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Abstract
In this paper, we show that coherent sets of gambles
can be embedded into the algebraic structure of infor-
mation algebra. This leads firstly, to a new perspective
of the algebraic and logical structure of desirability
and secondly, it connects desirability, hence impre-
cise probabilities, to other formalism in computer sci-
ence sharing the same underlying structure. Both the
domain-free and the labeled view of the information
algebra of coherent sets of gambles are presented, con-
sidering general possibility spaces.
Keywords: desirability, information algebras, order
theory, imprecise probabilities, coherence.

1. Introduction and Overview

Recently Miranda and Zaffalon [13] have derived some
results about compatibility or consistency of coherent sets
of gambles and remarked that these results were in fact
about the theory of information or valuation algebras (see
[6]).

This point of view however, was not worked out in [13].
In this and in our previous work [12] this issue is taken
up. We abstract away properties of desirability that can be
regarded as properties of information algebras rather than
special ones of desirability. This is made showing that, in
particular, coherent sets of gambles augmented with the
set of all gambles form an information algebra. A similar
scope was pursued by de Cooman in [3]. He discovered
indeed that there is a common order-theoretic structure
underlying many of the models for representing beliefs in
the literature, including lower previsions and sets of almost
desirable gambles. Even if they share some elements, the
latter focuses more on the study of belief dynamics (belief
expansion and belief revision).

From the point of view of information algebras, sets
of gambles defined on a possibility space Ω are indeed
pieces of information about certain questions or variables
identified by families of equivalence relations ≡x on Ω, for
x in some index set Q. In particular, this paper is intended
as an extension of our previous paper, in which we treat

the particular case where information one is interested in
concerns the values of certain groups of variables {Xi : i ∈
I} with I an index set, Ω =×i∈I Ωi, where Ωi is the set of
possible values of Xi, and ω ≡S ω ′ ⇐⇒ ω|S = ω ′|S, 1 for
every S⊆ I and ω,ω ′ ∈Ω. (see [12]).

Such pieces of information can be aggregated and the
information they contain about specific questions can be
extracted. This leads to an algebraic structure satisfying a
number of simple axioms. There are two different versions
of information algebras: a domain-free one that correspond
to the general treatment of coherent sets of gambles defined
on Ω; a labeled one, more suitable when gambles implicitly
depend only on a specific question. They are closely related
and each one can be derived or reconstructed form the other.
The domain-free version is better suited for theoretical
studies, since it is a structure of universal algebra, whereas
the labeled one is better adapted to computational purposes
(see [6]).

In this paper both the views are presented. We begin
outlining some preliminaries in Section 2 and Section 3.
In Section 4 we derive the domain-free information alge-
bra of coherent sets of gambles. In Section 5 we prove
that, in particular, it is an atomistic information algebra. Fi-
nally, in Section 6, we derived the labeled version from the
domain-free one and in Section 7 we analyze the particular
case of commuting extraction operators that leads to the
multivariate case considered in [12].

2. Desirability

Consider a set Ω of possible worlds. A gamble over this set
is a bounded function f : Ω→ R.

A gamble is interpreted as an uncertain reward in a lin-
ear utility scale. A subject might desire a gamble or not,
depending on the information she has about the experiment
whose possible outcomes are the elements of Ω.

We denote the set of all gambles on Ω by L (Ω), or more
simply by L when there is no possible ambiguity. We also

1. If we think of ω ∈ Ω, as a map ω : I→ Ω, ω|S is the restriction of
the map ω to S.
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let L +(Ω) := { f ∈L (Ω) : f ≥ 0, f 6= 0}, or simply L +,
denote the subset of non-vanishing, non-negative gambles.
These gambles should always be desired, since they may
increase the wealth with no risk of decreasing it. As a con-
sequence of the linearity of our utility scale we assume
also that a subject disposed to accept the transactions rep-
resented by f and g, is disposed to accept also λ f + µg
with λ ,µ ≥ 0 not both equal to 0. More generally, we can
consider the notion of a coherent set of gambles (see [16]).

Definition 1 (Coherent set of desirable gambles) We
say that a subset D of L (Ω) is a coherent set of desirable
gambles if and only if D satisfies the following properties:

D1. L + ⊆D [Accepting Partial Gains];

D2. 0 /∈D [Avoiding Null Gain];

D3. f ,g ∈D ⇒ f +g ∈D [Additivity];

D4. f ∈D ,λ > 0⇒ λ f ∈D [Positive Homogeneity].

So, D is a convex cone. This leads to the concept of natural
extension.

Definition 2 (Natural extension for gambles) Given a
set K ⊆L (Ω), we call E (K ) := posi(K ∪L +), where

posi(K ′) :=

{
r

∑
j=1

λ j f j : f j ∈K ′,λ j > 0,r ≥ 1

}

for every set K ′ ⊆L (Ω), its natural extension.

The natural extension E (D), of a set of gambles D , is
coherent if and only if 0 6∈ E (D).

Coherent sets are closed under intersection, that is they
form a topless ∩-structure (see [1]). By standard order
theory (see [1]), they are ordered by inclusion, intersection
is meet in this order and a join exists if they have an upper
bound among coherent sets:

∨
i∈I

Di :=
⋂{

D ∈C(Ω) :
⋃
i∈I

Di ⊆D

}
,

if we denote with C(Ω), or simply with C, the family of
coherent sets of gambles on Ω.

Notice also that, if 0 /∈ E (D ′), E (D ′) is the smallest
coherent set containing D ′. Therefore, if E (

⋃
i∈I Di) is co-

herent, we have

∨
i∈I

Di = E

(⋃
i∈I

Di

)
.

