contin-
uous.

Notice that all closure operators in Proposition 2 satisfy
dominance, whereas continuity is satisfied by the closure
operators (4-6). Moreover, by definition every GDT and
GADT satisfies dominance.
By Proposition 3, the collection of closure operators

over S constitutes a complete lattice. It actually turns out
that the intersection of any family of closure operators

9To say that 𝐴 ∈ S is continuous is tantamount to say that 𝐴 is closed
according to the order topology.

preserves both dominance and continuity. More specifically,
the following result holds.

Proposition 15 Let {𝐾𝑖 | 𝑖 ∈ 𝐼} be a family of closure
operators over S satisfying dominance (resp. continuity).
Then 𝐾 :=

⋂
𝑖∈𝐼 𝐾𝑖 also satisfies dominance (resp. continu-

ity). Stated otherwise, given a closure operator 𝐾 satisfying
dominance (resp. continuity), 𝐾 is generated by {𝐾𝑖 | 𝑖 ∈ 𝐼}
if and only if:

1. 𝐾 ≤ 𝐾𝑖 , for all 𝑖 ∈ 𝐼.

2. if 𝐴 ∈ S𝐾 and if 𝑔 ∉ 𝐴 then there exists 𝑖 ∈ 𝐼 such
that 𝑔 ∉ 𝐾𝑖 (𝐴).

In Proposition 15, neither consistency nor belief structures
are mentioned. This representation result can be readily
extended to the case of classical belief structures as follows:

Corollary 16 Let 𝔅 be a classical belief structure (whose
closure operator satisfies dominance, resp. continuity).
Then a family {𝐾𝑖 | 𝑖 ∈ 𝐼} of closure operators (satisfying
dominance, resp. continuity) generate 𝐾 if and only if

1. 𝐾 ≤ 𝐾𝑖 , for all 𝑖 ∈ 𝐼.

2. if 𝐴 ∈ C, then for every 𝑔 ∉ 𝐴 there exists 𝑖 ∈ 𝐼 such
that 𝑔 ∉ 𝐾𝑖 (𝐴).

Whenever 𝔅 is paraconsistent, the restriction of the second
condition to consistent sets only in the proposition above is
in general obviously not enough to enforce that 𝐾 may be
generated by the family {𝐾𝑖 | 𝑖 ∈ 𝐼}, the counter example
being, again, linear-desirability.

4.2. A Representation Result

A weak order � is a binary relation on a set L which is
transitive and total10. Whenever 𝑥 � 𝑦 and 𝑦 � 𝑥, we write
𝑥 ≈ 𝑦 and say that 𝑥 and 𝑦 are order equivalent.

Definition 17 We say that a weak order is (weakly) order-
preserving if 𝑓 ≥ 𝑔 implies 𝑓 � 𝑔. An order-preserving
weak order satisfies order-continuity whenever 𝑓 + 𝜖𝟙𝑛 � 𝑔
for all 𝜖 > 0 implies 𝑓 � 𝑔.

We define the support function of a set 𝐴 ⊆ L with
respect to the order � simply as the collection of all order-
equivalence infima of 𝐴 with respect to �:

𝑠� (𝐴) := {ℎ ∈ 𝐴 | ℎ � 𝑔,∀𝑔 ∈ 𝐴}, (7)

where 𝐴 := {𝑔 ∈ L | 𝑓 � 𝑔, ∀ 𝑓 ∈ 𝐴}. We then define
the support half-space of the set 𝐴 ≠ ∅ as

𝑆� (𝐴) := {𝑔 ∈ L | 𝑔 � 𝑓 , ∀ 𝑓 ∈ 𝑠� (𝐴)}. (8)

and set 𝑆� (∅) := ∅. In particular notice that 𝑆� (𝐴) = L
whenever 𝑠� (𝐴) = ∅, for 𝐴 ≠ ∅.

10(∀𝑥, 𝑦 ∈ L either 𝑥 � 𝑦 or 𝑦 � 𝑥 ).
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Remark 18 In Section 5 we provide examples supporting
the concept of a half-space. To briefly illustrate the intuition,
we can consider standard almost linear desirability. In this
case, whenever 0 ∈ 𝐴, and thus L+

0 ⊆ 𝑆� (𝐴), 𝑆� (𝐴) may
be considered equivalent to a maximal set defined by a total
order.

We can now prove the following result.

