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Abstract
A structural causal model is made of endogenous (manifest) and exogenous (latent) variables.
We show that endogenous observations induce linear constraints on the probabilities of the
exogenous variables. This allows to exactly map a causal model into a credal network. Causal in-
ferences, such as interventions and counterfactuals, can consequently be obtained by standard
algorithms for the updating of credal nets. These natively return sharp values in the identifiable
case, while intervals corresponding to the exact bounds are produced for unidentifiable queries.
A characterization of the causal models that allow the map above to be compactly derived is
given, along with a discussion about the scalability for general models. This contribution should
be regarded as a systematic approach to represent structural causal models by credal networks
and hence to systematically compute causal inferences. A number of demonstrative examples is
presented to clarify our methodology. Extensive experiments show that approximate algorithms
for credal networks can immediately be used to do causal inference in real-size problems.

Keywords: Structural causal models; identifiability; credal nets; interventions; counterfactuals.

1. Introduction

Since early times, dealing with causality has been—and under many respects, still is—a true chal-
lenge for scientists and philosophers (Hume, 1739). Currently causality is an emerging direction
for data science (e.g., Correa and Bareinboim, 2020), with a wealth of potential applications in
diverse domains such as planning (Wilkins, 2014) or NLP (Asghar, 2016), not to mention fields
other than Artificial Intelligence such as Economics, Social Science or Medicine.

Pearl’s structural causal models are a natural formalism for causal inference (Pearl, 2009), in
particular for their appealing graphical representation. They are also very general and equivalent
to the prominent alternative formalisms proposed to handle causality. However, the peculiar
features of causal models may render them not always easy to access to a traditional audience,
which is instead familiar with pre-existing graphical tools and related procedures.

In this paper, we focus on Pearl’s non-parametric structural causal models with discrete vari-
ables, and show that they can be represented by credal networks (Cozman, 2000). This is a class
of imprecise-probabilistic graphical models originally proposed as tools for sensitivity analysis
in Bayesian networks. The representation is exact: this means that every query on the causal
model can be reformulated as a query on the credal network, which can then be solved by stan-
dard algorithms for the latter. An immediate advantage of this outcome is that causal concepts
naturally become more familiar concepts, such as the updating of credal networks. Another,
more practical, advantage is that such an outcome allows us to systematically compute causal
inference via credal nets, be it interventional queries or the more advanced counterfactual type
of inference.
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It is well known that causal inference is affected by ‘identification’ problems: an inference
is said to be identifiable when it can be reduced to a precise probabilistic expression (a num-
ber representing a probability or an expectation), which can eventually be computed from data.
Otherwise it is called unidentifiable: one that cannot be reduced to a number no matter the
amount of available data. Most of the causal literature focuses on the characterization of mod-
els and queries that are identifiable, the most prominent example being the do calculus (Pearl,
1995). Relatively few works consider instead the far bigger arena of unidentifiable problems,
which are solved by computing tight bounds on the sought probabilities or expectations (Balke
and Pearl, 1997; Kang and Tian, 2006; Sachs et al., 2020). The computational results in this paper
can be read as contributing in particular to this second direction: in fact, credal nets natively
return intervals in the unidentifiable case that correspond to the sought bounds; these bounds
automatically collapse to a precise number for the subclass of identifiable problems and queries.

The paper is organized as follows: after providing background material in Section 2, an al-
gorithm to convert a Markovian causal model into a credal network, whose quantification is de-
fined by the observational data, is provided in Section 3. The credal network mapping turns out
to be extendible to quite a wider class of models that we call quasi-Markovian; the scalability of
the specification is discussed in the general case in Section 4. We regard this approach as the
most systematic one presented so far in the literature and we discuss its advantages by a number
of examples (Section 5). Finally the applicability to real-world cases is tested by numerical simu-
lations showing that algorithms for approximate inference in credal networks allow to compute
scalable and informative inferences even for large models (Section 6). We discuss future direc-
tion in Section 7. Finally, the proofs of the theorems are in Appendix A.

2. Background Material

2.1 Bayesian and Credal Networks

Let X denote a variable taking values in a finite set ΩX . The elements of ΩX are ordered and
notation x(k) and x is used, respectively, for the k-th and the generic element of ΩX . Denote as
P (X ) a probability mass function (PMF) over X and as K (X ) a credal set (CS) over X , which is a
set of PMFs over X . Given two variables X and Y , a conditional probability table (CPT) P (X |Y )
is a collection of (conditional) PMFs indexed by the values of Y , i.e., {P (X |y)}y∈ΩY . If all PMFs
in a CPT are degenerate, i.e., there is a state receiving probability mass one and hence all the
other ones receive zero, we say that also the CPT is degenerate. A credal CPT (CCPT) K (X |Y ) is
similarly a collection of CSs over X indexed by the values of Y . With a small abuse of terminology,
we might call CPT (CCPT) also a single PMF (CS).

Consider a joint variable X := (X1, . . . , Xn) and a directed acyclic graph G whose nodes are in
one-to-one correspondence with the variables in X (whence we term a node in G and its cor-
responding variable interchangeably). Given G , a Bayesian network (BN) is a collection of CPTs
{P (Xi |Pa(Xi ))}n

i=1, where Pa(Xi ) denotes the parents of Xi , i.e., the direct predecessors of Xi ac-
cording to G . A BN induces a joint PMF P (X ) that factorizes as follows: P (x) =∏n

i=1 P (xi |pa(Xi ))
for each x ∈ΩX , where (xi ,pa(Xi )) ∼ x , i.e., (xi ,pa(Xi )) are the values of (Xi ,Pa(Xi )) consistent
with x . A credal network (CN) is similarly intended as a collection of CCPTs. A CN defines a CS
K (X ) whose elements are PMFs factorizing as those of a BN whose CPT values are taken from
the corresponding CCPTs. Computing a conditional probability for a queried variable given an
evidence with respect to the joint PMF of a BN, as well as the bounds of this probability with
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respect to the joint CS of a CN is NP-hard (Mauá et al., 2014). Yet, polynomial algorithms com-
puting approximate inferences for the general case (e.g., Antonucci et al., 2015) or exact ones for
classes of sub-models (e.g., Fagiuoli and Zaffalon, 1998) are available for CNs, not to mention the
copious tools for BNs (e.g., Koller and Friedman, 2009).

