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Abstract

In this paper we create a bridge between desirability and information alge-
bras: we show how coherent sets of gambles, as well as coherent lower previsions,
induce such structures. This allows us to enforce the view of such imprecise-
probability objects as algebraic and logical structures; moreover, it enforces the
interpretation of probability as information, and gives tools to manipulate them
as such.
Keywords: desirability, information algebras, compatibility, imprecise proba-
bilities, coherence.

1 Introduction and Overview

In a recent paper Miranda & Zaffalon (2020) derived some results about the com-
patibility problem, i.e., the problem of establishing if some probabilistic assessments
have a common joint probabilistic model, in the framework of desirability. They
remarked that these results could be obtained also using the theory of information
algebras (Kohlas, 2003). This issue is taken up and anlyzed in this paper.

Desirability, or the theory of coherent sets of gambles, is a very general theory of
uncertainty introduced by Peter Williams in 1975 as a generalization of de Finetti’s
theory (Williams, 1975; Walley, 1991; Troffaes & de Cooman, 2014). In particu-
lar, it provides a very general setting for compatibility because it allows to work
with any possibility space, unrestricted domains and imprecise probabilities, here
represented by lower and upper expectation called lower and upper previsions (Wal-
ley, 1991; Miranda & Zaffalon, 2020). On the other hand, information algebras are
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algebraic structures composed by ‘pieces of information’ that can be manipulated
by operations of combination, to aggregate them, and extraction, to extract infor-
mation regarding a specific domain (Kohlas, 2003; Kohlas & Schmid, 2020). They
were initially born as axiomatic systems sufficient to generalize the local compu-
tation scheme introduced by Lauritzen-Spiegelhalter for probabilistic networks to a
multitude of other uncertainty formalisms like Dempster-Shafer belief functions, pos-
sibility theory and many others (Lauritzen & Spiegelhalter, 1988; Shenoy & Shafer,
1990).

There are two different versions of information algebras, a domain-free one and a
labeled one. They are closely related and each one can be derived or reconstructed
from the other. Roughly speaking, the domain-free version is better suited for
theoretical studies, whereas the labeled version is better adapted to computational
purposes, since it provides more efficient storage structures.

In this paper we analyse more in depth the connections between these two theories.
In Section 2 and in Section 3, we provide some preliminary notions about each theory.
Hence, in Section 4 and in Section 5, we prove the possibility of building domain-free
and labeled information algebras starting from coherent sets of gambles (in Section 4)
or coherent lower previsions (in Section 5), both interpreted as pieces of information
about values of a group of variables. This creates a bridge between desirability and
information algebras theory that allows to improve the two theories. On the one
hand indeed, desirability, through its link with imprecise probabilities, enriches the
view of probability as information and shows a way to integrate it into information
algebras. On the other hand, information algebras allow to abstract away properties
of desirability that can be regarded as properties of the more general algebraic
structures of information algebras rather than the special ones of desirability. As a
first example of the advantages of our results, in Section 6 we show that the main
compatibility result of Miranda & Zaffalon (2020) for unconditional assessments
follows directly from properties of information algebras.

2 Desirability

We start by introducing the necessary notation and basic definitions from desirability
theory. For additional comments, we refer to Walley (1991); Troffaes & de Cooman
(2014).

2.1 Coherent sets of gambles

Consider a non-empty set Ω describing the possible and mutually exclusive out-
comes of some experiment. We call it space of possibilities. In this paper we let its
cardinality be general, so Ω can be infinite.

Definition 1 (Gamble) Given a possibility space Ω, a gamble on Ω is a bounded
real-valued function f : Ω→ R.
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A gamble is interpreted as an uncertain reward in a linear utility scale. A subject
might desire a gamble or not depending on the information they have about the
experiment whose possible outcomes are the elements of the possibility space on
which the gamble is defined.

We denote the set of all gambles on Ω by L(Ω). We also let L+(Ω) := {f ∈
L(Ω) : f ≥ 0, f 6= 0} denote the subset of non-vanishing, non-negative gambles on
Ω. Similarly, we let L−(Ω) := {f ∈ L(Ω) : f ≤ 0, f 6= 0} denote the subset of
non-vanishing, non-positive gambles on Ω. We shall simplify the notation whenever
possible by omitting the possibility space Ω. Thus, we shall write L,L+,L− in place
of L(Ω), L+(Ω),L−(Ω) respectively.

Gambles in L+ should always be desired, since they may increase the utility with no
risk of decreasing it. Gambles in L− instead, should never be desired. As a conse-
quence of the linearity of the utility scale, we assume also that a subject disposed to
accept the transactions represented by gambles f and g, is disposed to accept also
the transactions λf + µg for every λ, µ ≥ 0 not both equal to 0. More generally, we
can consider the notion of a coherent set of desirable gambles, also called coherent
set of gambles for simplicity.

Definition 2 (Coherence for sets of gambles) We say that a subset D of L(Ω)
is a coherent set of desirable gambles, or more simply a coherent set of gambles, if
and only if D satisfies the following properties:

D1. L+(Ω) ⊆ D [Accepting Partial Gains],

D2. 0 /∈ D [Avoiding Null Gain],

D3. f, g ∈ D ⇒ f + g ∈ D [Additivity],

D4. f ∈ D,λ > 0⇒ λf ∈ D [Positive Homogeneity].

So D is a convex cone. In what follows let C(Ω) := {D ⊆ L(Ω) : D is coherent}, or
simply C when there is no possible ambiguity, denote the set of all coherent sets of
gambles.

This definition leads to the concept of natural extension.

Definition 3 (Natural extension for sets of gambles) Given a set K ⊆ L(Ω),
we call E(K) := posi(K ∪ L+(Ω)), where

posi(K′) :=


r∑
j=1

λjfj : fj ∈ K′, λj > 0, r ≥ 1


for every set K′ ⊆ L(Ω), its natural extension.

We do not indicate the dependency of the natural extension operator on the pos-
sibility set Ω. However, it has to be intended that the operator applied to a set of



2 DESIRABILITY 4

gambles K ⊆ L, depends on the possibility set on which gambles in K are defined.1

The natural extension of a set of gambles K ⊆ L, E(K), is coherent if and only if
0 6∈ E(K).

Coherent sets are closed under intersection, that is, they form a topless ∩-structure (Davey
& Priestley, 2002). By standard order theory (Davey & Priestley, 2002), they are
ordered by inclusion, intersection is meet in this order and a family of coherent sets
of gambles {Dj}j∈J , where J is an index set, have a join, indicated with

∨
j∈J Dj ,

if they have an upper bound among coherent sets:∨
j∈J

Dj :=
⋂
{D′ ∈ C(Ω) :

⋃
j∈J

Dj ⊆ D′}.

By construction if E(K), for some K ⊆ L, is coherent, it is the smallest coherent set
containing K:

E(K) =
⋂
{D′ ∈ C(Ω) : K ⊆ D′}.

So that, given the previous family of coherent sets of gambles {Dj}j∈J , if E(
⋃
j∈J Dj)

is coherent, we have: ∨
j∈J

Dj = E(
⋃
j∈J

Dj).

In view of the following section, it is convenient to add L(Ω) to C(Ω) and let Φ(Ω) :=
C(Ω)∪{L(Ω)}. In what follows we refer to it also with Φ when there is no ambiguity.
The family of sets in Φ is still a ∩-structure, but now a topped one. So, again by
standard results of order theory (Davey & Priestley, 2002), (Φ,⊆) is a complete
lattice, where meet is intersection and join is defined for any family of sets {Dj}j∈J
with Dj ∈ Φ(Ω) for every j ∈ J , as:∨

j∈J
Dj :=

⋂
{D′ ∈ Φ(Ω) :

⋃
j∈J

Dj ⊆ D′}.

Note that, if a family of coherent sets {Dj}j∈J has no upper bound in C(Ω), then
its join is simply L(Ω). In this topped ∩-structure the operator C : P(L(Ω)) →
P(L(Ω)), where P(L(Ω)) is the power set of L(Ω), defined as follows for every
K ⊆ L:

C(K) :=
⋂
{D′ ∈ Φ(Ω) : K ⊆ D′},

is a closure (or consequence) operator on (P(L(Ω)),⊆) (Davey & Priestley, 2002).
Also in this case, it depends on the possibility set on which gambles in K are defined.

1More explicitly, let us consider two different possibility spaces Ω,Ω′. Let us consider also two
sets of gambles defined respectively on Ω and Ω′: K ⊆ L(Ω) and K′ ⊆ L(Ω′). Then E(K) :=
posi(K ∪ L+(Ω)) and E(K′) := posi(K′ ∪ L+(Ω′)).



2 DESIRABILITY 5

Definition 4 (Closure operator on (P(L),⊆)) A closure operator on the ordered
set (P(L),⊆) is a function C : P(L) → P(L) that satisfies the following conditions
for all sets K,K′ ∈ P(L):

• K ⊆ C(K),

• K ⊆ K′ implies C(K) ⊆ C(K′),

• C(C(K)) = C(K).

Given that we always consider inclusion as the order relation on P(L), we will refer
to the operator C, more simply, as a consequence operator on P(L).

Note that also the natural extension operator is a consequence operator on P(L).
Moreover, given a subset K ⊆ L, we have C(K) = E(K) if 0 6∈ E(K), that is if E(K)
is coherent. Otherwise we have C(K) = L and we may have E(K) 6= L = C(K).2

We refer to de Cooman (2005) for a similar order-theoretic view on belief models.
These results prepare the way to an information algebra of coherent sets of gambles
(see Section 4).

The most informative cases of coherent sets of gambles, i.e., coherent sets that are not
proper subsets of other coherent sets, are called maximal. The following proposition
provides a characterisation of such maximal elements.

Proposition 1 (Maximal set of gambles) A coherent set of gambles D ⊆ L(Ω)
is maximal if and only if

(∀f ∈ L(Ω) \ {0}) f /∈ D ⇒ −f ∈ D.

We shall indicate maximal sets of gambles with M to differentiate them from the
general case of coherent sets. These sets play an important role because of the
following facts proved in de Cooman & Quaeghebeur (2012):

1. any coherent set of gambles is a subset of a maximal one,

2. any coherent set of gambles is the intersection of all maximal coherent sets it
is contained in.

For a discussion of the importance of maximal coherent sets of gambles in relation
to information algebras, see Section 4.3.

A further important class of coherent sets of gambles are the strictly desirable ones.
Their importance will be highlighted in Section 2.2.

Definition 5 (Strictly desirable set of gambles) A coherent set of gambles D
is said to be strictly desirable if and only if it satisfies (∀f ∈ D\L+)(∃δ > 0) f−δ ∈
D.

2For example, if K is an almost desirable set of gambles, see the following Definition 6, then
0 ∈ E(K). However, E(K) 6= L = C(K).
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We shall use the notation D+ for strictly desirable sets of gambles to differentiate
them from the general case of coherent sets of gambles.

So strictly desirable sets of gambles are coherent and form a subfamily of coherent
sets of gambles. In what follows we will indicate with C+(Ω), or simply C+, the
set of all strictly desirable sets of gambles. Moreover, similarly to before, we define
Φ+(Ω) := C+(Ω) ∪ {L(Ω)}, which we can indicate also with Φ+ when there is no
ambiguity.

Another important class of sets, which plays an important role highlighted again in
Section 2.2, is the class of almost desirable sets of gambles (Walley, 1991).

Definition 6 (Almost desirable set of gambles) We say that a subset D of L(Ω)
is an almost desirable set of gambles if and only if D satisfies the following proper-
ties:

D1’. f ∈ L(Ω) and inf f > 0 implies f ∈ D [Accepting Sure Gains],

D2’. f ∈ D implies sup f ≥ 0 [Avoiding Sure Loss],

D3’. f, g ∈ D ⇒ f + g ∈ D [Additivity],

D4’. f ∈ D,λ > 0⇒ λf ∈ D [Positive Homogeneity],

D5’. f + δ ∈ D for all δ > 0 implies f ∈ D [Closure].

A set of this type is no coherent since it contains f = 0. However, it is subjected to a
weaker notion of coherence, in fact it has empty intersection with {f ∈ L : sup f <
0}. We shall use the notation D for almost desirable sets of gambles to differentiate
them from coherent ones.

2.2 Lower previsions, upper previsions and credal sets

Coherent sets of gambles, strictly desirable sets of gambles and almost desirable
ones encompass a probabilistic model for Ω, made of lower and upper expectations,
called previsions after de Finetti. The correspondence between sets of gambles and
lower and upper previsions is bijective in the cases of strictly and almost desirable
sets but not for coherent sets in general.

A lower prevision P , is a function with values in R∪{+∞} defined on some class of
gambles dom(P ), called the domain of P .3 It is also possible to think of P (f) as the
supremum buying price that a subject is willing to spend for the gamble f . Following
this interpretation, it is possible to define it starting from every non-empty generic
(not necessarily coherent, strictly desirable or almost desirable) set of gambles K
that the subject is willing to accept.

3Usually lower previsions are functions with values in R. We consider here an extended version
of this concept.
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Definition 7 (Lower and upper prevision) Given a non-empty set K ⊆ L(Ω),
we can associate to it the lower prevision (operator) P : dom(P ) → R ∪ {+∞}
defined as

P (f) := sup{µ ∈ R : f − µ ∈ K} (2.1)

for every f ∈ dom(P ), and the upper prevision (operator) P : dom(P )→ R∪{−∞}
defined as

P (f) := −P (−f) (2.2)

for every f ∈ dom(P ), where dom(P ), dom(P ) = −dom(P ) ⊆ L(Ω).

So, dom(P ) is constituted by all the gambles f for which {µ ∈ R : f −µ ∈ K} is not
empty.

Given the fact that it is always possible to express upper previsions in terms of
lower ones, in what follows we will concentrate only on lower previsions. In the
definition above we have not made explicit the dependence on K. However, when it
is important to indicate it, we can see P also as the outcome of a function σ applied
to a set of gambles K and write P = σ(K). We can also denote the set of gambles
for which P is defined as dom(σ(K)).

If K ⊆ L(Ω) is a coherent set of gambles, then the associated functional P is defined
on L(Ω), see Lemma 6 in Appendix A, and it is called coherent lower prevision. It
is characterized by the following properties. For every f, g ∈ L(Ω):

1. P (f) ≥ infω∈Ω f(ω),

2. P (λf) = λP (f), ∀λ > 0,

3. P (f + g) ≥ P (f) + P (g).

In this case, it is possible to introduce also the following definition.

Definition 8 Consider a lower prevision P and an upper prevision P constructed
from a coherent set of gambles D ⊆ L(Ω) through Eq. (2.1) and Eq. (2.2) respec-
tively. If P (f) = P (f) for some f ∈ L(Ω), then we call the common value the
prevision of f and we denote it by P (f). If this happens for all f ∈ L(Ω), then we
call the functional P a linear prevision.

From its definition and from the second and third coherence properties of lower
previsions it follows that a linear prevision is a linear functional on L. In what
follows we denote the set of all coherent lower previsions defined on L(Ω) as P(Ω), or
P when there is no ambiguity. Analogously, we denote the set of all linear previsions
as P(Ω), or P when there is no ambiguity.
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Coherent lower previsions, and therefore also linear ones, form a particular important
class of lower previsions. Every coherent lower prevision P indeed, has a set of
dominating linear previsions:

M(P ) := {P ∈ P : (∀f ∈ L) P (f) ≥ P (f)}, (2.3)

which turns out to be non-empty, convex and closed under the weak* topology (Wal-
ley, 1991). Each linear prevision is in a one-to-one correspondence with a finitely
additive probability, which can be obtained by making the restriction of the linear
prevision to indicators of events. As a consequence, it is possible to regard M(P )
also as a set of probabilities (a so-called credal set).

There is a one-to-one correspondence between coherent lower previsions and strictly
desirable sets of gambles. Given a coherent lower prevision P , the set:

D+ := L+ ∪ {f ∈ L : P (f) > 0}, (2.4)

is coherent and strictly desirable and moreover induces P through Eq. (2.1).

There is also a one-to-one correspondence between coherent lower previsions and
almost desirable sets of gambles. Given a coherent lower prevision P , the set:

D := {f ∈ L : P (f) ≥ 0}, (2.5)

is an almost desirable set of gambles and induces again P through Eq. (2.1).

These one-to-one correspondences do not hold for arbitrary coherent sets of gambles,
in the sense that several different coherent sets of gambles D may induce the same
coherent lower prevision P by means of Eq. (2.1).

Let us define the maps τ and τ from coherent lower previsions to strictly desirable
sets of gambles and almost desirable sets of gambles accordingly by:

τ(P ) := {f ∈ L : P (f) > 0} ∪ L+(Ω), τ(P ) := {f ∈ L : P (f) ≥ 0},

for every coherent lower prevision P . Then τ and τ are the inverses of the map σ
restricted to strictly desirable and almost desirable sets of gambles respectively.

On lower previsions in general is then possible to introduce a partial order relation.

Definition 9 Given two lower (not necessarily coherent) previsions P ,Q defined
respectively on dom(P ), dom(Q) ⊆ L(Ω), we say that Q dominates P , if dom(P ) ⊆
dom(Q) and P (f) ≤ Q(f) for all f ∈ dom(P ).