Proposition 19 Let 𝐾 be a closure operator over S,
which satisfies dominance (resp. continuity). Then there
exists a family of order-preserving (resp. order-continuous)
weak-orders such that:

𝐾 (𝐴) =
⋂
𝑖∈I

(𝑆�𝑖 (𝐴) ∪ T), (9)

for all 𝐴 ⊆ L. Conversely, for any family {�𝑖 | 𝑖 ∈ I} of
order-preserving (resp. order-continuous) weak-orders, and
a sequence (𝑋𝑖 : 𝑖 ∈ I) where each 𝑋𝑖 satisfies dominance
(and is continuous), the map ^ : S → S defined as

^(𝐴) :=
⋂
𝑖∈I

(𝑆�𝑖 (𝐴) ∪ 𝑋𝑖) (10)

is a closure operator that satisfies dominance (resp. conti-
nuity) and such that T =

⋂
𝑖∈I 𝑋𝑖 .

Notice that, as for Proposition 15, in Proposition 19
neither consistency nor belief structures are mentioned.
Equations (9) and (10) of Proposition 19 tell us that any

closure operator (satisfying dominance, resp. continuity)
can be represented by a family of weak orders (satisfying
dominance, resp. continuity), and that any family of weak
orders (satisfying dominance, resp. continuity) generates
a closure operator (satisfying dominance, resp. continu-
ity), meaning in particular that any weak order (satisfying
dominance, resp. continuity) can be equivalently seen as a
closure operator (satisfying dominance, resp. continuity)
via Equation (8).
As an immediate corollary of Propositions 15 and 19, we

have that, given a closure operator 𝐾 over S which satisfies
dominance (continuity), a closed belief model 𝐴 ∈ S𝐾 and
𝑔 ∉ 𝐴, there exists a order-preserving (order-continuous)
weak-order � such that 𝑔 ∉ 𝑆� (𝐴). As we will clarify in
the next sections with some examples, this result might be
understood as a ‘generalisation’ of the standard separating
hyperplane theorem from convex geometry. For this reason,
we call the closure operator 𝑆� (𝐴) defined by the weak-
order �, as in (8), a binary (nonlinear) classifier.

5. Particular Cases
The second part of Proposition 19 provides a way to con-
struct a closure operator essentially as intersection of sup-
port half-spaces defined by a set of order-preserving weak-
orders �𝑖 . We will now discuss some particular cases

focusing on GADTs, and therefore closure operators which
satisfy both dominance and continuity, and such that sets
T and 𝑋𝑖 from Proposition 19 always coincide with L+

0 .
In particular, we will consider GADTs whose underlying
closure operators are (4)–(6) from Proposition 2. Also, for
simplicity in our examples we always assume that 0 ∈ 𝐴.
We first provide some useful definitions and results which
allow us to connect weak-orders to utility functions.

Definition 20 A utility function 𝑢 : L → ℝ is non-
decreasing if 𝑢( 𝑓 ) ≥ 𝑢(𝑔) for each 𝑓 ≥ 𝑔. It is said
to be order-continuous whenever 𝑢( 𝑓 + 𝜖𝟙𝑛) ≥ 𝑢(𝑔) for
each 𝜖 > 0 implies 𝑢( 𝑓 ) ≥ 𝑢(𝑔).

Proposition 21 Let � be an order-preserving order-
continuous weak-order onL. Then there is a non-decreasing
order-continuous utility function 𝑢 : L → ℝ that represents
� and vice versa, that is

𝑓 � 𝑔 iff 𝑢( 𝑓 ) ≥ 𝑢(𝑔). (11)

Proposition 21 provides a representation of �𝑖 via a utility
function. Let 𝑢𝑖 be the utility that represents �𝑖 , we then
note that (7) can be rewritten as:

𝑠�𝑖 (𝐴) := sup
ℎ∈𝐴

𝑢𝑖 (ℎ),

where 𝐴 = {𝑔 ∈ L | 𝑢𝑖 ( 𝑓 ) � 𝑢𝑖 (𝑔), ∀ 𝑓 ∈ 𝐴} and we
set supℎ∈∅ 𝑢𝑖 (ℎ) = −∞, leading to the following equivalent
definition of support half-space:

𝑆�𝑖 (𝐴) =
{
𝑔 ∈ L | 𝑢𝑖 (𝑔) ≥ sup

ℎ∈𝐴
𝑢𝑖 (ℎ)

}
. (12)

Therefore, we can build a closure operator by defining a
suitable class of utility functions.

5.1. Linear Utility

A linear utility is a linear function of 𝑔. In particular, we
will consider linear utility functions defined as

𝑢𝑖 (𝑔) := 𝑝>𝑖 𝑔, (13)

where 𝑝𝑖 ∈ ℝ𝑛 is a probability vector. It is immediate to
notice that, with this definition of the coefficients 𝑝𝑖 , 𝑢 is
non-decreasing and, moreover, (order-)continuous.
The support half-space defined by 𝑢𝑖 is:

𝑆�𝑖 (𝐴) :=
{
𝑔 ∈ L | 𝑢𝑖 (𝑔) ≥ sup

𝑓 ∈𝐴
𝑢𝑖 ( 𝑓 )

}
. (14)