2.2 Structural Causal Models

The background concepts in this section are reviewed from the reference book of Pearl (2009).
Let us first define a structural equation (SE) fX associated with variable X and based on the input
variable(s) Y as a surjective function fX :ΩY →ΩX that determines the value of X from that of
Y . Consider two sets of variables X and U in one-to-one correspondence. We call endogenous
the variables in the first set and exogenous the others. Say that, for each X ∈ X , an SE fX associ-
ated with X is provided. Assume that the exogenous variable U corresponding to X is an input
variable of fX , possibly together with other endogenous variables, but no other exogenous ones.
We call a collection { fX }X∈X of SEs of this kind a structural causal model M (SCM) over X . The
causal diagram GM of an SCM M is a directed graph over (X ,U ) such that the parents Pa(X ) of X
are the input variables of the SE fX for each X ∈ X . We denote as Pa(X ) the endogenous parents
of X according to GM , i.e., Pa(X ) := Pa(X ) \ {U }, for each X ∈ X .

Generally speaking GM might include directed cycles. The SCM M is semi-Markovian if its
causal diagram is acyclic. In a semi-Markovian SCM, a joint observation U = u of the exogenous
variables completely determines the state X = x of the endogenous variables. This is achieved
by obtaining the endogenous values from the SEs in a topological order for the variables in X
according to GM . A probabilistic SCM (PSCM) is a pair (M ,P ) such that M is a semi-Markovian
SCM and P a PMF over the exogenous variables U . Exactly as we obtain x from u in SCMs, in
PSCMs we obtain an endogenous PMF P (X ) from P (U ). PSCM (M ,P ) is finally called Markovian
if its exogenous variables are jointly independent, i.e., P (U ) factorizes as P (u) = ∏n

i=1 P (ui ) for
each u ∈ΩU and ui ∈ΩUi with ui ∼ u, for each i = 1, . . . ,n. Without loss of generality, we can in-
tend non-Markovian PSCMs as based on SCMs whose exogenous variables might have multiple
endogenous children, while keeping the joint independence for P (U ).1 In the following we com-
pactly describe P in a PSCM by {P (U )}U∈U in the place of P (U ). A Markovian PSCM is described
here below, a non-Markovian one is in Example 5.

Example 1 Consider two endogenous variables (X1, X2) and their exogenous variables (U1,U2).
LetΩXi := {x(k)

i }2
k=1 for i = 1,2,ΩU1 := {u(k)

1 }3
k=1 andΩU2 := {u(k)

2 }5
k=1. Define an SE for X1 given U1

such that fX1 (u(1)
1 ) = x(1)

1 , fX1 (u(2)
1 ) = x(2)

1 , and fX1 (u(3)
1 ) = x(2)

1 . Similarly, for X2 given U2 and X1,

define an SE such that fX2 (u(k)
2 , x(1)

1 ) = x(1)
2 for k = 3,4,5 and fX2 (u(k)

2 , x(2)
1 ) = x(1)

2 for k = 3,5, while

the other values of k are giving x(2)
2 . The causal diagram GM corresponding to this SCM is depicted

in Figure 1.a. PSCM (M ,P ) based on M is obtained by also providing a PMF P (U1,U2). Since this
joint has to factorize into P (U1)P (U2), as it follows from the graph GM , we know already that the
SCM is Markovian. By finally taking both P (U1) and P (U2) uniform, we eventually get the PMF
P (X1, X2) such that P (x(1)

1 , x(1)
2 ) = 1

5 , P (x(1)
1 , x(2)

2 ) = 2
15 , and P (x(2)

1 , x(1)
2 ) = 4

15 .

The following example shows that an SE fX in an SCM M defines a degenerate CPT PM (X |Pa(X )).

1. Tian and Pearl (2002a) have shown that any SCM can be mapped to one whose U variables are independent.
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Figure 1: Ten causal diagrams.

Example 2 The SE fX1 of the SCM M in Example 1 corresponds to the following CPT:

PM (X1|U1) =
u(1)

1 u(2)
1 u(3)

1[ ]
1 0 0 x(1)

1
0 1 1 x(2)

1

. (1)

Similarly, PM (X2|U1, x(1)
1 ), i.e., the restriction of the CPT of X2 for X1 = x(1)

1 , is:

u(1)
2 u(2)

2 u(3)
2 u(4)

2 u(5)
2[ ]

0 0 1 1 1 x(1)
2

1 1 0 0 0 x(1)
2

. (2)

From Example 2 and the joint independence of the exogenous variables, we have that a PSCM
(M ,P ) defines a joint PMF PM (X ,U ) such that PM (x ,u) = ∏

U∈U P (u) ·∏X∈X PM (x|pa(X )), for
each x ∈ΩX . This means that PSCMs are BNs whose endogenous degenerate CPTs are induced
by the SEs of M , while the marginal PMFs over single exogenous variables are those in P .