This is a partial order on the whole set of lower previsions.

From Lemma 6 in Appendix A follows in particular that, if K ⊆ D ⊆ L such that
0 /∈ E(K) and D is coherent, then σ(K) ≤ σ(D). So, in particular, σ(K) ≤ σ(E(K)).
Vice versa, if instead we consider only coherent lower previsions, then τ, τ also
preserve order.

As for sets of gambles then, it is possible to introduce a natural extension operator for
lower previsions. Its definition however, is a bit more involved (Walley, 1991). Here
therefore, as for sets of gambles, we consider a slightly different closure operator.
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Definition 10 Given a lower prevision P defined on a domain dom(P ) ⊆ L(Ω), we
define

E∗(P )(f) :=

{
E(P )(f) := min{P ′ ∈ P(Ω) : P ≤ P ′}(f) if ∃P ′ ∈ P(Ω) : P ≤ P ′,
∞ otherwise,

for every f ∈ L(Ω).

It coincides with the natural extension operator on lower previsions, which we de-
note with the symbol E, if P is a lower prevision for which there exists at least a
dominating coherent lower prevision (Walley, 1991). In this case E∗(P ) = E(P ) is
the minimal coherent lower prevision that dominates P . Moreover, if P = P ′K where
P ′ is coherent and P ′K is the restriction of P ′ to gambles in K ⊆ L where K is a
linear space of gambles, then E∗(P )K = E(P ′K)K = P ′K, i.e., the natural extension
agrees with P ′ on its domain or a linear subspace of it (see Walley, 1991, Theorem
3.1.2). This becomes particularly important in Section 5.2.

As usual then, the definition of E∗ operator, depends on the possibility set on which
gambles over that P operates are defined.

Definition 9 moreover implies that given a lower prevision P , if there is P ′ ∈ P :
P ≤ P ′ we have:

E∗(P )(f) = min{P ′(f) : P ′ ∈ P, P ≤ P ′}

for every f ∈ L. This fact will be used in what follows.

Finally, in view of Section 5, similarly to sets of gambles, it is convenient to consider
Φ(Ω) := P(Ω) ∪ {σ(L(Ω))}, where σ(L(Ω))(f) = ∞ for all f ∈ L(Ω). We can refer
to it also with Φ if there is no possible ambiguity. Notice that the equivalence:
E∗(P ′K)K = P ′K, where K is a linear space of gambles, remains valid for all P ′ ∈ Φ.

More new results preliminary to the rest of the work can be found in Appendix A.

Example 1. To conclude this section we provide an example to clarify some of the
notions above. Suppose Ω =×i∈I Ωi, where I = {1, 2, 3, 4} and where each Ωi is the
set of the possible values of a binary variable Xi which can assume only values 0 and
1, therefore Ωi = {0, 1} for every i = 1, ..., 4. In this context, suppose to have a set
of agents that express their beliefs about the possible values of the binary variables
considered by means of the following sets of gambles.

D+
1 := {f ∈ L : min

{x3,x4∈{0,1}}
{f(1, 0, x3, x4), f(0, 1, x3, x4)} > 0} ∪ L+;

D+
2 := {f ∈ L : min

{x1,x2,x4∈{0,1}}
f(x1, x2, 1, x4) > 0} ∪ L+;

D3 := D+
2 ∪{f ∈ L : min

{x1,x2,x4∈{0,1}}
f(x1, x2, 1, x4) = 0 < min

{x1,x2∈{0,1}}
f(x1, x2, 0, 0)};
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D′3 := D+
2 ∪ {f ∈ L : min

{x1,x2,x4∈{0,1}}
f(x1, x2, 1, x4) = 0 < min

{x1,x2∈{0,1}}
f(x1, x2, 0, 1)}.

We can observe that that D+
1 , D

+
2 are the strictly desirable sets of gambles con-

structed through Eq. (2.4) starting respectively from the coherent lower previsions
P 1, P 2 defined as:

P 1(f) = σ(D+
1 )(f) := min

{x3,x4∈{0,1}}
{f(1, 0, x3, x4), f(0, 1, x3, x4)},

P 2(f) = σ(D+
2 )(f) := min

{x1,x2,x4∈{0,1}}
f(x1, x2, 1, x4),

for every f ∈ L. D3 and D′3 instead are coherent but not strictly desirable sets of
gambles such that σ(D3) = σ(D′3) = P 2.

We can observe moreover that P 1 is equivalent to the probabilistic assessment
P (X1 6= X2) = 1, P 2 instead is equivalent to P (X3 = 1) = 1. 	

3 Information algebras

Let us give now also a short introduction to those concepts from the theory of
information algebras that we shall use in this paper. We refer to Kohlas (2003) and
Kohlas & Schmid (2020) for a much more complete introduction and treatment.

Information algebras are algebraic structures to manage information that involves
several formalisms in computer science, such as for example relational databases,
multiple systems of formal logic, numerical problems of linear algebra and so on.
In particular, they provide the necessary abstract framework for generic inference
procedures allowing their application to a large variety of different formalisms for
representing information.

The starting point of their formulation goes back to Shenoy (1989), and Shenoy &
Shafer (1990), who introduced for the first time an axiomatic system to generalize the
local computation scheme for probabilities proposed by Lauritzen & Spiegelhalter
(1988). They pointed out in particular that many other formalisms satisfy the same
set of axioms. A slightly changed version of the axiomatic formulation of Shenoy and
Shafer is the starting point for the book of Kohlas (2003), in which it is introduced
a mathematical structure identified by those axioms, called valuation algebra. The
idempotent variant of a valuation algebra is called information algebra.

The key observation is that many different formalisms for representing and treating
knowledge or information have in common some elementary features: information
comes in pieces, possibly referring to different questions, which must be aggregated
to represent the whole of the information, or from which the part relevant to a
particular question must be extracted. This naturally leads to consider an algebraic
structure, precisely a valuation or an information algebra, composed of a set of
‘pieces of information’ that can be manipulated by operations of combination, to
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aggregate pieces of information, and focusing to extract part of information related
to a certain domain. There are moreover, two equivalent axiomatic formulations of
these structures: the domain-free one, more suitable for theoretical considerations,
and the labeled one, more suitable instead for computational considerations.

3.1 Domain-free information algebras

Let us denote with Φ the set whose elements are considered to represent pieces of
information, which are in turn denoted by lower case Greek letters. We assume that
Φ is equipped with a binary operation:

· : Φ× Φ→ Φ (Combination).

For every φ, ψ ∈ Φ, φ·ψ represents the aggregated or combined information of the two
pieces φ and ψ. Mimicking the intuitive properties of “aggregation”, combination
is assumed to be associative, commutative and idempotent. This makes (Φ, ·) a
commutative semigroup. Further we assume a unit element 1 and a null element 0
to belong to Φ such that:

φ · 1 = φ, φ · 0 = 0

for every φ ∈ Φ. The unit element represents vacuous information, combined with
any piece of information it gives nothing new. The null element represents con-
tradiction, combined with any information it nullifies it. Summing up, we assume
(Φ, ·, 0, 1) to be a commutative idempotent semigroup with a neutral and, respec-
tively, a null element.

Turning to questions, often we consider reasoning and inference to be concerned
with variables with unknown values. Therefore here, we assume that the questions
of interest regard the values of a group of variables {Xi : i ∈ I}, where I is a non-
empty index set. In practice, I is often assumed to be finite or countable. But we
need not make this restriction. So Φ is the set of pieces of information about the
values of these variables. In this context, we consider a binary operation which,
given a pair (φ, S) ∈ Φ × P(I), extracts from φ the part of information relating to
the unknown values of the group S of variables:

ε : Φ× P(I)→ Φ (Extraction).

We ask then more properties to be satisfied to extraction and combination opera-
tion in order to mimic other important characteristics of information and simplify
calculations. In summary, we can give the following definition of a domain-free
information algebra in our context.

Definition 11 (Domain-free information algebra) A domain-free information
algebra is a two-sorted structure (Φ,P(I), ∩,∪, ·, 0, 1, ε), where:

• (Φ, ·, 0, 1) is a commutative semigroup with · : Φ × Φ → Φ, where ·((φ, ψ)) is
denoted by φ ·ψ for each (φ, ψ) ∈ Φ×Φ, and with 0 and 1 as the null and unit
elements respectively,
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• (P(I),∩,∪) is the lattice constructed from the power set of a non-empty index
set of variables I ordered by inclusion,

• ε : Φ×P(I)→ Φ, where ε((φ, S)) is denoted by εS(φ) for each (φ, S) ∈ Φ×P(I),

satisfying moreover the following properties:

• Transitivity: for φ ∈ Φ and S, T ∈ P(I),

εS(εT (φ)) = εT (εS(φ)) = εS∩T (φ);

• Combination: for φ, ψ ∈ Φ and S ∈ P(I),

εS(εS(φ) · ψ) = εS(φ) · εS(ψ);

• Nullity: for S ∈ P(I),
εS(0) = 0;

• Support: for φ ∈ Φ,
εI(φ) = φ;

• Idempotency: for φ ∈ Φ and S ∈ P(I),

εS(φ) · φ = φ.

Note that, by Idempotency we also have εS(1) = εS(1) · 1 = 1 and, if εS(φ) = 0,
φ = εS(φ) · φ = 0 · φ = 0 for every S ⊆ I.

Since from an index set I we can always construct the lattice (P(I),∩,∪), we in-
dicate more simply a domain-free information algebra (Φ,P(I),∩,∪, ·, 0, 1, ε) with
(Φ, I, ·, 0, 1, ε).

Transitivity says that the order of successive extractions does not matter. The
property of Combination is for a domain-free information algebra the most important
requirement: if we combine the part of a piece of information relating to the group
S ⊆ I of variables with any other piece of information and extract the part relating
to S from the aggregated information, then we may as well first extract the part
regrading S from the second piece of information and then combine. This is most
important for so-called local computation schemes. Nullity says that extraction
from the contradiction still gives a contradiction. Support is useful to construct
an equivalent labeled version of a domain-free information algebra, see Section 3.4.
Finally Idempotency says that combining a piece of information with part of it gives
nothing new. It has important consequences, especially, it allows to introduce an
information order among pieces of information, see next sections.
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3.2 Labeled information algebras

Consider again a set of pieces of information Φ and a group I of variables. Unlike
before, here we suppose that every piece of information refers to some determined
subset of variables called its domain. This is highlighted by the Labeling operation:

d : Φ→ P(I) (Labeling),

which associates to every piece of information the domain of the information con-
tained. This leads also to a slightly different definition of the extraction operation
that now is called marginalisation or projection and that operates focusing on the
information captured by a piece of information φ ∈ Φ for a domain smaller than
d(φ):

π : (dom(π) ⊆ Φ)× P(I)→ Φ (Marginalisation).

Also here, we assume more other properties to manage information. In particular,
we can give the following definition of a labeled information algebra in our context.

Definition 12 A labeled information algebra is a two-sorted structure (Φ,P(I),∩,∪, d, ·,
{0S}S∈P(I), {1S}S∈P(I), π) where

• d : Φ→ P(I),

• (Φ, ·) is a commutative semigroup with · : Φ × Φ → Φ, where ·((φ,ψ)) is
denoted by φ · ψ for every (φ,ψ) ∈ Φ × Φ. For all S ∈ P(I) there exist an
element 0S and an element 1S with d(0S) = S and d(1S) = S such that for
all φ ∈ Φ with d(φ) = S, 0S · φ = φ · 0S = 0S and 1S · φ = φ · 1S = φ,

• (P(I),∩,∪) is the lattice constructed from the power set of a non-empty index
set of variables I ordered by inclusion,

• π : (dom(π) ⊆ Φ)× P(I)→ Φ, where π((φ, S)) is denoted by πS(φ) and it is
defined for every φ ∈ Φ and S ⊆ d(φ),

satisfying moreover the following properties:

1. Labeling: for φ,ψ ∈ Φ,

d(φ ·ψ) = d(φ) ∪ d(ψ);

2. Marginalisation: for φ ∈ Φ and S ⊆ d(φ),

d(πS(φ)) = S;

3. Transitivity: for φ ∈ Φ and T ⊆ S ⊆ d(φ),

πT (πS(φ)) = πT (φ);
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4. Combination: for φ,ψ ∈ Φ with d(φ) = S and d(ψ) = T ,

πS(φ ·ψ) = φ · πS∩T (ψ);

5. Nullity and Neutrality: for S, T ∈ P(I),

0S · 0T = 0S∪T ;

1S · 1T = 1S∪T ;

6. Idempotency: for φ ∈ Φ and S ⊆ d(φ),

πS(φ) · φ = φ;

7. Stability: for S, T ∈ P(I) with T ⊆ S,

πT (1S) = 1T .

Note that, by Combination, Nullity and Marginalisation, we also have πT (0S) =
πT (0S · 0T ) = πT (0S) · 0T = 0T for every T ⊆ S ⊆ I.

Since from an index set I we can always construct the lattice (P(I),∩,∪), we indicate
more simply a labeled information algebra (Φ,P(I),∩,∪, d, ·, {0S}S∈P(I), {1S}S∈P(I), π)
with (Φ, I, d, ·, {0S}S⊆I , {1S}S⊆I , π).

Axioms required to a labeled information algebra are very similar to the ones re-
quired to a domain-free one. The main differences are due to the additional link
between a piece of information and its domain. This link is what makes labeled infor-
mation algebras more suitable for computational purposes. They limit the memory
requirement to what is needed, whereas the domain-free versions waste memory as
they contain a lot of redundancy. We shall show below, in Section 3.4, that labeled
and domain-free versions of information algebras are equivalent, either one may be
constructed from the other one.

3.3 Homomorphism, isomorphism and subalgebras

An important concept from universal algebra is the notion of homomorphism. In this
context, a homomorphism is a map between information algebras which maintains
operations. For the aims of this article, we introduce only the definition of homo-
morphism for domain-free and labeled information algebras constructed considering
the same index set of variables of interest I and assuming that any subset S ⊆ I is
mapped on itself.

Definition 13 (Homomorphism - Domain-free version) Given two domain-free
information algebras (Φ1, I, ·1, 01, 11, ε1) and (Φ2, I, ·2, 02, 12, ε2), a pair (h, g) of
maps h : Φ1 → Φ2 and g : P(I) → P(I) with g(S) = S for every S ∈ P(I), is
a homomorphism from the first domain-free information algebra to the second one
iff, for φ1, ψ1 ∈ Φ1 and S ⊆ I, we have:
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1. h(φ1 ·1 ψ1) = h(φ1) ·2 h(ψ1),

2. h(01) = 02 and h(11) = 12,

3. h(ε1S(φ1)) = ε2g(S)(h(φ1)) = ε2S(h(φ1)).

Definition 14 (Homomorphism - Labeled version) Given two labeled informa-
tion algebras (Φ1, I, d1, ·1, {01

S}S⊆I , {11
S}S⊆I , π1) and (Φ2, I, d2, ·2, {02

S}S⊆I , {12
S}S⊆I , π2),

a pair (h, g) of maps h : Φ1 → Φ2 and g : P(I) → P(I) with g(S) = S for every
S ∈ P(I), is called a homomorphism from the first labeled information algebra to
the second one iff, for φ1,ψ1 ∈ Φ1 and S ⊆ d1(φ1), we have:

1. h(φ1 ·1 ψ1) = h(φ1) ·2 h(ψ1),

2. h(01
S) = 02

S and h(11
S) = 12

S, for all S ⊆ I,

3. h(π1
S(φ1)) = π2

g(S)(h(φ1)) = π2
S(h(φ1)).

Note that in the definition of a homomorphism for labeled information algebras, we
do not require that Labeling is conserved by h. This indeed follows already from
the stability axiom of a labeled information algebra (Kohlas, 2003, p. 58).

Given that g is fixed in our definitions of homomorphisms, in what follows we refer
only to the map h as a homomorphism, implying always the existence of a map
g : P(I)→ P(I) with g(S) = S for every S ∈ P(I). If h is a homomorphism and it
is bijective, it is called an isomorphism both for the domain-free and for the labeled
case.

Another important concept from universal algebra is the notion of subalgebra. In
terms of information algebras, this is a subset of an information algebra which is
closed under its operations. More precisely, we have the following definition for the
domain-free case.

Definition 15 (Subalgebras - Domain-free version) Let (Φ, I, ·, 0, 1, ε) be a domain-
free information algebra. (Φ′, I, ·, 0, 1, ε) is said to be a subalgebra of (Φ, I, ·, 0, 1, ε),
if

1. Φ′ ⊆ Φ,

2. φ′, ψ′ ∈ Φ′ implies φ′ · ψ′ ∈ Φ′,

3. 0, 1 ∈ Φ′,

4. φ′ ∈ Φ′, S ⊆ I implies εS(φ′) ∈ Φ′.

A similar notion holds also for labeled information algebras (Kohlas, 2003).
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3.4 Equivalence between domain-free and labeled information al-
gebras

We have a full correspondence between domain-free and labeled information alge-
bras.