In view of the following section, it is convenient to add
L (Ω) to C(Ω) and let Φ(Ω) :=C(Ω)∪{L (Ω)}. The fam-
ily of sets in Φ(Ω), or simply Φ where there is no possible
ambiguity, is still a ∩-structure, but now a topped one (see
[1]). So, again by standard results of order theory, Φ is a

complete lattice under inclusion, meet is intersection and
join is defined for any family of sets Di ∈Φ as

∨
i∈I

Di :=
⋂{

D ∈Φ :
⋃
i∈I

Di ⊆D

}
.

Note that, if the family of coherent sets Di has no upper
bound in C, then its join is simply L (Ω).

In this topped ∩-structure, let us define the following
operator

C (D ′) :=
⋂
{D ∈Φ : D ′ ⊆D}. (1)

It can be shown that is a closure (or consequence) operator
on subsets of gambles (see [1]). For further reference, it is
easy to prove also the following well-known result.

Lemma 3 For any D1,D2 ⊆L we have:

C (C (D1)∪D2) = C (D1∪D2).

Note that C (D) = E (D) if 0 6∈ E (D), that is if E (D) is
coherent. Otherwise we may have E (D) 6= L (Ω). These
results prepare the way to an information algebra of coher-
ent sets of gambles (see Section 4).

The most informative cases of coherent sets of gambles,
i.e. coherent sets that are not proper subsets of other coher-
ent sets, are called maximal.

Definition 4 (Maximal coherent set of gambles) A
coherent set of desirable gambles D is maximal if and only
if

(∀ f ∈L \{0}) f /∈D ⇒− f ∈D .

We shall indicate maximal sets of gambles with M to differ-
entiate them from the general case of coherent sets. These
sets play an important role with respect to information alge-
bras (see Section 5) because of the following facts proved
in [4]:

1. any coherent set of gambles is a subset of a maximal
one;

2. any coherent set of gambles is the intersection of all
maximal coherent sets it is contained in.

So far, we have considered sets of gambles in L (Ω) rel-
ative to a general set of possibilities Ω. In the next section,
we introduce some structure into it, which allows after-
wards to embed coherent sets of gambles into the algebraic
structure of information algebras.

3. Stucture of Questions and Possibilities
As before, let Ω be a set of possible worlds. We consider
families of equivalence relations ≡x for x in some index set
Q. Informally, we mean that Q represents questions and a
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question x ∈ Q has the same answer in possible worlds ω

and ω ′, if ω ≡x ω ′ (see also [7]).
There is a partial order between questions capturing gran-

ularity: question y is finer than question x if ω ≡y ω ′ implies
ω ≡x ω ′. This order becomes maybe clearer, if we consider
partitions Px, Py of Ω whose blocks are respectively the
equivalence classes [ω]x, [ω]y of the equivalence relations
≡x, ≡y, representing possible answers to x and y.

Then ω ≡y ω ′ implies ω ≡x ω ′, means that any block
[ω]y of partition Py is contained in some block [ω]x of
partition Px. The partition of Ω by Px is coarser than the
one by Py. If this is the case, we say that: Px ≤Py.2

It is well-known that partitions Part(Ω) of any set Ω

form a lattice under this order. In particular, the partition
sup{Px,Py}= Px∨Py of two partitions Px,Py is, in
this order, the partition obtained as the non-empty intersec-
tions of blocks of Px with blocks of Py.

We usually assume that the set of questions Q analyzed,
considered together with their associated partitions that we
denote with Q := {Px : x ∈ Q}, is a join-sub-semilattice
of (Part(Ω),≤) (see [1]).

As observed before, we may transport the order between
partitions to Q and vice versa: x ≤ y iff Px ≤Py and
we have then Px ∨Py = Px∨y and Px ∧Py = Px∧y.
Furthermore, we assume also often that the top partition in
Part(Ω), i.e. P> (where the blocks are singleton sets {ω}
for ω ∈Ω), belongs to Q.

A gamble f on Ω is called x-measurable if for all ω ≡x
ω ′ we have f (ω) = f (ω ′), that is, if f is constant on every
block of Px. It could then also be considered as a function
(a gamble) on the set of blocks of Px.

Let Lx(Ω), or Lx when there is no ambiguity, denote
the set of all x-measurable gambles, so that L> =L . Note
that Lx, as well as L , is a linear space for all x.

Further, x ≤ y if and only if Lx is a subspace of Ly.
So we have Lx,Ly ⊆Lx∨y. In fact Lx∨y is the smallest
subspace containing Lx and Ly.

Sometimes we want to consider partitions so that Lx∧y =
Lx ∩Ly. We show below (Lemma 9) that for this case
it is sufficient and necessary that ω ≡x∧y ω ′ implies the
existence of an ω ′′ so that ω ≡x ω ′′ ≡y ω ′.

We consider below coherent sets of gambles as pieces of
information, describing beliefs about the likeliness of the
possibilities in Ω. However, we may be interested in the
content of this information relative to some question x ∈ Q,
and we propose how to extract this part of information from
the original one. Also, possible beliefs may be originally
expressed relative to different questions and these pieces of
information must be combined to an aggregated belief.

This leads then to an algebraic structure, called an in-
formation algebra (see [6]). In the form sketched here, it

2. In order literature usually the inverse order between partitions is
considered. However, this order corresponds better to our natural
order of questions by granularity.

will be, more precisely, a domain-free information algebra
(Section 4). Later on, in Section 6, we consider a labeled
version of the algebra. To do this, we first need to intro-
duce a qualitative or logical independence relation between
partitions (see [8, 7]).

