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Abstract

Recent work has formally linked the traditional axiomatisation of incomplete preferences à la Anscombe-Aumann
with the theory of desirability developed in the context of imprecise probability, by showing in particular that they
are the very same theory. The equivalence has been established under the constraint that the set of possible prizes is
finite. In this paper, we relax such a constraint, thus de facto creating one of the most general theories of rationality
and decision making available today. We provide the theory with a sound interpretation and with basic notions, and
results, for the separation of beliefs and values, and for the case of complete preferences. Moreover, we discuss the
role of conglomerability for the presented theory, arguing that it should be a rationality requirement under very broad
conditions.

1. Introduction

Background

Preferences play two important roles in artificial intelligence (AI). On the one side, the axiomatisation of preferences
has been a major achievement of the past century, with the pioneering work of Von Neumann and Morgestern
[55], Savage [59], Anscombe and Aumann [2]. These authors have justified rational decision making through the
maximisation of expected utility and at the same time have provided foundations for the Bayesian theory of probability,
which is at the heart of so much work in AI. On the other side, in the recent years we have witnessed a steady increase
of research in preference modelling as a ductile and practical way to assess a subject’s beliefs, to learn trends from data,
etc. (see, e.g., Domshlak et al [30], Pigozzi et al [58]). So preferences are very flexible objects that allow us both to
work out foundations for our uncertainty models and to develop useful tools for inference.

One aspect of preferences that seems particularly promising for modern artificial intelligence is their possibility
to model incompleteness: the fact that we are not always capable to compare alternatives. In fact, modelling the
incompleteness in our knowledge is key to develop reliable (or robust) applications of AI, which is a central theme now
that AI is becoming so widespread. This has eminently been pointed out by Dietterich [29], the former President of
AAAI.

Research on the axiomatisation of incomplete preferences has primarily been done in communities other than AI,
with the work of Bewley [8], Seidenfeld et al [60], Nau [53], Ok et al [56], Galaabaatar and Karni [34] (but see the
work by Dubois et al [32]). In fact, the theme of incompleteness or robustness is not mainstream in AI yet, even though
we can find well-developed algorithms and methods, like those by Corani and Zaffalon [12], Kikuti et al [41], de Bock
and de Cooman [16], just to mention a few.

What these latter proposals have in common is their reference to Walley’s 1991 theory of imprecise probability as
their founding paradigm (see Augustin et al [4] for a collection of introductory papers on imprecise probability and
some main applications to artificial intelligence). Such a theory is a re-elaboration of Williams’ 1975 theory, which, in
turn, is an extension of de Finetti’s 1937 Bayesian theory (see also de Finetti [26]) made to deal with imprecision in
probabilities, as originated by incompleteness or other reasons.
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In short, Williams-Walley’s theory models a subject’s uncertainty by focusing on the gambles that the subject is
willing to take and that for this reason are called desirable. The rationality of the assessments is then formalised through
some axioms, which we can regard as a way to axiomatise the theory of desirability. The resulting uncertainty theory is
very powerful: above all, it maintains the characteristic of logical self-consistency already present in de Finetti’s theory,
which it encompasses as a special case (the property of self-consistency is called coherence in the jargon of imprecise
probability). But it is capable of modelling incompleteness in great generality too; in fact it encompasses also robust
Bayesianism, and more in general the approaches that model uncertainty with sets of probabilities. And moreover it
goes well beyond that, since desirability smoothly deals also with non-Archimedean problems, those that probabilities
cannot capture. And it has all this done without incurring measurement problems.

Desirability and preference have essentially lived two separate lives until recently, when we have proved that they
are actually the same theory (Zaffalon and Miranda [76]; an earlier report dates back to 2015). This may be surprising
as preferences deal with beliefs (probabilities) and values (utilities) at the same time, while desirability was born as a
theory of uncertainty alone. In fact, the equivalence has been achieved by enriching desirability models through a set of
possible prizes, in addition to the usual set of states of nature.

The equivalence of the two theories thus established has proved fruitful in many respects. From the viewpoint of
preference, it has allowed to show for example that the traditional notion of ‘state independence’, i.e., the fact that
we can actually have separate models for beliefs and values, corresponds to the notion of ‘strong independence’ in
probability [14]: this is based on the idea of using a set of stochastically independent models. It has permitted to rework
the notions of Archimedeanity in preference in a new way, and to streamline the notions of precise beliefs and values,
and more in general of complete preferences.

Conversely, the equivalence has allowed us to generalise desirability so as to deal with imprecise non-linear utility.
This has made of desirability one the most powerful, and well founded, theories of uncertainty and decision making
available today. As such, it appears to be a natural foundation for robust methods in modern AI.

Outline and contributions

With this in mind, in this paper we revisit our work from 2017, aiming to widen its scope and to discuss more
broadly some important issues that we left open. After an introduction to desirability and preferences in Section 2, we
then give the following contributions:

Section 3. In our 2017 formulation, we considered an unconstrained space of possibilities Ω and a finite space of prizes
X . This is particularly restrictive when we want to consider for instance continuous rewards. It is a case that
has received quite some attention in the literature (see the work by del Amo and Rı́os Insua [27], Dubra et al
[33], Ghirardato and Siniscalchi [35], Ok et al [56], just to name a few) but it does not seem to have found a fully
general formulation yet. In fact we also discussed this possibility pointing to some inherent difficulty.

The main problem in this case is that the core modelling unit in preferences, that of ‘horse lottery’ does not
easily lend itself to work with continuous sets of prizes—on top of which, by definition, we should place a
probability. We address this problem by defining the new notion of conditional horse lottery and reformulating
the axiomatisation of preferences on that basis. Then we prove the equivalence with desirability in full generality
where both the spaces involved, of possibilities and prizes, are unconstrained. We make this by showing that
there is a one-to-one correspondence between the axioms of preference and those of desirability.

In the Archimedean case, this leads to represent utilities via sets of finitely additive probabilities. More generally
speaking, we benefit from the representation power of desirability so as to formulate a theory that can work with
any spaces, Archimedean and non-Archimedean problems, and without incurring problems of measurability. To
our knowledge this type of generality is achieved here for the first time.

Section 4 gives a rigorous interpretation of the rewards that conditional horse lotteries deliver by constructing a linear
utility scale based on so-called ‘probability currency’.

Section 5 compares the traditional formalism based on horse lotteries and our new one based on conditional horse
lotteries. We show that they are equivalent in the case where the prizes are in a finite number. When they are not,
we discuss why our formalism appears to be more suited to deal with infinitely many prizes.
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Section 6 focuses on the question of conglomerability. Conglomerability is a property that probabilistic, as well as
desirability, modelling has to face when we deal with infinite spaces of possibilities, and in particular with
infinite conditioning partitions of those spaces. This is a subject of interest to us given the unconstrained nature
of the space of possibilities that we consider. The main question is whether or not conglomerability should be a
rationality axiom.

Conglomerability has been first discussed by de Finetti [23] and later on by many other authors, including Hill
and Lane [38], Armstrong [3], Seidenfeld et al [61], Howson [39], DiBella [28]. Berti et al [7] have recently
given an overview of the subject. Despite the amount of work devoted to conglomerability, it still remains a
controversial question to date.

In this panorama, we have provided an original justification of conglomerability through arguments of ‘temporal
coherence’, that is, the idea that an uncertainty model should be dynamically coherent in time (Zaffalon and
Miranda [74]). This idea holds the promise to finally resolve the controversy, given that conglomerability turns
out to be a consequence of temporal coherence. But the assumptions we imposed to derive such a result make its
application relatively narrow.

We reconsider the problem and show that we can weaken those assumptions in a substantial way, thus de facto
turning conglomerability into a rationality requirement whenever a model is used to compute future beliefs and
values—in the same way as probabilistic updating is usually understood.

Appendix A summarises our past results about the decomposition and completeness of preferences, and proves that
those results continue to hold when the space of prizes is infinite.

Our conclusions and future perspectives are in Section 7. The proofs of the paper have been collected in Appendix B.

2. Preliminary notions

In this section, we introduce the main features of sets of desirable gambles and preference relations that shall be
needed in the remainder of the paper.

2.1. Desirable gambles

We next introduce the basic theory of sets of desirable gambles; for a deeper account of the results and concepts
mentioned in this section, we refer to the work of Walley [71, Section 3.7]; Couso and Moral [13], de Cooman and
Miranda [21], de Cooman and Quaeghebeur [22], Miranda [45], Miranda and Zaffalon [47] and Augustin et al [4,
Chapter 1]. For a philosophical defence of indeterminate probabilities, see, e.g., Hájek and Smithson [37].

In short, the idea is to consider states of nature and associated real-valued rewards called gambles. The focus will be
on those gambles that are ‘desirable’ to us and that have the property of being coherent, which means that they satisfy
some rationality axioms (Definition 3 as well as Axioms D1–D4 below). A coherent set of desirable gambles determines
a so-called coherent lower prevision, which has the interpretation of a lower expectation. In turn, that determines a set
of finitely additive probabilities.1 Coherent sets of desirable gambles, as well as coherent lower previsions and sets of
probabilities, can be conditioned, marginalised or extended. The former are however more general than the latter, in
that they can readily deal with conditioning on events of probability zero or with choices under zero expectation, for
which the traditional, Kolmogorovian, approach to probability is not applicable.

Let us see these notions in more detail now.

2.1.1. Logical foundations of desirability
Let Ω denote the set of possible outcomes of an experiment, that is, the space of possibilities. We let the cardinality

of Ω be general, so Ω can be infinite. A gamble f : Ω → R is a bounded real-valued function of Ω. A gamble is
interpreted as an uncertain reward in a linear utility scale. Accepting a gamble f is regarded as a commitment to receive
f(ω) whatever ω occurs.

1Such a correspondence follows from a separating hyperplane theorem.
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Denote by L(Ω) the set of all the gambles on Ω and by L+(Ω) := {f ∈ L(Ω) : f  0} the subset of the positive
gambles, where f  0 means that f ≥ 0 and f 6= 0. We denote these sets also by L and L+, respectively, when there
can be no ambiguity about the space involved. Negative gambles are defined analogously by L− := −L+.

We examine a set of gambles Q ⊆ L and come up with the subset K of the gambles in Q that we find desirable.
How can we characterise the rationality of the assessments represented by K?

We can follow the procedure adopted in similar cases in logic, where first of all we need to introduce a notion
of deductive closure: that is, we first characterise the set of gambles that we must find desirable as a consequence of
having desired K in the first place. This is easy to do once we assume that our utility scale is linear; those gambles are
the positive linear combinations of gambles in K:

posi(K) :=


r∑
j=1

λjfj : fj ∈ K, λj > 0, r ≥ 1

 .

We must also consider that any gamble in L+ should be desirable as well, given that it may increase our utility without
ever decreasing it. Stated differently, the set L+ plays the role of the tautologies in logic. This means that the actual
deductive closure we are after is given by the following:

Definition 1. (Natural extension for gambles) Given a set K of desirable gambles, its natural extensionR is the set
of gambles given by

R := posi(K ∪ L+).

Note thatR is the smallest convex cone that includes K ∪ L+.
The rationality of the assessments is characterised through the natural extension by the following:

Definition 2. (Avoiding partial loss for gambles) A set K of desirable gambles is said to avoid partial loss if 0 /∈ R.

This condition is the analog of the notion of consistency in logic. The irrationality of a natural extension that incurs
partial loss depends on the fact (as it is possible to show) that it must contain a negative gamble f , that is, one that
cannot increase our utility and can possibly decrease it. In contradistinction, a set that avoids partial loss does not
contain negative gambles.

There is a final notion that is required to make a full logical theory of desirability. This is the logical notion of a
theory, that is, a set of assessments that is consistent and logically closed, in the sense that the consistent assessments
coincide with their deductive closure in the examined domain Q. This means that we are fully aware of the implications
of our assessments on other elements of Q. The logical notion of a theory goes in desirability under the name of
coherence:

Definition 3 (Coherence for gambles). Say that K is coherent relative to Q if K avoids partial loss and Q ∩R ⊆ K
(and hence Q ∩R = K). In case Q = L then we simply say that K is coherent.