Let us consider a domain-free information algebra (Φ, I, ·, 0, 1, ε). Consider then the
set of pairs

Φ := {(φ, S), φ ∈ Φ, S ⊆ I : εS(φ) = φ}. (3.1)

These pairs can be considered as pieces of information φ, labeled by their domains.
Now, let us define on Φ and P(I) the following operations expressed in terms of the
ones defined on (Φ, I, ·, 0, 1, ε).

• Labeling: d : Φ→ P(I), defined as

d(φ, S) := S,

for every (φ, S) ∈ Φ.

• Combination: · : Φ × Φ → Φ, where ·(((φ, S)(ψ, T ))) is denoted by (φ, S) ·
(ψ, T ) and defined as

(φ, S) · (ψ, T ) := (φ · ψ, S ∪ T ),

for every (φ, S), (ψ, T ) ∈ Φ,

• Marginalisation: π : (dom(π) ⊆ Φ) × P(I) → Φ, where π(((φ, S), T )) is
denoted by πT (φ, S) and defined as

πT (φ, S) := (εT (φ), T ),

for every (φ, S) ∈ Φ and T ⊆ S ⊆ I.

It can be shown that (Φ, I, d, ·, {(0, S)}S⊆I , {(1, S)}S⊆I , π) where d, · and π are the
operations just defined on Φ and P(I), is a labeled information algebra (Kohlas,
2003). From this labeled information algebra it is possible to reconstruct a domain-
free information algebra that is isomorphic to the original one. Similarly, it is possi-
ble to start with a labeled algebra, construct the associated domain-free information
algebra and then reconstruct by the procedure just introduced a labeled information
algebra. And this labeled algebra is again essentially (up to isomorphism) the same
as the original one.

3.5 Atoms

The axioms defining a domain-free and a labeled version of an information alge-
bra lead to the definition of a partial order on pieces of information that is called
information order.
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Definition 16 (Information order - Domain-free version) Consider a domain-
free information algebra (Φ, I, ·, 0, 1, ε). Given φ, ψ ∈ Φ we say that φ ≤ ψ if and
only if φ · ψ = ψ.

This means that ψ is more informative than φ, if adding φ to ψ gives nothing new.
The same definition can be given for the labeled case.

In certain information algebras there are maximally informative elements, called
atoms.

Definition 17 (Atoms - Domain-free version) Given a domain-free informa-
tion algebra (Φ, I, ·, 0, 1, ε), an element α ∈ Φ is called an atom if and only if

• α 6= 0,

• for all φ ∈ Φ, α ≤ φ implies either φ = α or φ = 0.

This says that no information, except the null information, can be more informative
than an atom.

Definition 18 (Atoms - Labeled version) Given a labeled information algebra
(Φ, I, d, ·, {0S}S⊆I , {1S}S⊆I , π), an element α ∈ Φ with d(α) = S is called an atom
relative to S, if and only if

• α 6= 0S,

• for all φ ∈ Φ with d(φ) = S, α ≤ φ implies either φ = α or φ = 0S.

Now, let limit us to the domain-free case. Similar discussion can be recovered for
the labeled one.

We can recall some elementary results on atoms.

Lemma 1 Consider a domain-free information algebra (Φ, I, ·, 0, 1, ε).

• If α ∈ Φ is an atom and φ ∈ Φ, then φ · α = α or φ · α = 0.

• If α ∈ Φ is an atom and φ ∈ Φ, then either φ ≤ α or φ · α = 0.

• If α, β ∈ Φ are atoms, then α = β or α · β = 0.

Denote with At(Φ) the set of all atoms in Φ. Let us define also, for every element
φ ∈ Φ,

At(φ) := {α ∈ At(Φ) : φ ≤ α}. (3.2)

This motivates the following definitions.
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Definition 19 (Atomic information algebras - Domain free version) 1.
A domain-free information algebra (Φ, I, ·, 0, 1, ε) is called atomic, if and only
if for all φ ∈ Φ, φ 6= 0, At(φ) is not empty.

2. It is called atomistic or atomic composed, if and only if it is atomic and if
for all φ ∈ Φ, φ 6= 0,

φ = inf At(φ).

3. It is called completely atomistic or atomic closed, if and only if it is atomistic
and for every non-empty subset A ⊆ At(φ) for some φ ∈ Φ, the infimum exists
and belongs to Φ.

Atoms of any atomic labeled information algebra form a tuple system, which ab-
stracts systems of concrete tuples as used in relational database systems (Kohlas,
2003). It is possible to show moreover that a labeled information algebra can be
constructed from sets of tuples (Kohlas, 2003).

In the rest of the paper we provide examples of domain-free and labeled information
algebras that arise from coherent sets of gambles and coherent lower previsions.
We prove in particular that they are completely atomistic, where atoms, or atoms
relative to S for every S ⊆ I in the labeled cases, are formed respectively by maximal
coherent sets of gambles and linear previsions.

4 Information algebras of coherent sets of gambles

4.1 Domain-free version

As previously said, coherent sets of gambles represent beliefs of an agent about a
possibility space. Therefore, they can be interpreted as pieces of information about
it.

As in the previous section, we limit the analysis to the case in which the information
one is interested in concerns the values of certain groups of variables. We assume
therefore, a special form for the possibility space Ω, namely a multivariate model.
Consider a group of variables {Xi : i ∈ I} where I is a non-empty index set. Any
variable Xi has a domain of possible values Ωi. For any subset S of I let

ΩS :=×
i∈S

Ωi,

and Ω = ΩI .
4 Coherent sets of gambles, or rather sets in Φ(Ω), correspond therefore

to pieces of information regarding the values of the variables considered.

The elements ω in Ω can be seen as functions ω : I → Ω, so that ωi ∈ Ωi, for any
i ∈ I. A gamble f on Ω is called S-measurable if it depends only on the values of the
group S of variables, i.e. if for all ω, ω′ ∈ Ω with ω|S = ω′|S we have f(ω) = f(ω′)

4If needed, we assume the axiom of choice.
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(here ω|S is the restriction of the map ω to S). Let LS(Ω), or more simply LS ,
denote the set of all S-measurable gambles. If I = ∅, L(ΩI) = R, the set of constant
gambles (de Cooman et al., 2011, Section 2.3), moreover, we can define also L∅ := R,
and note that LI = L(Ω). For future we show the following result.

Lemma 2 For any subsets S and T of I:

LS∩T = LS ∩ LT .

Proof. Consider firstly f ∈ LS∩T . Consider two elements ω, µ ∈ Ω so that ω|S = µ|S.
Then we have also ω|S ∩ T = µ|S ∩ T and f(ω) = f(µ). So we see that f ∈ LS and
similarly f ∈ LT .

Conversely, assume f ∈ LS ∩ LT . Consider two elements ω, µ ∈ Ω. so that
ω|S ∩ T = µ|S ∩ T . Consider then the element λ ∈ Ω defined as

λi :=


ωi = µi, i ∈ (S ∩ T ),
ωi, i ∈ (S \ T ) ∪ (S ∪ T )c,
µi, i ∈ T \ S

for every i ∈ I. Then λ|S = ω|S and λ|T = µ|T . Since f is both S- and T -
measurable we have f(ω) = f(µ). It follows that f ∈ LS∩T and this concludes the
proof. ut

Now, let us consider Φ and P(I) and define on them the following operations.

1. Combination. · : Φ × Φ → Φ, where ·((D1, D2)) is denoted by D1 · D2 and
defined as

D1 ·D2 := D1 ∨D2 := C(D1 ∪D2),

for every D1, D2 ∈ Φ.

2. Extraction. ε : Φ×P(I)→ Φ, where ε((D,S)) is denoted by εS(D) and defined
as

εS(D) := C(D ∩ LS),

for every D ∈ Φ, S ∈ P(I).

Note that D1 · D2 = L for some D1, D2 ∈ Φ, means that the two sets D1 and D2

are not consistent, that is, E(D1 ∪D2) is not coherent (see Section 6). So, L is the
null element of combination and represents inconsistency. The set L+ instead, is
the unit element of combination, representing vacuous information.

We claim that Φ and P(I) equipped with these operations form a domain-free in-
formation algebra.

Theorem 1 1. (Φ, ·, 0, 1) is a commutative semigroup with a null element 0 = L
and a unit element 1 = L+.
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2. For any subset S ⊆ I and D,D1, D2 ∈ Φ:

E1 εS(0) = 0,

E2 εS(D) ·D = D,

E3 εS(εS(D1) ·D2) = εS(D1) · εS(D2).

3. For any S, T ⊆ I and any D ∈ Φ, εS(εT (D)) = εT (εS(D)) = εS∩T (D).

4. For any D ∈ Φ, εI(D) = D.

Proof.

1. That (Φ, ·) is a commutative semigroup follows from D1 ·D2 := D1 ∨D2, for
any D1, D2 in the complete lattice (Φ,⊆). As stated above, 0 = L is the null
element and 1 = L+ the unit element of the semigroup (null and unit in a
semigroup are always unique).

2. For E1 we have

εS(0) = εS(L) := C(L ∩ LS) = C(LS) = L = 0,

for any S ⊆ I.

E2 follows since D ∩ LS ⊆ D and C(D ∩ LS) ⊆ D, for any D ∈ Φ, S ⊆ I.

To prove E3 define, using Lemma 5 in Appendix A,

A := C(C(D1 ∩ LS) ∪D2) ∩ LS = C((D1 ∩ LS) ∪D2) ∩ LS ,
B := C(C(D1 ∩ LS) ∪ (C(D2 ∩ LS)) = C((D1 ∩ LS) ∪ (D2 ∩ LS)).

Then we have B := εS(D1) · εS(D2) and C(A) := εS(εS(D1) · D2). Note that
B ⊆ C(A).

We claim first that:

εS(D1) · εS(D2) = 0 ⇐⇒ εS(D1) ·D2 = 0. (4.1)

Indeed, εS(D1) · εS(D2) = 0 implies a fortiori εS(D1) ·D2 = 0.

Assume therefore that εS(D1) ·D2 = 0. This implies 0 = C(C(D1∩LS)∪D2) =
C((D1 ∩ LS) ∪D2), by Lemma 5 in Appendix A. Now, if D1 = L or D2 = L
we have immediately the result, otherwise we claim that 0 = f + g′ with
f ∈ D1 ∩ LS and g′ ∈ D2 ∩ LS . Indeed, from 0 = C((D1 ∩ LS) ∪ D2), we
know that 0 ∈ E((D1 ∩ LS) ∪D2) therefore 0 = f + g + h′ with f ∈ D1 ∩ LS ,
g ∈ D2, h′ ∈ L+(Ω) ⊆ D2 or h′ = 0. Then, if we introduce g′ = g+h′, we have
0 = f +g′ with f ∈ D1∩LS , g′ ∈ D2. However, this implies g′ = −f ∈ LS and
then g′ ∈ D2∩LS . Notice that εS(D1)·εS(D2) =: B = C((D1∩LS)∪(D2∩LS)).
Therefore, we have the result.

So, if εS(D1) ·D2 = 0 or B = 0, then C(A) = 0 and B = 0. Therefore we have
C(A) ⊆ B.
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Viceversa, assume both εS(D1) ·D2 and εS(D1) · εS(D2) coherent. Therefore
εS(D1) ·D2 = C((D1 ∩ LS) ∪D2) = E((D1 ∩ LS) ∪D2). Then we have

A = {f ∈ LS : f ≥ λg + µh, g ∈ D1 ∩ LS , h ∈ D2, λ, µ ≥ 0, f 6= 0}.

Consider f ∈ A. Then f = λg + µh + h′, where h′ ∈ L+ ∪ {0}. Since f and
g are S-measurable, µh+ h′ must be S-measurable. Now, if µh+ h′ = 0 then
f ∈ D1 ∩LS ⊆ B. Otherwise, µh+h′ ∈ D2 ∩LS . So in any case f ∈ B, hence
we have C(A) ⊆ C(B) = B.

3. Note first that εS(εT (D)) = 0 and εS∩T (D) = 0 if and only if D = 0. So
assume D to be coherent. Then we have, by Lemma 2,

εS(εT (D)) := C(C(D ∩ LT ) ∩ LS),

εS∩T (D) := C(D ∩ LS∩T ) = C(D ∩ LT ∩ LS).

Obviously, εS∩T (D) ⊆ εS(εT (D)). Consider then f ∈ C(D ∩ LT ) ∩ LS . If
f ∈ L+

S then clearly f ∈ εS∩T (D). Otherwise,

f ∈ LS , f ≥ g, g ∈ D ∩ LT .

Define

g′(ω) := sup
λ|S=ω|S

g(λ).

Then we have f ≥ g′. Clearly g′ is S-measurable and belongs to D, g′ ∈ D∩LS .
We claim that g′ is also T -measurable. Consider two elements ω and µ so that
ω|S ∩ T = µ|S ∩ T . Note that we may write

g′(ω) := sup
λ|S=ω|S

g(λ) = sup
λ|I\S

g(ω|S ∩ T, ω|S \ T, λ|T \ S, λ|R),

where R = (S ∪ T )c. Similarly, we have

g′(µ) := sup
λ′|S=µ|S

g(λ′) = sup
λ′|I\S

g(ω|S ∩ T, µ|S \ T, λ′|T \ S, λ′|R).

Since g is T -measurable, we have:

g′(µ) = sup
λ′|I\S

g(ω|S ∩ T, ω|S \ T, λ′|T \ S, λ′|R),

that clearly coincides with g′(ω).

This shows that g′ is S ∩ T -measurable, therefore both S- and T -measurable
by Lemma 2. So we have g′ ∈ D ∩ LS ∩ LT , hence f ∈ C(D ∩ LT ∩ LS). And
hence C(C(D ∩ LT ) ∩ LS) ⊆ C(C(D ∩ LT ∩ LS)) = C(D ∩ LT ∩ LS).

Analogously, we can prove that εT (εS(D)) = εS∩T (D).

4. It is obvious.
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ut

This result shows that (Φ(Ω), I, ·,L(Ω), L+(Ω), ε) where ·, ε are defined above on
Φ(Ω) and P(I), is a domain-free information algebra that, with a little abuse of
nomenclature, we call domain-free information algebra of coherent sets of gambles
defined on Ω. The possibility set Ω is assumed to be fixed in this article, therefore,
we also indicate it with (Φ, I, ·,L,L+, ε) and we call it the domain-free information
algebra of coherent sets of gambles when there is no possible ambiguity.

Two associated labeled versions will be derived in the next subsection.

Example 2. Consider again the framework of Example 1. We have assumed a
multivariate model for Ω. Therefore, we can look at D+

1 , D
+
2 , D3, D

′
3 also as pieces

of information regarding the values of the variables X1, ..., X4 defined in Example 1.

If we now want to combine together all the pieces of information represeted by
D+

1 , D
+
2 , D3, D

′
3 we obtain inconsistence. Indeed:

D+
1 ·D

+
2 ·D3 ·D′3 := C(D+

1 ∪D
+
2 ∪D3 ∪D′3) = L. (4.2)

In fact, 0 = f + g ∈ E(D+
1 ∪D

+
2 ∪D3 ∪D′3), where the gambles f ∈ D3 and g ∈ D′3

are defined as follows for every ω ∈ Ω:

f(ω) :=



1 if ω = (1, 0, 0, 0)

1 if ω = (1, 1, 0, 0)

1 if ω = (0, 1, 0, 0)

1 if ω = (0, 0, 0, 0)

−1 if ω = (1, 0, 0, 1)

−1 if ω = (1, 1, 0, 1)

−1 if ω = (0, 1, 0, 1)

−1 if ω = (0, 0, 0, 1)

0 otherwise

, g(ω) :=



−1 if ω = (1, 0, 0, 0)

−1 if ω = (1, 1, 0, 0)

−1 if ω = (0, 1, 0, 0)

−1 if ω = (0, 0, 0, 0)

1 if ω = (1, 0, 0, 1)

1 if ω = (1, 1, 0, 1)

1 if ω = (0, 1, 0, 1)

1 if ω = (0, 0, 0, 1)

0 otherwise

.

Suppose now that some reasons come to consider unreliable the agent who provided
the piece of information D′3. The remaining pieces of information can then be
combined together in a consistent way:

D := D+
1 ·D

+
2 ·D3 := C(D+

1 ∪D3) = E(D+
1 ∪D3) =: D+

1 ·D3.

E(D+
1 ∪D3) is coherent indeed because E(D+

1 ∪D3) ⊆ {f ∈ L : f(1, 0, 1, 0) > 0}∪{f ∈
L : f(1, 0, 0, 0) > 0} ∪ L+ 63 0. It represents the whole reliable information about
the variables considered. From it, we can extract the information regarding every
subset of variables. Let us consider for example the extraction of the information
about the subset S3 := {3, 4} of variables.

εS3(D) = εS3(D+
1 ·D3) = εS3(D+

1 · εS3(D3)) =

εS3(D+
1 ) · εS3(D3) = L+ ·D3 = D3.
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Indeed D3 contains only information regarding variables {X3, X4}, therefore εS3(D3)
= D3. Viceversa, D+

1 does not contain any information on these variables, therefore
εS3(D+

1 ) = L+. 	