Definition 5 (Independent Partitions) For a finite set of
partitions P1, . . . ,Pn ∈ Part(Ω), n≥ 2, let us define

R(P1, . . . ,Pn) := {(B1, . . . ,Bn) : Bi ∈Pi,∩n
i=1Bi 6= /0}.

We call the partitions independent, if

R(P1, . . . ,Pn) = P1×·· ·×Pn.

The intuition behind this definition is the following:
R(P1, . . . ,Pn) contains the tuples of mutually compatible
blocks of P1, . . . ,Pn, representing compatible answers to
the n questions modelled by the partitions. If they are in-
dependent, the answer to a question Pi does not constrain
the answers to the other questions or, in other words, it
contains no information relative to the other questions.

Analogously, we can also introduce a logical conditional
independence relation between partitions.

Definition 6 (Conditionally Independent Partitions)
Consider a finite set of partitions P1, . . .Pn ∈ Part(Ω),
and a block B of a partition P (contained or not in the list
P1, . . . ,Pn), then define for n≥ 1,

RB(P1, . . . ,Pn) := {(B1, . . . ,Bn) : Bi ∈Pi,∩n
i=1Bi∩B 6= /0}.

We call P1, . . . ,Pn conditionally independent given P if,
for all blocks B of P ,

RB(P1, . . . ,Pn) = RB(P1)×·· ·×RB(Pn).

So, P1, . . . ,Pn are conditionally independent given P if
knowing an answer to Pi compatible with B∈P , gives no
information on the answers to the other questions, except
that they must each be compatible with B. Note that this re-
lation holds if and only if Bi ∩B 6= /0 for all i = 1, . . . ,n,
imply that B1 ∩ . . .∩ Bn ∩ B 6= /0. In this case we write
⊥{P1, . . . ,Pn}|P , or, for n = 2, P1⊥P2|P . We may
also say that P1⊥P2|P if and only if ω ≡P ω ′, implies
that there is an element ω ′′ ∈ Ω such that ω ≡P1∨P ω ′′

and ω ′ ≡P2∨P ω ′′.
The three-place relation P1⊥P2|P among partitions

has the following properties (see [7]):

Theorem 7 Given P,P ′,P1,P2 ∈ Part(Ω), we have:

C1 P1⊥P2|P2;

C2 P1⊥P2|P implies P2⊥P1|P;

C3 P1⊥P2|P and P ′ ≤P2 impliy P1⊥P ′|P;

C4 P1⊥P2|P implies P1⊥P2∨P|P .
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A three-place relation like P1⊥P2|P satisfying C1 to
C4 has been called a quasi-separoid (q-separoid) in [7]. It is
a reduct of a separoid, a concept discussed in [2] in relation
to the concept of (logical) conditional independence in
general. Notice in particular that, thanks to these properties,
we have:

Px ⊥Py|Pz ⇐⇒ Px∨z ⊥Py∨z|Pz.

We will use this property very often later on.
To simplify notation, in what follows, we write: x⊥y|z

for Px⊥Py|Pz; x ≤ y, as above, for Px ≤Py; x∨ y for
Px∨Py.

Join of two partitions Px and Py is simple to define as
we have seen above. For meet, Px ∧Py, the situation is
different, indeed its definition is somewhat involved (see
[5]). There is however an important particular case, where
meet is also simple.

Definition 8 (? product) Given two partitions Px,Py ∈
Part(Ω), we define the ? product of the correspondent
equivalence relations ≡x, ≡y respectively, as:

≡x ?≡y := {(ω,ω ′) : ∃ω ′′ so that ω ≡x ω
′′ ≡y ω

′}.

The following lemma gives a necessary and sufficient con-
dition for it to define an equivalence relation.

Lemma 9 Given two partitions Px,Py ∈ Part(Ω), the ?
product of the correspondent equivalence relations ≡x, ≡y
respectively, is an equivalence relation if and only if:

≡x ?≡y=≡y ?≡x .

If ≡x and ≡y commute, then the partition associated
with their ?-product is the meet of of the associated par-
titions Px and Py respectively, so that we may write
≡x ?≡y=≡x∧y. The partitions are then called commuting
and since their meet is defined by ≡x ? ≡y, they are also
called Type I partitions (see [5]).

Definition 10 (Type I partitions/Commuting partitions)
Two partitions Px,Py ∈ Part(Ω) are called Type I or
commuting partitions if the product ≡x ? ≡y is an
equivalence relation.

As a consequence, for commuting partitions Px and Py
we have also Lx ∩Ly = Lx∧y and vice versa, as stated
already above.

For commuting partitions, the conditional independence
relation can also be expressed simply in terms of joins and
meets.

Theorem 11 Given P1,P2,P ∈ Part(Ω), we have

P1⊥P2|P ⇔ (P1∨P)∧ (P2∨P) = P

if and only if P1 and P2 commute.

An important instance of such commutative partitions is
given in multivariate possibility sets. Let Xi a variable for i
in some index set I (usually a finite or countable set) and
Ωi the set of its possible values. If then

Ω =×
i∈I

Ωi

is the set of possibilities, we may think of its elements ω

as maps ω : I→Ω such that ω(i) ∈Ωi. If S is any subset
of variables, S⊆ I, then let

ΩS =×
i∈S

Ωi.

Further let ω ≡S ω ′ if ω and ω ′ coincide on S. This is an
equivalence relation in Ω and it determines a partition PS
of Ω.

