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Abstract

Causal analysis may be affected by selection bias, which is defined as the systematic ex-
clusion of data from a certain subpopulation. Previous work in this area focused on the
derivation of identifiability conditions. We propose instead a first algorithm to address both
identifiable and unidentifiable queries. We prove that, in spite of the missingness induced
by the selection bias, the likelihood of the available data is unimodal. This enables us
to use the causal expectation-maximisation scheme to obtain the values of causal queries
in the identifiable case, and to compute bounds otherwise. Experiments demonstrate the
approach to be practically viable. Theoretical convergence characterisations are provided.

Keywords: Causal analysis; structural causal models; expectation maximisation; coun-
terfactuals; unidentifiability.

1. Introduction

Table 1 reports the results of a drug study where gender is taken into account. The study
involves 700 patients, but the outcomes for treated females and untreated males (grey
counts in the table) are absent because of an issue in the communication protocol. This
is an example of selection bias: a subpopulation is systematically missing from the sample
and this makes any direct data analysis unreliable. (In what follows, we call these data just
‘biased’ for brevity.)

Such situations have been largely studied in the literature (see, e.g., Winship and
Mare (1992); Zaffalon and Miranda (2009)), but relatively little work has been devoted
to analysing the question from a causal perspective. After the pioneering work of Cooper
(1995), the problem was clearly cast within the framework of structural causal models by
Pearl (2012). This eventually led to sound and complete graphical and algorithmic condi-
tions for recovering probabilities from biased data (Bareinboim and Pearl, 2012; Bareinboim
and Tian, 2015). These contributions can be understood as an extension to biased data of
Pearl’s do-calculus, which reduces causal to observational queries in the identifiable cases.
Yet, when the focus is on counterfactuals, most inferences are unidentifiable even without
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selection bias, and the problem of bounding such queries under selection bias is basically
unexplored.

The goal of this paper is to fill this gap by providing numerical bounds to unidentifiable
counterfactual queries under selection bias. To this end, we start from the recently pro-
posed procedure of Zaffalon et al. (2021) designed to compute those bounds by an iterated,
so-called, causal EM scheme. That approach exploits the unimodality of the marginal like-
lihood of the (unbiased) data. Here, we prove that, in spite of the additional missingness
induced by the selection of data, the marginal likelihood remains unimodal. This allows
us to adopt the causal EM scheme to compute the bounds of unidentifiable queries under
selection bias. To the best of our knowledge this is the first technique proposed for such a
task.

The paper is organised as follows. In Sect. 2 we define the basic notation and the
necessary background material. The causal EM scheme is reviewed in Sect. 3, where an
extended characterisation of convergence is provided. Our approach is discussed in Sect. 4.
Experiments are reported in Sect. 5 and conclusions in Sect. 6. Proofs are gathered in the
appendix.

Treatment (X) Recovery (Y) Gender (Z) #

0 0 0
1 0 0 41
0 1 0
1 1 0 313
0 0 1 107
1 0 1
0 1 1 13
1 1 1

Table 1: Data from an observational study involving three Boolean variables (Mueller et al.,
2022). True states correspond to treated (X)), recovered (Y') and female (Z).

2. Structural Causal Models

We assume the reader to have some familiarity with probability theory and structural causal
models (SCMs). Let us focus on models with categorical variables. Variable V' takes its
values from a finite set Qy with v denoting its generic value. P(V') is a probability mass
function (PMF) over V. Notation P(V[V') := {P(V[v')}ycq,, is used instead for a condi-
tional probability table (CPTs), i.e., a collection of conditional PMF's over a variable indexed
by the states of another one. We define an SCM M by a directed graph G whose nodes
are in a one-to-one correspondence with both its endogenous variables X := (X1,...,X,)
and the exogenous ones U := (Uy,...,U,,). We focus on semi-Markovian models, i.e., G is
assumed to be acyclic. The exogenous variables correspond to the root nodes of G. A PMF
P(U) is specified for each U € U. A structural equation (SE) fx is instead provided for
each X € X; thisis amap fx : Qpa, — Qx, where Pay are the parents (i.e., the immediate
predecessors) of X according to G. To have all the states of X possibly realised, we only
consider SEs corresponding to surjective maps. We might also require a joint surjectivity,
meaning that any * € x can be realised for at least a uw € Q. SCM M induces the
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following joint PMF:

P(z,u) = [] Plalpax) [] P(w), (1)

XeX veUu

for each ® € Qx and u € Qp, where the values of the CPTs associated with each X
are degenerate, i.e., P(z[pax) = 05 fy(pay)- Lhese are fully specified, or just full, SCMs
(FSCMs). If the exogenous PMFs are not provided, we say instead that M is a partially
specified (or partial, PSCMs). In that case, endogenous information is assumed to be
available in the form of a dataset D of observations of X. Given X € X and x € Qx, an
intervention, denoted as do(X = z), describes the action of setting X equal to x € Qx.
This corresponds to a surgery involving the replacement of fx with a constant map X = «z,
the consequent removal from G of the arcs pointing to X, and letting X = x be the evidence.

Fig. 1 represents the graph of the SCM M for the study with outcomes in Tab. 1.
The model is Markovian, i.e., each endogenous variable has a single exogenous parent. We
set conservative SEs (Zaffalon et al., 2020), i.e., the exogenous states are indexing all the
possible (deterministic) functions from the endogenous parents of an endogenous variable to
such a variable (see also Zhang et al. (2022) for an extension of this concept). Accordingly,
we have |QU|: 4, |Qw|: 2, |Qv|: 16.

.,,,
o -- ---o

Figure 1: A Markovian SCM.

Causal queries on SCMs involve endogenous variables. Following Pearl’s causal hierar-
chy, we distinguish three kinds of queries. Observational queries, such as P(X = 1|Y = 1),
involving the evaluation of marginal or posterior queries for some endogenous variables
given an observation of some other ones; interventional queries such as P(Y = 1|do(X = 1)),
where the causal effect of an intervention is considered; and counterfactual queries where the
same variable is intervened in a state and observed (or intervened) in another one. Classical
counterfactual queries for models with Boolean endogenous variables are the probability of
necessity PN := P(Yx—o = 0|X = 1,Y = 1), sufficiency PS := P(Yx—-; =1|X =0,Y =0)
and necessity and sufficiency PNS := P(Yx—o = 0, Yx—1 = 1). Subscripts are used to denote
interventions related to counterfactuals and, in those queries, G is so that X topologically
precedes Y. E.g., in medical applications PNS can describe the fraction of the population
that recovers if cured and does not otherwise. Observational queries can be computed by
standard Bayesian network inference tools. In FSCMs, interventional queries can similarly
be addressed after standard surgery, while in PSCMs, techniques such as do-calculus al-
low for a reduction to observational queries in specific cases. Counterfactual queries in
FSCMs typically require the application of Bayesian network inference to auxiliary struc-
tures like twin networks or counterfactual graphs (Shipster and Pearl, 2007). The problem
of addressing counterfactual queries in PSCMs is discussed in the next section.
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3. Addressing Partial Identifiability (without Selection Bias)

As we have remarked already, the general problem of computing counterfactuals can be
reduced to standard Bayesian network inference in FSCMs. The same cannot be done with
PSCMs: tools like do-calculus can reduce the causal query to an observational one only in
the identifiable case. For unidentifiable queries, one needs to compute probability bounds.

As an example consider the PNS for the SCM in Fig. 1 discussed in Sect. 2 with the
endogenous data in Tab. 1. This is an unidentifiable query, whose bounds 0 < PNS <
0.01458 have been obtained by Mueller et al. (2022) with some ad-hoc derivation; an exact
characterisation of these bounds has been provided by Zaffalon et al. (2020).

More generally speaking, various approaches have recently been proposed to approx-
imate unidentifiable bounds (see, e.g., Zaffalon et al. (2021); Zhang et al. (2022)). Yet,
there appears to be no viable technique to compute general counterfactual inference under
selection bias. This will be the topic of the next section, which will show how the EMCC of
Zaffalon et al. (2021) has a natural extension to problems of selection bias. Before that, we
recall the basics of EMCC (Sect. 3.1) and derive improved credible intervals for it (Sect. 3.2).