This definition alone, despite its conceptual simplicity, makes up all the theory of desirable gambles: in principle, every
property of the theory can be derived from it. Moreover, the definition gives the theory a solid logical basis and in
particular guarantees that the inferences one draws are always coherent with one another. This appears to giving a reply
to Howson’s 2009 question, whether probability and logic can be combined (see also Howson [40]): by reformulating
‘probability’ as desirability, we do not even need to combine probability with logic, as we clearly see that probability is
already pure logic. At the same time, reformulating probability through desirability, we obtain a very powerful theory:
as we have seen, it can be defined on any space of possibilities Ω and any domain Q ⊆ L (in this sense, it is not
affected by measurability problems); and, as we shall make precise later on in this section, it can handle both precise
and imprecise assessments, as well as model both Archimedean and non-Archimedean problems.

2.1.2. The case Q = L
In this paper we shall primarily be concerned with the case where the set of gambles Q that we examine is the

entire set L. We shall then focus on this case to develop the theory of desirability in some detail.
The first consequence of focusing on the case Q = L is that coherence can equivalently be characterised by four

axioms (see Walley [71, Section 3.7]; Miranda and Zaffalon [47, Proposition 2]):
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Definition 4 (Coherence for gambles when Q = L). In the case where Q = L, R is said to be a coherent set of
desirable gambles in L if and only if it satisfies the following conditions:

D1. L+ ⊆ R [Accepting Partial Gains];

D2. 0 /∈ R [Avoiding Null Gain];

D3. f, g ∈ R ⇒ f + g ∈ R [Additivity];

D4. f ∈ R, λ > 0⇒ λf ∈ R [Positive Homogeneity].

A coherent set of desirable gambles is thus a convex cone (D3, D4) that excludes the origin (D2) and that contains the
positive gambles (D1).

Consider an event B ⊆ Ω. We denote by B both the subset of Ω and its indicator function IB (that equals one in B
and zero elsewhere). Using this convention, we can multiply B and a gamble f obtaining the gamble Bf given for all
ω ∈ Ω by

Bf(ω) =

{
f(ω) if ω ∈ B,
0 otherwise.

Definition 5 (Conditioning for gambles). Consider a coherent set of desirable gambles R on L and let B be a
non-empty subset of Ω. The set of desirable gambles conditional on B derived fromR is defined as

R|B := {f ∈ R : f = Bf}.

There is a natural correspondence between Bf and the restriction of f to B, whence we can also putR|B in relation
with

RcB := {fB ∈ L(B) : (∃f ∈ R|B)(∀ω ∈ B) f(ω) = fB(ω)},

which is a coherent set of desirable gambles in L(B).R|B andRcB are equivalent representations of the conditional
set.

Definition 6 (Marginalisation for gambles). LetR be a coherent set of desirable gambles in the product spaceΩ×Ω′,
where Ω,Ω′ are two logically independent sets. The Ω-marginal set of desirable gambles on L(Ω ×Ω′) induced byR
is defined as

RΩ := {f ∈ R : (∀ω ∈ Ω)(∀ω′1, ω′2 ∈ Ω′) f(ω, ω′1) = f(ω, ω′2)}.

Since RΩ is made up of gambles that depend on Ω only (we call them Ω-measurable gambles), we can establish a
bijection betweenRΩ and

R′Ω := {g ∈ L(Ω) : (∃f ∈ R)(∀ω ∈ Ω)(∀ω′ ∈ Ω′) g(ω) = f(ω, ω′)}.

R′Ω is a coherent set of gambles in L(Ω).
A coherent set of desirable gambles encompasses a probabilistic model for Ω made of lower and upper expectations

(also called previsions after de Finetti):

Definition 7 (Coherent lower and upper previsions). Let R be a coherent set of desirable gambles in L. For all
f ∈ L, let

P (f) := sup{µ ∈ R : f − µ ∈ R}, (1)

where addition of a gamble with a constant is meant pointwise. It is called the lower prevision of f . The conjugate
value given by P (f) := −P (−f) is called the upper prevision of f . The functionals P , P : L → R are respectively
called a coherent lower prevision and a coherent upper prevision.

Definition 8 (Linear prevision). Let P , P be coherent lower and upper previsions on L. If P (f) = P (f) for some
f ∈ L, then we call the common value the prevision of f and we denote it by P (f). If this happens for all f ∈ L then
we call the functional P a linear prevision.
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A coherent lower prevision P has a set of dominating linear previsions:

M(P ) := {P linear prevision : (∀f ∈ L) P (f) ≥ P (f)}, (2)

which turns out to be closed2 and convex. Since each linear prevision is in a one-to-one correspondence with a finitely
additive probability, we can regardM(P ) also as a set of probabilities (or a credal set). Moreover, P is the lower
envelope of the previsions inM(P ):

(∀f ∈ L) P (f) = min{P (f) : P ∈M(P )}.

The coherent upper prevision P is the upper envelope of the same set; as a consequence, it follows that P (f) ≤ P (f)
for all f ∈ L.

Definition 9 (Strict desirability). A coherent set of gamblesR is said to be strictly desirable if it satisfies the following
condition:

D0. f ∈ R \ L+ ⇒ (∃δ > 0) f − δ ∈ R [Openness].

Strict desirability means thatR \ L+ does not include its topological border. By an abuse of terminology,R is said to
be open too.3

There is a one-to-one correspondence between coherent lower previsions and strictly desirable sets: from P we can
induce set

R := {f ∈ L : f  0 or P (f) > 0}; (3)

R is coherent and strictly desirable and moreover induces P through Eq. (1).

Remark 1 (General vs strict and almost desirability). Note that a general coherent set of desirable gambles is a cone
that need not be open nor closed. The closure of a coherent set of desirable gambles is called a set of almost-desirable
gambles by Walley [71, Section 3.7.3]. Strict desirability, as we have seen, is associated with open cones. Both almost
and strictly desirable gambles are in a one-to-one correspondence with, and are therefore as informative as, a closed
convex set of linear previsions. The extra generality of sets of desirable gambles makes them useful when dealing with
the problem of conditioning on sets of probability zero, or of choosing between two options under zero expectation
(Zaffalon and Miranda [74, Section 5]; see also Dubins [31], Seidenfeld et al [60], Coletti and Scozzafava [11], de Bock
and de Cooman [17] for other approaches to this problem).

Remark 2 (On the regularity assumption). Note also that with coherent sets of desirable gambles we need not enter
the controversy as to whether or not we should use the ‘regularity assumption’, which prescribes that probabilities
of possible events should be positive (see Pedersen [57]). Such an assumption goes back to an important article by
Shimony [65]. In the language of this paper, Shimony argued that de Finetti’s framework could lead to the questionable
undesirability of a positive gamble in case zero probabilities were present, given that the prevision (expectation) of
such a gamble could be zero. In other words, Shimony argued, as we do, that D1 is an axiom of rationality. This led
Shimony and a number of later authors, among whom Carnap [9] and Skyrms [66], to advocate strengthening de
Finetti’s theory by requiring regularity. But it has originated also much controversy given the very constraining nature
of regularity on probabilistic models. Between requiring regularity and dropping the desirability of positive gambles,
coherent sets of desirable gambles actually offer a third possible way that keeps all desiderata together: events can
have zero probability, positive gambles are desirable, and all operations, such as conditioning or comparisons, are well
defined and informative. ♦

Definition 10 (Conditional coherent lower and upper previsions). LetR be a coherent set of desirable gambles in
L(Ω) and B a non-empty subset of Ω. For all f ∈ L(Ω), let

P (f |B) := sup{µ ∈ R : B(f − µ) ∈ R} (4)

2In the weak* topology, which is the smallest topology for which all the evaluation functionals given by f(P ) := P (f), where f ∈ L, are
continuous.

3A note of caution to prevent confusion in the reader: the adjective ‘strict’ denotes two unrelated things in desirability and in preferences. In
preferences it characterises irreflexive relations, while in desirability it formalises an Archimedean condition as it will become clear in Section 3. We
are keeping the same adjective in both cases for historical reasons and given that there should be no possibility to create ambiguity by doing so.
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be the conditional lower prevision of f given B. The conjugate value given by P (f |B) := −P (−f |B) is called the
conditional upper prevision of f . The functionals P (·|B), P (·|B) : L(Ω)→ R are respectively called a conditional
coherent lower prevision and a conditional coherent upper prevision.

Denote by infB f the infimum value that f takes on B. P (·|B) satisfies the following conditions for all f ∈ L(Ω)
and all real λ > 0:

◦ P (f |B) ≥ infB f ;

◦ P (λf |B) = λP (f |B);

◦ P (f + g|B) ≥ P (f |B) + P (g|B).

These conditions are sometimes used as axioms of coherent conditional lower previsions, when not taking desirability
as the primitive concept. Note that coherent lower previsions can be defined as a special case of conditional ones
obtained when B = Ω.

Definition 11 (Maximal coherent set of gambles). LetR be a coherent set of desirable gambles. It is called maximal
if

(∀f ∈ L \ {0}) f /∈ R ⇒ −f ∈ R.

Requiring maximality is tantamount to assuming complete preferences.
It is important for this paper to also say something about conglomerability:

Definition 12 (Conglomerability). Consider a coherent set of desirable gamblesR ⊆ L(Ω) and let B be a partition of
Ω.R is said to be B-conglomerable if it satisfies the following condition:4

(∀f ∈ L(Ω))((∀B ∈ B) Bf ∈ R ∪ {0} ⇒ f ∈ R ∪ {0}).

The rationale behind conglomerability is that if a gamble is desirable conditional on each event of a partition of Ω, then
it should be unconditionally desirable. We refer to the work by Miranda et al [51] and Walley [71, Chapter 6] for a
discussion of conglomerability in terms of sets of desirable gambles. See also Section 6.

Definition 13 (Marginal extension for gambles). LetRΩ be a marginal coherent set of gambles in L(Ω ×Ω′) and
R|{ω}, for all ω ∈ Ω, be conditional coherent sets. Let

R|Ω := {h ∈ L(Ω ×Ω′) : (∀ω ∈ Ω) h(ω, ·) ∈ R|{ω} ∪ {0}} \ {0}

be a set that conglomerates all the conditional information along the partition {{ω} × Ω′ : ω ∈ Ω} of Ω × Ω′ (by
an abuse of notation, we denote this partition by Ω too). Then the following coherent and Ω-conglomerable set of
gambles:

R̂ := {g + h : g ∈ RΩ ∪ {0}, h ∈ R|Ω ∪ {0}} \ {0},

is called the marginal extension of the given marginal and conditional information.

The marginal extension is a generalisation of the law of total expectation to desirable gambles. It can be defined for
lower previsions too (see for instance Walley [71, Section 6.7] and also Miranda and de Cooman [46]). To this end, we
first give some preliminary notions.

Definition 14 (Separately coherent conditional lower prevision). Let B be a partition of Ω and P (·|B) a coherent
lower prevision conditional on B for all B ∈ B. Then we call

P (·|B) :=
∑
B∈B

BP (·|B)

a separately coherent conditional lower prevision.

For every gamble f , P (f |B) is the gamble on Ω that equals P (f |B) for ω ∈ B; so it is a B-measurable gamble.

4In the following we shall just call it conglomerability for short.
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Definition 15 (Marginal coherent lower prevision). Let P be a coherent lower prevision on L(Ω ×Ω′). Then the
Ω-marginal coherent lower prevision it induces is given by

PΩ(f) := P (f)

for all f ∈ L(Ω ×Ω′) that are Ω-measurable.

The Ω-marginal is simply the restriction of P to the subset of gambles in L(Ω ×Ω′) that only depend on elements of
Ω. For this reason, and analogously to the case of desirability, we can represent the Ω-marginal in an equivalent way
also through the corresponding lower prevision P ′Ω defined on L(Ω).

Definition 16 (Marginal extension for lower previsions). Consider the possibility space Ω × Ω′ and its partition
{{ω} × Ω′ : ω ∈ Ω}. We shall denote this partition by Ω and its elements by {ω}, with an abuse of notation. Let
P ′Ω be a marginal coherent lower prevision and let P (·|Ω) be a separately coherent conditional lower prevision on
L(Ω ×Ω′). Then the marginal extension of P ′Ω and P (·|Ω) is the lower prevision P given for all f ∈ L(Ω ×Ω′) by

P (f) := P ′Ω(P (f |Ω)).

2.2. Preference relations
We turn now our attention to the second pillar of this paper: preference relations.
Let Ω denote, as before, the space of possibilities. In order to deal with preferences, we introduce now another set

X of outcomes, or prizes. We assume that all the pairs of elements in Ω ×X are possible or, which is equivalent, that
Ω and X are logically independent.

The treatment of preferences in this paper relies on the notion of a conditional horse lottery:

Definition 17 (Conditional horse lottery). A conditional horse lottery is a function p : Ω ×X → [0, 1].