Generally speaking SEs are non-injective and hence non-bijective maps. Yet, with a small
abuse of notation, we denote as f −1

X the map ΩX → 2ΩPaX returning the set of values of the par-

ents of X corresponding to a particular value of X . E.g., in Example 1, f −1
X1

(x(2)
1 ) = {u(2)

1 ,u(3)
1 }. For

SEs of endogenous variables having both endogenous and exogenous parents, we perform such
an inversion for a restriction of the SE obtained for given values of all the endogenous parents.
E.g., the inverse of the SE for X2 in Example 1 given that X1 = x(1)

1 is denoted as f −1
X2|x(1)

1

and, follow-

ing the table in Equation (2), writes as f −1
X2|x(1)

1

(x(1)
2 ) = {u(3)

2 ,u(4)
2 ,u(5)

2 }. This notation for restricted

inverse maps of an SE will be used also in the general case.

2.3 Interventions and Causal Effects

The basic tool for causal analysis in an SCM M is a mathematical operator called atomic inter-
vention and denoted as do(·). Given X ∈ X and x ∈ ΩX , do(X = x) simulates a physical action
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on M forcing X to take a value x ∈ΩX . Accordingly, the original SE fX should be replaced by a
constant map X = x. Notation Mx is used for such a modified SCM, whose causal diagram GMx

can be obtained by removing from GM the arcs entering X , and setting X = x as an evidence.
In a PSCM (M ,P ), given X ,Y ∈ X and x ∈ΩX , we denote as PM (y |do(x)) the conditional prob-
ability of Y = y in the post-intervention model (Mx ,P ), i.e., PMx (y |x), for each y ∈ΩY . The list
{PM (y |do(x))}x∈ΩX is called the causal effect of X on Y = y . As interventions commute, there are
no ordering issues when coping with multiple interventions. If evidence is also available, i.e.,
some variables have been observed, it is customary to assume that observations took place after
the interventions.

3. Coping with Unidentifiability

Let us consider the problem of performing inference in a PSCM (M ,P ). The exogenous variables
U are typically assumed to be latent, i.e., directly unobservable, while the endogenous variables
X are manifest. Assume for a moment that their joint PMF P̃ (X ) is known. Following the discus-
sion in Section 2.2, P̃ (X ) is just the image, through the SEs of M , of the latent PMFs {P (U )}U∈U .

The focus of this paper in primarily on the problem of learning the (latent) latter from the
(manifest) former: that is, given P̃ (X ) and an SCM M over X , to find out KM ,P̃ , namely, the
collection of CSs {K (U )}U∈U inducing PSCMs based on M such that:

∑
u∈ΩU ,U∈U

[ ∏
U∈U

P (u) · ∏
X∈X

PM (x|u,pa(X ))

]
= P̃ (x) , (3)

for each x ∈ ΩX , (x,pa(X )) ∼ x , with P (U ) ∈ K (U ) for each U ∈ U . Once {K (U )}U∈U have been
defined, our next aim is to use them to make causal inference on a generic real-valued quantity Q
that can be obtained from a PSCM (M ,P ). In particular, we aim at computing the causal bounds
of Q: [minP∈KM ,P̃

Q(M ,P ),maxP∈KM ,P̃
Q(M ,P )]. If this interval reduces to a point, we say that Q

is identifiable in KM ,P̃ ; otherwise it is called unidentifiable.
Note that in practice we will most likely not have the exact joint P̃ (X ), but rather a sample D

from such a PMF; as a consequence P̃ (X ) will be an approximation to the actual PFM and for this
reason we shall call it ‘empirical’ in the following. We shall also assume it to be strictly positive.

3.1 Causal Bounds by Credal Networks

The collection of CSs KM ,P̃ defined in the previous section provides a parametrization of PSCMs
compatible with Equation (3). We call KM ,P̃ the identification through M of P̃ . It is worth notic-
ing that, as well as a PSCM corresponds to a BN, the PSCMs induced by KM ,P̃ correspond to
a CN, this allowing to address causal bound computation by standard inference algorithms for
CNs. An example is here below.

Example 3 Consider an SCM M made of a single endogenous variable X and a single exogenous
variable U . Given an empirical PMF P̃ (X ), consider a CN over GM such that the CCPT of X is the
(degenerate) CPT PM (X |U ) induced by fX , and the CCPT of U is the CS K (U ) induced by the linear
constraints on P (U ): ∑

u∈ f −1
X (x)

P (u) = P̃ (x) , (4)
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for each x ∈ ΩX . K (U ) coincides with the identification KM ,P̃ , i.e., every quantification of P (U )
consistent with Equation (4) solves Equation (3) and vice versa. To check that, let us compute the
marginal probabilities over X in a PSCM (M ,P ) with P ∈KM ,P̃ , i.e.,

P (x) = ∑
u∈ΩU

PM (x|u) ·P (u) = ∑
u∈ΩU

� fX (u) = x� ·P (u) , (5)

where the first step is by total probability theorem, the second follows from the fact that PM (X |U ) is
a degenerate CPT, and �·� is an Iverson bracket giving one if its argument is true and zero otherwise.
As the rightmost-hand side of Equation (5) coincides with the left-hand side of Equation (4), we
have the one-to-one mapping between the elements of KM ,P̃ and those of K (U ). For a numerical
example, consider a ternary U and a binary X whose SE coincides with fX1 in Example 1. For
P̃ (x(1)) = 1

3 , Equation (4) gives P (u(1)) = 1
3 and P (u(2))+P (u(3)) = 2

3 , i.e., any P (U ) := [ 1
3 , p, 2

3 −p]
with p ∈ [0, 2

3 ], and no other one, is consistent with P̃ .