3.1 EMCC (Zaffalon et al., 2021)

Given a PSCM and a dataset of (unbiased) endogenous observations, Alg. 1 yields an
FSCM compatible with the PSCM (provided that there is one): such an FSCM is obtained
by adding PMF's to the exogenous variables of the PSCM in such a way that the resulting
model can generate the distribution of the available data.

In practice, given an initialisation { Py(U) }yeu, the EM algorithm consists in regarding
the posterior probability Py(u|x) as a pseudo-count for (u,x), for each € D, u € Qy and

U €U (E-step). A new estimate Py(u) := ) _.p PO‘%F) is consequently obtained (M-step).

The scheme is iterated until convergence. Subroutine initialisation (line 1) provides
a random initialisation of the exogenous PMFs, € is the threshold to evaluate parameter
convergence w.r.t. a metric d (line 3). The FSCM returned by Alg. 1 can indeed be proved
compatible with the PSCM in input.

Computing a causal query in this FSCM gives the exact value of the query in such an
identifiable case, which then corresponds to a point of the interval for the unidentifiable
case represented by the PSCM (Zaffalon et al., 2021). An inner approximation of such an
interval is eventually achieved by iterating the EM scheme above with variable initialisation
values. This corresponds to sampling the space of FSCMs compatible with the given PSCM.

Algorithm 1 EMCC: given SCM M and dataset D returns {P(U)}yeu.
L {Py(U)}yeu < initialisation(M)
2:t+0
3: while d[{-Pt-i-l(U)}UEUa {Pt(U)}UEU] > e do
4:  for U € U do
5: Piy1(U) « [DI7'Yep Pi(U|2)
6
7
8

t+—t+1
end for
: end while
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3.2 A New Credible Interval for Unidentifiable Inference

A characterisation of the EMCC accuracy in terms of credible intervals has been provided
by Zaffalon et al. (2021). Let p := {m;}}_, denote the output of k¥ EMCC runs, then [a, b]
is the interval induced by p, i.e., a := min®_, 7; and b := max?_; ;. If [a*, b*] are the exact
probability bounds for a causal query, by construction, we have a* < a < b < b*. The
following equality holds:

L+ (1+26)27F —2(14¢)27F

P(a—sLSa*gb*Sb—i—sL‘p) = (0—LF 93— (h=9)(1 = L)IF2° (2)

where L := (b—a) and e can be regarded as the relative error at each extreme of the interval
[a,b]. Eq. (2) is derived by assuming the k points in p to be uniformly distributed over the
exact interval [a*, b*]. Here we obtain a new result based on a weaker assumption.

Theorem 1 Assume that the EMCC runs in p are distributed as a four parameter beta
distribution, i.e., m; ~ Beta(a, 8,a*,b%), for each i =1,... k. The following equality holds:

52 18/2
/ / P(x,y; L,a, 3, k) dzdy
0 0

a+(1-b) prat+(1-b)—y
JR P, s Lo, 6, k) da dy
0 0

P<a—5L§a*§b*§b+8L‘p>: ,(3)

where P(x,y; L, o, B, k) is equal to

k
(L+x)a2Fl(av 1-— ﬂ,Oé + ]., Lﬁ:;—x‘,—y) — .’L‘azFl(ay 1-— /B,O[ + 17 #W) (4)
a(L +z+y)*B(a, p) ’

oFy is the Gaussian (ordinary) hypergeometric function, B(ca, B) is the beta function eval-
uated at o, 8 > 0, and 6 := 2eL is the absolute allowed error, with § € (0, L).

The above theorem is a proper extension of the original EMCC characterisation, as proved
by the following result.

Corollary 2 If the EMCC runs in {m;}%_, are uniformly distributed in [a*,b*], i.e., for
each i =1,... k, m; ~ Beta(1,1,a*,b*), then we recover Eq. (2).