As we have seen in Section 3.5, in any information algebra can be introduced a partial
order, called information order, on pieces of information. In the case of coherent
sets of gambles, this order translates in D1 ≤ D2 if and only if D1 ·D2 = D2. This
means that D2 is more informative than D1 if and only if adding D1 gives nothing
new; D1 is already contained in D2. It is easy to verify in fact that D1 ≤ D2 if and
only if D1 ⊆ D2. So, in particular, (Φ,≤) is a complete lattice, since information
order corresponds to set inclusion. Moreover, combination corresponds to join with
respect to this order, D1 · D2 = D1 ∨ D2, vacuous information L+ is the least
information and L is the top element (although strictly speaking it is no more a
piece of information, since it represents inconsistency).

Example 3. Considering again Example 1., we can observe that D+
2 ≤ D3, D

′
3. 	

Conditions E1 to E3 in Theorem 1 can also be rewritten using this order as the
following. For any subset S ⊆ I and D,D1, D2 ∈ Φ:

E1 εS(0) = 0,

E2 εS(D) ≤ D,

E3 εS(εS(D1) ∨D2) = εS(D1) ∨ εS(D2).

In algebraic logic such an operator is also called an existential quantifier.5

We further claim that extraction distributes over intersection (or meet in the com-
plete lattice (Φ,≤)).

Theorem 2 Let {Dj}j∈J be any family of sets of gambles in Φ and S ⊆ I. Then

εS(
⋂
j∈J

Dj) =
⋂
j∈J

εS(Dj). (4.3)

Proof. We may assume that Dj ∈ C for all j ∈ J since if some or all Dj = L, then we
may restrict the intersection on both sides over the set Dj ∈ C, or the intersection
over both sides equals L. If Dj ∈ C for all j ∈ J , we have

εS(
⋂
j∈J

Dj) = E((
⋂
j∈J

Dj) ∩ LS) := posi(L+(Ω) ∪ ((
⋂
j∈J

Dj) ∩ LS)),

⋂
j∈J

εS(Dj) =
⋂
j∈J
E(Dj ∩ LS) :=

⋂
j∈J

posi(L+(Ω) ∪ (Dj ∩ LS)).

5Although usually operators on a Boolean lattice are considered and the order is inverse to the
information order.
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Consider first a gamble f ∈ εS(
⋂
j∈J Dj) so that f = λg+µh, where λ, µ nonnegative

and not both equal zero, g ∈ (
⋂
j∈J Dj) ∩ LS and h ∈ L+. But then g ∈ Dj ∩ LS

for all j ∈ J , so that f ∈
⋂
j∈J εS(Dj).

Conversely, assume f ∈
⋂
j∈J εS(Dj). If f ∈ L+, then f ∈ εS(

⋂
j∈J Dj). Otherwise,

f ≥ gj for some gj ∈ (Dj ∩LS), for all j ∈ J . Hence, f(ω) ≥ supk∈J gk(ω) for every
ω ∈ Ω. However, supk∈J gk ∈

⋂
j∈J Dj because supk∈J gk(ω) ≥ gj(ω) for all j ∈ J ,

for all ω ∈ Ω. Moreover, supk∈J gk ∈ LS , thanks to the fact that gj ∈ LS for all
j ∈ J . Therefore, f ∈ εS(

⋂
j∈J Dj).

ut

So (Φ,≤) is a lattice under information order and satisfies Eq. (4.3). An information
algebra with this property, is called a lattice information algebra.

The family of strictly desirable sets of gambles enlarged with L is also closed under
combination and extraction in (Φ, I, ·,L,L+, ε). Therefore, (Φ+, I, ·,L, L+, ε) forms
a subalgebra of (Φ, I, ·,L, L+, ε).

4.2 Labeled versions

The domain-free information algebra of coherent sets of gambles treats the general
case of gambles defined on Ω.6 However, it is well known that, if a coherent set of
gambles D is such that D = E(D ∩ LS) for some S ⊂ I, it is essentially determined
by values of gambles defined on a smaller set of possibilities than Ω, namely on
blocks [ω]S of the equivalence relation ≡S defined as ω ≡S ω′ ⇐⇒ ω|S = ω′|S
for every ω, ω′ ∈ Ω. Indeed, it contains the same information of the set D ∩ LS
that is in a one-to-one correspondence with a set D̃ directly defined on blocks [ω]S
(see for example Miranda & Zaffalon, 2020). This view leads to a labeled version of
(Φ, I, ·,L,L+, ε) which is better suited for computational purposes.

We start deriving a labeled view of (Φ, I, ·,L,L+, ε) using the general method for
domain-free information algebras to derive corresponding labeled ones seen in Sec-
tion 3.4. In this case, as well as in the case of coherent lower previsions, there is
a second isomorphic version of the labeled algebra, which is nearer to the intuition
explained before and which will be introduced after this general construction. As
noticed in Section 3.4 then, from the labeled information algebra that derives from
the general method, the domain-free one may be reconstructed, so the two views are
equivalent.

We begin introducing the concept of support for sets of gambles in Φ.

Definition 20 (Support for sets of gambles) A subset S of I is called support
of a set of gambles D ∈ Φ, if εS(D) = D.

This means that the information contained in D concerns, or is focused on, the
group S of variables.

6If we assume a multivariate model for it.
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Here are a few well-known results on supports in domain-free information algebras
(for proofs see Kohlas, 2003).

Lemma 3 Let D,D1, D2 ∈ Φ, S, T ⊆ I. The following are true:

1. any S is a support of the null 0 (L(Ω)) and the unit 1 (L+(Ω)) elements,

2. S is a support of εS(D),

3. if S is a support of D, then S is a support of εT (D),

4. if S and T are supports of D, then so is S ∩ T ,

5. if S is a support of D, then εT (D) = εS∩T (D),

6. if T is a support of D and T ⊆ S, then S is a support of D,

7. if S is a support of D1 and D2, then it is also a support of D1 ·D2,

8. if S is a support of D1 and T a support of D2, then S ∪ T is a support of
D1 ·D2.

Example 4. Let us consider again Example 1. It is possible to notice that:

• S1 := {1, 2} is a support of D+
1 ;

• S2 := {3} is a support of D+
2 ;

• S3 := {3, 4} is a support of D3, D
′
3.

However, item 6. of Lemma 3 guarantees that S3 is also a support of D+
2 . 	

Now, we proceed with the procedure illustrated in Section 3.4 to construct a labeled
information algebra from a domain-free one. Therefore, let us suppose again a
multivariate model for the possibility set Ω, i.e. suppose Ω =×i∈I Ωi for some non-
empty index set I, as in the previous subsection. Consider then the sets ΦS(Ω), or
ΦS when there is no possible ambiguity, of pairs (D,S), where S ⊆ I is a support
of D ∈ Φ(Ω). That is, we collect together pieces of information concerning the same
set of variables. Let

Φ(Ω) :=
⋃
S⊆I

ΦS(Ω).

As usual, we can refer to it also with Φ, when there is no possible ambiguity. On
Φ and P(I) we define the following operations in terms of the ones defined on the
information algebra (Φ, I, ·,L,L+, ε).

1. Labeling. d : Φ→ P(I), defined as

d(D,S) := S,

for every (D,S) ∈ Φ.
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2. Combination. · : Φ×Φ→ Φ, where ·(((D1, S), (D2, T ))) is denoted by (D1, S)·
(D2, T ) and defined as

(D1, S) · (D2, T ) := (D1 ·D2, S ∪ T ),

for every (D1, S), (D2, T ) ∈ Φ.

3. Marginalisation. π : (dom(π) ⊆ Φ) × P(I) → Φ, where π(((D,S), T )) is
denoted by πT (D,S) and defined as

πT (D,S) := (εT (D), T ),

for every (D,S) ∈ Φ, T ⊆ S ⊆ I.

We previously saw in Section 3.4 that (Φ(Ω), I, d, ·, {(L(Ω), S)}S⊆I , {(L+(Ω), S)}S⊆I , π),
or more simply (Φ, I, d, ·, {(L, S)}S⊆I , {(L+, S)}S⊆I , π), where d, · and π are defined
above on Φ and P(I), is a labeled information algebra that corresponds to a labeled
view of (Φ, I, ·,L,L+, ε).

We may associate to this labeled algebra another, isomorphic one. For a subset S
of I, let C(ΩS) be the family of coherent sets of gambles defined on ΩS :=×i∈S Ωi.

Furthermore, let Φ̃S(Ω) be the set of pairs (D̃, S), where S ⊆ I and D̃ ∈ Φ(ΩS) :=
C(ΩS) ∪ {L(ΩS)}, and

Φ̃(Ω) :=
⋃
S⊆I

Φ̃S(Ω).

We will refer to them also with Φ̃ and Φ̃S for every S ⊆ I, when there is no
ambiguity.

It is well known that there is a one-to-one correspondence between gambles f ∈
LS(ΩR) with S ⊆ R ⊆ I, and gambles f ′ ∈ L(ΩS). So, in what follows, given
a gamble f ∈ LS(ΩR), we indicate with f↓S the corresponding gamble in L(ΩS)
defined, for all ωS ∈ ΩS , as f↓S(ωS) := f(ωR) for all ωR ∈ ΩR such that ωR|S = ωS .
Vice versa, given a gamble f ′ ∈ L(ΩS) we indicate with (f ′)↑R the corresponding
gamble in LS(ΩR) defined as (f ′)↑R(ωR) := f ′(ωR|S), for all ωR ∈ ΩR. Clearly, if
f ∈ LS(ΩR), then (f↓S)↑R = f . Vice versa, if f ′ ∈ L(ΩS), then ((f ′)↑R)↓S = f ′.

We extend these maps also to sets of gambles in the following way. For every
K ⊆ LS(ΩR):

K↓S := {f ′ ∈ L(ΩS) : f ′ = f↓S for some f ∈ K}.

For every K′ ⊆ L(ΩS):

(K′)↑R := {f ∈ LS(ΩR) : f = (f ′)↑R for some f ′ ∈ K′}.

Analogously given f ∈ LT (ΩR) with T ⊆ S ⊆ R, we can also define, for every
ωS ∈ ΩS , f↓S(ωS) := f(ωR), where ωR ∈ ΩR is such that ωR|S = ωS . Moreover, for
every f ′ ∈ L(ΩT ) we can define (f ′)↑S(ωS) := f ′(ωS |T ), for every ωS ∈ ΩS . These
definitions can then be translated to sets of gambles in the usual way. We define
similarly also (f ′′)↑R for f ′′ ∈ LT (ΩS) and the associate concept for sets of gambles.
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Lemma 4 Consider T ⊆ S ⊆ R ⊆ I. The following properties are valid.

1. If K ⊆ LT (ΩR), then K↓S = (K↓T )↑S. So, in particular, if S = R, we have
K = (K↓T )↑R.

2. If K ⊆ LT (ΩS), then K↓T = (K↑R)↓T .

3. If K1,K2 ⊆ LT (ΩR), then K↓T1 ∩ K
↓T
2 = (K1 ∩ K2)↓T .

4. If K1,K2 ⊆ LT (ΩR), then K↓T1 ∪ K
↓T
2 = (K1 ∪ K2)↓T .

5. If K ⊆ LT (ΩR), then (C(K) ∩ LT )↓T = C(K↓T ).

Proof. Items 1,2,3 and 4 are obvious. Regarding item 5, 0 ∈ E(K) ⇐⇒ 0 ∈
E(K↓T ). Therefore, we need to show only that (E(K) ∩ LT )↓T = E(K↓T ) with 0 /∈
E(K), E(K↓T ). So, consider f ′ ∈ (E(K) ∩ LT )↓T . Then f ′ = f↓T , for some f ∈
E(K)∩LT , so, for every ωT ∈ ΩT , f ′(ωT ) = f(ωR) =

∑r
i=1 λigi(ωR) + µh(ωR), with

λi, µ ≥ 0, ∀i not all equal to 0, r ≥ 0, gi ∈ K ⊆ LT (ΩR), h ∈ L+, for every ωR ∈ ΩR

such that ωR|T = ωT . Therefore h ∈ L+
T . So, f ′ =

∑r
i=1 λig

↓T
i + µh↓T , therefore

f ′ ∈ E(K↓T ). The other inclusion can be proven analogously, therefore we have the
thesis.

ut

On Φ̃ and P(I) we define the following operations.

1. Labeling. d : Φ̃→ P(I), defined as

d(D̃, S) := S,

for every (D̃, S) ∈ Φ̃.

2. Combination. · : Φ̃×Φ̃→ Φ̃, where ·(((D̃1, S), (D̃2, T ))) is denoted by (D̃1, S)·
(D̃2, T ) and defined as

(D̃1, S) · (D̃2, T ) := (C(D̃↑S∪T1 ) · C(D̃↑S∪T2 ), S ∪ T ),

for every (D̃1, S), (D̃2, T ) ∈ Φ̃, where C(D̃↑S∪T1 ) · C(D̃↑S∪T2 ) := C(C(D̃↑S∪T1 ) ∪
C(D̃↑S∪T2 )) is the combination defined for sets in Φ(ΩS∪T ) defined analogously
to combination for sets in Φ(Ω).

3. Marginalisation. π : (dom(π) ⊆ Φ̃) × P(I) → Φ̃, where π(((D̃, S), T )) is
denoted by πT (D̃, S) and defined as

πT (D̃, S) := ((εT (D̃) ∩ LT (ΩS))↓T , T ),

for every (D̃, S) ∈ Φ̃, T ⊆ S ⊆ I, where εT (D̃) is the extraction defined for
sets in Φ(ΩS) and P(I), defined analogously to extraction for sets in Φ(Ω) and
P(I).
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Consider now the map h : Φ → Φ̃, where h((D,S)) is denoted by h(D,S) and
defined as

h(D,S) := ((εS(D) ∩ LS(Ω))↓S , S) = ((D ∩ LS(Ω))↓S , S),

for every (D,S) ∈ Φ. The map is clearly well defined. Moreover it is bijiective and
maintains operations as the following theorem shows.

Theorem 3 The map h has the following properties.

1. Let (D,S), (D1, S), (D2, T ) ∈ Φ:

h((D1, S) · (D2, T )) = h(D1, S) · h(D2, T ),

h(L(Ω), S) = (L(ΩS), S), ∀S ⊆ I,
h(L+(Ω), S) = (L+(ΩS), S), ∀S ⊆ I,
h(πT (D,S)) = πT (h(D,S)), if T ⊆ S.

2. h is bijective.

Proof.

1. Recall that D1 has support S and D2 has support T and hence D1 · D2 has
support S ∪ T . Therefore, we have by definition

h((D1, S) · (D2, T )) := h(D1 ·D2, S ∪ T )

:= ((D1 ·D2 ∩ LS∪T )↓S∪T , S ∪ T )

= ((C((D1 ∩ LS) ∪ (D2 ∩ LT )) ∩ LS∪T )↓S∪T , S ∪ T )

= (C(((D1 ∩ LS) ∪ (D2 ∩ LT ))↓S∪T ), S ∪ T )

thanks to Lemma 5 in Appendix A, and item 5 of Lemma 4. On the other
hand, thanks again to Lemma 5 in Appendix A, we have

h(D1, S) · h(D2, T ) := ((D1 ∩ LS)↓S , S) · ((D2 ∩ LT )↓T , T ) :=

(C(((D1 ∩ LS)↓S)↑S∪T ∪ ((D2 ∩ LT )↓T )↑S∪T ), S ∪ T ).

Now, using again properties of Lemma 4, we have

h(D1, S) · h(D2, T )

:= (C(((D1 ∩ LS)↓S)↑S∪T ∪ ((D2 ∩ LT )↓T )↑S∪T ), S ∪ T )

= (C((D1 ∩ LS)↓S∪T ∪ (D2 ∩ LT )↓S∪T ), S ∪ T )

= (C(((D1 ∩ LS) ∪ (D2 ∩ LT ))↓S∪T ), S ∪ T ) = h((D1, S) · (D2, T )).
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Obviously, (L(Ω), S) maps to (L(ΩS), S) and (L+(Ω), S) maps to (L+(ΩS), S).
Then we have, again by definition,

h(πT (D,S)) := h(εT (D), T )

:= ((εT (D) ∩ LT )↓T , T )

= ((D ∩ LT )↓T , T ).

Indeed, D ∩ LT ⊆ C(D ∩ LT ) ∩ LT = εT (D) ∩ LT ⊆ D ∩ LT . However, from
T ⊆ S, it follows LT ⊆ LS . Therefore we have

h(πT (D,S)) = ((D ∩ LT )↓T , T )

= ((D ∩ LS) ∩ LT )↓T , T ).

On the other hand, we have

πT (h(D,S)) := πT ((D ∩ LS)↓S , S)

:= ((εT ((D ∩ LS)↓S) ∩ LT (ΩS))↓T , T )

= (((D ∩ LS)↓S ∩ LT (ΩS))↓T , T )

= (((D ∩ LS)↓S ∩ (LT (Ω))↓S)↓T , T )

= (((D ∩ LS) ∩ LT )↓S)↓T , T )

= ((((D ∩ LS) ∩ LT )↓S)↑I)↓T , T )

= ((D ∩ LS) ∩ LT )↓T , T ) = h(πT (D,S)),

thanks to Lemma 4.