3.2 Markovian Case

The procedure in Example 3 can be extended to any SCM under the Markovian assumption. For
an endogenous variable X whose endogenous U is the unique parent, the procedure is exactly
the same, and the constraints on the marginal probabilities of U are like those in Equation (4). If
X has other, endogenous, parents besides U , more analysis is required to write the analogous of
Equation (4). In this case, the SE of X has form x = fX (u,pa(X )). Each pa(X ) ∈ΩPa(X ) induces a
restricted inverse of fX and hence, for each x ∈ΩX , the analogous of Equation (4) becomes:∑

u∈ f −1
X |pa(X )(x)

P (u) = P̃ (x|pa(X )) , (6)

where the conditional probabilities on the right-hand side are obtained from the empirical PMF
P̃ (X ). These are constraints on the elements of PMF P (U ) that can be applied separately, for each
U ∈U , because of the Markovian assumption. The procedure is detailed by Algorithm 1.

Algorithm 1 Given an SCM M and a PMF P̃ (X ), return CSs {K (U )}U∈U

1: for X ∈ X do
2: U ← Pa(X )∩U // U as the unique exogenous parent of X
3: Pa(X ) ← Pa(X ) \ {U } // Endogenous parents of X
4: if Pa(X ) =; then
5: K (U ) ← {P ′(U ) :

∑
u∈ f −1

X
P ′(u) = P̃ (x) ,∀x ∈ΩX } // Eq. (4)

6: else
7: K (U ) ← {P ′(U ) :

∑
u∈ f −1

X |pa(X )(x) P ′(u) = P̃ (x|pa(X )) ,∀x ∈ΩX ,∀pa(X ) ∈ΩPaX
} // Eq. (6)

8: end if
9: end for

Overall, this allows to compute the identification through M of P̃ in the Markovian case.

Theorem 1 In the Markovian case, the output {K (U )}U∈U of Algorithm 1 coincides with KM ,P̃ .
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Example 4 Consider the Markovian SCM M in Example 1 whose PMF P (X1, X2) is used as em-
pirical PMF P̃ (X1, X2). We obtain P̃ (x(1)

1 ) = 1
3 , P̃ (x(1)

2 |x(1)
1 ) = 3

5 , and P̃ (x(1)
2 |x(2)

1 ) = 2
5 . In this setup

Algorithm 1 returns a CS K (U1) equal to K (U ) in Example 3, while Equation (6) for U2 gives:

P (u(3)
2 )+P (u(4)

2 )+P (u(5)
2 ) = P (x(1)

2 |x(1)
1 ) = 0.6,

P (u(3)
2 )+P (u(5)

2 ) = P (x(1)
2 |x(2)

1 ) = 0.4,
P (u(1)

2 )+P (u(2)
2 ) = P (x(2)

2 |x(1)
1 ) = 0.4,

P (u(1)
2 )+P (u(2)

2 )+P (u(4)
2 ) = P (x(2)

2 |x(2)
1 ) = 0.6.

(7)

This defines a CS K (U2) equivalent to any convex combination of the PMFs:

P1(U2) =




0.0
0.4
0.4
0.2
0.0

,P2(U2) =




0.4
0.0
0.4
0.2
0.0

,P3(U2) =




0.0
0.4
0.0
0.2
0.4

,P4(U2) =




0.4
0.0
0.0
0.2
0.4

. (8)

As expected the uniform PMF over U1 in Example 1 is included in K (U1) and the same happens for
U2 and K (U2).

4. Beyond Markovianity

We extend the tools of the previous section to non-Markovian models starting from an example.

Example 5 Consider an SCM M over two binary endogenous variables X1 and X2 whose common
exogenous parent U has five states. The SE for X1 is such that fX1 (u(k)) = x(1)

1 for k = 1,4,5 and

x(2)
1 otherwise. For X2, we have instead fX2 (u(k), x(1)

1 ) = x(1)
2 for k = 1,3, fX2 (u(k), x(1)

1 ) = x(2)
2 for k =

2,4,5, fX2 (u(k), x(2)
1 ) = x(1)

2 for k = 3, and fX2 (u(k), x(2)
1 ) = x(2)

2 for k = 1,2,4,5. The causal diagram
of M is the one in Figure 1.b. A (non-Markovian) PSCM based on M would be obtained by any
specification of PMF P (U ).

In the non-Markovian case, the common exogenous parents of two or more endogenous
variables are called confounders. Confounders express non-Markovianity also at the SCM level,
being input variables common to two or more SEs. In these cases, the surjectivity we assume for
single SEs is extended to the joint SE involving all the SEs with the same confounder in input.

Example 6 Let P̃ (X1, X2) denote the empirical PMF of the non-Markovian PSCM (M ,P ) in Exam-
ple 5, whose causal diagram is in Figure 1.b. In this case, Equation (3) rewrites as:∑

u∈ΩU

P (u)PM (x1|u)PM (x2|u) = P̃ (x1, x2) , (9)

to be considered for each x1 ∈ΩX1 and x2 ∈ΩX2 . In the sum on the left-hand side, the values of u
that are not simultaneously consistent, through SEs fX1 and fX2 , with both x1 and x2, are zero. We
therefore rewrite Equation (9) as: ∑

u∈ f −1
X1

(x1)∩ f −1
X2

(x2)

P (u) = P̃ (x1, x2) . (10)

7
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As a numerical example consider the empirical PMF P̃ (X1, X2) in Example 1. The correspond-
ing constraints for U are: P (u(1)) = 1

5 , P (u(2)) = 2
5 and P (u(3)) = 4

15 , and P (u(4))+P (u(5)) = 2
15 . The

elements of the corresponding CS K (U ) are therefore P (U ) = [ 1
5 , 2

5 , 2
15 , t , 1

15 − t ] with t ∈ [0, 1
15 ].

