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ABSTRACT. We do a thorough mathematical study of the notion of full conglomerability,
that is, conglomerability with respect to all the partitions of an infinite possibility space, in
the sense considered by Peter Walley [1991]. We consider both the cases of precise and im-
precise probability (sets of probabilities). We establish relations between conglomerability
and countable additivity, continuity, super-additivity and marginal extension. Moreover,
we discuss the special case where a model is conglomerable with respect to a subset of
all the partitions, and try to sort out the different notions of conglomerability present in
the literature. We conclude that countable additivity, which is routinely used to impose
full conglomerability in the precise case, appears to be the most well-behaved way to do
so in the imprecise case as well by taking envelopes of countably additive probabilities.
Moreover, we characterise these envelopes by means of a number of necessary and sufficient
conditions.
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1. INTRODUCTION

If you decide to work with probabilistic (or statistical) models in infinite spaces of possib-

ilities, you should also decide whether or not requiring these models to be conglomerable.

Conglomerability of a probability P was first discussed by de Finetti [1930]. If we

consider a partition B of the possibility space Ω such that P (B) > 0 for every B ∈ B,

conglomerability means that

(∀A ⊆ Ω) inf
B∈B

P (A|B) ≤ P (A) ≤ sup
B∈B

P (A|B). (1.1)

This notion, in a slightly stronger form, was later studied by Dubins, with the name

disintegrability [Dubins, 1974], and also by Schervisch et al. [1984, 2014], Seidenfeld et al.

[1998] and by Armstrong and Prikry [1982], Armstrong [1990], amongst many others.

Conglomerability holds trivially when Ω is finite, as a consequence of the common

axioms of probability. In the infinite case it does not, and therefore one has to decide
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whether or not to impose it. In fact, one could say that conglomerability is the essential

difference between probability in the finite and infinite cases.

If you wonder why you have never heard of conglomerability or felt the need to take

a stance about it, in spite of its peculiar role, that may be because there is a consolidated

habit to work with countably additive probabilities: in fact, countable additivity with respect

to Ω implies Eq. (1.1) for all countable partitions B of Ω; this is what we shall call full

conglomerability later on. On the other hand, there seems to be little motivation to require

countable additivity other than mathematical convenience or as a means to impose full

conglomerability. Moreover, countable additivity with respect to a partition B implies the

measurability with respect to this partition, and countable additivity with respect to all

partitions means that our model is a discrete probability measure.1 So it makes sense to look

behind countable additivity and rather directly target the core notion of conglomerability.

Unlike in the case of countable additivity, imposing as well as checking conglomerability

can be particularly difficult. Partly for this reason, there are different schools of thought

about the previous question: those who reject that conglomerability should be a rationality

requirement—among them looms the figure of de Finetti himself; and those who think

it should be imposed, often in the light of the paradoxical situations that the lack of

conglomerability may lead to. Among the latter stands Peter Walley, who has proposed

a behavioural theory of imprecise probabilities, where the core modelling unit is a closed

convex set of finitely additive probabilities [Walley, 1991]. This theory is essentially Peter

Williams’ earlier theory of imprecise probability [Williams, 1975] with an additional axiom

of conglomerability for sets of probabilities, which coincides with Eq. (1.1) in the special

case of precise probability.2

In [Zaffalon and Miranda, 2013], we have shown that conglomerability follows as a

theorem whenever conditioning a probabilistic model is understood as a way to compute—or,

more reasonably, constrain—future beliefs (which is somewhat improperly called updating

beliefs). This is exactly the case for precise probability. With imprecise probability, the

theorem needs an additional assumption; yet, this can be formulated in such a way that

the theorem remains broadly applicable in the imprecise case as well (we shall detail this

reformulation elsewhere).

If we take this result seriously, then we should try to embed conglomerability in prob-

ability in some kind of “practical” way. This is already the case in Walley’s theory, but

unfortunately only because conglomerability is treated approximately [Miranda et al., 2012].

1Under the assumptions of Ulam’s theorem [Ulam, 1930].
2Walley’s notion becomes equivalent to disintegrability when we also require that the conditional model is

precise; see Section 4 for a detailed discussion.
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Actual conglomerability has instead eluded simple treatments, rather pointing to some

inherent complexity of such a notion; this becomes manifest in some recent work [Miranda

and Zaffalon, 2013, 2015].

In this paper we analyse whether at least the notion of full conglomerability admits

a simple enough treatment. The underlying idea is that full conglomerability requires a

model to be much more regular than conglomerability, and for this reason it could make it

easier to handle. After all, the same idea is what makes countable additivity, which is even

stronger than full conglomerability [Walley, 1991, Section 6.9], mathematically convenient

in precise probability.

To this end, we make a thorough mathematical study of the properties of full conglomer-

ability and its relations to other notions.