After any k EMCC runs, we can compute a and b and, given a relative error € we regard
as acceptable, obtain the probability in Eq. (4) by estimating the values of the parameters
«a and B with a maximum likelihood procedure over the k values collected in p. Note that,
since a*, b* are unknown we also need a way to choose the range of the Beta distribution.
Here we proceed by taking Beta(«, 3,a — eL,b+ ¢L). If the corresponding probability is
sufficiently high, we stop iterating EMCC, otherwise we keep iterating the procedure to
collect new points for p and achieve greater probabilities.

A specialisation of the bound in Eq. (2) can easily be obtained to decide if the query is
identifiable (i.e., a* = b*), when we obtain the same value of 7; for all i = 1,... k.

Corollary 3 Ifa =0, i.e., all k runs in p are equal, then P(a* = b*|p) = 1+ 9/3% —8/2F.

This implies that nine equal runs make identifiability probable with 99% confidence.
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4. Addressing Partial Identifiability under Selection Bias

To model the effect of selection bias, we define a selector S, i.e., a Boolean variable that is
true for selected states of X and false otherwise. We consider deterministic selectors, i.e.,

= ¢g(X) with g : Qx — {0,1}. E.g., the selector for the biased data in Tab. 1 is an
exclusive disjunction between treatment and gender, i.e., S := X ® Z. S can be embedded
in SCM M as a common child of the related endogenous variables, with g being the SE of
S, thus acting as an additional endogenous variable with endogenous parents only.

Given a dataset D of observations of X, S partitions D in Dy where S = 0 and the
endogenous observations are missing, and D; where S = 1 and the observations remain as
in D. We use notation Dg := Dy U D; and, for cardinalities, dy := |Dy|, dy := |D;1|, with
do + di = d := |D|= |Dg|. Note Dy contains dy identical records. An example is in Fig. 2.

Z X Y S #
o 0 0 o =2 W U V Z X Y S #
0 0 1 0 114 o 8 } 2 } 34113
o 1 o 1 4
D o 1 1 1 313 *or o 1 0 0 1 107 Dy
Lo o 1107 T oo o1t 0 1t 13
1 0 1 1 13
1 1 0 0 109 W UV Z X Y 5 # Dy
Figure 2: Selecting the data in Tab. 1 with S := X & Z.
The marginal log-likelihood LL of Dg according to M is:
LL :=log P(Ds) = log P(Dy) + log P(D;) = dylog P(S + ) logP(x (5)
xeD

As Eq. (5) is not the likelihood of a dataset of complete endogenous observations for an
SCM, the characterisation provided by Zaffalon et al. (2021) to justify the application of
EMCC does not directly hold.

Yet, Eq. (5) contains the sum of two log-likelihoods for disjoint datasets. This leads us to
define a simple upper bound LL* for LL by using maximum-likelihood estimates separately
for Dy and Dy, i.e.,

= dylog P(S + ) log Pz (6)

x€D

where P(S = 0) := dy/d and, for each & € Dy, P(x) is obtained from the counts in D; by
means of the endogenous factorisation induced by the c-components of M as in Eqs. (2)
and (6) of Zaffalon et al. (2021). As an explicit function of the exogenous PMFs, the
log-likelihood of Dg is instead:

LL{P(U)}veu] ==dolog > > bpwyaP@)+ > log Y dywaP), (7)

CBEQ}S;ZO uweQu xeDy ueQy

where Q()?:O) =g (S =0)and f: Qu — Qx is the joint SE we build from {fx}xex-
Remember that we should only be after FSCMs that are compatible with the given PSCM
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(also called M -compatible), as mentioned in Sect. 3.1. In the present case, M-compatibility
corresponds to imposing the following constraints:

Y. D SweP) =P(5=0), (8)

weﬂizo u€ey

and, for each € Dy,
Z Of(u)aP(u) = P(x). 9)
ueQy
These compatibility conditions should be self-explanatory in that the models we look for
should be capable of generating the distribution of the data, besides being an extension
of the given PSCM. It can anyway be shown that they are just the form that the notion
of M-compatibility, given in Zaffalon et al. (2021), takes when it is applied to the present
context (we omit the proof).
Checking such a compatibility is equivalent to a simple evaluation of the function in
Eq. (7) as stated by the following result.