A procedure analogous to that in Example 6 can be used for the identification of P̃ for non-
Markovian SCMs. As in the previous section, the key point is that the constraints on the marginal
PMF of an exogenous variable U ∈ U imposed by the consistency with the empirical PMF can
be specified separately from those of the other exogenous variables. We call quasi-Markovian
a PSCM (M ,P ) such that each X ∈ X has only a single U ∈ U as parent.2 In other words, in
a quasi-Markovian model, if X is a child of U , we have Pa(X ) = (U ,Pa(X )) where, despite the
possible non-Markovianity, Pa(X ) ⊂ X . This, together with the joint independence of the PMFs
{P (U )}U∈U , induces in quasi-Markovian PSCMs the factorization:

P (x ,u) = ∏
U∈U

[
P (u)

∏
X∈X :U∈Pa(X )

P (x|pa(X ),u)

]
, (11)

for each x ∈ ΩX and u ∈ ΩU . It is easy to see that, because of the quasi-Markovianity, in the
product over U in the right-hand side of Equation (11), the states of each U ∈U appear only in
the corresponding factor. This allows to define a procedure analogous to Algorithm 1 to derive
the CSs {K (U )}U∈U and hence obtain a CN from a quasi-Markovian model.3

Algorithm 2 Given an SCM M and a PMF P̃ (X ), return CSs {K (U )}U∈U

1: for U ∈U do
2: {X k

U }nU

k=1 ← Sort[X ∈ X : U ∈ Pa(X )] // Children of U in topological order
3: γ←;
4: for (x1

U , . . . , xnU
U ) ∈×nU

k=1ΩX k
U

do

5: for (pa(X 1
U ), . . . ,pa(X nU

U )) ∈×nU

k=1ΩPa(X k
U ) do

6: Ω′
U ←⋂nU

k=1 f −1
X k

U |pa(X k
U )

(xk
U )

7: γ← γ∪
{∑

u∈Ω′
U

P (u) =∏nU

k=1 P̃ (xk
U |x1

U , . . . , xk−1
U ,pa(X 1

U )), . . . ,pa(X k
U ))

}
8: end for
9: end for

10: K (U ) ← {P (U ) : γ} // CS by linear constraints on P (U )
11: end for

Algorithm 2 computes the CN representation of a quasi-Markovian SCM. It is a simple ex-
ercise to check that the algorithm coincides with Algorithm 1 in the case of Markovian inputs
(as nU = 1 for each U ∈ U ). In fact, Algorithm 2 can be regarded as a (partial) extension to the
non-Markovian case of Algorithm 1 as shown by the following result, analogous to Theorem 1.

Theorem 2 In quasi-Markovian cases, the output {K (U )}U∈U of Algorithm 2 coincides with KM ,P̃ .

2. In principle any semi-Markovian model can be turned into quasi-Markovian, e.g., by clustering all U variables
into a single one; yet this neglects the exponential blowup in the computation that follows as a consequence.

3. Algorithm 2 and Theorem 2 are tightly related to the notion of confounded component by Tian and Pearl (2002b).

8
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Regarding complexity, unlike Algorithm 1, where the size of the CSs constraints of the CN are
the same as the SEs in the SCM, the bottleneck of Algorithm 2 are the two nested loops (lines 4–9).
This roughly corresponds to a complexity exponential with respect to the maximum number of
children of the exogenous variables. Setting a bound to this number (e.g., nU ≤ 2, meaning that
confounders only act on pairs of endogenous variables), would make the procedure polynomial
for quasi-Markovian models.

5. Causal Analysis by Credal Networks

In the previous sections we proved that CNs exactly represent the uncertainty about the ex-
ogenous variables of an SCM induced by an empirical endogenous PMF P̃ (X ). Such an ab-
stract result allows us in practice to bound causal inference. Given a (quasi-)Markovian SCM
M and an empirical PMF P̃ (X ), we first obtain its CN representation by Algorithms 1 or 2. Post-
interventional queries in M are then addressed via the CN, since it preserves the separation prop-
erties of M ; the degenerate (C)CPTs of the SEs involved in the intervention are replaced by con-
stants (surgery), and the queries are then obtained by standard CN algorithms. Let us start from
the identifiable case, where post-intervention queries are reduced to pre-intervention ones.

Example 7 (Backdoor Identification (Pearl, 2009)) In the non-Markovian SCM in Figure 1.d, con-
sider the query P (x3|do(x1)). The intervention on X1 requires the removal of the arc from U to-
wards X1, and hence:

P (x3|do(x1)) := ∑
x2,u,u3

P (x3|x1, x2,u3)P (u3)P (x2|u)P (u) =∑
x2

P (x3|x1, x2)P (x2) . (12)

In the CN obtained for such quasi-Markovian model, the task becomes the computation of the
lower and upper bounds of the second term in Equation (12) when P (U ) ∈ K (U ) and P (U2) ∈
K (U2), where the CSs are obtained by Algorithm 2. As the CN representation is equivalent, the CN
inference gives equal upper and lower bounds, which expresses query identifiability.

For identifiable tasks, our approach offers then a numeric alternative to analytical approaches
such as do calculus (Pearl, 1995). Advantages become more evident in non-identifiable cases:

Example 8 (Unidentifiable Clinical Trials (Balke and Pearl, 1994b)) In the SCM in Figure 1.c, the
endogenous variables are binary. As fX1 implements U1 = X1, we do not explicitly show U1. Re-
garding U , |ΩU | = 16 and the SEs fX2 and fX3 are as in the original example (not reported here for
lack of space). The empirical PMF is such that P̃ (x(2)

1 ) = 0.1, P̃ (X2, X3|x(1)
1 ) = [0.32,0.32,0.04,0.32],

and P̃ (X2, X3|x(2)
1 ) = [0.02,0.17,0.67,0.14]. Algorithm 2 gives the constraints for K (U ) and the CN

computes the causal bounds P (x(2)
3 |do(x(1)

2 )) ∈ [0.45,0.46] and P (x(2)
3 |do(x(2)

2 )) ∈ [0.67,0.68]. The
corresponding difference between the two effects is the interval [−0.23,−0.21], which is narrower
than [−0.23,−0.15], the interval obtained by Balke and Pearl (1994b) with linear programming.