We should recall that the modelling of preferences is traditionally done by horse lotteries since the early work of
Anscombe and Aumann [2]: those are similar to our conditional horse lotteries but actually correspond to placing a
probability over prizes for each ω ∈ Ω rather than an unnormalised function, as in Definition 17. Prominent examples
of axiomatisations of incomplete preferences through horse lotteries are the works of Bewley [8], Seidenfeld et al
[60], Nau [53], Galaabaatar and Karni [34], Zaffalon and Miranda [76]. Since it is not immediate to work with horse
lotteries in the case of infinitely many prizes, in this paper we have decided to define conditional horse lotteries. The
essence of the two approaches is the same but technically the latter appears more naturally suited for the extension to
the general case. We shall analyse the differences of the two approaches in detail in Section 5.

Let us denote by H(Ω × X ) := [0, 1]Ω×X the set of all conditional horse lotteries on Ω × X . They will also be
called acts for short. In the following we shall use the notationH for the set of all the acts in case there is no possibility
of ambiguity.

Conditional horse lotteries reward us with so-called ‘probability currency’. In particular, if event ω occurs, condi-
tional horse lottery p rewards us with an increase of probability to win prize x, for all x ∈ X , proportional to p(ω, x).
The reward process will be detailed in Section 4.5

Now it is convenient to give a name to the special act that provides us with no actual reward, no matter the ω that
eventually occurs:

Definition 18 (Zero act). Let 0 ∈ H denote the zero act, which is defined by 0(ω, x) := 0 for all ω ∈ Ω, x ∈ X .

Conditional horse lotteries are related to a behavioural interpretation through a notion of preference. The idea is
that, since we aim at receiving a prize in X , we will prefer some acts over some others; this will depend in part on our
knowledge about the experiment originating an ω ∈ Ω, and in part on our attitude, or liking, towards the elements of X .
We are particularly interested in some rational type of preference relations that we call coherent:

Definition 19 (Coherent preference relation). A preference relation � over conditional horse lotteries is a subset of
H×H. It is said to be coherent if it satisfies the next four axioms:

5Our conditional horse lotteries should not be confused with Luce and Krantz’s 1971 conditional acts. In such a case acts are conditional on
subsets of Ω and are defined with the aim to increase their theory’s expressiveness. Our horse lotteries p are conditional in the sense that p(ω, ·)
intuitively represents a collection of conditional probabilities. This is just a technical point that makes our theory simpler and easier to extend to the
case of infinitely many prizes compared to the case of horse lotteries.
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A1. (∀p ∈ H \ {0}) p � 0 [Worst act];

A2. (∀p ∈ H) p � p [Irreflexivity];

A3. (∀p, q, r ∈ H) p � q � r ⇒ p � r [Transitivity];

A4. (∀p, q, r ∈ H) p � q ⇔ (∀α ∈ (0, 1]) αp+ (1− α)r � αq + (1− α)r [Mixture Independence].

If also the next axiom is satisfied, then we say that the coherent preference relation is weakly Archimedean.

A0. (∀p, q ∈ H : ¬(p  q)) p � q ⇒ (∃α ∈ (0, 1)) αp � q [Weak Archimedeanity].

Let us comment on the given axioms.

◦ Axiom A1 is a direct consequence of the implicit assumption that the elements of X are prizes, that is, objects
we would like to get; since the zero act surely prevents us from increasing our chances to win them—as opposed
to any other act—, then it must be the worst possible act for us.

◦ Axioms A2 characterises the property of being ‘strict’ of the preferences we are defining. In particular, by writing
p � q we want to express that p is strictly more valuable than q for us. For this reason, there cannot be p such
that p � p.

◦ As for Axiom A3, the expression p � q � r means that for us p is strictly more valuable than q, which is strictly
more valuable than r; if we take this to mean that we would pay a positive amount to exchange r for q, and
another to exchange q for p, then we would actually pay a positive amount to exchange r for p.

◦ Axiom A4 can be interpreted in different ways. One way to look at it, is that what matters for establishing that
p � q is the increase, or decrease, of probabilities that comes along with dropping act q for p, and that can be
expressed by the element-wise difference p− q. Axiom A4 will be discussed more widely in Section 5.

◦ Finally, Axiom A0 expresses a continuity property of the model. This is easier to see by considering a violation
of the axiom, where there is a preference p � q such that any possible worsening of p would invalidate the
preference itself: that is, αp � q for all α ∈ (0, 1). In this case there is not continuity in the transition from
αp � q for all α ∈ (0, 1), to p � q.

Note that the axiom excludes from consideration the cases where p  q. The reason is that requiring continuity
in those cases would conflict with rationality. Imagine for instance the case where our preference relation is
given, for all r, s ∈ H, by r � s if and only if r  s. Consider acts p, q given by p(ω, x) := q(ω, x) := 1

2 for all
(ω, x) ∈ Ω ×X except for the pair (ω′, x′), for which we have p(ω′, x′) > q(ω′, x′). In this situation there is no
α ∈ (0, 1) such that αp � q. And yet, of course, we are fully rational in expressing p � q. Therefore continuity
of preferences does not seem justified when it comes to preferences that arise from dominances like p  q. See
also Proposition 2 below.

A simple yet convenient consequence of the axioms is the following:

Proposition 1. Suppose that for given p, q, r, s ∈ H it holds that α(p − q) = (1 − α)(r − s) for some α ∈ (0, 1).
Then for any preference relation � that satisfies mixture independence, it holds that

p � q ⇔ r � s.

Let us consider now a special type of preference.
Definition 20 (Objective preference). Given acts p, q ∈ H, we say that p is objectively preferred to q if p ≥ q and
p 6= q (we denote objective preference also by p  q).
The idea is that p is objectively preferred to q because the probability p assigns to outcomes is always not smaller than
that of q while being strictly greater somewhere. An objective preference is indeed a preference:

Proposition 2. Let � be a coherent preference relation onH×H and p, q ∈ H. Then p  q ⇒ p � q.

This proposition remarks in a formal way that objective preferences are those every rational subject expresses. These
preferences are therefore always belonging to any coherent preference relation. If they are the only preferences in
the relation, then we call the relation vacuous because we are expressing only a non-informative, or trivial, type of
preferences.
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3. Equivalence of desirability and preference

In the generalisation of desirability we are about to describe in this section, L will be redefined to be the set of
gambles on Ω ×X . These may be considered as functional-valued gambles: for each ω ∈ Ω, gamble f ∈ L(Ω ×X )
delivers the reward function f(ω, ·) whose elements are measured in ‘probabilistic’ units associated with the respective
prizes (see Section 4 for more details).R henceforth will denote a coherent set of desirable gambles of this form, which
is a subset of the new L. Such a generalised definition of gambles makes them very close to conditional horse lotteries.

On this basis, we shall first show that each axiom of desirability has an equivalent counterpart among the axioms of
preference. From that, we will prove the equivalence of the two theories.

3.1. Axiom-to-axiom equivalence

In this section we shall start work with preferences that are not necessarily coherent, and we shall discuss then
their axioms, in relations to those of desirability, one by one. To this end, we shall initially consider only a minimal
requirement on preference relations:

Definition 21 (Linear preference relation). We say that a relation �⊆ H×H is linear if p � q ⇒ r � s for all r, s
such that p− q = r − s.

Now we consider a special case of sets of desirable gambles that are in a bijective relation with preferences.

Lemma 3. Let L1(Ω × X ) := {f ∈ L(Ω × X ) : sup |f | ≤ 1} and L+
1 := L1 ∩ L+. Sets of desirable gambles

in L1(Ω × X ) and linear preference relations in H × H are in a one-to-one correspondence, where given a set
of desirable gambles D, we consider the preference relation � as p � q ⇔ p − q ∈ D and given � we define
D := {f ∈ L1(Ω ×X ) : (∃p, q ∈ H) f = p− q, p � q}.

Let us define coherence axioms for the special class of desirable gambles in L1.

Definition 22 (Desirability axioms for linear relations). Consider a set of gambles D ⊆ L1. We say that:

D0′. D is strictly desirable if only if for all f ∈ D \ L+
1 and all g ∈ L1 such that max(0,−f) ≤ g ≤ min(1, 1− f),

there is α ∈ (0, 1) such that αf − (1− α)g ∈ D.

D1′. D accepts partial gains if and only if L+
1 ⊆ D.

D2′. D avoids null gain if and only if 0 /∈ D.

D3′. D is additive if and only if for all f, g ∈ D such that f = p− q and g = q − r for some p, q, r ∈ H, it holds that
f + g ∈ D.

D4′. D satisfies positive homogeneity if and only if f ∈ D, λ > 0 such that λf ∈ L1, implies that λf ∈ D.

Each of these axioms is in a one-to-one correspondence with one of the axioms of preferences:

Theorem 4. Let D and � be respectively a set of gambles in L1 and the corresponding linear relation. Then:

(A1⇔D1′) Relation � has worst outcome 0 if and only if D accepts partial gains.

(A2⇔D2′) Relation � is irreflexive if and only if D avoids null gain.

(A3⇔D3′) Relation � is transitive if and only if D is additive.

(A4⇔D4′) Relation � satisfies mixture independence if and only if D satisfies positive homogeneity.

(A0⇔D0′) Relation � is weakly Archimedean if and only if D is strictly desirable.
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3.2. Equivalence of the theories

At this point we start considering the case where the basic rationality axioms hold jointly.

Lemma 5. Let D be a set of gambles in L1. If D satisfies D4′ then D3′ is equivalent to the following:

D3′′. For all f, g ∈ D such that f + g ∈ L1, it holds that f + g ∈ D.

Recall that in the previous section we have shown that there is a one-to-one correspondence between linear
preference relations and sets of desirable gambles in L1. Now we want to show what is the one-to-one correspondence
between coherent preference relations and coherent sets of desirable gambles (whether in L1 or L). To this end, we
associate to a set of gambles D ⊆ L1 the set

RD := {λg : λ > 0, g ∈ D} ⊆ L. (5)

Vice versa, to each set of desirable gamblesR ⊆ L, we associate the set

DR :=

{
f

sup |f |
: 0 6= f ∈ R

}
⊆ L1. (6)

Theorem 6. 1. Let D be a set of gambles in L1. If D satisfies D1′–D4′, thenRD is coherent.

2. Conversely, given a coherent set of desirable gamblesR ⊆ L the set DR satisfies D1′–D4′.

3. Under coherence ofR and D, the procedures in the two statements above are each other’s inverses:RDR = R
and DRD = D.

4. If D satisfies D1′–D4′, then D is coherent relative to L1, andRD is its natural extension.

5. Under coherence,R is a set of strictly desirable gambles if and only if DR satisfies D0′.

Among other things, this theorem states that coherent preference relations are in a one-to-one correspondence with
coherent sets of desirable gambles in L1, whose form is given in (6) whenR is coherent. They are obviously also in a
one-to-one correspondence with coherent sets of desirable gambles in L through (5).

We summarise the situation in the next theorem:

Theorem 7. There is a one-to-one correspondence between coherent preference relations on H ×H and coherent
sets of desirable gambles in L(Ω × X ). Moreover, strict desirability is in a one-to-one correspondence with weak
Archimedeanity.

3.3. Other axioms considered in the literature

Our previous results show that there is a correspondence between coherent preference relations and coherent sets of
desirable gambles. In fact, this correspondence can be extended beyond the basic axioms of coherence: other interesting
rationality conditions that can be imposed onto a preference relation can be formulated in terms of desirable gambles.
Let us briefly discuss how this can be done.

One such axiom is called negative transitivity, and can be expressed as

A5. (∀p, q, r ∈ H) p � q and q � r ⇒ p � r [Negative transitivity].

Negative transitivity on constant acts has been considered by Galaabaatar and Karni [34], who related it to Knightian
uncertainty. In terms of sets of desirable gambles, we can prove the following:

Proposition 8. Let � be a coherent preference relation onH×H, and letR be its associated coherent set of desirable
gambles in L(Ω ×X ). Then � is negatively transitive if and only ifR satisfies

f, g /∈ R ⇒ f + g /∈ R. (7)
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Interestingly, if a coherent set of desirable gambles satisfies Eq. (7) then not only posi(R) = R (due to coherence),
but also posi(Rc) = Rc (due to (7)), and as a consequence it corresponds to what has been called a lexicographic set
of desirable gambles by Van Camp et al [70]. The reason is that these sets of gambles are in a correspondence with
lexicographic probabilities. See also Appendix A.2.3 for a somewhat related study of condition (7); in the framework
of coherent lower previsions, we refer to the work of Miranda and Zaffalon [50].