Theorem 4 As a function of {P(U)}uecu, the log-likelihood in Eq. (7) has no local mazima
and a global maximum equal to the value LL* in Eq. (6). Such a mazimum is achieved if
and only if the M -compatibility constraints in Egs. (8) and (9) are satisfied.

As a consequence of Thm. 4, the application of Alg. 1 to PSCM M and data Dg, returns
only FSCMs whose log-likelihood takes its global maximum LL* because of the EM proper-
ties and hence satisfies the compatibility constraints. Causal queries computed with those
FSCMs are consequently inner points of the exact interval for the partially identifiable
query. The more points the better the approximation.

Note that as the data in Dy are dy instances of the same observation S = 0, when coping
with selection bias, line 5 of Alg. 1 rewrites as:

doP(U|S =0) + > pep, Pr(Ulx)
(do + d1) '

As a demonstrative example, Fig. 3 displays the outputs of EMCC for the SCM M
described in Sect. 2 in the presence of a selection bias on the dataset in Tab. 1. Different
selection mechanisms, including the one discussed in Fig. 2 that corresponds to P(S = 1) =
0.68, are considered. The size of the PNS interval for the unselected case P(S = 1) = 1, i.e.,
[0,0.1458], rapidly increases if fewer data are selected. We also observe that: (i) with no
data at all, the PNS interval is very large [0,0.9564] but not vacuous (this means that SEs
alone provide some information about the interval); (ii) if records are removed incrementally,
the bounds increase in a monotone way (these empirical facts have been also observed in all
the experiments considered in Sect. 5); (iii) the intervals are quite large as a consequence
of the simple graphical structure considered.

Note that in this limit, we are basically ignoring the data in D;. If this is the case,
the log-likelihood is proportional to dy and this implies that EMCC gives the same results
irrespectively of the size of the (completely missing) dataset. Let us remark, with reference
to Eq. (10), that the execution of EMCC under selection bias requires the cardinality dy of
Dy. Yet, as the data in Dy are unavailable by definition, dyp might be unavailable too. If

Pt+1(U) <

(10)
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Figure 3: PNS bounds for different selection levels (x-axis). Exact bounds (grey) induced
by r = 30 EMCC runs and points associated with each run (black) are depicted.

this is the case, it is in principle possible to estimate dy from P(S = 0) as do/dy ~ P(S =
0)/P(S = 1). If also P(S = 0) is not available, a conservative approach may consist in
using an upper bound for P(S = 0). If this is not possible either, one can still use the
(very) conservative approach of taking the limit P(S = 0) — 1.

Finally, notice that as in principle S might be a common child of all the variables in
X, implementing SE ¢g as a CPT might lead to an exponential blow-up, this making the
inference of P(U|S = 0) required by EMCC intractable. In practice, as in Bareinboim and
Pearl (2012) or in our example, the selector might only depend on a subset of X of bounded
cardinality. This limit might be bypassed by the circuital approach of Darwiche (2021).