Our procedure should be therefore regarded as a numerical counterpart of the symbolic ap-
proach of Balke and Pearl (1994b), recently extended to more general cases by Sachs et al. (2020).
Apart from their restriction to binary variables only, the linear programming reduction in those
approaches relaxes some of the constraints on the exogenous PMFs, thus eventually yielding

9
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an approximate characterization of the bounds. In practice, as seen in the above example, the
bounds provided by these programs will be an outer approximation of the exact ones we provide.

Our CN equivalence results can be also applied to counterfactuals, namely queries that rep-
resent more than one ‘world’ at the same time, the actual one and other, alternative worlds. Balke
and Pearl (1994a) showed how to compute these queries in PSCMs by twin nets (more generally
called ‘counterfactual graphs’). In these models, each endogenous variable has a replica, sharing
the same exogenous parents and the SEs. The CSs returned by Algorithms 1 or 2 can be also used
in twin nets, thus allowing us to bound such queries on the basis of empirical data.

Example 9 (What-If At the Party (Balke and Pearl, 1994a)) In the Markovian SCM of Figure 1.f,
the binary endogenous variables (X1, X2, X3, X4) have exogenous counterparts with cardinalities:
|ΩU1 | = 2, |ΩU2 | = |ΩU3 | = 4, and |ΩU4 | = 3. We refer to the original paper for the specification
of the SEs and {P (Uk )}4

k=1. For the corresponding PSCM, in that paper, the twin net is built as in

Figure 1.g and used to compute the counterfactual P (x4
(2)
x(2)

3

|x(1)
3 ) = 0.79, modelling the hypothetical

effect on X4 of an intervention on X3 forcing a state different from the observed one. We address the
same task without exploiting {P (Uk )}4

k=1, using only the empirical PMF. Algorithm 1 can compute
CSs {K (Uk )}4

k=1 in the original model, and use them to make the twin net as a CN. In spite of the
looser information, the above counterfactual in the twin CN takes exactly the same sharp value.

Remark 1 (Counterfactuals without structural equations) The same can be done even if no ex-
plicit information about the SEs is available (this follows straightforwardly from ideas by, e.g.,
Balke and Pearl 1994b, Section 3.1). Consider a SE x = fX (x ′,u). The number of degenerate CPTs
P (X |X ′) modelling a deterministic relation between X ′ and X is k := |ΩX ||ΩX ′ |. Accordingly, we
setΩU := k and let P (X |X ′,u(k)) correspond to the k-th degenerate CPT P (X |X ′). Modelling igno-
rance about SE fX4 in Example 9 requires for instance |ΩU4 | := |ΩX4 ||ΩX2 |·|ΩX3 | = 16. By letting U4

enumerate all the functional relations between (X2, X3) and X4 and keeping the same empirical
PMF, we still obtain the same counterfactual value. To make the query unidentifiable, we add a
0.01 cut-off to the degenerate values of P̃ ; this induces the bounds P (x4

(2)
x(2)

3

|x(1)
3 ) ∈ [0.75,0.85].

Many other tools for causal modelling and analysis can easily be embedded in our CN for-
malism. This is for instance the case of measurement bias considered by Pearl (2010). A likeli-
hood {P (z|U )}z∈ΩZ modelling a noisy observation of an exogenous variable U might be available
under the assumption of conditional independence between Z and the other variables given U .
This can be modelled by setting Z as a binary child of U (e.g., see Figure 1.e) in the CN, and using
the likelihood for the specification of its CPT exactly as in Pearl’s virtual evidence method.

Expert judgements about U (e.g., a comparative statement such as P (u(i )) > P (u( j ))) can be
trivially embedded in our model as additional constraints in line 10 of Algorithm 2. Finally note
also that, exactly as we perform standard surgery in the CN by exploiting the fact that the CN
maintains the same separation properties of the original model, also other state-of-the art tech-
niques such as the non-atomic interventions proposed by Correa and Bareinboim (2020) could
be supported, thus providing a numerical alternative to their σ-calculus.

6. Numerical Tests

For validation, we use quasi-Markovian SCMs of increasing size and different topologies (of the
endogenous restriction of the causal diagram): trees (Figure 1.h), polytrees (Figure 1.i), multi-

10
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ply connected (Figure 1.j). We call length of the model l := |X | the number of endogenous vari-
ables in M . We assume stationarity, i.e., the same SEs are associated with the same variables
with different indexes. A random P (U ) is sampled, and the corresponding empirical PMF P̃ (X )
obtained. The latter is the input of Algorithm 2. Endogenous and exogenous variables have
resp. two and six states, while SEs are randomly generated. As unidentifiable queries, we con-
sider P (Xl/2|do(x(0)

1 ), x(0)
l ) for trees, P (Xl /4|do(x(0)

1 ), x(0)
l−1) for polytrees, and P (Xl/4|do(x(0)

1 ), x(0)
l )

for multiply connected models. Descriptors reported here are averages of 100 iterations.
A credal version of variable elimination (CVE) is used to compute exact inferences in small

networks. Figure 2 (right) depicts the average size of the causal bounds computed with this
method. Interestingly, relatively small (< 0.1), and hence informative, interval sizes are obtained.
For larger models we use the ApproxLP algorithm for approximate inference in general CNs (An-
tonucci et al., 2015). Figure 2 (three plots on the left) shows the average execution times of the
two methods for different values of l . CVE cannot handle large models due time (a timeout of
five minutes is set) and space limits. For the sake of readability, the x-axis of these plots ends
at l = 20, but ApproxLP allows to query larger models: with a one-minute timeout, the length
of the largest model that can be computed is l = 141 for trees, l = 92 for polytrees and l = 38
for multiply connected models. We also compared the exact intervals returned by CVE with the
approximation obtained with ApproxLP. Notably, the average RMSE is low, being 0.61% for trees,
0.03% for polytrees and 0.026% for multiply connected models. The tests have been performed
by means of a Java library implementing all the techniques discussed in the paper.4
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Figure 2: Execution times (left) and bounds size (right) for experiments.