Finally, another relevant axiom in the literature is the dominance axiom:

A6. (∀ω ∈ Ω) p � qω ⇒ p � q,

where qω is the Ω-measurable conditional horse lottery given by qω(ω′, x) := q(ω, x) for every (ω′, x) ∈ Ω × X .
This axiom has been considered for instance by Galaabaatar and Karni [34], and it is a weaker version of Savage’s
postulate P7. We have shown that it is related to independent products of marginal models in the theory of coherent
lower previsions, and more particularly to the strong product [76, Section 5.3].

Note, however, that the result does not extend immediately to the case where both Ω,X are infinite; as shown by
Miranda and Zaffalon [48, Example 1], independent products (and in particular the strong product) of coherent lower
previsions may not even exist in that case. In fact, we find more natural to rely on a weaker, asymmetric, notion of
irrelevance that always exists and that suffices to achieve the wanted decomposition of beliefs and values. We illustrate
this in Appendix A following ideas from our previous work [76].

3.4. Probability and utility

We have established an equivalence result for desirability and preference at the level of the cone of desirable
gambles. This allows us to focus on desirable gambles in the rest of the paper, while aiming to address questions of
preference.

The result is very general since it allows us to deal also with problems that cannot be addressed with (sets of)
expected utilities, that is, with all the problems that critically depend on a rigorous treatment of zero probabilities or
expectations. For all the other problems, it is often convenient to work directly with a probability-utility representation.
In our case, this means deducing from a coherent set of desirable gambles the corresponding lower previsions.

More precisely, given a coherent set of desirable gambles R ⊆ L(Ω × X ), we obtain its corresponding lower
prevision for all f ∈ L(Ω ×X ) using (1):

P (f) := sup{µ ∈ R : f − µ ∈ R}.

P (f) is interpreted as the lower expectation of f taken with respect to the probabilities and utilities that are implicit in
the definition ofR. These can be made explicit very simply by applying P to some special indicator functions so as to
use marginalisation (see Definition 15); we have that:

P (B ×X ), P (Ω × C)

are respectively the lower probability of B ⊆ Ω and the lower utility of C ⊆ X . Note that:

◦ The lower probability corresponds to a set of finitely additive probabilities on Ω, as it follows from (2).

◦ Similarly, the lower utility corresponds to a set of finitely additive probabilities too, again using (2), which this
time are interpreted as utilities. This means that a utility function in our formalism is mathematically equal to a
finitely additive probability on X . A discussion on this point can be found in our past work [76, Section 4.1].

◦ Separate probabilities and utilities cannot reproduce P unless this is subject to the property of ‘state independ-
ence’; in the opposite condition of state dependence, the analysis needs to be done using the ‘joint’ model P
directly. See Appendix A for details.

These considerations can be extended to the conditional case in a straightforward way. For instance, we can use (4) to
compute the conditional lower prevision of a gamble f ∈ L(Ω ×X ) given some B ⊆ Ω:

P (f |B ×X ) := sup{µ ∈ R : (B ×X )(f − µ) ∈ R}.
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This can be given the updating interpretation: P (f |B ×X ) would then represent our lower expected value of f under
the assumption that B occurs and that is it the only thing we get to know about Ω. Note that P (·|B ×X ) updates both
our beliefs and values in the general setting of this paper.

Note also that, mathematically speaking, nothing prevents us from computing P (f |Ω × C): the lower prevision of
f conditional on a subset C of prizes. But we cannot give it the updating interpretation as C simply does not ‘occur’.
See Section 6 for more details.

4. Interpreting the rewards

We have shown that there is an equivalence between coherent preferences and coherent sets of desirable gambles.
We exploit this fact in order to give a clear interpretation of the process that allows us to win prizes by using the
framework of gambles.

In order to avoid confusion, let us remark that the discussion in this section should better be understood as the
description of a ‘hypothetical’ reward process: most probably we will not want to run this process in practice, but we
need the intuition it conveys in order to give meaning to rewards. And we need this meaning to be able to see which
gambles are desirable to us and which are not. Stated differently, the previous sections have described the theory, while
here we talk about its interpretation; we should bear in mind not to mix up these two levels.

The process by which we are rewarded is based on the idea of having compound lotteries, which underlies the
definition of conditional horse lotteries.

The basic framework is constituted by a collection of simple lotteries, one per pair (ω, x) ∈ Ω × X , which we
denote by

L := {`(ω,x) : (ω, x) ∈ Ω ×X}.

In each of these we can either win prize x or nothing. Before the process starts, we have already a 1
2 chance of winning

prize x, for each x ∈ X under each ω ∈ Ω.
Then the process goes like this:

1. We are offered a finite number of gambles f1, . . . , fn ∈ L(Ω ×X ); we select a subset of them that we accept:
without loss of generality, say f1, . . . , fm, with m ≤ n.

2. As a consequence, we are given ε
∑m
i=1 fi in probability currency, where 0 < ε � 1/

∑n
i=1 sup |fi| is a

constant. Our new probabilities to win the prizes then become

ρ :=
1

2
+ ε

m∑
i=1

fi. (8)

3. Event ω occurs. We focus on the subset of simple lotteries given by

Lω := {`(ω,x) ∈ L : x ∈ X}. (9)

One of the simple lotteries from Lω is chosen by an extraneous device that is unknown to us, except for the fact
that it is independent of us and of our choices, and that we have no reason to believe unfair. Such a lottery is
eventually run so as we can win prize x with probability ρ(ω, x).

The most important part of this process is that the rewards are given in probability currency, because this makes
sure that Axioms D1–D4 are automatically satisfied. Let us show why by following the reasoning outlined by Walley
[71, Section 2.2.4]:

◦ Axioms D1 is a trivial case: assume that among f1, . . . , fn there is a positive gamble f ∈ L+. We are certainly
willing to accept it as by doing so we increase our chance to win the prizes.
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◦ As for Axiom D4, assume that among f1, . . . , fn there are gambles f and λf , with λ > 0. Assume for the
moment that λ ≥ 1. Compare (a) the reward ελf in probability currency with (b) a reward ελf in probability
currency if an extraneous random event C with known positive chance α occurs (C has to be unrelated to the
experiments under considerations and more in general to us). Since (b) yields zero if C does not occur, then it
should be desirable to us if and only if we desire it conditional on C. In this case (a) and (b) are equivalent, thus
we should desire (a) if and only if we desire (b). But (b) is equivalent to a payment in probability currency of
αελf . This shows that ελf is desirable if and only if αελf is desirable for all α ∈ (0, 1]. Choosing α := 1/λ,
we obtain that λf should be desirable if and only if f is desirable. The case where λ < 1 is analogous.

◦ With respect to Axiom D2, we first notice that, reasoning in an analogous way to the case of D1, we are certainly
not willing to accept a gamble f � 0. In order to enforce this constraint, we require that the zero gamble not
be acceptable: in this way, in case we accepted the negative gamble f , then −f would be positive and hence
accepted through D1, but their sum, accepted via D4, would be zero. By making zero not acceptable, we thus
reject the negative gambles. Therefore Axiom D2 follows.6

◦ With respect to D3, assume that among f1, . . . , fn there are gambles f, g that are both desirable. Consider again
an extraneous event C with probability 1

2 and the compound gamble h defined as follows: if C occurs we are
given f and otherwise we are given g. Given that h is desirable both if C occurs and if it does not, then h should
be unconditionally desirable. But the probability currency corresponding to h is equal to 1

2εf + 1
2εg, whence

1
2f + 1

2g should be desirable; applying D4 we obtain that f + g is desirable.

The interpretation above is based on the actual construction of a linear utility scale through the idea of probability
currency and using gambles. Using such a scale allows us to have Axioms D1–D4 automatically satisfied. As a side
note, observe that all this is granted also by the requirement to use a small ε in the definition of ρ that keeps it far away
from the deterministic probabilities: in fact, if we allowed ρ to get to 0 or 1, then knowing that we could win or lose a
prize (almost) for sure would invalidate the linear character of our wealth as a function of gamble values—given that
we have non-linear utility in the prizes in general.

The same ideas and outcomes apply to preferences, given the equivalence between the formalisms of preference
and desirability. This means that such a type of rewards satisfy in particular Axioms A3 and A4. What may be worth
remarking, in the case of preferences, is that conditional horse lotteries return probabilities that are only proportional
to the ones used in the simple lotteries that enable us to win prizes. This is a sensible point to properly interpret
horse lotteries, because one could be misled to think that those are the absolute probabilities by which prizes are
won. But this view would conflict in particular with the mixture independence axiom A4, that is, with the underlying
requirement of linearity. Stated differently, the long-term controversy that surrounds Axiom A4 in the literature (see
Allais [1], Machina [44]), which has eventually given rise to a number of alternative formalisms that drop A4, appears
to be originated by using it jointly with an interpretation of horse lotteries that is, indeed, inconsistent with it. This is
not to diminish the value of the criticisms of A4 in any way, it is only to remark the importance of having a correct
interpretation of a mathematical theory.

Finally, we can also sketch another interpretation of the rewards that is favoured by the use of sets of desirable
gambles and that may be somewhat more realistic than that based on probability currency. The idea is that we could
regard reward f(ω, x) as an amount of prize x; it can also be negative, in which case it is a loss of −f(ω, x) units of x.
Similarly to the case of the probability currency, at some point there would be an extraneous device deciding which
x ∈ X would be selected and we would be rewarded with f(ω, x) units of x. This kind of interpretation is well posed if
and only if, for all x ∈ X , our wealth is a linear function of the amounts of prize x. This is in fact the rationale behind
the desirability axioms D3 and D4.

As a side note, consider that the linear character of the way we desire each prize does not prevent us from desiring
some prizes more than others, in general; this is the reason why we need to distinguish the prizes and the related
amounts we might get. As an example, we might imagine the prizes to be different currencies (e.g., dollars, euros,
francs, etc.); if we bound the amount of money we can win or lose to some small quantity, then it is known that our
appreciation of the prizes is approximately linear. At the same time we will obviously desire strong currencies more
than weak ones.

6This is not the only way to reject the negative gambles: e.g., we could accept the zero gamble and directly require in an axiom that the negative
gambles not be acceptable. However, we want to deal with strict preferences in this paper and for that we need irreflexivity, that is, D2.
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5. Horse lotteries vs conditional horse lotteries

The proposed formulation of rational preferences in this paper, as detailed in Section 2.2, is slightly different from
the traditional one, because the main modelling unit is that of conditional horse lotteries rather than horse lotteries.
This leads, in turn, to a slightly different formulation of the rationality axioms. The aim of this section is to clarify the
relation between the two formulations, by distinguishing in particular the case of finite vs infinite space of prizes.

5.1. Finite case

We show that when we restrict the attention to the case of a finite set of prizes X , the two mentioned formalisms for
preference are equivalent. Let us briefly recall them:

F1. The first is the traditional development of decision theory, à la Anscombe-Aumann.

In this formulation, the set of prizes is defined by Xz := X ∪ {z}, where z /∈ X is meant to represent the null
prize: that is, not receiving any prize from X .

The basic object of the formalism is that of a horse lottery: it is a function p1 : Ω × Xz → [0, 1], with the
additional requirement that

∑
x∈Xz

p1(ω, x) = 1 for all ω ∈ Ω. In other words, a horse lottery is a collection of
probability mass functions p1(ω, ·), one per each element of the possibility space Ω. The set of all horse lotteries
is denoted byHz .

As usual, one defines a preference relation �, in this case between horse lotteries. This relation is assumed to
have the worst act, which, without loss of generality (from Zaffalon and Miranda [76, Section 3.1]), can be
represented by the act z that is identically degenerate on outcome z: z(ω, z) := 1 for all ω ∈ Ω. The relation
is subject to coherence axioms analogous to A1–A4 so that if we let ψ denote the operator that drops all the
z-elements from acts, or differences of them, we get thatR1 := {λψ(p1 − q1) : λ > 0, p1 � q1} is a coherent
set of desirable gambles in L(Ω ×X ) [76, Section 3.2].

The interpretation of a horse lottery is that of a pair of nested lotteries. At the outer level there is the experiment
that determines the element ω ∈ Ω that occurs. This part is in common with conditional horse lotteries. The inner
level is different: in the case of a horse lottery, the mass function p1(ω, ·) is related to a single simple lottery. In
order to have a consistent interpretation of horse lotteries with that illustrated in Section 4 for conditional horse
lotteries, we are going to assume what follows:

– Initially we have a uniform probability over winning or losing, i.e., 1
2 probability to win and 1

2 to lose, that
is, to receive z (note that these are the same initial probabilities we have with conditional horse lotteries).
In turn, we assume that the probability to win prizes is uniform as well, and so equal to k/2 := 1/(2|X |).