It is worth noticing that when 𝑐 = sup 𝑓 ∈𝐴 𝑢𝑖 ( 𝑓 ) ≤ 0, then
L+
0 ⊂ {𝑔 ∈ L | 𝑢𝑖 (𝑔) ≥ 𝑐}, meaning that the union of

𝑆�𝑖 (𝐴) as defined in (14) with L+
0 (as in the equations of
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Proposition 19) is redundant. In particular, whenever 0 ∈ 𝐴,
𝑆�𝑖 (𝐴) is equal to either a half-space in ℝ𝑛 or to ℝ𝑛.
From a standard result from convex geometry, we know

that any closed convex set is generated by the intersection
of the half-spaces that contain it. This is a particular case
of Proposition 15 and holds for any closure operator whose
closed belief models are convex.
About consistency, note the following, whose proof is

trivial.

Lemma 22 Given a set 𝐴 ⊆ L, the closed belief model
𝐾 (𝐴) := ⋂

𝑖∈I (𝑆�𝑖 (𝐴) ∪L+
0 ), with 𝑆�𝑖 (𝐴) defined by (14),

is consistent if sup 𝑓 ∈𝐴 𝑢𝑖 ( 𝑓 ) ≥ 0, for some 𝑖 ∈ 𝐼.

Example 1 Consider the set of gambles 𝐴 = {𝑔1 =

(0, 0), 𝑔2 = (−1, 2), 𝑔3 = (−0.5, 3), 𝑔4 = (2,−1)}. Note
that, since 𝐴 is finite, supℎ∈𝐴 𝑝>𝑖 𝑓 = minℎ∈𝐴 𝑝

>
𝑖
ℎ. Figure

1(left) shows the closure of 𝐴 computed using 𝐾𝑐𝑜. This
closure operator is generated by the intersection of (14) for
all the possible 𝑝𝑖 as depicted in Figure 1(right) (the figure
only shows 20 lines {𝑔 : 𝑝>

𝑖
𝑔 − min 𝑓 ∈𝐴 𝑝>𝑖 𝑓 = 0}). The

intersection of the support half-spaces includes the non-
negative gambles and excludes the negative ones. Note that,
there exists a minimal number of support half-spaces that
generate 𝐾𝑐𝑜 (𝐴), an algorithm to compute it is provided in
[6].
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Figure 1: 𝐾𝑐𝑜 (𝐴) (left, blue region, including the border)
and generating utilities (right). The coloured re-
gions labelled T and F, represent the non-negative
gambles (tautologies) and, respectively, negative
ones (falsa).

Any closed belief model for 𝐾𝑝𝑜 is a closed convex cone,
which is convex and, therefore, generated by (14) as we will
show in the following example.

Example 2 Consider the set of gambles 𝐴 in blue in Figure
2(left), which is a closed belief model for 𝐾𝑝𝑜 (and 𝐾𝑐𝑜).
Figure 2(right) shows the support half-spaces that generate
it for all the possible 𝑝𝑖 (the figure shows the same 30
𝑝𝑖 as in the previous example). There are less than 30
lines, because for any support half-space in (14) such that
𝑝𝑇
𝑖
𝑔 < 0 for some 𝑔 ∈ 𝐴, we have that supℎ∈𝐴 𝑝𝑇𝑖 ℎ = −∞

and the relative 𝑆�𝑖 (𝐴) = ℝ𝑛.
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Figure 2: 𝐾𝑝𝑜 (𝐴) (left, blue region, including the border)
and generating utilities (right).

As shown above, both 𝐾𝑝𝑜, 𝐾𝑐𝑜 can be generated by
linear utilities. For 𝐾𝑐𝑜, the intercept term in the half-space
{𝑔 : 𝑝>

𝑖
𝑔 ≥ sup 𝑓 ∈𝐴 𝑝>𝑖 𝑓 } allows us to consider situations

in which a subject judges rewards of gambles having limited
financial resources. The maximum | sup 𝑓 ∈𝐴 𝑝>𝑖 𝑓 | for 𝑝 =

[1, 0] or 𝑝 = [0, 1] provides a measure of the budget of the
subject [16, 6] (for 𝐾𝑝𝑜 this term is equal to∞ and indeed
there are no budget constraints in linear-desirability).

5.2. Chebyshev Utility

The Chebyshev utility [14] is defined as

𝑢𝑖 (𝑔) := max
𝑗=1,...,𝑛

𝑝𝑖 𝑗 (𝑔 𝑗 − 𝑐𝑖 𝑗 ), (15)

with 𝑝𝑖 , 𝑐𝑖 ∈ ℝ𝑛, 𝑝𝑖 ≥ 0,
∑𝑛
𝑗=1 𝑝𝑖 𝑗 = 1. As in the previous

Section 5.1, the support half-space defined by 𝑢𝑖 is then
given by Equation (14). As with Lemma 22, it is immediate
to verify the following.
Lemma 23 Given a set 𝐴 ⊆ L, the closed belief model
𝐾 (𝐴) := ⋂

𝑖∈I (𝑆�𝑖 (𝐴) ∪ L+
0 ), with 𝑆�𝑖 (𝐴) defined by

Equation (14), is consistent if 𝐴 ∩ L< = ∅.