These partitions commute pairwise. Taking the subsets
S of I as index set, according to Theorem 11, we have that
S⊥T |R (meaning PS⊥PT |PR) if and only if (S∪R)∩
(T ∪R) = R. Here, the underlying lattice of subsets of I or
the corresponding sub-lattice of partitions is distributive.
Then some properties in addition to C1 to C4 hold, making
it a strong separoid (see [2]).

4. Information Algebra of Coherent Sets of
Gambles

We define now on Φ(Ω) = C(Ω)∪ {L (Ω)}, the opera-
tions of combination, capturing aggregation of pieces of
belief, and extraction, describing filtering the part of infor-
mation relative to a question x ∈ Q. More formally, given
D ,D1,D2 ∈Φ and x ∈ Q, we define:

1. Combination: D1 ·D2 := C (D1∪D2);

2. Extraction: εx(D) := C (D ∩Lx).

Note that L and L + are respectively the null and the
unit elements of combination, since for every D ∈ Φ,
C (D ∪L ) = L and C (D ∪L +) = D . The null element
signals contradiction, it destroys any other piece of infor-
mation. The unit or neutral element represents vacuous
information, it changes no other piece of information. To
simplify notation, in what follows, we denote the null and
the unit element respectively by 0 and 1.

Then (Φ, ·) is a commutative, idempotent semigroup. In
an idempotent, commutative semigroup, a partial order is
defined by D1 ≤D2 if D1 ·D2 = D2. Then D1 ≤D2 if and
only if D1 ⊆ D2. This order is called information order,
since D1 ≤D2 means that D1 is less informative than D2.
In this order, the combination D1 ·D2 is the supremum or
join of D1 and D2, since Φ is a lattice,

D1 ·D2 = D1∨D2.
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Note that εx(D)≤D and also D1 ≤D2 implies εx(D1)≤
εx(D2).

We state now two fundamental theorems about the ex-
traction operator.

Theorem 12 For any D ,D1,D2 ∈Φ and x ∈ Q, we have:

1. εx(0) = 0,

2. εx(D) ·D = D ,

3. εx(εx(D1) ·D2) = εx(D1) · εx(D2).

This result can be proven analogously to the correspondent
result for multivariate possibility sets shown in [12]. An
operator on an ordered structure satisfying the condition of
this theorem is called an existential quantifier in algebraic
logic. 3 Furthermore, we have the following result about
conditional independence and extraction.

Theorem 13 Given x,y,z ∈Q and D ∈Φ. If x∨ z⊥y∨ z|z
and εx(D) = D , then:

εy∨z(D) = εy∨z(εz(D)).

A question x, or a partition Px, is called a domain or
support of an element D of Φ, if εx(D) = D . If D ∈C(Ω),
it means that the coherent set D refers already to the ques-
tion x. The finest top partition of Ω (all blocks consist of
exactly one element ω ∈Ω), is a support of all sets D ∈Φ

(including the unit and the null). However, there may be
other supports. The following result says that any partition,
finer than a support, is also a support.

Proposition 14 Given x ∈ Q and D ∈Φ. If x is a support
of D , then any y≥ x, y ∈ Q is also a support of D .

Here we summarize the algebraic system of Φ together
with a system of questions Q and a family E of extraction
operators εx : Φ→Φ for x ∈ Q:

1. Semigroup: (Φ, ·) is a commutative semigroup with a
null element 0 and a unit 1.

2. Quasi-Separoid: (Q,≤) is a join semilattice and x⊥y|z
with x,y,z ∈ Q, a quasi-separoid.

3. Existential Quantifier: For any x ∈ Q, D1,D2,D ∈Φ:

(a) εx(0) = 0,

(b) εx(D) ·D = D ,

(c) εx(εx(D1) ·D2) = εx(D1) · εx(D2).

4. Extraction: For any x,y,z ∈ Q, D ∈ Φ, such that x∨
z⊥y∨ z|z and εx(D) = D , we have:

εy∨z(D) = εy∨z(εz(D)).

3. In algebraic logic the ordered structure is mostly a Boolean lattice
(see [1]) and the inverse order is considered, so that join becomes
meet.

5. Support: For any D ∈ Φ there is an x ∈ Q so that
εx(D) = D and for all y≥ x, y ∈ Q, εy(D) = D .

The existence of a support x for any D is essential for the
existence of an associated labeled version of the informa-
tion algebra (see Section 6). The extraction property is an
important axiom relating to conditional (logical) indepen-
dence: if the partition x∨ z is conditionally independent
from y∨ z given z, then, when from a piece of information
regarding (supported by) x∨ z the information relating to
y∨ z is extracted, only the part bearing on z is relevant.

An algebraic system satisfying these conditions is called
a domain-free information algebra. Therefore, with a little
abuse of notation, in what follows we will refer to Φ as
the domain-free information algebra of coherent sets of
gambles. This axiomatic system is more general than the
usual ones (see [6, 14]). In Section 7, it will be shown
that these older axiomatic systems are special cases of the
present one. In the unpublished text [7] a similar system
has been proposed and analyzed.

For further reference, a number of elementary conse-
quences of the axioms above are collected.