5. Experiments

Benchmark Generation We assume the endogenous variables of our synthetic SCMs to
be Boolean. We randomly generate a directed acyclic graph over X with maximum indegree
smaller than or equal to n,. This graph is augmented with an exogenous parent for each
endogenous node to obtain a Markovian model. The model might become non-Markovian
by merging together ¢ (distinct) random pairs of exogenous nodes. In these models we
specify conservative SEs (Zaffalon et al., 2021, Sect. 2), thus obtaining a PSCM for each
graph. For each U € U, we sample a PMF P(U) to obtain an FSCM M’. Model M’ is used
to sample d complete observations of both X and U. We denote by D the corresponding
dataset of endogenous observations. Only M-compatible datasets are considered (Zaffalon
et al., 2021, Sect. 5). An iterative procedure is applied to the exogenous states that are
removed until it is possible to do that while preserving such a compatibility. Given dataset
D and the PSCM M, we consider three endogenous variables X,Y, Z so that X is a root
node in G, Y is a leaf and Z is an internal node. P(S = 1]|X,Y, Z) is set to one on some of
the eight states of (X,Y, Z) and zero elsewhere. We estimate P(S = 1) from the instances
of D that are selected by that particular mechanism. Our benchmark includes 115 SCMs
generated by the above procedure with n, = 3, |X|e {4,5,6,7,8}, |D|= 1000 and, for
non-Markovian models, ¢ € {2,...,|X|/2}.
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Results The proposed adaptation of EMCC to cope with selection bias has been im-
plemented within the CREDICI library (Cabanas et al., 2020) and the code to reproduce
models and experiments is freely available.! Given SCM M, the biased dataset D;, and
the number dj of unavailable records, we compute the PNSs {7;}/_; in the twin networks
induced by the FSCMs returned by » EMCC runs. This induces interval [a,,b,.], where
a, := min]_; m; and b, := max]_, m;. The ground-truth interval [a*, *] for the same setup
is obtained as the limit of a large (namely 7max = 80) number or runs (cf. Thm. 1). For the
unbiased case, we use the method in Zaffalon et al. (2020) to evaluate the interval [a*, b*].
The quality of the (inner) approximation of [a*, b*] provided by [a,, b,] can be described by
the root mean square error of the difference between the upper bounds and that involving
the lower bounds. We normalised that by the size b* — a* of the true interval in order to
properly compare results for intervals of different sizes. Such a relative RMSE, i.e.,

RRMSE, = \/ (ar = ;’(22 jc(bb); o) (11)

is computed for each experiment. Boxplots are finally used to visualise the aggregated
results. Fig. 4(a) depicts such errors for increasing numbers of runs, separately for Marko-
vian (360 experiments) and non-Markovian (306 experiments) models. As expected, more
EMCC runs give smaller errors and this happens both for Markovian and non-Markovian
models. With few runs (r = 30) we obtain mean relative errors smaller than 8% for Marko-
vian models and 5% for non-Markovian ones in an average time of 7.6 seconds per run. Such
a good accuracy is consistent with the results in Sect. 3.2 and the probabilities returned by
Eq. (3) for different values of € appear to be consistent with the relative RMSEs we get. The
difference between Markovian and non-Markovian models appears to be due to the fact that
nu = [[yey|Qu| is smaller for non-Markovian cases. Those differences are not detected
when comparing models w.r.t. different treewidth or interval sizes. In Fig. 4(b) we compare
the EMCC intervals (r = 30) with the intervals obtained with the corresponding unbiased
data. The same metric as in Eq. (11) is considered, with the interval under selection bias
playing the role of the ground truth, and results grouped by different ranges for P(S = 1).
As expected higher selection-bias levels make the intervals larger, and the behaviour seems
to be monotone.

6. Conclusions

We have proposed a first algorithm to numerically bound counterfactual queries under
selection bias. The algorithm is approximate, being based on the EM, and yields consistently
accurate results for a relatively low number of EM runs. As future work, we would like to
extend the support to non-deterministic selection mechanisms, while using tractable circuits
for the modelling of the deterministic case.

1. https://github.com/IDSIA-papers/2022-PGM-selection.
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Figure 4: (a) EMCC accuracy for different numbers of runs. (b) Difference between the
bounds of biased and unbiased data w.r.t. P(S = 1) (x-axis).

Proofs

Proof [of Thm. 1] Consider the Lh.s. of Eq. (3). The corresponding joint density is:

o .8
P <Aa < g,Ab < g,p> = 7/2 /2 P(p|lAy =z, Ap = y)dady, (12)
o Jo
where a uniform prior is considered and A, := (a — a*) and Ay := (b* —b). As m ~