We are going to show with an example that, for finite sets
𝐴, the closed belief model 𝐾𝑜𝑟 (𝐴) is generated by Equation
(14) for all the possible values of 𝑝𝑖 , 𝑐𝑖 . This is a known
result in multi-objective optimisation, see for instance [14].
Note in fact that, the border of 𝐾𝑜𝑟 (𝐴) is the Pareto frontier
defined by 𝐴.

Example 3 Consider again the set of gambles 𝐴 = {𝑔1 =
(0, 0), 𝑔2 = (−1, 2), 𝑔3 = (−0.5, 3), 𝑔4 = (2,−1)}. Figure
3(top-left) shows the closure of 𝐴 computed using 𝐾𝑜𝑟 .
This closure operator is generated by the intersection of
Equation (14) for all the possible 𝑝𝑖 , 𝑐𝑖 as depicted in Figure
3(top-right). The figure only shows the zero level curve of
45 ‘support half-spaces’. Their intersection includes the
non-negative gambles and excludes the negative ones. An
example of a zero-level curve for one of these support
half-spaces is shown in Figure 3(bottom).

Note that, Proposition 15 does not hold for 𝐾𝑜𝑟 if we
consider the support half-spaces (14), because 𝐾𝑜𝑟 (𝐴) are
in general non-convex sets, as depicted in Figure 4.
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Figure 3: 𝐾𝑜𝑟 (𝐴) (left, blue region, including the border)
and generating utilities (right). An example of a
line defining a support half-space (bottom).
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Figure 4: 𝐾𝑜𝑟 (𝐴) (blue region including the border) and
linear utilities.

5.3. 𝐿𝑑
𝑑

Utility

In the previous two cases, we defined utility functions whose
support half-spaces generate known closure operators. We
can instead use directly (10) to define novel closure operators
such as the ones defined via 𝐿𝑑

𝑑
utility functions:

𝑢𝑖 (𝑔) := 𝑝>𝑖 (𝑔 − 𝑐𝑖)𝑑 , (16)

for 𝑑 = 1, 3, 5, . . . , where 𝑝𝑖 ∈ ℝ𝑛 is a probability vector
and 𝑐𝑖 ∈ ℝ𝑛 is a reference point.

Proposition 24 The utility in (16) is non-decreasing and
order-continuous.

Example 4 Consider the same set of gambles 𝐴 as in the
previous examples. We generated 10 linear utilities by
randomly sampling 𝑝𝑖 , 𝑐𝑖 . Figure 5 shows the lines {𝑔 :
𝑝>
𝑖
(𝑔−𝑐𝑖)𝑑 = min 𝑓 ∈𝐴 𝑝>𝑖 ( 𝑓 −𝑐𝑖)𝑑 = sup 𝑓 ∈𝐴 𝑝>𝑖 ( 𝑓 −𝑐𝑖)𝑑}

for 𝑑 = 3 and, respectively, 𝑑 = 31. The intersection of
the support half-spaces defined by these lines includes the
non-negative gambles and excludes the negative ones.

5 0 5

8

6

4

2

0

2

4

6

8

T

F

5 0 5

8

6

4

2

0

2

4

6

8

T

F

Figure 5: Closure operator defined by 𝐿𝑑
𝑑
utilities 𝑑 = 3

(left) and 𝑑 = 31 (right).

6. Utility Defined by Lower (Upper)
Previsions

Any closure operator satisfying dominance defines a utility
function as follows:

𝑢(𝑔) := {sup_ | 𝑔 − _𝟙𝑛 ∈ 𝐾 (𝐴)}.

In the theory of desirable gambles, the above utility function
is usually denoted as 𝑢(𝑔) = 𝑃𝐾 (𝐴) (𝑔) and called the lower-
prevision of 𝑔 defined by 𝐾 (𝐴). If 𝐾 satisfies continuity, it
holds for the support half-space that:{
𝑔 ∈ L | 𝑃𝐾 (𝐴) (𝑔) ≥ inf

𝑓 ∈𝐾 (𝐴)
𝑃𝐾 (𝐴) ( 𝑓 )