Lemma 15 Given x,y ∈ Q and D ,D1,D2 ∈Φ, we have:

1. εx(1) = 1,

2. εx(D) = 0 if and only if D = 0,

3. x is a support of εx(D),

4. if x≤ y, then εx(D)≤ εy(D),

5. if x≤ y, then εy(εx(D)) = εx(D),

6. if x≤ y, then εx(εy(D)) = εx(D),

7. if x is a support of both D1 and D2, then it is a support
for D1 ·D2,

8. if x is a support of D1 and y a support of D2, then
x∨y is a support for D1 ·D2 and D1 ·D2 = εx∨y(D1) ·
εx∨y(D2).

These are important properties, especially in view of the
labeled version of an information algebra, see Section 6.
Here follow two important generalizations of the Extraction
and the Existential quantification axioms, which show the
equivalence between the axiomatic definition of a domain-
free information algebra given here with the one in [7].

Theorem 16 Let D1,D2 and D be elements of Φ and
x,y,z ∈ Q, such that x⊥y|z. Then

1. if x is a support of D ,

εy(D) = εy(εz(D)).

2. If x is a support of D1 and y of D2,

εz(D1 ·D2) = εz(D1) · εz(D2).
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Recall that Φ forms a lattice under information order
or inclusion. It turns out that extraction commutes with
intersection, i.e. meet in the lattice.

Theorem 17 Let D j with j ∈ J be any family of elements
of Φ and x ∈ Q. Then

εx

(⋂
j∈J

D j

)
=
⋂
j∈J

εx(D j). (2)

This result can be proven analogously to the correspon-
dent result for multivariate possibility sets shown in [12].

An information algebra like Φ, where (Φ,≤) is a lattice
under information order and satisfies (2), is called a lattice
information algebra (see [9]).

In the next section we will see moreover that the informa-
tion algebra of coherent sets of gambles is also an atomistic
information algebra.

5. Atoms

In certain information algebras there are maximally infor-
mative elements, called atoms. In terms of the information
algebra Φ, we have:

M ≤D for D ∈Φ ⇐⇒ D = M or D = 0,

if M is a maximal set of gambles. Clearly we have also
M 6= 0. These are the characterizing properties of atoms,
therefore, maximal sets M are atoms in the information
algebra Φ. This is a well-know concept in information al-
gebras (see [6]). For example, the following are elementary
properties of atoms, immediately derivable from the defini-
tion. If M,M1 and M2 are atoms of Φ and D ∈Φ, then:

1. M ·D = M or M ·D = 0,

2. either D ≤M or M ·D = 0,

3. either M1 = M2 or M1 ·M2 = 0.

Let At(Φ) denote the set of all atoms of Φ (maximal sets
of Φ). Moreover, for any D ∈Φ such that D 6= 0, let At(D)
denote the set of all atoms M which dominate D , that is:

At(D) := {M ∈ At(Φ) : D ⊆M}.

In general such sets may be empty. Not so in the case
of coherent sets of gambles. In the case of the information
algebra of coherent sets of gambles, we have in fact a
number of additional properties concerning atoms:

• for any set D ∈C(Ω), At(D) is not empty. An infor-
mation algebra that satisfies this property is called
atomic (see [6]).

• For any set D ∈C(Ω),

D =
⋂

At(D),

that is, any coherent set of gambles is the infimum,
in information order, of the atoms it is contained in.
An atomic information algebra which satisfies this
additional condition is called atomic composed (see
[6]) or atomistic (see [10, 11]).

• For any subset A of At(Φ), we have also that:⋂
A = D ∈C(Ω),

so that A⊆ At(D). In general however A 6= At(D).

With a general result of atomistic information algebras,
we show that the subalgebras εx(Φ) for x ∈ Q are also
atomistic.

Theorem 18 For any x ∈ Q, the subalgebra εx(Φ) is
also atomistic and At(εx(Φ)) = εx(At(Φ)) = {εx(M) : M ∈
At(Φ)}.

We call εx(M) for M ∈ At(Φ) local atoms for x. Indeed,
they represent maximally informative pieces of information
for question x (or partition Px).

For multivariate possibility sets, it is well known that
atomistic information algebras can be embedded into an
information algebra of subsets of At(Φ), a so-called set
or relational algebra [6], see also [12]. This is an impor-
tant representation theorem, since it establishes a link of
information algebras with a Boolean structure. The result
extends to so-called commutative information algebras (see
[11]) and is expected to hold also for the general case con-
sidered here, a result yet to be established.

Up to now we concentrate ourselves on the domain-free
view of the information algebra of coherent sets of gambles.
In the next section we will derive a labeled version of it.
It should be clear moreover that all the results shown in
this section could equivalently be expressed in this labeled
view.

6. Labeled Information Algebras
The domain-free view of information algebras treats the
general case of coherent sets of gambles defined on Ω.
However, it is well known that, if a coherent set of gambles
has support x, it is essentially determined by values of
gambles defined on smaller sets of possibilities than Ω,
namely on frames representing the possible answers to the
question x.

Indeed, if a coherent set of gambles D has support x,
it means that D = C (D ∩Lx). Therefore, it contains the
same information of the set D ∩Lx that is in a one-to-one
correspondence with a set D ′ directly defined on blocks
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of Px (see for example [13]). This view leads to another,
so-called labeled version of an information algebra that
clearly is better suited for computational purposes.