– Such a probability changes after receiving p1(ω, ·), becoming equal to

k

(
1

2
+ εp1(ω, x)

)
(10)

for all x ∈ X , and with the constant ε > 0 determined so as to make the resulting numbers probabilities
(and far away from the deterministic cases, similarly to the discussion in Section 4). The probability of z is
determined by those of the prizes.

F2. The second formalism is precisely that defined in Section 2.2, with the given semantics.

– According to Section 4, we assume that only one lottery in Lω, from (9), is selected with probability
k = 1/|X |, and then run; and the chance that we win prize x through a certain conditional horse lottery p2
is equal to

k

(
1

2
+ εp2(ω, x)

)
(11)

for all x ∈ X , as it follows from (8). (Here we are implicitly assuming, without loss of generality, that p2 is
one of the gambles f1, . . . , fm in Section 4.)
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Note that we are using the same symbol ε for the constants in (10) and (11). The reason is that even if those two
constants were different, we could always take their minimum and use it in both equations. In fact, the absolute value
of the constant is not important and we could actually work out the rest of the section with two different constants, but
the development would be unnecessary complicated. For this reason, in the rest of the section we take the two constants
to be equal.

In the following we use subscripts 1 and 2 for acts in order to denote the specific formalism (F1 and F2) an act
belongs to. We keep the same symbol �, though, for the preference relations defined within the different formalisms.

It turns out, perhaps not surprisingly, that formalisms F1 and F2 are fully equivalent ways to deal with preferences
in the finite case:

Proposition 9. LetR1 andR2 be the two coherent sets of desirable gambles our preferences originate respectively
within F1 and F2. Then it follows thatR1 = R2.

Yet, we prefer the less traditional formalism F2 over F1: for one thing, the axioms it is bound to seem more direct
and simple than those of F1, and the corresponding proofs seem so as well; most importantly, the infinite case appears
to be much more natural, if not just possible, to formulate in full generality using conditional horse lotteries.

5.2. Infinite case
We move on now to consider the case where X can be infinite, while imposing no restrictions on its cardinality.

5.2.1. Formalism F2

We start by considering formalism F2, that is, the one used in this paper as detailed in Section 2.2.
The essential difference that arises in F2 compared to the case of finite X is concerned with the question of selecting

one of the lotteries in Lω , given that this set can be infinite and even unbounded; in other words, the problem is how we
should implement step 3 of the reward process (Section 4) in the case of infinite X . Section 4 stressed that the selection
is supposed to be “fair”, because otherwise we would be induced to bias our beliefs and values in order to account for
the lottery-sampling process. In the finite case, the fair selection was implemented by sampling lotteries uniformly at
random. How about the infinite case?

In the infinite case, uniform selection is much more of a delicate matter. The central issue is that uniform selection
cannot be done in general using σ-additive probabilities; finitely additive probabilities can be used to that end, but
they are not constructible in general (see, e.g., Walley [71, Sections 2.9.5–2.9.7 and 3.5.7–3.5.9]). One could wonder,
in addition, what it means in practice to sample from a finitely additive probability. Stated differently, it is clear that
there is no real way in which one can actually be rewarded through (conditional) horse lotteries in the general case of
infinitely many prizes in X .

However, what really matters is the viewpoint of the subject that assesses the desirability of the gambles; for this
subject there is no need to know the details of the sampling process or that it can actually be implemented; it is enough
that the process be regarded as fair to enable an assessment of desirability (and if the adjective ‘fair’ entails some
degree of ambiguity for the subject, then this will eventually be reflected in some additional imprecision in the subject’s
set of desirable gambles, which will anyway be naturally accommodated by the theory).

In other words, the present discussion serves the purpose to delineate an ideal reward process, which however
allows us to have a clear interpretation behind the formalism of preferences/desirability.

To make all this clearer, we briefly rewrite the selection process that allows us to win prizes in more formal terms.
We denote by P0 : L(X )→ R the linear prevision corresponding to a finitely additive probability that selects a lottery
in Lω uniformly at random. Consider the event {win} that a prize is won and its complementary event {lose}, and
letW := {win, lose}. We denote by P0(·|X ) : L(W ×X )→ R the separately coherent conditional linear prevision
that represents, for all x ∈ X , our probability of winning prize x once lottery `(ω,x) has been selected; in practice,
P0({win}|{x}) is defined by (8). The joint model for the selection of lotteries and prizes is obtained by marginal
extension:7

P ′0 := P0(P0(·|X )).
P ′0 is a linear prevision defined on L(W ×X ) that corresponds to a finitely additive probability (given that so does P0),
and that represents the mechanism by which we are eventually rewarded.

7Strictly speaking, P0 should be defined on the subset of X -measurable gambles of L(W ×X ). We neglect this detail to make things simpler.
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5.2.2. Formalism F1

Formalism F1 makes things more complicated when it comes to define the mechanism to assign prizes. The reason
is that horse lotteries p ∈ Hz are traditionally defined in such a way that p(ω, ·) is a probability over Xz for all ω ∈ Ω.
This can be made to work when Xz is countable by means of countable additive probabilities (see, e.g., the work by
Seidenfeld et al [60]), even though there are limits to it: for instance we cannot represent the situation where for a
certain ω we are rewarded with an equal amount of probability currency for all prizes—given that uniform distributions
on a countable space cannot be countably additive. The situation becomes even more complex when X is continuous.

The straightforward idea that comes to mind is then to let p(ω, ·) be a finitely additive probability; this would
also cover the case of continuous and unbounded Xz . But this typically implies p(ω, x) = 0 for all x ∈ Xz , which
makes p hard to specify in a way that is clear at all for the subject that is assumed to take gambles; moreover, finitely
additive probabilities are often non-constructible, so even in principle we would be prevented from clearly seeing how
a certain act is made. In addition, how would gambles look like? For in the end we need to consider scaled differences
of horse lotteries, such as f := λ(ψ(p)− ψ(q)); but this would be a finitely additive set-function with all the problems
mentioned above (e.g., it would be identically equal to zero on the singletons). Note that restricting the attention to a
bounded space X would partially alleviate the problem, since if we were not to use finitely additive probabilities (one
might want to use density functions for instance) we would start having measurability problems; so not all gambles (or
not all spaces) would be admissible for use. We prefer a theory to be free from this type of constraints in general.

So it seems to us that traditional horse lotteries are not really suited to be extended to handle infinitely many prizes
in general. We find it more natural and powerful to move to conditional horse lotteries, which solve the problem right
away and in full generality, and, as a bonus, make axioms as well as proofs simpler.

As a final note, consider that all the problems of F1 are originated by the requirement that p(ω, ·) be a probability.
But why should it be? The requirement appears to follow from the traditional interpretation that regards p(ω, ·) as the
probabilities by which we would win prizes running the related simple lottery. But we have already argued in Section 4
that this interpretation is unfortunate, as it is inconsistent with the linearity assumption embodied by A4 in particular. A
more sensible interpretation regards p(ω, ·) only as a relative increase of a pre-existing probability over prizes; as such,
it need not be normalised, i.e., be a probability. Once we take this step, it is immediate to consider the opportunity to
work with conditional horse lotteries; so a correct interpretation favours also a more natural formulation.

6. Conglomerability

Let us start by considering an uncertainty model alone, for the moment neglecting considerations of value. We
recall the formulation of conglomerability given in Definition 12:

(∀f ∈ L(Ω))((∀B ∈ B) Bf ∈ R ∪ {0} ⇒ f ∈ R ∪ {0}).

Conglomerability follows from additivity (D3) in case B is finite; therefore it is an issue only for infinite partitions.
The debate about whether or not conglomerability should be imposed in that case has not been settled in spite of
the long time passed since de Finetti’s seminal work [23]. The controversy seems to be kept alive by the tension
originating from two opposite tendencies: on the one hand, the fact that imposing conglomerability makes things
mathematically quite harder (the corresponding models being somewhat less well behaved); on the other, that the
absence of conglomerability creates a number of paradoxical situations that seem to require some fixing.

In the following we address the question from a specific point of view, that of ‘temporal coherence’, thus without
pretending to be exhaustive on the matter. For a broader discussion about conglomerability, see, e.g., Berti et al [7]. For
some logical and philosophical perspectives, see Howson [39], DiBella [28].

6.1. The scope of conglomerability in the case of beliefs
In some past work we have established a clear connection between conglomerability and the question of being

coherent in time [74].
Assume that we hold beliefs at present time in the form of a coherent set of desirable gamblesR. At some later time

an event B ∈ B occurs; we will then hold new beliefs in the form of a coherent set of desirable gamblesRB ⊆ L(B).
R andRB ⊆ L(B) need not entertain any relation; in particular,RB need not be the set of conditional beliefs that can
be derived from R and that are denoted by RcB ⊆ L(B) (this point appears to have been explicitly raised first by
Hacking [36]). To clarify this point, let us recall the following:
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Definition 23 (Perfect information). If B ∈ B represents all and only the information we receive about Ω from the
establishment of our current beliefsR up to the occurrence of B, then we say we are in a case of perfect information
(this terminology has been introduced by Shafer et al [64]).

Thanks to this definition, we can precisely recall what updated beliefs mean by the next definition:

Definition 24 (Updating interpretation—beliefs). Conditional beliefsRcB are called updated beliefs when they are
interpreted as beliefs under the assumption that B occurs in a case of perfect information.

Note in particular that updated beliefs are still beliefs expressed at present time, so in principle they have no relation
with future beliefs, those that we hold after the occurrence of B.

However, there are situations whereRB andRcB are related. One of these cases arises when we decide to establish
our future ‘beliefs’ at present time (in this case, we we will talk of future commitments rather than beliefs). This means
that we decide in advance to stick to the future behaviour that is induced by current conditional beliefs; in other words,
we decide in advance thatRB := RcB for all B ∈ B.

When may this be going to be the case?

C1. A condition that seems necessary is that we are in a case of perfect information, otherwise conditional beliefs
would not represent our actual beliefs after B occurs as these would involve considerations about evidence other
than B.

C2. What appears to be left is our capability to examine the evidence at hand to the extent of establishing our current
beliefs as well as we can. If we have enough time and any other needed resource to that end, we can assume that
our uncertainty model is the best, in our judgement, we can produce on the basis of the given evidence.

Given these two conditions, there seems to be no reason why we might want a model for future beliefs different from
current conditional ones.

But establishing future commitments at the time of present beliefs gives us the opportunity to check, and actually
impose as a rationality requirement, that the two of them cohere with each other. Note that this is an additional property,
required on top of the (separate) coherence ofR and the coherence ofRB (for all B ∈ B), that arises out of temporal
considerations. We have called it strong temporal coherence.8

The main outcome of our 2013 work, in this regard, is that strong temporal coherence coincides with the conglom-
erability ofR.

For us, this result essentially closes the long controversy about conglomerability: conglomerability turns out to
be a form of temporal coherence, which means that it is a rationality requirement when we decide in advance to
establish future commitments equal to current conditional beliefs. In case we are not interested in future beliefs, for
instance because we work with unconditional models only, then conglomerability is not a rationality requirement for an
uncertainty model.

However, the scope of conglomerability is still quite narrow. This happens in particular because of condition C2,
as it requires the availability of resources we may as well not have, first of all the time to examine all the evidence
carefully. What we are going to argue now is that there is a simple, realistic, assumption that can render the scope of
conglomerability much wider, by essentially removing the need of C2. It is based on the following:

Definition 25 (Reliable assessments). We say that an assessment is reliable if it is not stronger than what is justified
by the evidence and the available resources, including time. Similarly, we say that the assessment process is reliable if
all assessments are.

The concept of reliable assessments appears to have been introduced first by Walley [71, Sect. 6.1.2].
It is important to realise, first of all, that the assessment process can always be reliable with imprecise probability

models: the reason is that in such a setting we can weaken our assessments as much as we need, up to expressing
a condition of total lack of knowledge. So what Definition 25 describes is simply a process that does not yield
overconfident assessments; this can always be achieved by acting on their strength. We can even weaken our assessments
some extra bit in case we prefer to be very confident not to express too strong judgements (in this case, we would

8For a discussion of the rationality of this axiom and the connection with other, weaker, requirements, see [74, Section 6.4].
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yield an incomplete representation of our beliefs, rather than an exhaustive one; see Walley [71, Section 2.10.3] for a
discussion about this point).