}
= 𝐾 (𝐴), (17)

see [15, Prop. 10]. The support half-space (17) generates
𝐾 (𝐴). For finite 𝐴, as show in [6], (17) can be represented by
a piecewise-affine binary classifier for 𝐾𝑝𝑜, 𝐾𝑐𝑜, 𝐾𝑜𝑟 . What
is the relationship between the lower previsions generated
by 𝐾𝑝𝑜, 𝐾𝑐𝑜, 𝐾𝑜𝑟 and the linear and Chebyshev utilities
discussed previously?
The relationship is similar to that between credal sets and

lower previsions in linear-almost desirability. For instance,
if we consider 𝐾𝑜𝑟 , then {𝑔 | 𝑃𝐾 (𝐴) (𝑔) = 0} represents
the Pareto frontier defined by 𝐴 (this line defines the level-
curves of the lower-prevision utility). Each 𝑆�𝑖 (𝐴), which
generates 𝐾 (𝐴) as the intersection of (14), can instead be
thought of as a scalarisation of the Pareto front, that is a
different attempt of the subject to compare the gambles in
𝐾 (𝐴).
As discussed previously, linear-desirability theory is a

negative belief structure, where a negation for a given
gamble 𝑔 coincides with −𝑔 (or −𝑔 − 𝜖𝟙𝑛 with 𝜖 > 0 for
almost desirability). It is immediate to verify the following.

Proposition 25 Let 𝐾 be a closure operator whose closed
belief models are convex. Then −𝑔−𝜖𝟙𝑛 is a quasi-negation
of 𝑔.

A result connected to the above proposition was proven in
[15, Prop.8]. In linear almost-desirability theory, the gamble
−𝑔 − 𝜖𝟙𝑛 is always a quasi-negation of 𝑔. This is not the
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case for GADT (and also GDT for 𝜖 = 0). For instance, the
set L \ L< (which is not convex) is a consistent set for the
GADT defined by 𝐾𝑜𝑟 and includes −𝑔 − 𝜖𝟙𝑛, 𝑔, therefore,
violating the (C-rule). This means that for instance upper
previsions, which in linear-desirability theory are defined
using a negation, and thus a fortiori a quasi-negation, of a
gamble 𝑃(𝑔) = {inf _ | _𝟙𝑛 − 𝑔 ∈ 𝐾 (𝐴)}, are in general
meaningless in GADT (and GDT). Indeed, in GADT/GDT,
it may hold that 𝑃(𝑔) < 𝑃(𝑔) [15, Sec.3].
Away to address this issue would be to only consider closure
operators for which −𝑔 − 𝜖𝟙𝑛 is at least a quasi-negation of
𝑔 (e.g., the convex ones) meaning that, for any gamble 𝑔,
the gambles −𝑔(−𝜖𝟙𝑛), 𝑔 cannot be both in 𝐾 (𝐴) ∈ C.

7. Discussions
General desirability theory for objects. In Section 3, we
defined three properties that the closure operator of a GADT
over a topological ordered vector space must satisfy: (i) T :=
L+
0 ; (ii) F := L<; (iii) 𝐾 satisfies dominance. Conditions
(i) and (iii) are properties of the closure operators whereas
condition (ii) concerns the definability of consistency, and
all three may be motivated by the considered underlying
ordered structure. However, results such as Propositions 15
and 19might remain valid if we disregard part of the specific
structure of the underlying language and drop/change some
(all) of these three properties.11 This is the setting discussed
in [11], where we have simply a closure operator on a set
of objects (alternatives). This setting was originally studied
by [12] for the representation of preferences over menus,
and generalised to convex closure operators, that is closure
operators that satisfy the general anti-exchange property, by
[21]. An alternative approach that aligns with this direction
is [8], which focuses on desirability over objects (‘things’).

Preferences and desirability. In [15], the authors extend
the notion of preference to GDT in two ways: 𝑓 is strictly
preferred to 𝑔 if (i) 𝑃( 𝑓 − 𝑔) > 0; (ii) using a decision
criterion such as 𝛤-maximin (𝑃( 𝑓 ) > 𝑃(𝑔)), 𝛤-maximax
(𝑃( 𝑓 ) > 𝑃(𝑔)), interval dominance (𝑃( 𝑓 ) > 𝑃(𝑔)) etc.
Approach (ii) defines transitive preferences (and so linear)

whenever the upper probability is well-defined (−𝑔 is the
negation of 𝑔). Therefore, it cannot capture nontransitive
preferences. Approach (i) only considers the difference
gamble 𝑓 − 𝑔 and, therefore, cannot distinguish pairs of
gambles 𝑓1, 𝑔1 and 𝑓2, 𝑔2 such that 𝑓1 − 𝑔1 = 𝑓2 − 𝑔2.
For this reason, these two approaches cannot model

context based preferences, where the preference depends
nonlinearly on the pair of gambles to be compared. This

11We can simply remove the dominance (resp. continuity) condition
and we can consider a weak-order/utility which is not order-preserving/non-
decreasing. [5] includes an example where the dominance property is
dropped.

means that nonlinear preference theory and general (non-
linear) desirability theory cannot be derivable from each
other in general. We believe that a consistent way to model
nonlinear preferences is to define a closure operator directly
on pair of gambles – this generalises the approach derived
by [22, 10] to model non-transitive preferences using a
two-argument function over a pair of alternatives (note that,
their function corresponds to a binary classifier). We believe
that general (nonlinear) choice functions should be defined
in the same way, that is directly via a closure operator. This
is indeed one of the applications of the approach recently
proposed by [8].