2. Suppose h(D1, S) = h(D2, T ). Then we have S = T and (D1 ∩ LS)↓S =
(D2 ∩ LS)↓S , from which we derive that D1 ∩ LS = D2 ∩ LS and therefore,
D1 = C(D1 ∩ LS) = C(D2 ∩ LS) = D2. So the map h is injective.

Moreover, for any (D̃, S) ∈ Φ̃ we have that (D̃, S) = h(D,S) where (D,S) =
(C(D̃↑I), S) ∈ Φ. Indeed:

• (C(D̃↑I), S) ∈ Φ. In fact, εS(C(D̃↑I)) := C(C(D̃↑I) ∩ LS). Now, D̃↑I ⊆
C(D̃↑I) ∩ LS , therefore C(D̃↑I) ⊆ C(C(D̃↑I) ∩ LS). On the other hand,
C(D̃↑I) ∩ LS ⊆ C(D̃↑I), therefore C(C(D̃↑I) ∩ LS) ⊆ C(D̃↑I). Hence,
εS(C(D̃↑I)) := C(C(D̃↑I) ∩ LS) = C(D̃↑I).

• h(C(D̃↑I), S) = (D̃, S). In fact, h(C(D̃↑I), S) := ((εS(C(D̃↑I))∩LS)↓S , S) =
((C(D̃↑I)∩LS)↓S , S) by previous item. Moreover, ((C(D̃↑I)∩LS)↓S , S) =
(D̃, S) by item 5 of Lemma 4.

So h is surjective, hence bijective.

ut

This theorem proves that:

• (Φ̃(Ω), I, d, ·, {(L(ΩS), S)}S⊆I , {(L+(ΩS), S)}S⊆I , π) is a labeled information
algebra, where d, · and π are defined above on Φ̃ and P(I). It can be proven
by verifying the axioms for a labeled information algebra.
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• h is an isomorphism between the two labeled information algebras (Φ(Ω), I, d, ·,
{(L(Ω), S)}S⊆I , {(L+(Ω), S)}S⊆I , π) with d, ·, π defined on Φ and P(I) and
(Φ̃(Ω), I, d, ·, {(L(ΩS), S)}S⊆I , {(L+(ΩS), S)}S⊆I , π) with d, ·, π defined on Φ̃
and P(I).

Example 5. Let us return to Example 1. again and let us consider the pairs
(D+

1 , S1), (D+
2 , S2), (D3, S3), (D′3, S3) ∈ Φ. Then consider the map h : Φ → Φ̃

defined by (D,S) 7→ ((εS(D) ∩ LS)↓S , S) = ((D ∩ LS)↓S , S). We have:

• (D+
1 ∩ LS1)↓S1 := {f ∈ L(ΩS1) : min{f(1, 0), f(0, 1)} > 0} ∪ L+(ΩS1);

• (D+
2 ∩ LS2)↓S2 := {f ∈ L(ΩS2) : f(1) > 0} ∪ L+(ΩS2);

• (D3 ∩ LS3)↓S3 := {f ∈ L(ΩS3) : min{f(1, 0), f(1, 1)} > 0} ∪ {f ∈ L(ΩS3) :
min{f(1, 0), f(1, 1)} = 0 < f(0, 0)} ∪ L+(ΩS3);

• (D′3 ∩ LS3)↓S3 := {f ∈ L(ΩS3) : min{f(1, 0), f(1, 1)} > 0} ∪ {f ∈ L(ΩS3) :
min{f(1, 0), f(1, 1)} = 0 < f(0, 1)} ∪ L+(ΩS3).

Theorem 3 then guarantees that h maintains combination and extraction, therefore

h(D+
1 , S1) · h(D+

2 , S2) · h(D3, S3) · h(D′3, S3) = h(D+
1 ·D

+
2 ·D3 ·D′3, I) = (L, I).

Now, if we define D := D+
1 ·D

+
2 ·D3 as in Example 2., we have

h(D+
1 , S1) · h(D+

2 , S2) · h(D3, S3) = h(D, I) = (D, I),

and

πS3(h(D+
1 , S1) · h(D+

2 , S2) · h(D3, S3)) = πS3(h(D, I)) =

h(εS3(D), S3) = h(D3, S3) = ((D3 ∩ LS3)↓S3 , S3).

	

We remark that also in labeled information algebras, an information order can be
defined analogously to the one seen for domain-free ones.

In a computational application of this second labeled version of the information
algebra of coherent sets of gambles, one would use the fact that any set (D̃, S) is
determined by gambles defined on the set of possibilities ΩS , which reduce greatly
the efficiency of storage. Observations like this explain why labeled information
algebras are better suited for computational purposes.

4.3 Atoms

Maximal coherent sets of gamblesM ∈ C (see Section 2) are atoms in (Φ, I, ·,L,L+, ε)
(see Section 3). Indeed, they differ from L and they have the property that, in in-
formation order,

M ≤ D for D ∈ Φ⇒M = D or D = L.
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This property can alternatively being expressed by combination,

M ·D = L or M ·D = M, ∀D ∈ Φ.

Analogously to Section 3.5, let At(Φ) denote the set of all atoms (maximal coherent
sets) of (Φ, I, ·, L, L+, ε). Moreover, for any set of gambles D ∈ Φ, let At(D) denote
the subset of At(Φ) (maximal coherent sets) which contains D,

At(D) := {M ∈ At(Φ) : D ≤M}.

In general such sets may be empty. Not so in the case of coherent sets of gambles.
Indeed, (Φ, I, ·,L,L+, ε) is completely atomistic (see Section 3).

1. For any set D ∈ C, there is a set M ∈ At(Φ) so that in information order
D ≤ M (i.e., D ⊆ M). So At(D), for D coherent, is never empty. Therefore,
(Φ, I, ·,L,L+, ε) is atomic.

2. For all sets D ∈ C, we have

D = inf At(D) =
⋂
At(D).

Therefore (Φ, I, ·,L,L+, ε) is atomic composed or atomistic.

3. For any, non-empty, subset A of At(Φ) we have that

inf A =
⋂
A

is a coherent set of gambles, i.e., an element of C. Hence, (Φ, I, ·, L,L+, ε) is
completely atomistic.

The first two properties are proved in de Cooman & Quaeghebeur (2012), the third
follows since coherent sets form a

⋂
-structure. Note that, if A is a set of maximal

sets of gambles, A ⊆ At(
⋂
A), and in general A is a proper subset of At(

⋂
A).

Regarding the labeled information algebra (Φ̃(Ω), I, d, ·, {(L(ΩS), S)}S⊆I , {(L+(ΩS), S)}S⊆I ,
π) instead, we have that (M̃, S) where M̃ ∈ C(ΩS) is a maximal set of gambles, are
atoms relative to S, for every S ⊆ I. Let us indicate with AtS(Φ̃) the set of all its
atoms relative to S and with AtS(D̃, S) the subset of AtS(Φ̃) dominating (D̃, S), for
every (D̃, S) ∈ Φ̃.

The properties of the domain-free information algebra (Φ, I, ·,L,L+, ε) of being
atomic, atomistic and completely atomistic carry over to this labeled version.

1. Atomic: For any element (D̃, S) ∈ Φ̃, S ⊆ I with D̃ ∈ C(ΩS), there is an
atom relative to S, (M̃, S) ∈ AtS(Φ̃), so that (D̃, S) ≤ (M̃, S).

2. Atomistic: For any element (D̃, S) ∈ Φ̃, S ⊆ I, with D̃ ∈ C(ΩS), (D̃, S) =
inf{(M̃, S) : (M̃, S) ∈ AtS(D̃, S)}.
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3. Completely Atomistic: For any, non-empty, subset A of AtS(Φ̃), inf{(M̃, S) :
M̃ ∈ A} exists and belongs to Φ̃S , for every S ⊆ I.

It is known that completely atomistic information algebras can be embedded in an
information algebra where pieces of information are subsets of their atoms. The
latter is a set algebra, that is, a prototypical form of information algebra based on
the usual set operations (Kohlas, 2003). This is an important representation theorem
similar to Stone’s representation theorem for Boolean algebras, see also Kohlas &
Schmid (2020).

5 Information algebras of lower and upper previsions

In this section we prove that, similarly to coherent sets of gambles, also coherent
lower previsions induce a domain-free and two isomorphic labeled information alge-
bras.

5.1 Domain-free version

Let us consider Φ(Ω) := P(Ω) ∪ {σ(L(Ω))} where we assume for Ω, as in Section 4,
a multivariate model, i.e. Ω =×i∈I Ωi where I is a not empty index set and Ωi,
for every i ∈ I, is the set of the possible values of a variable Xi. We would like to
introduce also here, like in Φ(Ω), the operations of combination and extraction.

Let us define for two coherent sets of gambles which are not inconsistent, i.e. such
that D1 · D2 6= 0, with P 1 := σ(D1) and P 2 := σ(D2), the lower prevision P ′ :=
max{P 1, P 2}, which assumes the value:

σ(D1 ∪D2)(f) := sup{µ ∈ R : f − µ ∈ D1 ∪D2} = max{P 1(f), P 2(f)} =: P ′(f),

for every gamble f in its domain. Following a reasoning similar to the one considered
for coherent sets of gambles, we may take E∗(P ′) to define combination of two lower
previsions P 1 and P 2 in Φ. Regarding the extraction, for every S ⊆ I, we may take
E∗(PS), where PS is defined as the restriction of P ∈ Φ to LS . Thus, in summary,
we can define on Φ and P(I) the following operations.

1. Combination. · : Φ × Φ → Φ, where ·((P 1, P 2)) is denoted by P 1 · P 2 and
defined as

P 1 · P 2 := E∗(max{P 1, P 2}), (5.1)

for every P 1, P 2 ∈ Φ.

2. Extraction. e : Φ×P(I)→ Φ, where e((P , S)) is denoted by eS(P ) and defined
as

eS(P ) := E∗(PS),

for every P ∈ Φ, S ∈ P(I).
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The following theorem permits to conclude that (Φ(Ω), I, ·, σ(L(Ω)), σ(L+(Ω)), e),
where ·, e are defined above on Φ and P(I), forms a domain-free information algebra.
With the same little abuse of nomenclature introduced before for coherent sets of
gambles, we can call it the domain-free information algebra of coherent lower previ-
sions defined on L(Ω). As usual, we can indicate it also with (Φ, I, ·, σ(L), σ(L+), e)
and call it simply domain-free information algebra of coherent lower previsions when
there is no ambiguity.

Theorem 4 Let D+
1 , D+

2 , D
+ ⊆ L be strictly desirable sets of gambles and S ⊆ I.

Then

1. σ(L)(f) =∞, σ(L+)(f) = inf f for all f ∈ L,

2. σ(D+
1 ·D

+
2 ) = σ(D+

1 ) · σ(D+
2 ),

3. σ(εS(D+)) = eS(σ(D+)).

Proof.

1. It follows from the definition.

2. Assume first that D+
1 ·D

+
2 = 0 and let P 1 := σ(D+

1 ), P 2 := σ(D+
2 ). Then there

can be no coherent lower prevision P dominating both P 1 and P 2. Indeed,
otherwise we would have D+

1 = τ(P 1) ≤ τ(P ) and D+
2 = τ(P 2) ≤ τ(P ), where

τ(P ) is a coherent set of gambles. But this is a contradiction. Viceversa is
also true. Therefore, we have σ(D+

1 ·D
+
2 )(f) =∞ = (σ(D+

1 ) · σ(D+
2 ))(f), for

all gambles f ∈ L.

Let then D+
1 ·D

+
2 6= 0. Then D+

1 ·D
+
2 as well as D+

1 ∪D
+
2 satisfy the condition

of Theorem 11 in Appendix A. Therefore, applying this theorem, we have

σ(D+
1 ·D

+
2 ) := σ(C(D+

1 ∪D
+
2 )) = E(σ(D+

1 ∪D
+
2 ))

= E(max{σ(D+
1 ), σ(D+

2 )}) =: σ(D+
1 ) · σ(D+

2 ).

3. We remark that D+ ∩ LS satisfies the conditions of Theorem 11 in Appendix
A. Thus we obtain

σ(εS(D+)) := σ(C(D+ ∩ LS)) = E(σ(D+ ∩ LS)).

Now,

σ(D+ ∩ LS)(f) := sup{µ ∈ R : f − µ ∈ D+ ∩ LS}, ∀f ∈ dom(σ(D+ ∩ LS)).

But f − µ ∈ D+ ∩ LS if and only if f is S-measurable and f − µ ∈ D+.
Therefore, we conclude that σ(D+ ∩ LS) = σ(D+)S . Thus, we have indeed
σ(εS(D+)) = E(σ(D+)S) =: eS(σ(D+)).
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ut

This theorem proves firstly that (Φ, I, ·, σ(L), σ(L+), e) is a domain-free information
algebra. Moreover, it proves also that it is isomorphic to (Φ+, I, ·,L,L+, ε), subal-
gebra of the information algebra of coherent sets of gambles (Φ, I, ·,L,L+, ε). There
is obviously the connected (isomorphic) information algebra of upper previsions.

The following theorem and corollary instead show that (Φ, I, ·,L,L+, ε) is only
weakly homomorphic to (Φ, I, ·, σ(L), σ(L+), e).

Consider indeed the map D 7→ D+ := τ(σ(D)), defined from Φ to Φ+. The next
theorem establishes that this map is a weak homomorphism between (Φ, I, ·,L,L+, ε)
and (Φ+, I, ·,L,L+, ε). Weak, because when D1 ∈ Φ and D2 ∈ Φ are mutually
inconsistent, that is if D1 · D2 = 0, then D1 · D2 can be mapped to something
different from D+

1 ·D
+
2 (see Example 5. below).

Theorem 5 Let D1, D2 and D be coherent sets of gambles and S ⊆ I.

1. If D1 ·D2 6= 0, then D1 ·D2 7→ (D1 ·D2)+ = D+
1 ·D

+
2 ,

2. εS(D) 7→ (εS(D))+ = εS(D+).

Proof.

1. Note first that D+
1 ⊆ D1 and D+

2 ⊆ D2, thanks to Lemma 7 in Appendix A.
So that

D+
1 ·D

+
2 = τ(σ(D+

1 ·D
+
2 )) ⊆ τ(σ(D1 ·D2)) =: (D1 ·D2)+.

Further

(D1 ·D2)+ := τ(σ(D1 ·D2)) := {f ∈ L : σ(D1 ·D2)(f) > 0} ∪ L+(Ω).

So, if f ∈ (D1 ·D2)+, then either f ∈ L+(Ω) or

σ(D1 ·D2)(f) := sup{µ ∈ R : f − µ ∈ C(D1 ∪D2)} > 0. (5.2)

In the first case obviously f ∈ D+
1 · D

+
2 . Let us consider now f /∈ L+, in

this case there is a δ > 0 so that f − δ ∈ C(D1 ∪ D2). This means that
f − δ = h + λ1f1 + λ2f2, where h ∈ L+(Ω) ∪ {0}, f1 ∈ D1, f2 ∈ D2 and
λ1, λ2 ≥ 0 and not both equal 0. But then

f = h+ (λ1f1 + δ/2) + (λ2f2 + δ/2).

We have f ′1 := λ1f1 + δ/2 ∈ D1 and f ′2 := λ2f2 + δ/2 ∈ D2. But this,
together with λ1f1 = f ′1 − δ/2 ∈ D1 if λ1 > 0 or otherwise f ′1 ∈ L+(Ω), and
λ2f2 = f ′2 − δ/2 ∈ D2 if λ2 > 0 or otherwise f ′2 ∈ L+(Ω), show according to
Lemma 8 in Appendix A that f ′1 ∈ D+

1 and f ′2 ∈ D+
2 . So, finally, we have

f ∈ D+
1 ·D

+
2 = C(D+

1 ∪D
+
2 ). This proves that (D1 ·D2)+ = D+

1 ·D
+
2 .
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2. Note that D+ ⊆ D, again thanks to Lemma 7 in Appendix A. So that

εS(D+) = τ(σ(εS(D+))) ⊆ τ(σ(εS(D))) =: (εS(D))+.

Further

(εS(D))+ := τ(σ(εS(D))) := {f ∈ L : σ(εS(D))(f) > 0} ∪ L+(Ω),

where

σ(εS(D))(f) := sup{µ ∈ R : f − µ ∈ C(D ∩ LS)},

for every f ∈ L. So, if f ∈ (εS(D))+, then either f ∈ L+(Ω) in which case f ∈
εS(D+) or there is a δ > 0 so that f−δ ∈ C(D∩LS) = posi{L+(Ω)∪(D∩LS)}.
In the second case, if f /∈ L+, f − δ = h + g where h ∈ L+(Ω) ∪ {0} and
g ∈ D ∩ LS . Then we have f = h+ g′ where g′ := g + δ is still S- measurable
and g′ ∈ D. But, given the fact that g = g′ − δ ∈ D ∩ LS , from Lemma 8
in Appendix A, we have g′ ∈ D+ ∩ LS and therefore f ∈ εS(D+). Thus we
conclude that (εS(D))+ = εS(D+).

ut

The following corollary permits to conclude that there is a weak homomorphism also
between (Φ, I, ·,L,L+, ε) and (Φ, I, ·, σ(L), σ(L+), e).