In any case the point is that the assumption of reliability implies that we are not taking appreciable risks in the
assessment process while modelling the evidence as well as we can, given the available resources. For this reason, we
should definitely be willing to set future commitments equal to current conditional beliefs. But once we do so, we can
argue again, as we have done in our 2013 work, that conglomerability is a consequence of strong temporal coherence.
To summarise the situation, what we argue is the following:

Whenever we are interested in future behaviour in a setting of perfect information, and our assessments
are reliable, then conglomerability is a rationality requirement.

And since the assumption of reliability can always be met (it is just a ‘good practice’ in the assessment process), it
makes the scope of conglomerability very wide: it is essentially extended to all cases of perfect information—which
remains then the only actual constraint.

An important remark is that all this does not prevent us from behaving in the future according to a probabilistic
modelR′B that is more precise than that characterised by our conditional beliefs, i.e., such thatRcB = RB ⊆ R′B ;
there is not any form of incoherence in doing so. In fact the meaning of a probabilistic model is to prescribe the limits
of what we can do, but within those limits we have ample choice; we can in fact behave as we prefer as long as the
model that we use to that end contains RB (this constraint has to be maintained since it represents our established
future commitments). This is useful and important given that there might be a certain time between the establishment
of conditional beliefs and the future occurrence of B. This may make us reflect more deeply about the evidence, thanks
possibly also to the availability of resources other than time (such as computational resources), and make us see that we
can be somewhat bolder in our evaluations.

Finally, let us recall that so far we have been considering the case of imprecise probability. If we instead restrict the
attention to the more traditional case of precise, Bayesian, probability, it turns out that the assumption of reliability is
not needed: conglomerability is a rationality requirement in a temporal setting based on perfect information alone [74,
Section 6.5]. The rationale is that, for a Bayesian violating reliability amounts to violating the idea of being Bayesian
itself, since in that case Bayes’ rule is the only temporal-coherent way to update beliefs; whence sticking to reliability
can be assumed outright for a Bayesian.

6.2. Extension to the general case of beliefs and values
Now we turn to the general case whereR ⊆ L(Ω ×X ). It is important to remember, from Section 3.4 in particular,

that Ω is still the only space of possibilities: the elements of X do not ‘occur’; as a consequence it only makes sense to
updateR on subsets of Ω alone.

Having made this point, now we proceed with our focus on updating, and in particular on the definition of
conglomerability extended so as to jointly handling the case of beliefs and values.

Definition 26 (Conglomerability—extended). Consider a coherent set of desirable gamblesR ⊆ L(Ω ×X ) and let
B be a partition of Ω.R is said to be B-conglomerable if it satisfies the following condition:

D5. (∀f ∈ L(Ω ×X ))((∀B ∈ B) (B ×X )f ∈ R ∪ {0} ⇒ f ∈ R ∪ {0}) [Conglomerability].

The rationale behind this definition is exactly as before in Definition 12. Moreover, the mathematical form is also
as before: we are simply focusing on a special type of partitions in the enlarged space Ω × X . For this reason, the
conclusions of our 2013 work apply here as well, as summarised in the previous section.

The additional discussion concerned with reliability and perfect information essentially applies too; there is however
a caveat in this general case, which has to do with the different nature of beliefs and values. Once we make our joint
assessments of beliefs and values in a reliable way (Definition 25), we still create the conditions, as before, to stick
to the future commitmentsRB×X in the form of our current conditional assessmentsRc(B ×X ). But the time that
passes from the establishment ofR to the occurrence of B may have a different effect on our values compared to our
beliefs. In fact, under perfect information, it is perfectly plausible that our beliefs can only become stronger in time.
This is not the case of our values, which might change in unpredictable ways due to the occurrence of events that have
nothing to do with B or Ω ×X : we could for instance become very risk-averse as a consequence of a financial loss.
For this reason, it seems necessary to require in addition what follows:

19



Definition 27 (Perfect isolation). If B ∈ B represents the only information that can affect our values in the experiment
concerned with Ω ×X , then we say we are in a case of perfect isolation of values from external factors.

Note that, as a consequence, the updating interpretation should be extended to account for isolation in the general case
of beliefs and values:

Definition 28 (Updating interpretation). Conditional assessmentsRc(B ×X ) are called updated assessments when
they are interpreted as assessments under the assumption that B occurs in a case of perfect information and isolation.

Having said this, the situation can finally be summarised as follows:

In the general case, conglomerability is a consequence of reliability, perfect information and isolation.

Under these assumptions (and of course in a temporal setting) D5 should be added to D1–D4 as a further rationality
requirement on preferences.

Note, as discussed in the previous section, that reliability can be skipped when we are Bayesian (in this case: precise
beliefs and values); whence conglomerability is a consequence of perfect information and isolation only.

6.3. A final remark

We have argued that conglomerability should be a rationality requirement under very broad conditions. This follows
from the identification of conglomerability with a special type of coherence: if conglomerability is not imposed, we can
find situations where we are inconsistent with ourselves at the very same point in time—in spite of the fact that some of
our beliefs and values are regarded as commitments for the future. This is clearly a principled support for the adoption
of conglomerability.

There is, however, also a very practical support for conglomerability that comes along with the principled justifica-
tion; it is the fact that conglomerability can make our inferences very strong, and hence informative, compared to the
case where we do not impose it. Consider for instance Example 4 in Miranda and Zaffalon’s 2015 work. There we show
that a model that is vacuous between two possibilities, that is, completely uninformative about them, becomes a precise
probabilistic model after it is corrected to make it conglomerable. In this case the sole adoption of conglomerability
makes such a change possible. We see that conglomerability can have a very practical role to play in our models that
goes well beyond its theoretical justification.

7. Conclusions

In this paper we have reconsidered our previous work on the equivalence between (incomplete) rational preferences
and desirability.

We have shown that such an equivalence continues to hold when we formulate rational preferences in full generality,
with unconstrained spaces of possibilities and prizes, unlike in our original work where prizes were in a finite number.
Moreover, we have discussed the role of conglomerability and deduced that it should be a rationality requirement under
weak assumptions, and whence it should be widely imposed in probabilistic and decision-theoretic models.

We have also provided a rigorous interpretation of gamble values based on the idea of probability currency. This
allows us to make desirability live on its own, without the need to base its development on preferences, in the sense
that it becomes a self-contained theory. As a consequence, one may wonder whether the founding notion for decision-
theoretic modelling should be that of desirability rather than preference. In fact we are inclined to regard desirability as
the primary notion, given that both the axioms and the theory itself appear to become much more direct and easy to
access.

All this provides the foundations for a very general theory of uncertainty and decision making. Where can we go
from here?

There are many directions that we envisage for future research. A very natural extension of the ideas presented here
involves considering the recent work by Van Camp et al [69] (see also [68]). It is based on so-called coherent choice
functions, which generalise preference modelling to non-binary comparisons of options (the original axiomatisation
for the case of incomparability is due to Seidenfeld et al [63], with slightly different axioms). This gives additional
modelling power compared to incomplete preferences and desirability, while including these models as particular cases
[69, Section 4]. Notably, Van Camp et al [69, Section 3] have already exploited our 2017 work so as to extend choice
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functions to handle values besides beliefs, albeit in the case of finitely many prizes. The present paper could allow such
an approach to be eventually generalised to the case of fully unconstrained spaces.

A different opportunity of research lies instead in the connection established by Benavoli et al [5] between
desirability and quantum mechanics: in short, the authors prove that imposing D1–D4 on gambles made of Hermitian
matrices is enough to derive quantum mechanics, or, stated differently, that quantum mechanics is nothing else than
desirability in an opportune domain. Subsequent work by Benavoli et al [6] has extended those ideas relying on our
2017 work so as to derive a rational theory of decision making for quantum experiments. All this could be, again,
combined with the present paper to get to a higher level of generality.

A more pragmatic, though equally important, avenue of research would be to establish clear connections between
the theory presented here and all the research in AI based on preferences. It seems that such developments in AI and
the theory of desirability have proceeded independently so far; linking them would provide benefits in both directions
and would automatically provide a formal basis for robust methods in AI.

Most of all, however, we believe that the traditional theories of preference fall short in the realism of the problems
that they are able to address. On the one hand, Anscombe and Aumann’s theory is well founded if we adopt the
correct interpretation, but it requires paying rewards indirectly, through the idea of probability currency, which entails
a certain degree of artificiality; the same happens for the theories that build on it, like the theory we present here.
Savage [59] models rewards directly, but his theory suffers from an underlying assumption of linearity, much in the
spirit of Axiom A4, that clashes with the non-linearity of prize values and that eventually leads to Allais’ paradox. A
number of attempts have been made to correct these issues in the direction of more realistic theories (e.g., see Machina
[44], Tversky and Kahneman [67], Nau [54], Cerreira-Vioglio et al [10]), but the situation still appears quite open. The
challenge, in our view, would be to work out a desirability-based theory that can bypass those problems. We believe
this should be possible, and we leave it for future research.
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Appendix A. Decomposition and completeness of preferences

We now turn to the formalisms of desirability and coherent lower previsions to briefly show how they can represent
and generalise well-known concepts in rational preferences. The following discussion is a summary of the one we
presented in [76, Section 5], with some additional remarks and proofs for the case of infinitely many values.

Appendix A.1. In terms of sets of desirable gambles
We begin by considering the case where our assessments are modelled by sets of desirable gambles.

Appendix A.1.1. State independence
State independence is the condition that allows us to have separate models for beliefs and values.
We showed in [76, Section 5.3] that the traditional notion of state independence in the literature of preferences is

equivalent to the notion of ‘strong independence’ in imprecise probability. In the case of totally ordered Archimedean
preferences (i.e., precise probability and utility models), this means that probability and utility are stochastically
independent models, when utility is mathematically represented through a probability function (like we do in this paper,
see Section 3.4).

Such a notion of independence extends over multiple probability-utility pairs, and even to sets of desirable gambles.
However, it ceases to exist when both Ω and X are infinite (Miranda and Zaffalon [48, Example 1]).9 This holds also
for most other notions of independence while, interestingly, that need not be the case for notions of ‘irrelevance’: these

9This is due to the involvement of conglomerability in the definition of independence; de Bock [15] has recently shown that some other notions
of independence continue to exist by dropping conglomerability.
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are asymmetric notions where mutual (symmetric) independence is replaced by independence in only one direction. In
the case of this paper, for instance, this means assuming that values are independent of states but not vice versa; we say
that states are irrelevant to values.

This makes of irrelevance a very natural candidate for a notion of state independence that exists no matter the
cardinalities of the spaces involved. But there is more to it, as it is arguable that irrelevance qualifies itself as the right
notion to use in the present context, unlike independence. The reason is that while it makes sense that states may be
irrelevant to values, the opposite seems to be questionable: in fact, as we have already remarked, it appears meaningless
to update a model on elements of X , which do not occur; as a consequence the irrelevance of values to states appears
meaningless too.

Let us then consider the following definition of irrelevance for desirability:
Definition 29 (Ω-X irrelevant product for gambles). A coherent set of gambles R on Ω × X is called an Ω-
X irrelevant product of its marginal sets of gamblesR′Ω ,R′X if it includes the set

R|Ω := {h ∈ L(Ω ×X ) : (∀ω ∈ Ω) h(ω, ·) ∈ R′X ∪ {0}} \ {0}.

We have already considered these products, in another context and for lower previsions, in [48] (see also the work by
de Cooman and Miranda [20], de Bock and de Cooman [16] and de Bock and de Cooman [18]).

The rationale of the definition is the following. First, the requirement that h(ω, ·) ∈ R′X ∪ {0} is there so that the
inferences conditional on {ω} encompassed byR|Ω should yield the marginal setR′X . This is just a way to formally
state that ω is irrelevant to X . The same is repeated for every ω, so that R|Ω can be regarded as being born out of
aggregating all the irrelevant conditional sets.10 Finally, thatR containsR|Ω is imposed to make sure thatR is a model
coherent with the irrelevance of beliefs on values.

If R satisfies Definition 29 we say it models state-independent preferences. The least-committal among these
models is given by11

Proposition 10. Given two marginal coherent sets of desirable gamblesRΩ ,RX defined on the subsets of L(Ω ×X )
given by the Ω-measurable and X -measurable gambles, respectively, their smallest Ω-X irrelevant product is given by
the marginal extension ofRΩ andR|{ω} := RX for all ω ∈ Ω. Namely,

R̂ := {g + h : g ∈ RΩ ∪ {0}, h ∈ R|Ω ∪ {0}} \ {0}. (A.1)

Definition 29 and Eq. (A.1) represent our main proposal to model state-independent preferences.