7. Conclusions

The present work proposes a fully automatic, numeric, approach to causal inference that is al-
ternative to analytical avenues such as do- or σ-calculus and their specializations, and that is
natively capable to solve unidentifiable problems too. It shows that we can take data and an in-
completely specified SCM, and turn them, exactly, into a credal network. Standard algorithms
for credal nets will then deliver us causal inference up to the top level of Pearl’s causal hierarchy
(Bareinboim et al., to appear): counterfactuals. This holds true even under the extreme condi-
tion where the SCM is provided as a bare causal graph, with no information at all about the struc-
tural equations—including the cardinality of the U variables (see Remark 1). Our algorithms to
efficiently convert SCMs into credal nets apply to a wide class of models, which we call quasi-
Markovian. It seems possible that these ideas can be extended to more general models and also
to the continuous case. The relation with credal networks is, however, already general. In this
sense, an SCM is (solvable by) a credal network.

4. See github.com/idsia/credici and github.com/IDSIA-papers/2020-PGM-structural.
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Appendix A. Proofs

Proof [of Theorem 1] Let us first note that in a Markovian PSCM (M ,P ), for each X ∈ X , x ∈ΩX

and pa(X ) ∈ΩPa(X ), we have:

P (x|pa(X )) = ∑
u∈ΩU

P (x|u,pa(X )) ·P (u|pa(X )) = ∑
u∈ΩU

P (x|u,pa(X )) ·P (u) , (13)

where U ∈U is the, unique because of Markovianity, exogenous parent of X and, as usual, Pa(X )
are the other, endogenous, parents of X . The first derivation in Equation (13) follows from total
probability theorem, while the second is because of the d-separation between U , which is a root
node of GM , and the other parents of its child X (Koller and Friedman, 2009).

To prove the theorem, first check the inclusion KM ,P̃ ⊆ {K (U )}U∈U . Take {P (U )}U∈U ∈KM ,P̃ .
The corresponding PSCM, based on M , satisfies Equation (13) with P (x|pa(X )) = P̃ (x|pa(X )) be-
cause of the definition of KM ,P̃ . Thus:∑

u∈ΩU

P (x|u,pa(X )) ·P (u) = P̃ (x|pa(X )) . (14)

Conditional probabilities P (x|u,pa(X )) in Equation (14) are from a (degenerate) CPT based on
the SE fX ∈ M . We consequently rewrite the equation as:∑

u∈ΩU

� fX (u,pa(X )) = x� ·P (u) = P̃ (x|pa(X )) . (15)

Equation (15) corresponds to Equation (4) (i.e., line 5 of Algorithm 1) when Pa(X ) is empty and
Equation (6) (i.e., line 7 of Algorithm 1) otherwise. This proves P (U ) ∈ K (U ) for each U ∈U and
hence KM ,P̃ ⊆ {K (U )}U∈U . Vice versa, to prove {K (U )}U∈U ⊆KM ,P̃ let us take a PMF P (U ) ∈ K (U )
for each U ∈U . This induces a (Markovian) PSCM based on M that should satisfy Equation (13),
but also Equation (14) because of lines 5 and 7 of Algorithm 1. But this proves the consistency of
P with P̃ , hence {P (U )}U∈U ⊆KM ,P̃ and finally the thesis.

Lemma 3 In a quasi-Markovian PSCM, for each U ∈U , let {X k
U }nU

k=1 denote the children of U , with

the index k sorting them according to a topological order. For each xk
U ∈ΩX k

U
and pa(X k

U ) ∈ΩPa(X k
U ),

with k = 1, . . . ,nU , we have:

∑
u∈ΩU

P (u)
nU∏

k=1
P (xk

U |pa(X k
U ),u) =

nU∏
k=1

P (xk
U |x1

U , . . . , xk−1
U ,pa(X 1

U ), . . . ,pa(X k
U )) . (16)

Proof Equation (11) gives a factorization of the joint PMF of the quasi-Markovian PSCM corre-
sponding to that of a BN based on the directed acyclic graph GM . Arc reversal (Shachter, 1986)
allows to express the joint PMF of a BN as that of a second BN based on a different directed graph
where the orientation of one or more arcs is changed. In our case we want to reverse the arcs from
U to X k

U , for each k = 1, . . . ,nU . To preserve the joint PMF after the reversal of U → X k
U we should:

(i) add the parents of U to the parents of X k
U , if not already present, and, (ii) add the parents of X k

U
to the parents of U , again, if not already present. Although in principle these operation might add
cycles to the directed graph, as stated in the proof of Theorem 3 of Shachter (1986), this is not the
case if we follow a topological order like the one associated to the index k.
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To describe the changes induced by these operations to GM , let us set G 0 equal to GM , but
without the arcs we want to remove and, for each k = 1, . . . ,nU , denote as G k the causal diagram
after the k-th reversal, performed together with the above parent augmentations. We similarly
denote as Pak (Z ) the parents of a generic variable Z in G k . E.g., by our definition of G0, Pa0(X k