We start deriving a labeled view of the information alge-
bra of coherent sets of gambles, using a general method for
domain-free information algebras to derive corresponding
labeled ones (see [6]). From a labeled algebra, the domain-
free view may be reconstructed. So the two are equivalent
(see [6, 7]). Consider therefore the domain-free information
algebra Φ on Ω relative to a set Q of questions, represented
by the family Q = {Px : x ∈Q} of partitions, as described
in Section 4. Let then Ψx(Ω), or Ψx when there is no ambi-
guity, denote the set of all pairs (D ,x), where D ∈Φ and
x ∈ Q is a support of D . Consider then the set

Ψ(Ω) :=
⋃
x∈Q

Ψx(Ω),

also denoted with Ψ when no confusion is possible. In
this set we define the following operations. Given x,y ∈ Q,
D ,D1,D2 ∈Φ:

1. Labeling: d(D ,x) := x.

2. Combination: (D1,x) · (D2,y) := (D1 · D2,x ∨ y),
where D1 ·D2 is the combination in Φ.

3. Transport: ty(D ,x) := (εy(D),y), where εy denotes
the extraction operator in Φ.

It is straightforward to verify the following properties of
these operations, given x,y,z ∈ Q, D ,D1,D2 ∈Φ:

1. Semigroup: (Ψ, ·) is a commutative semigroup.

2. Quasi-Separoid (Q,≤) is a join semilattice and x⊥y|z
a quasi-separoid in Q.

3. Labeling d((D1,x) · (D2,y)) = x∨ y, d(ty(D ,x)) = y.

4. Unit and Null For all x ∈ Q, (1,x) · (1,y) = (1,x∨
y), (D ,x) · (1,x) = (D ,x), (D ,x) · (0,x) = (0,x) and
ty(D ,x) = (0,y) if and only if (D ,x) = (0,x), (D ,y) ·
(1,x) = tx∨y(D ,y).

5. Transport: x⊥y|z implies ty(D ,x) = ty(tz(D ,x)).

6. Combination: x ⊥ y|z implies tz((D1,x) · (D2,y)) =
tz(D1,x) · tz(D2,y).

7. Identity: tx(D ,x) = (D ,x).

8. Idempotency: If y≤ x, then ty(D ,x) · (D ,x) = (D ,x).

We take these statements as the axioms of a labeled infor-
mation algebra, in this case the labeled algebra associated
with its domain-free alter ego.

According to considerations made above, we claim that
we might equivalently work with elements D ∩Lx, where
D is a coherent set of gambles on L (Ω).

We may therefore define a labeled algebra based on
elements D ∩Lx. As we have previously noticed, the main
advantage of this reformulation is that we can then think
of them to be composed by gambles directly defined on
blocks of Px. This is essential for computational purposes.

So, let us define Ψ̃x(Ω), or more simply Ψ̃x, to be the
family of all sets (D ∩Lx,x), where D ∈ Φ, x ∈ Q. Let
then

Ψ̃(Ω) :=
⋃
x∈Q

Ψ̃x(Ω),

also indicated with Ψ̃ when no ambiguity is possible.
In Ψ̃ we define the following operations. Given (D ∩
Lx,x),(D1∩Lx,x),(D2∩Ly,y) ∈ Ψ̃:

1. Labeling: d(D ∩Lx,x) := x.

2. Combination: (D1∩Lx,x) ·(D2∩Ly,y) :=((C (D1∩
Lx) ·C (D2∩Ly))∩Lx∨y,x∨y), where · denotes the
combination operator in Φ.

3. Transport: ty(D ∩Lx,x) := (C (D ∩Lx)∩Ly,y).

Note that we denote combination and transport in Ψ and
Ψ̃ by the same symbol; it will always be clear from the
context which one is meant.

It is easy to verify that the map (D ,x) 7→ (D ∩Lx,x)
from Ψ to Ψ̃ preserves combination and transport, namely

(D1,x) · (D2,y) = (D1 ·D2,x∨ y) 7→
((D1 ·D2)∩Lx∨y,x∨ y) = (D1∩Lx,x) · (D2∩Ly,y),

because D1 = C (D1∩Lx) and D2 = C (D2∩Ly) respec-
tively. Moreover:

ty(D ,x) = (εy(D),y) 7→
(εy(D)∩Ly,y) = ty(D ∩Lx,x),

because D = C (D ∩Lx) and εy(D)∩Ly = D ∩Ly, in-
deed D ∩Ly ⊆ C (D ∩Ly)∩Ly = εy(D)∩Ly ⊆D ∩Ly.
This implies that the axioms to which Ψ is submitted carry
over to Ψ̃, which thereby becomes a labeled information al-
gebra. This map between Ψ and Ψ̃ is also bijiective, hence
an isomorphism. Indeed:

• the map is surjective. Consider (D ∩Lx,x) ∈ Ψ̃, then
(C (D ∩Lx),x) 7→ (C (D ∩Lx)∩Lx,x) and C (D ∩
Lx)∩Lx = D ∩Lx.

• The map is injective. Suppose to have (D ,x) 7→
(D ∩Lx,x) and (D ′,y) 7→ (D ′ ∩Ly,y) such that
(D ∩Lx,x) = (D ′∩Ly,y). Then, first of all x = y and
D = εx(D) =C (D ∩Lx) =C (D ′∩Lx) = εx(D ′) =
D ′.

We have proved the following theorem.

Theorem 19 The labeled information algebras Ψ and Ψ̃

are isomorphic.
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7. Commutative Extractors
We consider in this section lattices Q of commuting par-
titions. This covers for instance the important case of
multivariate possibility sets, see the end of Section 3.
Recall that this implies that Px⊥Py|Pz if and only if
(Px∨Pz)∧ (Py∨Pz) = Pz, for every Px,PyPz ∈Q
(Theorem 11). The main effect of this is that all extraction
operators commute under composition, whereas, in general,
this is only the case if x≤ y, see items 5 and 6 of Lemma
15. Therefore, we can show the following result.