Appendix A.1.2. State dependence
We say that a set of desirable gamblesR models state-dependent preferences when it does not satisfy the conditions

in Definition 29, i.e., when it does not include the setR|Ω derived from its marginalRX and the assumption of Ω-X
irrelevance.

Appendix A.1.3. Completeness
So far we have discussed the general case of coherent sets of gambles R without discussing in particular the

so-called complete or maximal coherent sets for which it holds that f /∈ R ⇒ −f ∈ R for all f ∈ L, f 6= 0. Given the
equivalence between coherent sets of gambles in L(Ω ×X ) and coherent preferences inH×H, discussing the case of
maximal sets amounts to discussing the case of complete preferences.
Definition 30 (Completeness of beliefs and values for gambles). A coherent set of desirable gamblesR ⊆ L(Ω×X )
is said to represent complete beliefs ifRΩ is maximal. It is said to represent complete values ifRX is maximal. Finally,
ifR is maximal, then it is said to represent complete preferences.

The rationale of this definition is straightforward: when we say, for instance, thatR represents complete beliefs, we
mean that there is never indecision between two options that are concerned only with Ω. The situation is analogous in
the case of complete values. Finally, in the case of complete preferences, the definition is just the direct application of
the definition of maximality.

10Given that Ω is possibly infinite, this entails an assumption of conglomerability; without such an assumption one could obtain uninformative
preferences, see [48, Section 5.1] for details.

11We refer to the work by Moral [52, Section 2.4]; de Cooman and Miranda [21, Theorem 13] and de Bock and de Cooman [18, Theorem 8] for
somewhat related results on finite referential spaces.
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Appendix A.2. In terms of lower previsions
We now consider the case where preferences are modelled by means of a coherent lower prevision P on L(Ω ×X ).

Appendix A.2.1. State independent preferences
We proceed as in the case of desirability by focusing on irrelevance of states to values.

Definition 31 (Ω-X irrelevant product for lower previsions). Given marginal coherent lower previsions P ′Ω , P
′
X , let

P (f |{ω}) := P ′X (f(ω, ·)),

for all f ∈ L(Ω ×X ), and
P (·|Ω) :=

∑
ω∈Ω

I{ω}P (·|{ω}).

Then a coherent lower prevision P on L(Ω ×X ) is called an Ω-X irrelevant product of P ′Ω , P
′
X if

P ≥ P ′Ω(P (·|Ω)).

In this case we also say that P models state-independent preferences.

Here P (·|Ω) plays the role that R|Ω took in Section Appendix A.1, that is, conglomerating all the conditional
information. The concatenation P ′Ω(P (·|Ω)) is a marginal extension: in particular, it is the least-committal coherent
Ω-conglomerable model built out of the given marginals and the assessment of irrelevance that defines P (·|Ω) through
P ′X . Every coherent lower prevision that dominates P ′Ω(P (·|Ω)) is compatible with the irrelevance assessment but is
also more informative than that:

Proposition 11. Given two marginal coherent lower previsions P ′Ω , P
′
X , their smallest Ω-X irrelevant product is

given by the marginal extension
P ′Ω(P (·|Ω)).

We refer to the work of Walley [71, Section 6.7], Miranda and de Cooman [46], de Cooman and Miranda [20] and
de Cooman and Hermans [19] for additional information on the marginal extension and its use in a number of different
contexts.

Appendix A.2.2. State dependent preferences
As in the case of desirable gambles, we define state dependence as the lack of state independence: this means that

if we consider a coherent lower prevision P with marginals P ′Ω , P
′
X , it is said to model state-dependent preferences

when it does not dominate the concatenation P ′Ω(P (·|Ω)), where P (·|Ω) is derived from P ′X by an assumption of
epistemic irrelevance.

Appendix A.2.3. Completeness
The definition of completeness for lower previsions is a rephrasing of that for desirable gambles:

Definition 32 (Completeness of beliefs and values for lower previsions). A coherent lower prevision P on L(Ω×X )
is said to represent complete beliefs if its marginal PΩ is linear. It is said to represent complete values if its marginal
PX is linear. Finally, if P is linear, then it is said to represent complete preferences.

There are a number of equivalent ways in which we can characterise the linearity of previsions in terms of the
corresponding set of desirable gambles:

Proposition 12. Let P be a coherent lower prevision on L andR its corresponding coherent set of strictly desirable
gambles. The following are equivalent:

(i) P is a linear prevision.

(ii) If f /∈ R then ε− f ∈ R for all ε > 0.

(iii) R is negatively additive, meaning that f, g /∈ R ⇒ (∀ε > 0) f + g − ε /∈ R.
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We can then focus on any of those formulations to immediately deduce characterisations for all the cases of
completeness in preferences:

Proposition 13. Consider a coherent preference relation � on gambles represented by a coherent lower prevision P
on L(Ω ×X ), whose corresponding coherent set of gambles is denoted byR. LetRΩ ,RX denote its marginals. Then:

(i) P represents complete beliefs⇔RΩ is negatively additive.

(ii) P represents complete values⇔RX is negatively additive.

(iii) P represents complete preferences⇔R is negatively additive.

Appendix B. Proofs

Proof of Proposition 1. Using the mixture-independence axiom A4 together with the assumption,

p � q ⇔ αp+ (1− α)r � αq + (1− α)r = αp+ (1− α)s⇔ r � s.

Proof of Proposition 2. By p  q we deduce that 0 � p − q ≤ 1. Then (p − q) ∈ H and (p − q) � 0 by A1. And
since

1

2
(p− q) = 1

2
[(p− q)− 0],

we deduce by Proposition 1 that p � q.

Proof of Lemma 3. Consider a set of desirable gambles D ⊆ L1(Ω ×X ) and define the linear relation �⊆ H×H
by p � q if and only if p− q ∈ D.

Observe also that for any f ∈ D we can always find p, q ∈ H such that f = p − q: it is sufficient to let
p := max(f, 0) and q := min(0, f).

Let us now prove injectivity. Assume by contradiction that there are sets D1 6= D2 in L1 such that the respective
linear relations are equal: �1=�2. Since the sets are different, then we can assume without loss of generality that there
is f1 ∈ D1 \ D2. At the same time for all p, q ∈ H with p− q = f1, we have that p �1 q and p �2 q. This implies that
there is f2 ∈ D2 such that f2 = p− q. But then f1 = f2, a contradiction.

Let us focus on surjectivity. Consider a linear relation �⊆ H × H and let D′ := {f ∈ L1(Ω × X ) : (∃p, q ∈
H) f = p − q, p � q}. The relation it induces is given by p �′ q ⇔ p − q ∈ D′. Now, if p � q, then p − q ∈ D′,
whence p �′ q. Conversely, if p �′ q, then p − q ∈ D′; as a consequence, there are p′, q′ ∈ H, p′ � q′ such that
p− q = p′ − q′. But relation � is linear, whence p � q. It follows that �=�′.

Proof of Theorem 4. Consider a set of desirable gambles D ⊆ L1 and its corresponding linear relation �. They are
related through

D = {f ∈ L1(Ω ×X ) : (∃p, q ∈ H) f = p− q, p � q},
p � q ⇔ p− q ∈ D.

(A1⇔D1′) If p � 0 for all p ∈ H, p 6= 0, then p ∈ D; and since L+
1 = H \ {0}, then we have the thesis. Conversely, if

L+
1 ⊆ D, then p ∈ D for all p ∈ H \ {0}; as a consequence p � 0 for all p ∈ H, p 6= 0.

(A2⇔D2′) By contradiction, if p � p for some p ∈ H, then 0 ∈ D; and if 0 ∈ D, then for some p ∈ D, p � p.

(A3⇔D3′) Assume that the relation is transitive and take f, g ∈ D such that f = p − q, g = q − r for some p, q, r ∈ H.
Then we have that p � q and q � r; by transitivity we conclude that p � r, whence f + g ∈ D.

Conversely, assume that D is additive and take p � q, q � r. Letting f := p− q, g := q− r, we get by additivity
that f + g = p− r ∈ D, so that p � r.
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(A4⇔D4′) Assume that � satisfies mixture independence and take f ∈ D and λ > 0 such that λf ∈ L1. Then there are
p � q such that f = p − q. Moreover, there must be r, s ∈ H such that λf = r − s given that λf ≤ 1 (it is
enough as usual to take the positive and negative parts of λf , respectively). Using Proposition 1, we get that
r � s, whence λf ∈ D.

Conversely, assume that f ∈ D implies that λf ∈ D for all λ > 0 such that λf ∈ L1. Taking p � q, we
have then that λp + (1 − λ)r � λq + (1 − λ)r for all p, q, r ∈ H and λ ∈ (0, 1]. On the other hand, if
λp+ (1− λ)r � λq + (1− λ)r for all p, q, r ∈ H and λ ∈ (0, 1], then trivially p � q.

(A0⇔D0′) Assume that for all p � q, with p  q not holding, there is α ∈ (0, 1) such that αp � q. We want to show that
for all f ∈ D \ L+

1 and all g ∈ L1 such that max(0,−f) ≤ g ≤ min(1, 1 − f), there is α ∈ (0, 1) such that
αf − (1− α)g ∈ D.

Let q := g and p := f + q, so that f = p− q. Let us show that q ∈ H; it is enough to prove that max(0,−f) ≤
min(1, 1 − f). In case f(ω, x) ≥ 0, the inequality reduces itself to 0 ≤ 1 − f(ω, x), which is true since
f(ω, x) ≤ 1. In case f(ω, x) < 0, the inequality becomes−f(ω, x) ≤ 1, which is again true since f(ω, x) ≥ −1.

Let us similarly show that p = f + q ∈ H too. We know that f +max(0,−f) ≤ p ≤ f +min(1, 1− f). Again,
if f(ω, x) ≥ 0, we see that 0 ≤ f(ω, x) ≤ p(ω, x) ≤ 1; if f(ω, x) < 0, we have that 0 ≤ p(ω, x) ≤ f + 1 ≤ 1.

At this point we can apply the hypothesis, recalling that f /∈ L+
1 and hence that p  q does not hold, and so we

deduce that there is α ∈ (0, 1) such that αp− q = α(p− q)− (1−α)q = αf − (1−α)q = αf − (1−α)g ∈ D.

Conversely, suppose that for all f ∈ D \ L+
1 and all g ∈ L1 such that max(0,−f) ≤ g ≤ min(1, 1− f), there

is α ∈ (0, 1) such that αf − (1− α)g ∈ D. Let us show that p � q, with p  q not holding, implies that there is
α ∈ (0, 1) such that αp � q.

Let f := p − q, from which it follows that f /∈ L+
1 , and g := q. Observe that if max(0,−f) ≤ g ≤

min(1, 1− f) holds, then from the assumption the thesis follows immediately. In other words, we have to show
that max(0, q − p) ≤ q ≤ min(1, q + (1− p)). This is immediate since on the left-hand side we decrease q by
some non-negative amount while on the right-hand side we are increasing it by a non-negative amount.

Proof of Lemma 5. That D3′′ implies D3′ is trivial. Therefore let us assume that D satisfies D3′ and prove that D3′′

holds.
Consider f, g ∈ D such that f+g ∈ L1. By D4′ we have that 1

2f,
1
2g ∈ D. We can always write f = p−q, g = r−s

for some p, q, r, s ∈ H. It follows that (
1

2
p+

1

2
r

)
−
(
1

2
q +

1

2
r

)
∈ D,(

1

2
q +

1

2
r

)
−
(
1

2
q +

1

2
s

)
∈ D.

Using D3′ we obtain that ( 12p+
1
2r)− ( 12q +

1
2s) =

1
2f + 1

2g ∈ D. Using D4′ again, we have the thesis.

Proof of Theorem 6. Let us prove the five points of the theorem.

1. Assume that D satisfies D1′–D4′ and show thatRD is coherent.

D1. Consider f ∈ L+ and let g := f/ sup |f |, so that g ∈ L+
1 . As a consequence of D1′, g ∈ D, whence

f ∈ RD.

D2. Trivial.

D3. Take f, g ∈ RD, so that there are f ′, g′ ∈ D, λ′, λ′′ > 0 with f = λ′f ′, g = λ′′g′. If we let λ := λ′ + λ′′,
we have that f/(2λ), g/(2λ) ∈ D by D4′ and at the same time (f+g)/(2λ) ∈ L1, so that (f+g)/(2λ) ∈ D
by D3′′. As a consequence, f + g ∈ RD.