U ) =
Pa(X k

U ), for each k = 1, . . . ,nU . It is easy to check that, after the first reversal: Pa1(U ) := X 1
U ∪

Pa0(X 1
U ), and as Pa0(U ) = ; (i.e., U is originally a root), Pa1(X 1

U ) := Pa0(X 1
U ). All the other sets of

parents are unchanged. After k reversals we have instead:

Pak (U ) :=
k⋃

i=1

[
X i

U ∪Pa0(X i
U )

]
, (17)

Pak (X k
U ) :=

[
k−1⋃
i=1

X i
U

]
∪

[
k⋃

i=1
Pa0(X i

U )

]
. (18)

The validity of these two equations for each k = 1, . . . ,nU can be proved by induction. First note
that they are satisfied for k = 1. After that, assume Equations (17) and (18) valid for k = j −1 and
prove that these also hold for k = j . After the j -th reversal, the parents of U can be expressed as:

Pa j (U ) = Pa j−1(U )∪X j
U ∪Pa j−1(X j

U ) =∪ j−1
i=1

[
X j

U ∪Pa0(X i
U )

]
∪X j

U ∪Pa0(X j
U ) , (19)

where in the first derivation we added to the parents of U , as they are before the reversal, X j
U and its

parents (again before the reversal). The second step follows from the validity of the Equation (17)

for k = j −1 and from the general fact Pal (X j
U ) = Pa0(X j

U ) for l < j (i.e., the parents of X j
U remain

unchanged before the j -th reversal). It is easy to check that the rightmost-hand side of Equation

(19) corresponds to the right-hand side of Equation (17) for k = j . Similarly, for X j
U :

Pa j (X j
U ) = Pa j−1(X j

U )∪Pa j−1(U ) = Pa0(X j
U )∪

j−1⋃
i=1

[
X i

U ∪Pa0(X i
U )

]
, (20)

where in the first derivation we added to the parents of X j
U , as they are before the reversal, the

parents of U (again before the reversal). The second step follows from the above discussed fact

that the parents of X j
U are unchanged before the j -th reversal and the validity of Equation (18)

for k = j −1. It is easy to check that the rightmost-hand side of Equation (20) corresponds to the
right-hand side of Equation (18) for k = j . Overall, we have Equations (17) and (18) valid for each
k = 1, . . . ,nU . An example of these reversals is in Figure 3.

Note that after the nU reversals, U is a barren node as: (i) all the nU original children of U
are now its parents; (ii) for each k = 1, . . . ,nU , U does not belong to the new parents of X k

U in
Equation (18). After the last reversal, the joint PMF associated with the quasi-Markovian PSCM is
still factorizing as a BN, but based on a different directed acyclic graph. The new CPTs are those
associated with U and its children, while all the other ones remain unchanged. The parents of U
are now as in Equation (17), to be considered for k = nU . For each k = 1, . . . ,nU , the parents of X k

U
are provided instead by Equation (18) (remember that after the k-th reversal, the parents of X k

U
will not be further modified). As the new “reversed” joint PMF with the original one in Equation
(11) coincide, we can simplify from both sides all the probabilities associated to the CPTs that are
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(a)

(b)

(c)

Figure 3: Arc reversals in a quasi-Markovian SCM (exogenous nodes are in gray).

not associated with U and its children and obtain:

P (u)
nU∏

k=1
P (xk

U |pa(X k
U ),u) = (21)

P (u|x1
U , . . . , xU ,pa(X 1

U ), . . . ,pa(X k
U ))

nU∏
k=1

P (xk
U |x1

U , . . . , xk−1
U ,pa(X 1

U ), . . . ,pa(X k
U )) .

Finally, Equation (16) follows from Equation (21) by taking the sum over U on both sides and
noticing that, as U is a barren node, it only appears in its own CPT.

Proof [of Theorem 2] The proof is analogous to that of Theorem 1, with Equation (16) from
Lemma 3 playing the role of Equation (13).

To prove the theorem, first check the inclusion KM ,P̃ ⊆ {K (U )}U∈U . Take {P (U )}U∈U ∈KM ,P̃ .
The corresponding quasi-Markovian PSCM, based on M , satisfies Equation (16) with the prod-
uct of conditional probabilities in the right-hand side as in the empirical case because of the
definition of KM ,P̃ . Thus:

∑
u∈ΩU

P (u)
nU∏

k=1
P (xk

U |pa(X k
U ),u) =

nU∏
k=1

P̃ (xk
U |x1

U , . . . , xk−1
U ,pa(X 1

U ), . . . ,pa(X k
U )) . (22)

The conditional probabilities in the left-hand side of Equation (22) are from (degenerate) CPTs
based on the SEs of the children of U . We consequently rewrite the equation as:∑

u∈ΩU

P (u)
nU∏

k=1
� fX k

U
(pa(X k

U ),u) = xk
U � =

nU∏
k=1

P̃ (xk
U |x1

U , . . . , xk−1
U ,pa(X 1

U ), . . . ,pa(X k
U )) . (23)
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Equation (23) corresponds to the linear constraint specification in line 7 of Algorithm 2. This
proves P (U ) ∈ K (U ) for each U ∈U and hence KM ,P̃ ⊆ {K (U )}U∈U .

Vice versa, to prove {K (U )}U∈U ⊆ KM ,P̃ let us take a PMF P (U ) ∈ K (U ) for each U ∈U . This
induces a quasi-Markovian PSCM based on M that should satisfy Equation (16), but also Equa-
tion (22) because of line 7 of Algorithm 2. But this proves the consistency of P with P̃ , hence
{P (U )}U∈U ⊆KM ,P̃ and finally the thesis.
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