One important remark that we must stress throughout is that the notion of conglomer-

ability is not univocally defined in the literature, particularly in what concerns the precise

case. In that context, there are quite a few works (see for instance Schervisch et al. [1984,

2014], Seidenfeld et al. [1998]) based on full conditional measures, where a compatibility

requirement is imposed upon the conditional and the unconditional models; on the other

hand, Walley’s approach, which is the one we follow in this paper, regards conglomerability

as a property of the unconditional model only, and this ultimately helps simplifying the treat-

ment somewhat (for instance it allows us to be concerned with countable partitions only). In

Section 3 we try to sort out the situation by examining and comparing the different proposals,

after recalling some preliminary notions in Section 2. Next, we investigate the connections

of full conglomerability with countable additivity, continuity and super-additivity both in

the precise (Section 4) and the imprecise (Section 5) cases. Then Section 6 we show that full

conglomerability can be characterised in terms of the supremum of a family of imprecise

models defined by a generalised law of total probability (marginal extension); we study the

properties of this functional and in particular also when we require conglomerability with

respect to an arbitrary family of partitions, not necessarily all the possible ones. The paper

concludes in Section 7 with our summary thoughts a posteriori and some discussion.

2. PRELIMINARY NOTIONS

Let us introduce the elements of the theory of coherent lower previsions that we shall

use in the remainder of the paper. We refer to Walley [1991] for more details.

2.1. Coherent lower previsions. Consider a possibility space Ω. A gamble is a bounded

map f : Ω → R. Its support is given by supp f = {ω ∈ Ω : f(ω) 6= 0}. A gamble

represents an uncertain reward that depends on the outcome of an experiment, so that we
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get the (possibly negative) reward f(ω) when the outcome of the experiment is the element

ω ∈ Ω. One instance of gambles are the indicator gambles of sets B ⊆ Ω, that take the

value 1 on the elements of B, and 0 elsewhere; we shall denote these by IB or B. We

denote by L(Ω) the space of all gambles on Ω, and by L+(Ω) the space of all non-negative

non-zero ones (we call them positive).

A coherent lower prevision on L(Ω) is a mapping P : L(Ω) → R satisfying the

following conditions:

◦ P (f) ≥ inf f ;

◦ P (λf) = λP (f);

◦ P (f + g) ≥ P (f) + P (g)

for every f, g ∈ L(Ω) and every λ > 0. It follows from these conditions that a coherent

lower prevision is always constantly additive, meaning that P (f + µ) = P (f) + µ for any

gamble f and any constant µ.

The lower prevision of a gamble f represents a subject’s supremum acceptable buying

price for this gamble, in the sense that for every µ < P (f) he is disposed to accept the

transaction f − µ, which is equivalent to pay µ utiles in exchange for the uncertain reward

given by f . The word coherent means that these supremum acceptable buying prices are

consistent, in the sense that:

◦ A finite combination of acceptable transactions should not yield to a sure loss,

irrespective to the outcome of the experiment: i.e., it should be impossible to make

a Dutch book based on these prices.

◦ The lower prevision of a gamble f should be tight, in the sense that we should not

be able to derive greater acceptable buying prices for f taking into account other

acceptable transactions.

One instance of coherent lower prevision is the vacuous one, given by P (f) := inf f for

every f ∈ L(Ω). It models the case that our subject has no information about the outcome

of the experiment.

The conjugate function P of the coherent lower prevision P , given by P (f) := −P (−f)

for every gamble f , is called a coherent upper prevision. It may be interpreted as the

subject’s infimum acceptable selling price for f , i.e., the infimum value of µ such that

µ− f is an acceptable transaction to him. A coherent lower prevision on L(Ω) satisfying

P (f + g) = P (f) +P (g) for every pair of gambles f, g is called a linear prevision. In that

case, for a gamble f the supremum acceptable buying price coincides with the infimum

acceptable selling price, and this common value is called the fair price for f . Linear

previsions were studied by de Finetti [1974–1975].
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There is a one-to-one correspondence between coherent lower previsions and closed and

convex sets of linear previsions: P is a coherent lower prevision on L(Ω) if and only if

(∀f ∈ L(Ω)) P (f) = min{P (f) : P ∈M(P )},

whereM(P ) := {P linear prevision : P (f) ≥ P (f) ∀f} is called the credal set associ-

ated with P . This correspondence gives coherent lower previsions a sensitivity analysis

interpretation.

We also say that a map P : L(Ω)→ R avoids sure loss when it is dominated by some

coherent lower prevision. The smallest such prevision is called its natural extension, and

it coincides with the lower envelope of the non-empty setM(P ). The same procedure

allows to extend a lower prevision P 1 from a domain K ( L(Ω) to L(Ω): we only need to

consider the lower prevision P ′1 given by

P ′1(f) := inf{P (f) : (∀g ∈ K) P (g) ≥ P 1(g)}

for any gamble f ∈ L(Ω). The natural extension determines the buying prices whose

acceptability may be derived from those in P and the notion of coherence.