D4. Trivial.
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2. That DR satisfies D1′–D4′ onceR is coherent is straightforward.

3. We need to show that, under coherence ofR,D, it holds thatRDR = R and DRD = D. For the first equality,
thatRDR ⊇ R follows from

RDR = {λg : λ > 0, g ∈ DR} =
{
λ

g

sup |g|
: λ > 0, g ∈ R

}
⊇ R

by taking λ := sup |g|.
To show that RDR ⊆ R, consider any h in R, implying that h

sup |h| ∈ DR. Note that sup |h| > 0; indeed, if
sup |h| would be 0 then h = 0. For any given λ > 0 , this implies that λ h

sup |h| = λ′h for λ′ := λ
sup |h| > 0

indeed belongs toR, because this set satisfies D4.

Let us prove now the equality DRD = D. Take D satisfying D1′–D4′. To see that DRD ⊆ D, take f ∈ DRD .
Then there is some g ∈ RD such that f = g

sup |g| . Since g ∈ RD, there is some h ∈ D and some λ > 0 such
that g = λh, whence f = λh

sup |λh| =
h

sup |h| . Since f ∈ L1, we deduce from D4′ that f ∈ D.

Conversely, take f ∈ D. Then f ∈ RD and as a consequence f
sup |f | ∈ DRD . Since DRD satisfies D4′ and

f ∈ L1, we deduce that f ∈ DRD .

4. Since D ⊆ RD andRD is coherent (apply 1), then D avoids partial loss by [47, Proposition 3(e)]. This implies
that the minimal coherent extension of D exists. Let us call it E . ThatRD ⊆ E is trivial. SinceRD is coherent,
then by definition of E , it must be thatRD ⊇ E . As a consequenceRD is the natural extension.

Let us show that RD ∩ L1 ⊆ D (the converse inclusion is trivial). Consider f ∈ RD ∩ L1. Then f = λg for
some λ > 0, g ∈ D. And since λg ∈ L1, we get by D4′ that f = λg ∈ D. This shows that D is coherent relative
to L1.

5. (⇒) Showing that DR satisfies D0′ is equivalent to showing that the preference relation it induces is weakly
Archimedean, thanks to Theorem 4. Therefore consider g ∈ DR \ L+

1 such that g = p− q for some p, q ∈ H.
We want to show that there is α ∈ (0, 1) such that αp− q ∈ DR.

Thanks to point 4, we have that g ∈ R \ L+ and hence by strict desirability that there is δ > 0 such that
g − δ ∈ R. Choose α ∈ (0, 1) so that (1− α)p ≤ δ. Then αp− q ≥ p− q − δ = g − δ, whence αp− q ∈ DR.

(⇐) Finally, let us assume that DR satisfies D0′–D4′ and show that for all h ∈ R \ L+ and k ∈ L, there is
α ∈ (0, 1) such that αh+ (1− α)k ∈ R. If we prove this, then it is enough to take a constant k < 0 to get that
h− δ ∈ R, with δ := − 1−α

α k > 0. This means thatR would be strictly desirable.

Now then consider the positive and negative parts of k, namely, k+, k−, such that k = k+−k−. Note that for the
thesis it is enough to show that there is α ∈ (0, 1) such that αh2 − (1− α)k− ∈ R, given that αh2 + (1− α)k+
belongs toR already, whence by additivity the result follows.

To that end, choose λ > 0 such that f := h
2λ and g := k−

λ satisfy the inequalities in D0′. Then there is α ∈ (0, 1)

such that α h
2λ − (1− α)k

−

λ ∈ DR; and as a consequence, αh2 − (1− α)k− ∈ R.

Proof of Theorem 7. Thanks to Theorems 4 and 6, we have an equivalence between coherent preference relations �
and sets of desirable gambles coherent relative to L1; the latter are in a one-to-one correspondence with their natural
extensions, from which we deduce the first part of the theorem. The second part is granted again by Theorems 4
and 6.

Proof of Proposition 8. Assume first of all that � is negatively transitive, and let f, g /∈ R. Then f � 0 and g � 0,
from which it follows that 0 � −g. Applying the negative transitivity of �, we deduce that f � −g, or, equivalently,
that f + g � 0, whence f + g /∈ R.

Conversely, assume that Eq. (7) holds and let p, q, r ∈ H satisfy p � q and q � r. Then p− q /∈ R and q − r /∈ R,
whence p− r /∈ R, and using the correspondence between � andR we conclude that p � r.
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Proof of Proposition 9. From (10) and (11), we see that simply defining

p2 := ψ(p1) (B.1)

for all horse lotteries p1 ∈ Hz , we obtain a correspondence between H and Hz made of elements that are equally
valuable for us: their respective probability currencies are just the same. Moreover, the correspondence is one-to-one as
it follows from [76, Remark 5 in p. 1098] (note also that ψ is a linear operator).

It is now a simple step to prove the two inclusions.

R2 ⊆ R1 If λ(p2 − q2) ∈ R2 for some p2, q2 ∈ H and λ > 0, then also λψ(p1 − q1) ∈ R1, where p1, q1 are obtained
through (B.1). This follows from the identity p2 − q2 = ψ(p1 − q1), as obtained from linearity of ψ, and the fact
that the lotteries defined through (B.1) are equally valuable.

R1 ⊆ R2 Similarly, consider any λψ(p1 − q1) ∈ R1 and let p2 := ψ(p1), q2 := ψ(q1), so that p2, q2 ∈ H. It follows that
λ(p2 − q2) ∈ R2 for the same reasons given in the proof of the converse inclusion.

Proof of Proposition 10. It follows from [51, Proposition 29] that R̂ is the smallest conglomerable and coherent set
of gambles that includesRΩ andR|{ω} (for all ω ∈ Ω). It includesR|Ω by construction. We are left to show that R̂
induces bothRΩ andRX .

We begin by proving that the Ω-marginal of R̂ isRΩ . Consider an Ω-measurable gamble f ∈ R̂. Then there are
g ∈ RΩ and h ∈ R|Ω such that f ≥ g + h. For any ω ∈ Ω, it holds that

0 ≤ sup
x∈X

h(ω, x) ≤ sup
x∈X

(f(ω, x)− g(ω, x)) = f ′(ω)− g′(ω),

where in last equality we are using that both f, g are Ω-measurable, and are denoting by f ′, g′ their equivalent
representations as gambles on Ω. Thus, f ≥ g, and since RΩ is a coherent set of gambles we conclude that also
f ∈ RΩ . The converse inclusion follows from Eq. (A.1).

Next, consider an X -measurable gamble f ∈ R̂. Then there are g ∈ RΩ and h ∈ R|Ω such that f ≥ g + h. If
g 6= 0, then there exists ω ∈ Ω such that g′(ω) > 0. Then,

fI{ω} ≥ g′(ω) + hI{ω} ≥ hI{ω},

and since h(ω, ·) ∈ RX ∪ {0}, either h(ω, ·) ∈ RX , in which case f(ω, ·) ∈ RX , or h(ω, ·) = 0, whence f(ω, ·) ≥
g′(ω) > 0, meaning that also f(ω, ·) ∈ RX . Finally, the proof when g = 0 is similar (in that case we can pick any
ω ∈ Ω such that hI{ω} 6= 0, since one is bound to exist). Again, the converse inclusion follows from Eq. (A.1).

Proof of Proposition 11. The result follows immediately from Definition 31, taking into account that P ′Ω(P (·|Ω)) is
a coherent lower prevision by [71, Section 6.7.2].

Proof of Proposition 12. We make a circular proof.

(i)⇒ (ii) It f /∈ R, it follows from Eq. (3) that P (f) = P (f) ≤ 0, whence P (−f) = −P (f) ≥ 0, and therefore
P (ε− f) > 0 for every ε > 0. Thus, Eq. (3) implies that ε− f ∈ R.

(ii)⇒ (iii) Assume ex-absurdo the existence of f, g /∈ R such that f +g−ε ∈ R. It follows from (ii) that ε4 −f,
ε
4 −g ∈ R,

and applying D3 we conclude that − ε2 ∈ R, a contradiction with D2.

(iii)⇒ (i) If P is not linear, we can find a gamble f such that P (f) < P (f). The conjugacy of the lower and upper
previsions and Eq. (1) implies that for every ε > 0 the gambles f −P (f)− ε and P (f)− f − ε do not belong to
R, and (iii) implies then that for every δ > 0 the gamble (f − P (f)− ε) + (P (f)− f − ε)− δ does not belong
toR. But for ε, δ satisfying 2ε+ δ < P (f)− P (f) this sum is a non-negative gamble. This is a contradiction
with D1.

Proof of Proposition 13. This is an immediate consequence of Proposition 12.

27



References

[1] Allais M (1953) Le comportement de l’homme rationnel devant le risque: critique des postulats et axiomes de l’école Américaine. Econometrica
21(4):503–546

[2] Anscombe FJ, Aumann RJ (1963) A definition of subjective probability. The Annals of Mathematical Statistics 34:199–2005
[3] Armstrong T (1990) Conglomerability of probability measures on Boolean algebras. Journal of Mathematical Analysis and Applications

150(2):335–358
[4] Augustin T, Coolen F, de Cooman G, Troffaes M (eds) (2014) Introduction to Imprecise Probabilities. Wiley
[5] Benavoli A, Facchini A, Zaffalon M (2016) Quantum mechanics: the Bayesian theory generalized to the space of Hermitian matrices. Physical

Review A 94(042106)
[6] Benavoli A, Facchini A, Zaffalon M (2016) Quantum rational preferences and desirability. In: Proceedings of The 1st International Workshop

on “Imperfect Decision Makers: Admitting Real-World Rationality” (NIPS 2016), JMLR.org, PMLR, vol 58, pp 87–96
[7] Berti P, Miranda E, Rigo P (2017) Basic ideas underlying conglomerability and disintegrability. International Journal of Approximate Reasoning

88:387–400
[8] Bewley T (2002) Knightian decision theory: part I. Decisions in economics and finance 25:79–110, reprint of Discussion Paper 807, Cowles

Foundation, 1986
[9] Carnap R (1980) The problem of a more general concept of regularity, vol 2, University of Califormia Press, pp 145–155

[10] Cerreira-Vioglio S, Maccheroni F, Marinacci M (2016) Stochastic dominance analysis without the independence axiom. Management Science
63(4):1097–1109

[11] Coletti G, Scozzafava R (2002) Probabilistic logic in a coherent setting. Kluwer
[12] Corani G, Zaffalon M (2008) Learning reliable classifiers from small or incomplete data sets: the naive credal classifier 2. Journal of Machine

Learning Research 9:581–621
[13] Couso I, Moral S (2011) Sets of desirable gambles: Conditioning, representation, and precise probabilities. International Journal of Approximate

Reasoning 52:1034–1055
[14] Cozman FG (2012) Sets of probability distributions, independence, and convexity. Synthese 186(2):577–600
[15] De Bock J (2017) Independent natural extension for sets of desirable gambles: Williams-coherence to the rescue. In: Antonucci A, Corani G,

Couso I, Destercke S (eds) ISIPTA’17: Proceedings of the 10th International Symposium on Imprecise Probability: Theories and Applications.
PMLR, vol 62, pp 121–132

[16] De Bock J, de Cooman G (2014) An efficient algorithm for estimating state sequences in imprecise hidden Markov models. Journal of Artificial
Intelligence Research 50:189–233

[17] De Bock J, de Cooman G (2015) Conditioning, updating and lower probability zero. International Journal of Approximate Reasoning 67:1–36
[18] De Bock J, de Cooman G (2015) Credal networks under epistemic irrelevance: The sets of desirable gambles approach. International Journal of

Approximate Reasoning 56:178–207
[19] De Cooman G, Hermans F (2008) Imprecise probability trees: bridging two theories of imprecise probability. Artificial Intelligence

172(11):1400–1427
[20] De Cooman G, Miranda E (2009) Forward irrelevance. Journal of Statistical Planning and Inference 139(2):256–276
[21] De Cooman G, Miranda E (2012) Irrelevance and independence for sets of desirable gambles. Journal of Artificial Intelligence Research

45:601–640
[22] De Cooman G, Quaeghebeur E (2012) Exchangeability and sets of desirable gambles. International Journal of Approximate Reasoning

53:363–395, special issue in honour of Henry E. Kyburg, Jr.
[23] De Finetti B (1931) Sul significato soggettivo della probabilità. Fundamenta Mathematicae 17:298–329
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