Corollary 1 Let D1, D2 and D be coherent sets of gambles so that D1 ·D2 6= 0 and
S ⊆ I. Then

1. σ(D1 ·D2) = σ(D1) · σ(D2),

2. σ(εS(D)) = eS(σ(D)).

Proof. These claims are immediate consequences of Theorems 5 and Theorem 4.
ut

The weak homomorphism, as previously noticed, does not extend to a pair of incon-
sistent coherent sets of gambles, as the following example shows.

Example 6. As we have previously seen in Example 1., the coherent lower previsions
associated with D+

1 , D
+
2 , D3, D4 are the following.

• (∀f ∈ L) σ(D+
1 )(f) = min{x3,x4∈{0,1}}{f(1, 0, x3, x4), f(0, 1, x3, x4)};

• (∀f ∈ L) σ(D+
2 )(f) = σ(D3)(f) = σ(D′3)(f) = min{x1,x2,x4∈{0,1}} f(x1, x2, 1, x4).

As Example 2. shows moreover, D3 and D′3 are mutually inconsistent, since we have
D3 ·D′3 = L. But, on the other hand,

D+
3 = (D′3)+ := τ(σ(D′3)) = D+

2 ,
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therefore D3 ·D′3 = L while D+
3 · (D′3)+ = D+

2 . Hence (D3 ·D′3)+ := τ(σ(D3 ·D′3)) =
L 6= D+

3 · (D′3)+ = D+
2 . Moreover, σ(D3 · D′3) = σ(L) 6= σ(D3) · σ(D′3) = σ(D+

3 ) ·
σ((D′3)+) = σ(D+

2 ) · σ(D+
2 ) = σ(D+

2 ), thanks to Lemma 7 in Appendix A.

D+
1 , D

+
2 , D3 instead are consistent, therefore Corollary 1 permits to translate opera-

tions on lower previsions on the corresponding operations defined on sets of gambles.
Denoting with D := D+

1 ·D
+
2 ·D3 = D+

1 ·D3, as in Example 2., we have:

σ(D+
1 ) · σ(D+

2 ) · σ(D3) = σ(D+
1 ·D

+
2 ·D3) = σ(D+

1 ·D3) = σ(D),

eS3
(σ(D)) = σ(εS3(D)) = σ(D3).

	

Finally, we claim that extraction distributes over meet (infimum) also in (Φ, I, ·, σ(L),
σ(L+), e).

Theorem 6 Let {P j}j∈J be any family of lower previsions in Φ and S ⊆ I. Then

eS(inf{P j : j ∈ J}) = inf{eS(P j) : j ∈ J}. (5.3)

Proof. We may assume that P j ∈ P for all j ∈ J since if some or all P j = σ(L),
then we may restrict the infimum on both sides over the set P j ∈ P, or the infimum
over both sides equals σ(L). From Lemma 11 in Appendix A and Corollary 1, it
follows that for any family of coherent sets of gambles {Dj}j∈J ,

σ(εS(
⋂
j

Dj)) = eS(σ(
⋂
j

Dj)) = eS(inf{σ(Dj) : j ∈ J})

and

σ(
⋂
j

εS(Dj)) = inf{σ(εS(Dj)) : j ∈ J} = inf{eS(σ(Dj)) : j ∈ J}.

The result then follows from Eq. (4.3). ut

Also here then, analogously to Section 4, we can define an information order on
lower previsions in Φ, defined as P 1 ≤ P 2 if and only if P 1 · P 2 = P 2. Also in
this case, it is easy to verify that it coincides with the usual partial order on lower
previsions introduced in Section 2, restricted to Φ, see Walley, 1991, Theorem 3.1.2.

5.2 Labeled versions

Let us introduce the concept of support also for lower previsions.

Definition 21 (Support for lower previsions) A subset S of I is called support
of a lower prevision P ∈ Φ, if eS(P ) = P .
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There is a clear connection between supports of coherent sets of gambles and sup-
ports of the associated lower previsions.

Corollary 2 Consider D ∈ Φ. If S ⊆ I is a support of D, then it is a support also
of σ(D). Viceversa, starting from P ∈ Φ, if S ⊆ I is a support of P then it is also
a support of τ(P ).

Proof. The first result derives directly from item 2. of Corollary 1. Regard-
ing the second one, eS(P ) = P implies, again thanks to item 2. of Corollary 1,
σ(εS(τ(P ))) = σ(τ(P )). Applying then τ to both the terms of the equivalence we
have the result. ut

Now, we can construct the first version of the labeled information algebra of coherent
lower previsions using the same standard procedure described in Section 3.4 and used
in Section 4.2 for coherent sets of gambles. So, let us consider as before a multivariate
model for the possibility set Ω, i.e. let us suppose that Ω =×i∈I Ωi for some non-
empty index set I. Then, let us define ΦS(Ω) := {(P , S) : S is a support of P ∈
Φ(Ω)} for every S ⊆ I and Φ(Ω) :=

⋃
S⊆I ΦS(Ω). As usual, we can refer to them

also with ΦS and Φ respectively, when there is no possible ambiguity. It is possible
to define on Φ and P(I), analogously to the case of coherent sets of gambles, the
following operations in terms of the ones defined on (Φ, I, ·, σ(L), σ(L+), e).

1. Labeling. d : Φ→ P(I), defined as

d(P , S) := S,

for every (P , S) ∈ Φ.

2. Combination. · : Φ×Φ→ Φ, where ·(((P 1, S), (P 2, T ))) is denoted by (P 1, S)·
(P 2, T ) and defined as

(P 1, S) · (P 2, T ) := (P 1 · P 2, S ∪ T ),

for every (P 1, S), (P 2, T ) ∈ Φ.

3. Marginalisation. π : (dom(π) ⊆ Φ) × P(I) → Φ, where π(((P , S), T )) is
denoted by πT (P , S) and defined as

πT (P , S) := (eT (P ), T ),

for every (P , S) ∈ Φ, T ⊆ S ⊆ I.

Therefore, (Φ(Ω), I, d, ·, {(σ(L(Ω)), S)}S⊆I , {(σ(L+(Ω)), S)}S⊆I , π), or more simply
(Φ, I, d, ·, {(σ(L), S)}S⊆I , {(σ(L+), S)}S⊆I , π), where d, ·, π are the operations de-
fined above on Φ and P(I), forms a labeled information algebra.

Now, we can proceed by constructing the second version of this labeled information
algebra, again following the same reasoning used for coherent sets of gambles. So,
for any subset S of I let

Φ̃S(Ω) := {(P̃ , S) : P̃ ∈ Φ(ΩS)}.
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where Φ(ΩS) := P(ΩS) ∪ {σ(L(ΩS))}. Further let

Φ̃(Ω) :=
⋃
S⊆I

Φ̃S(Ω).

As usual, we can refer to Φ̃S(Ω) and Φ̃(Ω), also with Φ̃S and Φ̃ respectively, when
there is no possible ambiguity.

On Φ̃ and P(I) we define the following operations.

1. Labeling: d : Φ̃→ P(I), defined as

d(P̃ , S) := S,

for every (P̃ , S) ∈ Φ̃.

2. Combination. · : Φ̃×Φ̃→ Φ̃, where ·(((P̃ 1, S), (P̃ 2, T ))) is denoted by (P̃ 1, S)·
(P̃ 2, T ) and defined as

(P̃ 1, S) · (P̃ 2, T ) := (E∗(P̃
↑S∪T
1 ) · E∗(P̃ ↑S∪T2 ), S ∪ T ),

for every (P̃ 1, S), (P̃ 2, T ) ∈ Φ̃, where given a lower prevision P with dom(P ) ⊆
L(ΩZ) with Z ⊆ S ∪ T , P ↑S∪T (f) := P (f↓Z), for every f ∈ LZ(ΩS∪T ) such
that f↓Z ∈ dom(P ).

3. Marginalisation. π : (dom(π) ⊆ Φ̃) × P(I) → Φ̃, where π(((P̃ , S), T )) is
denoted by πT (P̃ , S) and defined as

πT (P̃ , S) := (eT (P̃ )↓TT , T ),

for every T ⊆ S ⊆ I, where given a lower prevision P with dom(P ) ⊆ L(ΩZ)

with T ⊆ Z, P ↓TT (f) := P T (f↑Z) = P (f↑Z) for every f ∈ L(ΩT ) such that
f↑Z ∈ dom(P ).

We can show that the map h : Φ → Φ̃, where h((P , S)) is denoted by h(P , S) and
defined as

h(P , S) := (eS(P )↓SS , S) = (P ↓SS , S),

for every (P , S) ∈ Φ, is bijiective and mantains operations.

We claim that:
P ↓SS = σ((D+ ∩ LS)↓S), (5.4)

where D+ = τ(P ), for every P ∈ Φ, S ⊆ I. In fact, for every f ∈ L(ΩS) both

P ↓SS (f) and σ((D+ ∩ LS)↓S)(f) are defined and

σ((D+ ∩ LS)↓S)(f) := sup{µ ∈ R : f − µ ∈ (D+ ∩ LS)↓S}
= sup{µ ∈ R : f↑I − µ ∈ D+ ∩ LS} =: σ(D+)↓SS (f).

Finally, (D+ ∩ LS)↓S ∈ Φ(ΩS), hence P ↓SS ∈ Φ(ΩS). So that the map h is well
defined.
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These considerations suggest defining two new maps: σ : Φ → Φ defined as
(D,S) 7→ (σ(D), S) and σ̃ : Φ̃ → Φ̃ defined as (D̃, S) 7→ (σ(D̃), S).7 Now the

previous equivalence P ↓SS = σ((τ(P ) ∩ LS)↓S) proves that:

h(P , S) = h(σ(D+, S)) = σ̃(h(D+, S)), (5.5)

for every (P , S) ∈ Φ, with D+ = τ(P ).

Now, we can prove the main result.

Theorem 7 The map h has the following properties.

1. Let (P , S), (P 1, S), (P 2, T ) ∈ Φ:

h((P 1, S) · (P 2, T )) = h(P 1, S) · h(P 2, T ),

h(σ(L), S) = (σ(L(ΩS)), S), ∀S ⊆ I,
h(σ(L+), S) = (σ(L+(ΩS)), S), ∀S ⊆ I,
h(πT (P , S)) = πT (h(P , S)), if T ⊆ S.

2. h is bijective.

Proof.

1. We have, by definition,

h((P 1, S) · (P 2, T )) := h(P 1 · P 2, S ∪ T )

= h(σ(D+
1 ) · σ(D+

2 ), S ∪ T ),

if we define D+
1 := τ(P 1) and D+

2 := τ(P 2). Now, thanks to Theorem 4, we
have

h((P 1, S) · (P 2, T )) = h(σ(D+
1 ) · σ(D+

2 ), S ∪ T )

= h(σ(D+
1 ·D

+
2 ), S ∪ T )

=: h(σ(D+
1 ·D

+
2 , S ∪ T )).

By Eq.(5.5), h(σ(D+, S)) = σ̃(h(D+, S)), for every (D+, S) ∈ Φ such that
D+ ∈ Φ+. Therefore,

h((P 1, S) · (P 2, T )) = h(σ(D+
1 ·D

+
2 , S ∪ T ))

= σ̃(h(D+
1 ·D

+
2 , S ∪ T ))

=: σ̃(h((D+
1 , S) · (D+

2 , T )))

= σ̃(h(D+
1 , S) · h(D+

2 , T )),

7Notice that, if D̃ ∈ Φ(ΩS), then σ(D̃) ∈ Φ(ΩS). So that σ̃ is well defined.
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thanks to Theorem 3. Now, we claim that

σ̃(h(D+
1 , S) · h(D+

2 , T )) = σ̃(h(D+
1 , S)) · σ̃(h(D+

2 , T )).

Indeed, on the one hand, we have

σ̃(h(D+
1 , S) · h(D+

2 , T ))

:= σ̃(((D+
1 ∩ LS)↓S , S) · ((D+

2 ∩ LT )↓T , T ))

:= (σ(C(((D+
1 ∩ LS)↓S)↑S∪T ) · C(((D+

2 ∩ LT )↓T )↑S∪T )), S ∪ T )

:= (σ(C(D+
1,S∪T ) · C(D+

2,S∪T )), S ∪ T ),

where D+
1,S∪T := ((D+

1 ∩ LS)↓S)↑S∪T and D+
2,S∪T := ((D+

2 ∩ LT )↓T )↑S∪T . On
the other hand instead, we have

σ̃(h(D+
1 , S)) · σ̃(h(D+

2 , T ))

:= σ̃((D+
1 ∩ LS)↓S , S) · σ̃((D+

2 ∩ LT )↓T , T )

:= (σ((D+
1 ∩ LS)↓S), S) · (σ((D+

2 ∩ LT )↓T ), T )

:= (E∗((P ↓S1,S)↑S∪T ) · E∗((P ↓T2,T )↑S∪T ), S ∪ T ).

Now, we can show that (P ↓S1,S)↑S∪T = σ(D+
1,S∪T ) = σ(((D+

1 ∩ LS)↓S)↑S∪T ).
Indeed,

σ(((D+
1 ∩ LS)↓S)↑S∪T )(f) := sup{µ ∈ R : f − µ ∈ ((D+

1 ∩ LS)↓S)↑S∪T } =

= sup{µ ∈ R : f↓S − µ ∈ (D+
1 ∩ LS)↓S} =: (P ↓S1,S)↑S∪T (f),

for every f ∈ LS(ΩS∪T ). Analogously, we can show that (P ↓T2,T )↑S∪T =

σ(D+
2,S∪T ) = σ(((D+

2 ∩ LT )↓T )↑S∪T ). So, we have:

(E∗((P ↓S1,S)↑S∪T ) · E∗((P ↓T2,T )↑S∪T ), S ∪ T )

= (E∗(σ(D+
1,S∪T )) · E∗(σ(D+

2,S∪T )), S ∪ T ) =

= (σ(C(D+
1,S∪T )) · σ(C(D+

2,S∪T )), S ∪ T ).

In fact, if D+
1 = L, then E∗(σ(D+

1,S∪T )) = σ(C(D+
1,S∪T )). Otherwise, D+

1,S∪T
satisfies the hypotheses of Theorem 11 in Appendix A:

• 0 /∈ E(D+
1,S∪T ). Otherwise, 0 ∈ E((D+

1 ∩ LS)↓S∪T ) by Lemma 4. Again

by Lemma 4, this means (C(D+
1 ∩ LS) ∩ LS∪T )↓S∪T = 0 that implies

0 ∈ E(D+
1 ∩ LS) ⊆ D+

1 , which is a contradiction;

• if f ∈ D+
1,S∪T \ L+(ΩS∪T ), then f ∈ (D+

1 ∩ LS)↓S∪T \ L+(ΩS∪T ) thanks

to Lemma 4. Hence f↑S∪T ∈ D+
1 ∩ LS \ L

+
S and then, there exists δ > 0

such that f↑S∪T − δ = (f − δ)↑S∪T ∈ D+
1 ∩ LS that means f − δ ∈

(D+
1 ∩ LS)↓S∪T = D+

1,S∪T .
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Therefore, thanks to Theorem 11 in Appendix A, we have: E∗(σ(D+
1,S∪T )) =

σ(C(D+
1,S∪T )). Analogously, we can show that E∗(σ(D+

2,S∪T )) = σ(C(D+
2,S∪T )).

Moreover, given the fact that C(D+
1,S∪T ), C(D+

1,S∪T ) ∈ Φ+(ΩS∪T ) and thanks
again to Theorem 4, we have

σ̃(h(D+
1 , S)) · σ̃(h(D+

2 , T )) = (σ(C(D+
1,S∪T )) · σ(C(D+

2,S∪T )), S ∪ T ) =

= (σ(C(D+
1,S∪T ) · C(D+

2,S∪T )), S ∪ T ) = σ̃(h(D+
1 , S) · h(D+

2 , T )).

Hence, we have finally:

h((P 1, S) · (P 2, T )) = σ̃(h(D+
1 , S) · h(D+

2 , T ))

= σ̃(h(D+
1 , S)) · σ̃(h(D+

2 , T ))

= h(σ(D+
1 , S)) · h(σ(D+

2 , T )) =

= h(P 1, S) · h(P 2, T ).

Obviously, h(σ(L), S) = (σ(L(ΩS)), S) and h(σ(L+), S) = (σ(L+(ΩS)), S).

Next, we have

h(πT (P , S)) := h(eT (P ), T ) = h(eT (σ(D+)), T ),

if D+ = τ(P ). Therefore using Theorem 3, Theorem 4 and Eq. (5.5), we have

h(πT (P , S)) := h(eT (σ(D+)), T )

= h(σ(εT (D+)), T )

=: h(σ(πT (D+, S)))

= σ̃(h(πT (D+, S)))

= σ̃(πT (h(D+, S)))

:= σ̃(πT ((D+ ∩ LS)↓S , S))

:= σ̃((εT ((D+ ∩ LS)↓S) ∩ LT (ΩS))↓T , T ))

:= (σ(((D+ ∩ LS)↓S ∩ LT (ΩS))↓T ), T ).