Proposition 20 If Q is a sublattice of (Part(Ω),≤) of
commuting partitions, then for all x,y,z ∈ Q,

εx ◦ εy = εy ◦ εx = εx∧y.

This implies in particular that the composition of any ex-
traction operator gives again an extraction operator, which
is not the case in general. In particular, this fact can con-
stitute the basis for an alternative Extraction axiom for the
domain-free information algebra:

4 Commutative Extraction: For all x,y ∈ Q,
εy(εx(D)) = εy(εx∧y(εx(D))) = εx∧y(D).

Indeed, the old extraction axiom can be recovered from
this one, since x∨ z⊥y∨ z|z (equivalent to x⊥y|z) implies
(x∨ z)∧ (y∨ z) = z. In the labeled case, it turns out that
it is sufficient to consider transport only for y ≤ x, if x
is a support of D . Thus, transport becomes projection or
marginalization (see [7]).

Such information algebras will be called commutative
(see [6, 11]).

According to the Commutative extraction axiom, the set
of all extraction operators, that we denote with E, is closed
under composition, hence (E;◦) form an idempotent, com-
mutaitive semigroup. One might replace the Commutative
extraction axiom also by the requirement that the extraction
operators form an idempotent, commutative semigroup (see
[11]). The Combination axiom can also be simplified a bit.
Let us consider the labeled case. We have:

tx((D1,x) · (D2,y)) = (εx(D1 ·D2),x) = (D1 · εx(D2),x).

Now, from commutative extraction axiom, we have
εx(D2) = εx(εy(D2)) = εx∧y(D2). Hence, we have:

(D1 ·εx(D2),x) = (D1 ·εx∧y(D2),x) = (D1,x) · tx∧y(D2,y).

The old axiom can then be recovered using the fact that if
x ∈ Q is a support of D then it is also a support of εy(D)
for every y ∈ Q. These simplifications lead to the origi-
nal axiomatic definition of a labeled information algebra
proposed in [6, 14].Then, the domain-free version can be
reconstructed from the labeled one. The general axioms
of our paper can be also reconstructed from the classical
multivariate version (see [6, 7]).

8. Conclusions

This paper presents a first approach to information algebras
related to desirable gambles on a possibility set that is not
necessarily a multivariate possibility set.

There are many aspects and issues which are not ad-
dressed here. Foremost is the issue of conditioning and
its relations with model revision for information algebras,
which in turn can be seen as the combination of the pre-
vious and new information conveyed by elements of the
algebra, and belief revision for belief structures (see [3]).

Further, connections with lower and upper previsions
(see [15]) are not considered in this paper, as well as rela-
tionships with strictly desirable sets of gambles and almost
desirable sets (see [16]).

Finally, we would like also to analyze a particular type
of information algebra, called set algebra, that can be con-
sidered the archetype of information (see [6]). In particular,
we would like to show, as in the multivariate case [12], that
subsets of Ω with intersection as combination and satura-
tion operators as extraction operators, form an example of
this algebra that moreover, can be embedded in Φ. This
constitute also a first step to show that Φ itself, in this more
general case, can be embedded into the set algebra of sub-
sets of At(Φ). All these subjects should be objective of
future studies.

Appendix A.

Proof [Proof of Theorem 7]
C1 and C2 are obvious. To prove C3 assume

P1⊥P2|P and P ′ ≤P2. Then u≡P u′ implies the exis-
tence of an element v such that u≡P1∨P v and u′≡P2∨P v.
But P ′ ≤P2 means that u′ ≡P2∨P v implies u′ ≡P ′∨P v,
and this means that P1⊥P ′|P . Similarly, u ≡P u′ im-
plies the existence of an element v such that u ≡P1∨P v
and u′ ≡P2∨P v, says also that P1⊥P2 ∨P|P , hence
C4.

Proof [Proof of Theorem 11]
We show first that P1⊥P1|P implies P1 ≤P . Con-

sider blocks B1, B′1 of P1 and B of P . Then B1 ∩B 6= /0
and B′1 ∩B 6= /0 imply B1 ∩B′1 ∩B 6= /0. But, it is possible
only if B1 = B′1. So B cannot intersect two different blocks
of P1, hence B must be a subset of some block of P1 and
thus P1 ≤P .

Let us now divide the proof in cases.

• Assume P1,P2 commute. If P1⊥P2|P , then
P1∨P⊥P2∨P|P . Let

P ′ := (P1∨P)∧ (P2∨P).

Then we have P ′ ≤P1 ∨P and P ′ ≤P2 ∨P .
Using C3,C4 and C2 we conclude that P ′⊥P ′|P
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and it thus follows that P ′ ≤P . Since we have al-
ways P ′ ≥P it follows that P ′ = P . That is one
direction of the implication claimed in the theorem.

Now, assume that (P1∨P)∧ (P2∨P) = P . Let
us define P ′

1 := (P1 ∨P) and P ′
2 := (P2 ∨P).

Consider ω ≡P ω ′. Then, by hypothesis, we have
ω ≡P ′1∧P

′
2

ω ′. This, by definition, means that there

exists ω
′′

such that ω ≡P ′1
ω
′′

and ω ′ ≡P ′2
ω
′′
. Hence

P1⊥P2|P .

• Now assume that P1⊥P2|P ⇐⇒ (P1 ∨P) ∧
(P2 ∨P) = P . Hence, given that (P1 ∨ (P1 ∧
P2)) ∧ (P2 ∨ (P1 ∧P2)) = P1 ∧P2, we have
P1⊥P2|P1∧P2.