Beta(a, 8,a*,b*), P(m; € [a,b]|Aq =, Ay = y) is P(m; € [a,b]|a* =a — 2z,b* =b+y) and:

b a—1 B—1
(p—a+=z)*""(b+y—p)
L e st 1)
Then we have P(p|A, = x, Ay = y) equal to:
(b —a+ m)QQFl(aa 1-8,a+1, bi;ij;iy) - $a2F1(a7 1-8,a+1, m) g 14
alb—at ety B ) 4
The joint P(p, A, < g, Ay < g) can thus be obtained by the following integral:
3/23/2( (b—a+2) "2 Fi (0,1 — B+ 1, 5252955 ) — 2% P (a1 - Ba+ 1, =2) | -
o) ( ab—atz+y) B, B) dedy. - (19)
The marginal distribution for p can also be obtained by solving the following integral:
a+(1-b) pa+(1-b)—y
P = [ P(p|Aa = 2, Ay = y)dirdy.
0 0
The Lh.s. of Eq. (3) is just the ratio between P(p, A, < 3, A, < $) and P(p). [ |
Proof [of Cor. 2] Fora = =1, oF(a,1 — B, + 1,u) = 1, B(a, B) = 1 and hence:
b—a+z—az\" b—a F
PplAg =2, Np=y)=| —— | =| —— ] . 16
(plAa =, 80 =) <b—a+:1:—|—y> <b—a+m+y> (16)
Eq. (2) is finally obtained by computing the integrals as in Zaffalon et al. (2021). [ |

10
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Proof [of Cor. 3] If a* = b* then we have that a — b, i.e., L — 0. Moreover we assume
here that § — 0 and ¢ — 1. We assume that the distribution of the outputs of the EMCC
iterations is uniformly distributed in [a*,b*]. P(a = b|p) is obtained from Eq. (2) in the
limit L — 0 and € — 1 and the thesis follows trivially. |

Proof [of Thm. 4] Let us first define a variable Y := h(X) where:

h(z) ::{ @ ifg(@) =1, (17)

* otherwise.

The states of Y are those in Qy = Q571 U {x} with Q5! := ¢g71(S = 1). As X = f(U),

= |(U) with [ := hof. This allows to obtaln from M a PSCM M’ with the same exogenous
variables, and Y as the only endogenous with SE is [. Note that [ satisfies surjectivity and
M’ is therefore a PSCM s.t. Y is a common child of all the nodes associated with the
variables in U. We similarly obtain from Dg a dataset D’ of d complete observations of
Y as follows: for each (missing) observation of X in Dy (whose number is dp) we add an
observation Y = * to D’ (remember that * is a proper state of Y'); while the observations
of X in D are directly added to D', where they are regarded as observations of Y instead
of X. Denote the latter set as D}. The marginal log-likelihood of D’ for M is:

=log P(D') = > P(y) = dolog P(Y + > log P(Y (18)

yeD’ xeD]

As'Y = % if and only if S = 0 and, by construction, D; = D}, writing the log-likelihood
of D’ as a function of the exogenous PMFs gives:

LL{P(U)}veu] = dolog P(S =0) + > log > Syu)e (19)

xe€Dy weQy

Yet, x € D; means x € Q5 and hence g(z) = 1. On these values h in Eq. (17) acts as the
identical map, and {(u) = ho f(u) = f(u). This proves that functions in Eqs. (19) and (7)
coincide, and hence that the log-likelihood of Dg for M coincides with the log-likelihood of
D' for SCM M’. Applying Thm. 1 in Zaffalon et al. (2021) to such a log-likelihood proves
that it has no local maxima and a single global maximum value; that is the first claim.

To prove the equivalence between the M-compatibility constraints and the log-likelihood
achieving its (global) maximum value LL*, we start from the direct implication. This easily
follows by putting Egs. (8) and (9) in Eq. (7) as this gives Eq. (6). For the converse, assume
ad absurdum an incompatible specification giving value LL*. The two terms in the r.h.s.
of Eq. (7) cannot coincide with those in the r.h.s. of Eq. (6) otherwise the model would
be compatible. One of them should be greater than the corresponding term in LL*: but
this is impossible as both terms of LL* have been obtained by independent maximisation
of the log-likelihood functions associated with Dy resp. D;. This proves the equivalence
between the compatibility constraints and the fact that the log-likelihood is equal to LL*.
It also proves that LL* is actually the global maximum of the log-likelihood, since incom-
patible models return values smaller than LL*, while compatible ones match LL* exactly. B
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