Robustness and complexity. Inference in linear-almost-
desirability can be formulated as a linear programming
problem. This then determines the computational com-
plexity in strong and epistemic credal networks [13]. Can
suitable choices of closure operators decrease the compu-
tational complexity of these inferences (and provide an
approximation)? In algorithm rationality, for polynomial
gambles, we showed that 𝐾𝑝𝑜 ≤ 𝐾𝑆𝑂𝑆 (for the closed belief
models belonging to the consistent set of 𝐾𝑝𝑜) [4] and used
𝐾𝑆𝑂𝑆 to derive a P-time approximation of inferences in
linear-almost-desirability.
Finally, since GADT is useful to model nonlinear utilities

in economics, it would be interesting to investigate the
application of GADT to dynamical systems [1, 2].

Appendix A. Proofs
Proof of Proposition 3. The proofs of both claims are
exactly the same as for Proposition 1.5.1 (A) and Corollary
1.5.4 in [25].

Proof of Proposition 11. Let 𝐴 ∈ C and assume 𝐴′ :=
c𝛥 (𝐴) ∉ C′. We know that 𝐴′ ∈ S′

𝐾 ′ . Since 𝐾 ◦ d𝛥 is a c-
embedding, 𝐾 (d𝛥 (𝐴′)) = 𝐾 (d𝛥 (c𝛥 (𝐴))) ∉ C. However we
have that d𝛥 (c𝛥 (𝐴)) ⊆ 𝐴, and therefore 𝐾 (d𝛥 (𝐴′)) ⊆ 𝐴,
which means that 𝐴 ∉ C, a contradiction.

Proof of Proposition 15. It is immediate to verify that
dominance (resp. continuity) is preserved under arbitrary
intersection. We conclude by noticing that the second claim
is just a rephrasing of the first one.

Proof of Proposition 19. Given a weak-order � and a set
𝐴 ∈ S, 𝑠� (𝐴) is an equivalence class: 𝑓 ≈𝐶 𝑔, for every
𝑓 , 𝑔 ∈ 𝑠� (𝐴). Given this, from now on, depending on the
context, we sometimes treat it as a set or as a ‘prototypical’
element. That is, when we write 𝑓 � 𝑠� (𝐴), what we
‘really’ mean is that 𝑓 � 𝑔, for every 𝑔 ∈ 𝑠� (𝐴).
We adapt the proof in [11, Prop. 2]. The main differences

are due to the different definitions (7) and (8). First, we prove
that if 𝐾 is a closure operator which satisfies dominance
(and continuity), then there exists a set of order-preserving
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(and order-continuous) weak-orders that generate it. Let 𝐶
be a closed belief model in S𝐾 , we can associate to 𝐶 an
order-preserving (and order-continuous) weak-order �𝐶 as
follows:

𝑓 ≈𝐶 𝑔 if 𝑓 , 𝑔 ∈ 𝐶,
𝑓 ≈𝐶 𝑔 if 𝑓 , 𝑔 ∉ 𝐶,

𝑓 �𝐶 𝑔 if 𝑓 ∈ 𝐶, 𝑔 ∉ 𝐶.

(18)

Obviously �𝐶 is transitive and total. It can be verified
that it is also order preserving. In fact, let 𝑓 ≥ 𝑔. Assume
𝑓 ∉ 𝐶. Since 𝐾 satisfies dominance, it holds that 𝑔 ∉ 𝐶,
meaning that by definition 𝑓 ≈𝐶 𝑔 and thus 𝑓 �𝐶 𝑔.
Assume 𝑓 ∈ 𝐶. If 𝑔 ∈ 𝐶, then as before 𝑓 �𝐶 𝑔. If 𝑔 ∉ 𝐶,
then by definition 𝑓 �𝐶 𝑔 and thus 𝑓 �𝐶 𝑔. Similarly one
can verify continuity. Assume first 𝑓 + 𝜖𝟙𝑛 ≈𝐶 𝑔, with
𝑓 + 𝜖𝟙𝑛, 𝑔 ∈ 𝐶, for every 𝜖 > 0. Since 𝐾 is continuous,
we have that 𝑓 ∈ 𝐶 and therefore 𝑓 ≈𝐶 𝑔. Consider now
the case when 𝑓 + 𝜖𝟙𝑛 �𝐶 𝑔, with 𝑓 + 𝜖𝟙𝑛 ∈ 𝐶 for every
𝜖 > 0, but 𝑔 ∉ 𝐶. Again, since 𝐾 is continuous, we have that
𝑓 ∈ 𝐶 and therefore 𝑓 �𝐶 𝑔. Finally, assume 𝑓 + 𝜖𝟙𝑛 ≈𝐶 𝑔,
with 𝑓 + 𝜖𝟙𝑛, 𝑔 ∉ 𝐶, for every 𝜖 > 0. Suppose 𝑓 ∈ 𝐶.
Since 𝑓 + 𝜖𝟙𝑛 > 𝑓 , for 𝜖 > 0 and 𝐾 satisfies dominance,
𝑓 + 𝜖𝟙𝑛 ∈ 𝐶. A contradiction. Therefore 𝑓 ∉ 𝐶 and 𝑓 ≈𝐶 𝑔.
Given 𝐴 ∈ S, we write 𝑇�𝐶 (𝐴) := 𝑆�𝐶 (𝐴) ∪ T. Then,