Then, if B1, B2 and B are blocks of P1, P2 and P1∧
P2 respectively, we have that B1∩B 6= /0 and B2∩B 6=
/0 imply B1∩B2∩B 6= /0. Since P1∧P2 ≤P1,P2 it
follows that B1,B2 ⊆ B and B1∩B2 6= /0. This means
that P1 and P2 commute.

Proof [Proof of Theorem 13]
If D = 0 this is obvious. So, assume D 6= 0. Let

A :=εy∨z(D) = C (D ∩Ly∨z),

B :=εy∨z(εz(D)) = C (C (D ∩Lz)∩Ly∨z).

Then D ∩Lz ⊆ D implies B ⊆ A. Therefore, consider a
gamble f ∈ A so that f ≥ f ′ for a gamble f ′ ∈ D ∩Ly∨z.
Then we have, since D = C (D ∩Lx),

f ′ ≥ g, g ∈D ∩Lx, f ′ is y∨ z−measurable.

Define for all ω ∈Ω,

g′(ω) := sup
ω ′≡y∨zω

g(ω ′).

Since f ′ is y∨ z-measurable, we have f ′ ≥ g′, and also
g′ ∈D . We claim that g′ is z-measurable. Indeed, consider
a pair of elements ω ≡z ω ′′ and the block Bz of partition
Pz which contains these two elements. Then consider the
blocks By∨z ⊆ Bz and B′′y∨z ⊆ Bz which contain elements
ω and ω ′′ respectively. Finally consider the family of all
blocks Bx∨z ⊆ Bz. From x∨ z⊥y∨ z|z we conclude that
By∨z∩Bx∨z 6= /0 and B′′y∨z∩Bx∨z 6= /0 for all blocks Bx∨z⊆Bz.
Since g is x∨ z-measurable, g is constant on any of these
blocks. Define g(Bx∨z) = g(ω) if ω ∈ Bx∨z. Then it follows
that

g′(ω) = sup
Bx∨z∩By∨z 6= /0

g(Bx∨z) = sup
Bx∨z⊆Bz

g(Bx∨z),

and

g′(ω ′′) = sup
Bx∨z∩B′′y∨z 6= /0

g(Bx∨z) = sup
Bx∨z⊆Bz

g(Bx∨z).

This shows that g′ is z-measurable, hence g′ ∈D ∩Lz. So
we conclude that f ′ ∈ C (D ∩Lz)∩Ly∨z. But this implies
that f ∈ B and so A = B. This concludes the proof.

Proof [Proof of Proposition 14] Assume that D = C (D ∩
Lx). If x≤ y, then Lx ⊆Ly, hence D ∩Lx ⊆D ∩Ly. It
follows that D = C (D ∩Lx) ⊆ C (D ∩Ly). But C (D ∩
Ly)⊆D , hence C (D ∩Ly) = D and so εy(D) = D .

Proof [Proof of Theorem 16]
From x⊥y|z it follows by the properties of a quasi sepa-

roid that x∨ z⊥y∨ z|z. Therefore by the Extraction axiom,

εy∨z(D) = εy∨z(εz(D)).

By Lemma 15, we have εy(εy∨z(D)) = εy(D) and
εy(εy∨z(εz(D)) = εy(εz(D)). This proves the first part.

By the Existential quantification and the Extraction ax-
ioms, we have,

εy∨z(D1 ·D2) = εy∨z(D1) ·D2 = εy∨z(εz(D1)) ·D2,

because, by the Support axiom, y∨ z is a support of D2.
By Lemma 15, the last combination equals εz(D1) ·D2.

But then, again by the Existential quantification axiom and
Lemma 15,

εz(D1 ·D2) = εz(εy∨z(D1 ·D2)) =

εz(εz(D1) ·D2) = εz(D1) · εz(D2).

This concludes the proof.

Proof [Proof of Theorem 18]
Let M ∈ At(Φ). Then M 6= 0 and thus εx(M) 6= 0.

Assume εx(M) ≤ εx(D) for some D ∈ Φ. Then εx(M ·
εx(D)) = εx(M) · εx(D) = εx(D). Since M is an atom, we
have either M · εx(D) = M or εx(D) = 0. In the first case
εx(D) = εx(M · εx(D)) = εx(M). So εx(M) is an atom in
εx(Φ).

Further, if 0 6= εx(D), then, since Φ is atomic, there is an
atom M such that εx(D)≤M and thus εx(D)≤ εx(M). As
shown, εx(M) with M ∈ At(Φ), is an atom in εx(Φ), and
the subalgebra εx(Φ) is atomic.

Now, suppose again εx(D) 6= 0. By the fact that εx(D) ∈
Φ with Φ atomistic, we have:

εx(D) =
⋂

At(εx(D)) =
⋂
{M : M ∈ At(εx(D))}).

But, εx(D) ⊆ M holds if and only if εx(D) ⊆ εx(M). So,
if we define Atx(εx(D)) to be the set of all atoms in εx(Φ)
dominating εx(D), we obtain εx(D) =

⋂
Atx(εx(D)). This

shows the atomicity of the subalgebra εx(Φ).

Proof [Proof of Proposition 20] We have x⊥y|x∧ y for all
x,y ∈ Q since the partitions commute. Then, by item 1 of
Theorem 16 and items 5 and 6 of Lemma 15,

εy(εx(D)) = εy(εx∧y(εx(D))) = εx∧y(εx(D) = εx∧y(D).

In the same way we obtain εx(εy(D)) = εx∧y(D).
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