At the end we use the fact that D∩LT (ΩS) ⊆ εT (D)∩LT (ΩS) ⊆ D∩LT (ΩS)
for every D ∈ Φ(ΩS) and T ⊆ S, similarly to what observed in the proof of
Theorem 3. Now, we have

h(πT (P , S)) = (σ(((D+ ∩ LS)↓S ∩ LT (ΩS))↓T ), T )

= ((P ↓SS )↓TT , T )

= πT (h(P , S)).

Indeed, by a reasoning similar to the one that leads to Eq.(5.4), we can show

that σ((τ(P ↓SS ) ∩ LT )↓T ) = (P ↓SS )↓TT . Moreover, as observed in Section 2, we

have eT (P ↓SS )↓TT := E∗((P ↓SS )T )↓TT = (P ↓SS )↓TT . So we have the result.
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2. Suppose h(P 1, S) = h(P 2, T ). Then we have S = T and P ↓S1,S = P ↓S2,S , from
which we derive that P 1,S = P 2,S and therefore, P 1 = eS(P 1) = E∗(P 1,S) =
E∗(P 2,S) = eS(P 2) = P 2. So the map h is injective.

Moreover, for any (P̃ , S) ∈ Φ̃, if we call D+ := τ(P ), we claim that (P̃ , S) =

h(σ(C((D̃+)↑I), S)) = h(E∗(P̃
↑I

), S). Since (C((D̃+)↑I), S) ∈ Φ, see the proof

of item 2 of Theorem 3, we have that (E∗(P̃
↑I

), S) ∈ Φ and hence h is surjec-
tive.

Indeed h((C((D̃+)↑I), S)) = (D̃+, S) again from the proof of item 2 of Theorem
3, therefore:

h(σ(C((D̃+)↑I), S)) = σ̃(h(C((D̃+)↑I), S)))

= σ̃(D̃+, S) = (σ(D̃+), S) = (P̃ , S).

Moreover, we have σ((D̃+)↑I) = P̃
↑I

. This follows from:

σ((D̃+)↑I)(f) := sup{µ ∈ R : f − µ ∈ (D̃+)↑I} =

sup{µ ∈ R : f↓S − µ ∈ D̃+} =: P̃
↑I

(f)

for every f ∈ LS(ΩI).

Finally, if P = σ(L(ΩS)), we already have σ(C((D̃+)↑I))) = E∗(σ((D̃+)↑I)) =

E∗(P̃
↑I

), otherwise, to obtain this equivalence, we use Theorem 11 (that can
be applied on (D̃+)↑I).

So h is surjective, hence bijective.

ut

As before, this theorem proves that (Φ̃(Ω), I, d, ·, {(σ(L(ΩS)),S)}S⊆I , {(σ(L+(ΩS)), S)}S⊆I ,
π), where d, ·, π are defined on Φ̃ and P(I), is a labeled information algebra. More-
over, it proves that there is an isomorphism between the labeled information algebra
(Φ(Ω), I, d, ·, {(σ(L(Ω)), S)}S⊆I , {(σ(L+(Ω)), S)}S⊆I , π), where d, ·, π are defined on
Φ and P(I), and the labeled information algebra (Φ̃(Ω), I, d, ·, {(σ(L(ΩS)), S)}S⊆I ,
{(σ(L+(ΩS)), S)}S⊆I , π) where d, ·, π are defined on Φ̃ and P(I).

Example 7. Let us return to the previous examples and consider the pairs (σ(D+
1 ), S1),

(σ(D+
2 ), S2), (σ(D3), S3), (σ(D′3), S3) ∈ Φ. Then consider the map h : Φ → Φ̃ de-

fined by (P , S) 7→ (eS(P )↓SS , S) = (P ↓SS , S). Then we have:

• h(σ(D+
1 ), S1) = h(σ(D+

1 , S1)) = σ̃(h(D+
1 , S1)) = (σ((D+

1 ∩ LS1)↓S1), S1), with
σ((D+

1 ∩ LS1)↓S1)(f) = min{f(0, 1), f(1, 0)}, for every f ∈ L(ΩS1);

• h(σ(D+
2 ), S2) = h(σ(D+

2 , S2)) = σ̃(h(D+
2 , S2)) = (σ((D+

2 ∩ LS2)↓S2), S2) with
σ((D+

2 ∩ LS2)↓S2)(f) = f(1), for every f ∈ L(ΩS2);

• h(σ(D3), S3) = h(σ(D′3), S3) = h(σ(D+
2 ), S3) = h(σ(D+

2 , S3)) = σ̃(h(D+
2 , S3)) =

(σ((D+
2 ∩ LS3)↓S3), S3) with σ((D+

2 ∩ LS3)↓S3)(f) = min{f(1, 0), f(1, 1)}, for
every f ∈ L(ΩS3).
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Moreover, Theorem 7 guarantees that h maintains combination and extraction,
therefore

h(σ(D+
1 ), S1) · h(σ(D+

2 ), S2) · h(σ(D3), S3)· = h(σ(D+
1 ) · σ(D+

2 ) · σ(D3), I) =

h(σ(D+
1 ·D

+
2 ·D3), I) = h(σ(D), I) = σ̃(h(D, I)),

thanks to Corollary 1. And

πS3
(h(σ(D+

1 ), S1) · h(σ(D+
2 ), S2) · h(σ(D3), S3)) = πS3

(h(σ(D), I)) =

h(πS3
(σ(D), I)) = h(eS3

(σ(D)), S3) = h(σ(εS3(D)), S3) =

σ̃(h(εS3(D), S3)) = σ̃(h(D3, S3)),

thanks again to Corollary 1. 	

We remark that also in this case, an information order can be defined analogously
to the one seen for the domain-free case.

The results of this section show that the domain-free information algebra of coherent
lower (and upper) previsions is closely related to the domain-free information algebra
of coherent sets of gambles. This relationship carries over to the labeled versions of
the information algebras involved. Moreover, we have shown that the information
algebra of coherent sets of gambles is completely atomistic. In the next section we
discuss what this means for the information algebras of coherent lower previsions.

5.3 Atoms

Linear previsions have an important role in the theory of imprecise probabilities.
Therefore, in this section, they will be examined from the point of view of information
algebras.

From Lemma 9 in Appendix A, we may deduce that linear previsions are atoms in
the domain-free information algebra of coherent lower previsions. Indeed we have
P ·P = P or P ·P = 0, where here 0 is the null element P (f) =∞, for all f ∈ L(Ω).
The information algebra of coherent sets of gambles is completely atomistic. It is
to be expected that the same holds for the information algebra of coherent lower
previsions. Let At(Φ) := P be the set of all linear previsions (atoms) and At(P ) the
set of all linear previsions (atoms) dominating P ∈ Φ,

At(P ) := {P ∈ At(Φ) : P ≤ P}.

Then the following theorem shows that the information algebra (Φ, I, ·, σ(L), σ(L+), e)
is completely atomistic.

Theorem 8 Consider the set of lower previsions Φ. The following holds.

1. If P ∈ P, then At(P ) 6= ∅ and

P = inf At(P ).
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2. If A is any non-empty subset of At(Φ), then

P := inf A

exists and it belongs to P.

For the proof of this theorem, see Theorem 2.6.3 and Theorem 3.3.3 in Walley (1991).

According to this theorem, if A is any non-empty family of linear previsions, then
inf A exists and it is a coherent lower prevision P . Then we have A ⊆ At(P ) and it
follows

P := inf A = inf At(P ).

So, the coherent lower prevision P is the lower envelope of the linear previsions
(atoms) which dominate it.

We now examine linear previsions in the labeled view of the information algebra of
coherent lower previsions. The elements (P̃ , S), where P̃ ∈ P(ΩS) and S ⊆ I, are
atoms relative to S in the labeled information algebra (Φ̃(Ω), I, d, ·, {(σ(L(ΩS)), S)}S⊆I ,
{(σ(L+(ΩS)), S)}S⊆I , π), that is, if (P̃ , S) ≤ (P̃ , S), then either (P̃ , S) = (P̃ , S) or
(P̃ , S) = (σ(L(ΩS)), S), which is the null element for label S. This follows from
Lemma 9 in Appendix A.

Also here, the properties of the domain-free information algebra (Φ, I, ·, σ(L), σ(L+), e)
of being atomic, atomistic and completely atomistic carry over to this labeled ver-
sion. Let AtS(Φ̃) be the set of atoms (P̃ , S) relative to S of this labeled information
algebra, and let AtS(P̃ , S) the subset of AtS(Φ̃) dominating (P̃ , S) ∈ Φ̃.

• Atomic: For any element (P̃ , S) ∈ Φ̃, S ⊆ I with P̃ ∈ P(ΩS), there is an atom
relative to S, (P̃ , S) ∈ AtS(Φ̃), so that (P̃ , S) ≤ (P̃ , S). That is, AtS(P̃ , S) is
not empty.

• Atomistic: For any element, (P̃ , S) ∈ Φ̃, S ⊆ I, with P̃ ∈ P(ΩS), we have
(P̃ , S) = inf AtS(P̃ , S).

• Completely Atomistic: For any, not empty, subset A of AtS(Φ̃), inf A exists
and belongs to Φ̃S , for every S ⊆ I.

6 The marginal problem

Compatibility is the problem of checking whether some given probabilistic assess-
ments have a common joint probabilistic model.

Here, as an application of the results found in this paper, we treat the compatibility
problem with respect to coherent sets of gambles and coherent lower previsions,
already analysed by Miranda & Zaffalon (2020), in a more natural and easy way
using results of information algebras.
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Two or more pieces of information can be considered as consistent, if their combi-
nation is not the null element. This translates for coherent sets of gambles in the
following way.

Definition 22 (Consistency for coherent sets of gambles) A finite family of
coherent sets of gambles D1, . . . , Dn is consistent, or D1, . . . , Dn are consistent, if
and only if 0 6= D1 · . . . ·Dn.

This is called “avoiding partial loss” in desirability (Miranda & Zaffalon, 2020).
Otherwise, the family is, or the sets of gambles are, called inconsistent. There is,
however, a more restrictive concept of consistency called compatibility (Miranda &
Zaffalon, 2020). We translate it using the language of information algebras.

Definition 23 (Compatibility for coherent sets of gambles) A finite family
of coherent sets of gambles D1, . . . , Dn, where Di has support Si for every i =
1, . . . , n respectively, is called compatible, or D1, . . . , Dn are called compatible,
if and only if there is a coherent set of gambles D such that εSi(D) = Di for
i = 1, . . . , n.

To decide whether a family of Di is compatible in this sense is also called the marginal
problem, since extractions are (in the labeled view) projections or marginals.

Miranda & Zaffalon (2020) give also a definition of pairwise compatibility for coherent
sets of gambles. In terms of information algebras we can reformulate it as follows.

Definition 24 (Pairwise compatibility for coherent sets of gambles) Two co-
herent sets Di and Dj, where Di has support Si and Dj support Sj, are called pair-
wise compatible if and only if

εSj (Di) = εSi(Dj). (6.1)

Analogously, a finite family of coherent sets of gambles Di, ..., Dn, where Di has sup-
port Si for every i = 1, ..., n respectively, is pairwise compatible, or again Di, ..., Dn

are pairwise compatible, if and only if pairs Di, Dj are pairwise compatible for every
i, j ∈ {1, ...n}.

From this definition moreover, it follows that

εSi∩Sj (Di) = εSi∩Sj (εSj (Di)) = εSi∩Sj (εSi(Dj)) = εSi∩Sj (Dj).

In an information algebra in general we could take also this as a definition of pairwise
compatibility. Indeed, from this we may recover Eq. (6.1), since by item 5 of the
list of properties of support (Section 4.2), if Si is a support of Di and Sj of Dj , we
have εSj (Di) = εSi∩Sj (Di) and εSi(Dj) = εSi∩Sj (Dj).

Now let us consider Di, Dj consistent and suppose Si is a support of Di and Sj
is a support of Dj . Let us also define D := Di · Dj . If Di and Dj are pairwise
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compatible, then εSi(D) = Di · εSi(Dj) = Di · εSj (Di) = Di and also εSj (D) =
Dj . So, a pairwise compatible pair of pieces of information are compatible. And,
conversely, if Di and Dj are compatible, then there exists a coherent set D, such
that εSi∩Sj (D) = εSi∩Sj (εSi(D)) = εSi∩Sj (Di) and similarly εSi∩Sj (D) = εSi∩Sj (Dj).
Therefore the two elements are pairwise compatible.

It is well-known that pairwise compatibility among a family of D1, . . . , Dn of pieces
of information is not sufficient for the family to be compatible (the inverse however
is true: a compatible family of coherent sets of gambles is always pairwise com-
patible). A well-known sufficient condition to obtain compatibility from pairwise
compatibility is that the family of supports S1, . . . , Sn of D1, ..., Dn satisfies the
running intersection property (RIP).

RIP For i = 1 to n− 1 there is an index p(i), i+ 1 ≤ p(i) ≤ n such that

Si ∩ Sp(i) = Si ∩ (∪nj=i+1Sj).

Then we have the following theorem (Miranda & Zaffalon, 2020, Theorem 2, Propo-
sition 1), a theorem that in fact is a theorem of information algebras in general.

Theorem 9 Consider a finite family of consistent coherent sets of gambles D1, . . . , Dn

with n > 1 where Di has support Si for every i = 1, ..., n respectively. If S1, . . . , Sn
satisfy RIP and D1, . . . , Dn are pairwise compatible, then they are compatible and
εSi(D1 · . . . ·Dn) = Di for i = 1, . . . , n.

Proof. We give a proof in the framework of general domain-free information algebras.
Let Yi := Si+1 ∪ . . . ∪ Sn for i = 1, . . . , n− 1 and D := D1 · . . . ·Dn. Then by RIP

εY1(D) = εY1(D1) ·D2 · . . . ·Dn = εY1(εS1(D1)) ·D2 · . . . ·Dn

= εS1∩Y1(D1) ·D2 · . . . ·Dn = εS1∩Sp(1)
(D1) ·D2 · . . . ·Dn.

But by pairwise compatibility εS1∩Sp(1)
(D1) = εS1∩Sp(1)

(Dp(1)), hence by Idempo-
tency

εY1(D) = D2 · . . . ·Dn.

By induction on i, one shows exactly in the same way that

εYi(D) = Di+1 · . . . ·Dn, ∀i = 1, .., n− 1.

So, we obtain εSn(D) = εYn−1(D) = Dn. Now, we claim that εSi(D) = εSi∩Sp(i)
(D) ·

Di for every i = 1, ..., n− 1. Since Sp(i) ⊆ Yi, we have by RIP:

Di · εSi∩Sp(i)
(D) = Di · εSi∩Sp(i)

(εYi(D)) = Di · εSi∩Yi(εYi(D)) = Di · εSi(εYi(D)) =

Di · εSi(Di+1 · . . . ·Dn) = εSi(Di ·Di+1 · . . . ·Dn).

Now, if i = 1 we have the result, otherwise we have

Di · εSi∩Sp(i)
(D) = εSi(Di ·Di+1 · . . . ·Dn) = εSi(εYi−1(D)) = εSi(D).
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Then, by backward induction, based on the induction assumption εSj (D) = Dj

for j > i, and rooted in εSn(D) = Dn, for i = n − 1, . . . 1, we have by pairwise
compatibility

εSi(D) = εSi∩Sp(i)
(D) ·Di = εSi∩Sp(i)

(εSp(i)
(D)) ·Di

= εSi∩Sp(i)
(Dp(i)) ·Di = εSi∩Sp(i)

(Di) ·Di = Di.

This concludes the proof. ut

Note that the condition εSi(D1 · . . . ·Dn) = Di for every i, implies that the family
D1, . . . , Dn is compatible. So, this is a sufficient condition for compatibility. This
theorem is a theorem of information algebras, it holds not only for coherent sets of
gambles but for any domain-free information algebra, in particular for the domain-
free information algebra of coherent lower previsions for instance.

Example 8. Consider again the framework of the previous examples. The sets of
variables S1, S2, S3 satisfy the running intersection property. Let us concentrate
ourselves on consistent sets D+

1 , D
+
2 , D3. Theorem 9 tells us that D+

1 , D
+
2 , D3 will

be compatible if they are pairwise compatible.

Hence, it is sufficient to check pairwise compatibility of D+
1 , D

+
2 , D3:

εS1∩S2(D+
1 ) = L+ = εS1∩S2(D+

2 ),

εS1∩S3(D+
1 ) = L+ = εS1∩S3(D3),

εS2∩S3(D+
2 ) = D+

2 = εS2∩S3(D3).

Since they are pairwise compatible, they are compatible.