notice that for every 𝐴 ∈ S we have that

𝑇�𝐶 (𝐴) =


T if 𝐴 = ∅
𝐶 if ∅ ( 𝐴 ⊆ 𝐶
L otherwise.

(19)

By definition 𝑇�𝐶 (𝐴) ⊇ T, for every 𝐴 ∈ S. Moreover,
whenever 𝐴 = ∅ it holds that 𝐾 (𝐴) = T = 𝑇�𝐶 (𝐴). Assume
∅ ( 𝐴 ⊆ 𝐶. Then 𝐾 (𝐴) ⊆ 𝐾 (𝐶) = 𝐶, and, therefore,
𝐾 (𝐴) ⊆ 𝑇�𝐶 (𝐴) = 𝐶. Finally, assuming 𝐴 * 𝐶 yields
𝐾 (𝐴) ⊆ 𝑇�𝐶 (𝐴) = L.
Therefore, we have proven that 𝐾 (𝐴) ⊆ ⋂

𝐶∈S𝐾 𝑇≥𝐶 (𝐴),
where the index set 𝐼 is the set of closed belief models
of 𝐾. Let �𝐾 (𝐴) be the weak-order defined by the closed
belief model 𝐾 (𝐴). Since 𝐴 ⊆ 𝐾 (𝐴) from (19) we de-
rive that 𝐾�𝐾 (𝐴) (𝐴) = 𝐾 (𝐴). Thus, ⋂𝐶∈S𝐾 𝐾≥𝐶 (𝐴) ⊆
𝐾≥𝐾 (𝐴) (𝐴) = 𝐾 (𝐴). Therefore, 𝐾 (𝐴) = ⋂

𝐶∈S𝐾 𝐾≥𝐶 (𝐴).
Let {�𝑖 | 𝑖 ∈ I} be a family of order-preserving (resp.

order-continuous) weak-orders with 𝑋𝑖 satisfying domi-
nance for each 𝑖 ∈ I (and resp. 𝑋𝑖 is continuous). To
prove (10), we have to show that ^, defined as ^(𝐴) :=⋂
𝑖∈I (𝑆�𝑖 (𝐴) ∪ 𝑋𝑖) for 𝐴 ∈ S, is a closure operator. As
before, given 𝑖 ∈ I and 𝐴 ∈ S, we write 𝑇�𝑖 (𝐴) :=
𝑆�𝑖 (𝐴) ∪ 𝑋𝑖 . By definition, for every 𝐴 and index 𝑖, we
have that 𝐴 ⊆ 𝑇�𝑖 (𝐴). Therefore, ^ is extensive. Let 𝐴 ⊆ 𝐵.
If 𝐴 = ∅, then 𝑇�𝑖 (𝐴) = 𝑋𝑖 ⊆ 𝑇�𝑖 (𝐵). Hence, let 𝐴 ≠ ∅.
Assume that 𝑠�𝑖 (𝐵) ≠ ∅. Then 𝑠�𝑖 (𝐴) ≠ ∅ and it holds
that 𝑠�𝑖 (𝐴) �𝑖 𝑠�𝑖 (𝐵), meaning that 𝑇�𝑖 (𝐴) ⊆ 𝑇�𝑖 (𝐵).
Assume that 𝑠�𝑖 (𝐵) = ∅. This means that 𝑇�𝑖 (𝐵) = L and
𝑇�𝑖 (𝐴) ⊆ 𝑇�𝑖 (𝐵). Therefore, ^ is monotonic.

In order to prove idempotence we have to show that
^(^(𝐴)) ⊆ ^(𝐴) (because we already know that ^ is
monotonic). Note that if 𝑔 ∈ ^(^(𝐴)), by definition of
^, then 𝑔 ∈ 𝑇�𝑖 (^(𝐴)) for every 𝑖. Therefore, 𝑔 �𝑖 𝑓 for all
𝑓 �𝑖 𝑠�𝑖 (^(𝐴)), for 𝑖 ∈ I.
Assume that 𝑓 ∈ 𝑠�𝑖 (^(𝐴)), this implies that 𝑓 ∈

^(𝐴) = ⋂
𝑖∈I 𝑇�𝑖 (𝐴) ⊆ 𝑇�𝑖 (𝐴). Therefore, since 𝑔 �𝑖 𝑓

and 𝑓 ∈ 𝑇�𝑖 (𝐴), then we have that 𝑔 ∈ 𝑇�𝑖 (𝐴). Hence,
𝑔 ∈ ⋂

𝑖∈I 𝑇�𝑖 (𝐴) = ^(𝐴).
We verify that ^ satisfies dominance. To do so, since it
is immediate to verify that dominance is preserved under
arbitrary intersections, it is enough to check that for every 𝑖
and every 𝐴 ⊂ L, whenever 𝑔 ∈ 𝑇�𝑖 (𝐴) and 𝑓 ≥ 𝑔, then
𝑓 ∈ 𝑇�𝑖 (𝐴). Hence, let us fix an index 𝑖 and a set 𝐴. Remem-
ber that we assume that 𝑋𝑖 satisfies dominance and is contin-
uous. Let 𝑓 ∈ L such that 𝑓 ≥ 𝑔, for some 𝑔 ∈ 𝑇�𝑖 (𝐴). By
order-preservation, 𝑓 �𝑖 𝑔. We have some cases to consider.
Assume 𝑔 ∈ 𝑋𝑖 , then since 𝑋𝑖 satisfies dominance it holds
that 𝑓 ∈ 𝑋𝑖 . Let us assume now that 𝑔 ∈ 𝑆�𝑖 (𝐴). First notice
that whenever 𝑠�𝑖 (𝐴) = ∅, it holds that 𝑓 ∈ L = 𝑆�𝑖 (𝐴).
Assume 𝑠�𝑖 (𝐴) ≠ ∅. Since 𝑔 ∈ 𝑆�𝑖 (𝐴), it holds that
𝑔 �𝑖 𝑠�𝑖 (𝐴). Hence 𝑓 �𝑖 𝑔 �𝑖 𝑠�𝑖 (𝐴), and therefore
𝑓 ∈ 𝑆�𝑖 (𝐴). Finally, since each �𝑖 is order-continuous, ^
satisfies continuity.

Proof of Proposition 21. Let 𝑢 be an a non-decreasing
order-continuous utility function, define the order 𝑓 �𝑢 𝑔
if 𝑢( 𝑓 ) ≥ 𝑢(𝑔), then �𝑢 is clearly an order-preserving
continuous weak order. For the other direction, let � be an
order-preserving weak-order and let 𝐷 = {𝛼𝟙𝑛 | 𝛼 ∈ ℝ}
(the diagonal of the positive and negative orthant in ℝ𝑛).
Define 𝑈𝑔 = {𝑑 ∈ 𝐷 | 𝑑 � 𝑔} and 𝐿𝑔 = {𝑑 ∈ 𝐷 | 𝑔 � 𝑑}.
Note that we have 𝐿𝑔 ∪𝑈𝑔 = 𝐷, because � is complete.
Since � is order-preserving, then 𝑈𝑔, 𝐿𝑔 ≠ ∅. Moreover,
since 𝐷 is connected, it must exist 𝛼𝑔 ∈ ℝ such that
𝛼𝑔𝟙𝑛 ∈ 𝑈𝑔 ∩ 𝐿𝑔, that is 𝛼𝑔𝟙𝑛 ≡ 𝑔. It is easy to see that
if we define 𝑢(𝑔) = 𝑢(𝛼𝑔𝟙𝑛) = 𝛼𝑔 then 𝑢 represents �.
Indeed, if 𝑓 � 𝑔 if and only if 𝛼 𝑓 𝟙𝑛 ∼ 𝑓 � 𝑔 ∼ 𝛼𝑔𝟙𝑛 and
𝑢( 𝑓 ) = 𝛼 𝑓 ≥ 𝛼𝑔 = 𝑢(𝑔). Moreover, it is easy to prove that
if � is also order-continuous then 𝑢 is order continuous
because 𝛼𝑔𝟙𝑛 + 𝜖𝟙𝑛 ≥ 𝛼𝑔𝟙𝑛.

Proof of Proposition 25. Since any closed belief model
𝐶 is convex, if 𝑔,−𝑔 − 𝜖𝟙𝑛 are both in it, then for 𝑤 = 0.5
we have that 𝑤𝑔 + (1 − 𝑤) (−𝑔 − 𝜖𝟙𝑛) = −0.5𝜖𝟙𝑛 ∈ L<

showing that 𝐴 is not consistent.
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