	

The definition of compatibility and pairwise compatibility depend on the supports
of the elements Di. But Di may have different supports. How does this influence
compatibility? Assume Di and Dj are coherent and pairwise compatible according
to their supports Si and Sj , that is εSi∩Sj (Di) = εSi∩Sj (Dj). It may be that a set
S′i ⊆ Si is still a support of Di and a subset S′j ⊆ Sj a support of Dj . Then

εS′i∩S′j (Di) = εS′i∩S′j (εSi∩Sj (Di)) = εS′i∩S′j (εSi∩Sj (Dj)) = εS′i∩S′j (Dj).

So, Di and Dj are also pairwise compatible relative to the smaller supports S′i and
S′j . The finite supports of a coherent set of gambles Di, have a least support

di :=
⋂
{S : S support of Di}.

This is called the dimension of Di, it is itself a support of Di (see item 4 on the list
of properties of supports). So, if Di and Dj are pairwise compatible relative to two
of their respective supports Si and Sj , they are pairwise compatible relative to their
dimensions di and dj . This makes pairwise compatibility independent of an ad hoc
selection of supports.
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But what about compatibility? Assume that the family of coherent sets D1, . . . , Dn

is compatible relative to the supports Si of Di, that is, there exists a coherent set
D such that εSi(D) = Di for every i = 1, . . . , n. Then we have

εdi(D) = εdi(εSi(D)) = εdi(Di) = Di.

So, the family D1, . . . , Dn is also compatible with respect to the system of their
dimensions. Again, this makes the definition of compatibility independent of a
particular selection of supports. We remark that the set {S : S support of Di} is an
upset, that is with any element S in the set an element S′ ⊇ S belongs also to the
set (item 6 on the list of properties of supports). In fact,

{S : S support of Di} =↑di

is the set of all supersets of the dimension. Now, assume that the finite family of
coherent sets D1, . . . , Dn with n > 1, is consistent and pairwise compatible. The
dimensions di may not satisfy RIP, but some sets Si ⊇ di may. Then by Theorem 9
and this discussion, D1, . . . , Dn are compatible.

From a point of view of information, compatibility of pieces of informationD1, . . . , Dn

is not always desirable. It is a kind of irrelevance or (conditional) independence
condition. In fact, if the members of the family of coherent sets D1, . . . , Dn with
n > 1 are consistent, pairwise compatible, and their supports Si satisfy RIP, then
Di = εSi(D1 · . . . · Dn) means that, the pieces of information Dj for j 6= i give
no new information relative to variables in Si. If, on the other hand, the family
D1, . . . , Dn is not compatible, but consistent in the sense that D := D1 · . . . ·Dn 6= 0,
then, if S1 to Sn satisfy RIP, we have that the family εSi(D) ≥ Di (in the in-
formation order). Indeed εSi(D) · Di = εSi(D1 · ... · Di−1 · Di+1 · Dn) · Di · Di =
εSi(D1 · ... · Di−1 · Di+1 · Dn) · Di = εSi(D). This means that Dj may provide ad-
ditional information on the variables in Si for i 6= j. By formula (4.33), p. 119 in
Kohlas (2003), we have

D = εS1(D) · . . . · εSn(D).

Obviously the D′i := εSi(D) are pairwise compatible and by definition compatible.

To conclude, note that most of this discussion of compatibility (in particular Theo-
rem 9) depends strongly on idempotency E2 of the information algebra. For instance
the valuation algebra corresponding to Bayesian networks is not idempotent, as well
as many other semiring-valuation algebras (Kohlas & Wilson, 2006). So Theorem 9
does not apply.

We have remarked that compatibility is essentially an issue of information algebras.
So, we may expect that concepts and results on compatibility of coherent sets of
gambles carry over to coherent lower and upper previsions.

Definition 25 (Consistency for coherent lower previsions) A finite family of
coherent lower previsions P 1, . . . , Pn, is consistent, or P 1, . . . , Pn are consistent, if
and only if 0 6= P 1 · . . . · Pn.
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Definition 26 (Compatibility for coherent lower previsions) A finite family
of coherent lower previsions P 1, . . . , Pn, where P i has support Si for every i =
1, . . . , n respectively, is called compatible, or P 1, . . . , Pn are called compatible, if
and only if there is a coherent lower prevision P such that eSi

(P ) = P i for i =
1, . . . , n.

Definition 27 (Pairwise compatibility for coherent lower previsions) Two co-
herent lower previsions P i and P j, where P i has support Si and P j support Sj, are
called pairwise compatible, if and only if

eSi∩Sj
(P j) = eSi∩Sj

(P i).

Analogously, a finite family of coherent lower previsions P i, ..., Pn, where P i has sup-
port Si for every i = 1, ..., n respectively, is pairwise compatible, or again P i, ..., Pn
are pairwise compatible, if and only if pairs P i, P j are pairwise compatible for every
i, j ∈ {1, ...n}.

Theorem 9 carries over, since it is in fact a theorem of information algebras.

Theorem 10 Consider a finite family of consistent coherent lower previsions P 1, . . . , Pn
with n > 1, where P i has support Si for every i = 1, ..., n respectively. If S1, . . . , Sn
satisfy RIP and P 1, . . . , Pn are pairwise compatible, then they are compatible and
eSi

(P 1 · . . . · Pn) = P i for i = 1, . . . , n.

Of course, there are close relations between compatibility of coherent sets of gambles
and coherent lower previsions by the homomorphism between the related algebras.
If a family of coherent sets D1, . . . , Dn with supports S1, . . . , Sn respectively, is
compatible, then the associated family of coherent lower previsions σ(D1), . . . , σ(Dn)
is compatible too, since eSi

(σ(D)) = σ(εSi(D)) = σ(Di). Conversely, if P 1, . . . , Pn is
a compatible family of coherent lower previsions with support S1, . . . , Sn respectively,
then there is a compatible family of strictly desirable sets of gambles D+

i := τ(P i)
for every i = 1, ..., n.

7 Outlook

This paper presents a first approach to information algebras related to coherent sets
of gambles and coherent lower and upper previsions. This leads us the possibility
to abstract away properties of desirability that can be regarded as properties of the
more general algebraic structure of information algebras rather than special ones of
desirability.

De Cooman (2005) pursued a similar purpose. He showed indeed that there is a
common order-theoretic structure that he calls belief structure, underlying many of
the models for representing beliefs in the literature such as, for example, classical
propositional logic, almost desirable sets of gambles or lower and upper previsions.
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There are surely important and interesting connections between de Cooman’s be-
lief structures (de Cooman, 2005) and information algebras. In particular between
belief structures and information algebras based on closure operations, linked with
information systems (Kohlas, 2003). This hints at a profound connection between
the two theories, which certainly deserves careful study. However, this is a subject
which has yet to be worked out and may advance both information algebra theory
as well as belief structures.

There are also other aspects and issues which are not addressed here. In particu-
lar, we limit our work to multivariate models, where coherent sets of gambles and
coherent lower previsions represent pieces of information or belief relative to sets of
variables. However, more general possibility spaces can be considered. In the view
of information algebras, this translates in considering coherent sets of gambles and
coherent lower previsions as pieces of information regarding more general partitions
of the set of possibilities. This case has been analysed in more detail in Kohlas
et al. (2021) and in Casanova et al. (2021). Moreover, another important issue
which is not been addressed here is the issue of conditioning. It should be analysed
both for the multivariate and for the more general cases of possibility spaces. This
would also serve to analyse the issue of conditional independence, which seems to
be fundamental for any theory of information.

A Technical preliminaries

In this appendix are presented some new results on consequence operators, coherent
and almost desirable sets of gambles and lower previsions that are preliminary to
the rest of the work.

Lemma 5 If C is a consequence operator on P(L) then, for any K1,K2 ⊆ L:

C(K1 ∪ K2) = C(C(K1) ∪ K2).

Proof. Obviously, C(K1∪K2) ⊆ C(C(K1)∪K2). On the other hand K1,K2 ⊆ K1∪K2,
hence C(K1) ⊆ C(K1 ∪ K2) and K2 ⊆ C(K1 ∪ K2). This implies C(C(K1) ∪ K2) ⊆
C(C(K1 ∪ K2)) = C(K1 ∪ K2). ut

The following lemma is about the domain of lower previsions and it is particularly
important in Section 5.

Lemma 6 Given a non-empty set of gambles K ⊆ L(Ω), we have

1. K ⊆ dom(σ(K)).

2. If 0 6∈ E(K), then σ(K)(f) ∈ R for every f ∈ K.

3. If K ∈ C(Ω), then dom(σ(K)) = L(Ω) and σ(K)(f) ∈ R for every f ∈ L(Ω).
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4. If K ∈ C(Ω), then dom(σ(K)) = L(Ω) and σ(K)(f) ∈ R for every f ∈ L(Ω).

Proof.

1. Consider f ∈ K. Then the set {µ ∈ R : f − µ ∈ K} is not empty, since it
contains at least 0.

2. Assume f − µ ∈ K. If µ ≥ sup f , then f(ω) − µ ≤ 0 for all ω, but then
0 ∈ E(K), contrary to assumption. So, the set {µ ∈ R : f − µ ∈ K} is not
empty and bounded from above for every f ∈ K.

3. If K is a coherent set of gambles, then 0 6∈ E(K) = C(K) = K so that K ⊆
dom(σ(K)) and σ(K)(f) ∈ R, for every f ∈ K. Consider therefore f ∈ L(Ω)\K.
If there would be a µ ≥ 0 so that f − µ ∈ K, then f − µ ≤ f ∈ K, which
contradicts the assumption. Now, if µ ≤ inf f < 0, then f − µ ∈ L+(Ω) ⊆ K,
so it follows inf f ≤ σ(K)(f) < 0 and dom(σ(K)) = L(Ω).

4. From item 1., we have that dom(σ(K)) ⊇ K. Moreover, if K ∈ C(Ω), then
−1 /∈ K. Therefore, for every f ∈ K, if µ ≥ sup f+1 then f−µ ≤ −1 /∈ K. So,
{µ ∈ R : f − µ ∈ K} is not empty and bounded from above for every f ∈ K.

For f ∈ L(Ω) \ K, we can repeat the procedure of item 3.

ut

The following lemma establishes how coherent, strictly desirable and almost desir-
able sets are linked relative to the coherent lower previsions they induce. This result
follows also from the fact that, in the sup-norm topology, given a coherent set D
its relative interior plus the non-negative, non-zero gambles D+ is a strictly desir-
able set of gambles and D, the relative closure of D, is an almost desirable set of
gambles (Walley, 1991).

Lemma 7 Let D ⊆ L(Ω) be a coherent set of gambles. Then

D+ := τ(σ(D)) ⊆ D ⊆ τ(σ(D)) := D

and σ(D+) = σ(D) = σ(D).

Proof. Let P := σ(D). Then f ∈ D+ means that 0 < P (f) := sup{µ ∈ R : f − µ ∈
D}, or f ∈ L+(Ω). If f ∈ L+(Ω) then f ∈ D. Otherwise, there is a δ such that
0 < δ < P (f) and f − δ ∈ D. Therefore f ∈ D and D+ ⊆ D. Further, consider
f ∈ D. Then we must have P (f) := sup{µ ∈ R : f −µ ∈ D} ≥ 0, hence f ∈ D. The
second part follows since τ and τ are the inverse maps of σ on strictly desirable and
almost desirable sets of gambles. ut

We can give also a further characterization of the elements of a strictly desirable set
of gambles, particularly useful in Section 5.
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Lemma 8 Let D be a coherent set of gambles and D+ := τ(σ(D)), if f ∈ D\L+(Ω)
then f ∈ D+ if and only if there is a δ > 0 so that f − δ ∈ D.

Proof. One part is by definition: if f ∈ D+ and f /∈ L+(Ω), then there is a δ > 0 so
that f−δ ∈ D+ ⊆ D. Conversely, consider f−δ ∈ D for some δ > 0 with f /∈ L+(Ω)
and note that D+ := {g ∈ L : σ(D)(g) > 0} ∪ L+(Ω) and σ(D)(g) := sup{µ ∈ R :
g − µ ∈ D} for every g ∈ L. From f − δ ∈ D we deduce that σ(D)(f) > 0, hence
f ∈ D+. ut

Now, let us concentrate ourselves on the particular case of strictly desirable sets of
gambles associated to a linear prevision P ,

τ(P ) := {f ∈ L : P (f) > 0} ∪ L+(Ω) = {f ∈ L : −P (−f) > 0} ∪ L+(Ω).

We call these sets maximal strictly desirable sets of gambles and we indicate them
with M+. We can prove then the following results.

Lemma 9 Let P be an element of Φ and P a linear prevision. Then P ≤ P implies
either P = P or P (f) = +∞ for all f ∈ L.

Proof. Clearly P (f) = +∞ for all f ∈ L is a possible solution. Consider instead the
case in which P is coherent.

From Walley (1991), we know that P (f) ≤ P (f), for all f ∈ L(Ω). Then, we have:

P (f) ≤ P (f) := −P (−f) ≤ −P (−f) = P (f), ∀f ∈ L(Ω). (1.1)

Given the fact that, by hypothesis, we have also P (f) ≥ P (f), for all f ∈ L(Ω), we
have the result. ut

Lemma 10 Let D+ be an element of Φ+ and M+ a maximal strictly desirable set
of gambles. Then M+ ≤ D+ implies either D+ = M+ or D+ = L(Ω).

Proof. Notice that
M+ ≤ D+ ⇒ σ(M+) ≤ σ(D+). (1.2)

Therefore, from Lemma 9, we have σ(D+) = σ(M+) or σ(D+) = σ(L), from which
we derive D+ = τ(σ(D+)) = τ(σ(M+)) = M+ or D+ = τ(σ(D+)) = τ(σ(L)) = L.

ut

Now, we establishes and prove a fundamental result for Section 5: the map σ com-
mutes with natural extension under certain conditions.

Before stating it, we need the following lemma. It states that the map σ restricted
to coherent sets of gambles preserves infima. Here we define the functional inf{P j :
j ∈ J} by inf{P j(f) : j ∈ J} for all f ∈ L(Ω).
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Lemma 11 Let {Dj}j∈J be any family of coherent sets. Then we have

σ(
⋂
j∈J

Dj) = inf{σ(Dj) : j ∈ J}.

Proof. Note that the intersection of the coherent sets Dj equals a coherent set D.
Moreover, inf{σ(Dj) : j ∈ J} is coherent (Walley, 1991). We have σ(

⋂
j∈J Dj) :=

σ(D) =: P ≤ σ(Dj), for all j ∈ J . So P (f) ≤ σ(Dj)(f) for all f ∈ L and j ∈ J ,
therefore P ≤ inf{σ(Dj) : j ∈ J}. However, given the fact that inf{σ(Dj) : j ∈ J}
is coherent, we have also τ(inf{σ(Dj) : j ∈ J}) ⊆ τ(σ(Dj)) ⊆ Dj for all j ∈ J , by
definition of inf{σ(Dj) : j ∈ J}. Hence τ(inf{σ(Dj) : j ∈ J}) ⊆

⋂
j Dj =: D. But

this implies inf{σ(Dj) : j ∈ J} ≤ σ(D) =: P . This concludes the proof. ut

Now we can state the main result.

Theorem 11 Let K ⊆ L(Ω) be a non-empty set of gambles which satisfies the
following two conditions:

1. 0 6∈ E(K),

2. for all f ∈ K \ L+(Ω) there exists a δ > 0 such that f − δ ∈ K.

Then we have

σ(C(K)) = E∗(σ(K)) = E(σ(K)).

Proof. If K = L+(Ω), then K ∈ C(Ω) and σ(C(K)) = E∗(σ(K)) = E(σ(K)) because
the lower prevision associated with L+(Ω) is already coherent. So, assume that
K 6= L+(Ω). We have then E(K) = C(K) ∈ C(Ω), so that

C(K) =
⋂
{D ∈ C(Ω) : K ⊆ D}.

Let P := σ(K), then σ(C(K)) ≥ P and moreover σ(C(K)) is coherent, hence
σ(C(K)) ≥ E∗(P ) = E(P ).

Now, E(K) is a strictly desirable set of gambles such that E(K) ⊇ K. So, there exists
at least a strictly desirable set of gambles containing K. Therefore we have:

σ(C(K)) = σ(
⋂
{D ∈ C(Ω) : K ⊆ D}) ≤ σ(

⋂
{D+ ∈ C+(Ω) : K ⊆ D+}).

Clearly, if K ⊆ D+, then P ≤ σ(D+), where σ(D+) is a coherent lower prevision.
We claim that the converse is also valid. Indeed, let us consider a coherent lower
prevision P ′ such that P ≤ P ′ and its associated strictly desirable set of gambles
D+ := τ(P ′). If f ∈ K, then P (f) ≥ 0. If f ∈ L+(Ω), then f ∈ τ(P ′), otherwise,
if f ∈ K \ L+(Ω), then there is by assumption a δ > 0 such that f − δ ∈ K, hence
0 < P (f) ≤ P ′(f). But this means again that f ∈ τ(P ′). So, thanks to Lemma 11
we have:

σ(
⋂
{D+ ∈ C+(Ω) : K ⊆ D+}) = inf{P ′ ∈ P(Ω) : P ≤ P ′} = E∗(P ) = E(P )

so that σ(C(K)) = E(σ(K)), concluding the proof. ut
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