A linear prevision corresponds to the expectation operator with respect to its restriction to

events, which is a finitely additive probability. When this restriction is moreover countably

additive, meaning that P (∪nBn) =
∑
n P (Bn) for any countable family (Bn)n of pairwise

disjoint events, we say that P is a countably additive linear prevision. On the other hand, a

coherent lower prevision is not uniquely determined by the coherent lower probability that

is its restriction to events: many different coherent lower previsions on L(Ω) may have the

same restriction to the power set P(Ω).

Let us consider two examples that we shall use later on. The first are linear previsions

whose restrictions to events are {0, 1}-valued: they are thus determined by the class of

events F := {A ⊆ Ω : P (A) = 1}. This class of events satisfies the following properties:

◦ ∅ /∈ F ,

◦ A,B ∈ F ⇒ A ∩B ∈ F ,

◦ A ∈ F , A ⊆ B ⇒ B ∈ F ,

◦ ∀A ⊆ Ω, either A or Ac ∈ F ,

and is therefore an ultrafilter. There are two types of ultrafilters: the fixed ones are those for

which the intersection ∩{A : A ∈ F} is equal to some ω ∈ Ω. Their associated probability

measure satisfies P (ω) = 1, i.e., it corresponds to the degenerate probability measure on ω.

On the other hand, the free ultrafilters are those where ∩{A : A ∈ F} = ∅. Its associated



6 MIRANDA AND ZAFFALON

probability measure on P(Ω) satisfies then P (ω) = 0 ∀ω ∈ Ω, and as a consequence it will

not be countably additive in general. See [Walley, 1991, Section 3.6].3

The second example is an instance of coherent upper previsions: the 2-alternating ones,

which are those satisfying

(∀f, g ∈ L(Ω)) P (f ∧ g) + P (f ∨ g) ≤ P (f) + P (g),

where ∧ denotes the point-wise minimum and ∨, the point-wise maximum. They correspond

to the Choquet integral with respect to their restriction to events, which is a 2-alternating

upper probability.

A coherent lower prevision is in a one-to-one correspondence with its associated set of

strictly desirable gamblesR := {f : P (f) > 0} ∪ L+(Ω), in the sense that

(∀f ∈ L(Ω)) P (f) = sup{µ : f − µ ∈ R}; (2.1)

the closureR of the set of strictly desirable gambles in the topology of uniform convergence

is called the set of almost-desirable gambles, and it satisfiesR = {f : P (f) ≥ 0}.

2.2. Conditional lower previsions. The notion of coherence can also be extended to the

conditional case. Let B be a partition of Ω. A separately coherent conditional lower

prevision is a map P (·|B) such that P (f |B) is defined as the gamble
∑
B∈B IBP (f |B),

and where for every B ∈ B the functional P (·|B) : L(Ω) → R satisfies the following

conditions:

◦ P (f |B) ≥ infB f ;

◦ P (λf |B) = λP (f |B);

◦ P (f + g|B) ≥ P (f |B) + P (g|B)

for every f, g ∈ L(Ω) and every λ > 0. In the particular case where B = {Ω} we recover

the notion of (unconditional) coherence introduced at the beginning of Section 2.1. The

interpretation of the conditional lower prevision on B is that the transaction is called off

unless the outcome of the experiment belongs to B. In this paper, we are focusing on

Walley’s formalism, and as a consequence we shall assume that the set of conditioning

events may be structured in a partition; this is not imposed in the approach by Williams

[1975], which we shall also discuss later on in relation to conglomerability.

The behavioural interpretation of separately coherent conditional lower previsions is

similar to the unconditional ones: they model the consistency of the buying prices that have

been considered acceptable, now for transactions that are called off unless the conditioning

event occurs.

3Fixed and free ultrafilters are sometimes called principal and non-principal, respectively.
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The problem arises when we want to verify the consistency of several separately coherent

conditional lower previsions that are conditional on different partitions (and in particular

if we consider an unconditional and a conditional lower prevision, for instance). To this

end, for any separately coherent lower prevision P (·|B) and a gamble f , let G(f |B) :=

B(f − P (f |B)) and G(f |B) :=
∑
B∈BG(f |B) = f − P (f |B).

Now, consider separately coherent conditional lower previsions P (·|B1), . . . , P (·|Bn)

with domain L(Ω). They are said to:

◦ avoid partial loss when (∀f1, . . . , fn ∈ L(Ω))(∃B ∈ ∪Si(fi)):

sup
B

n∑
i=1

G(fi|Bi) ≥ 0;

◦ be coherent when (∀f0, f1, . . . , fn ∈ L(Ω), j ∈ {1, . . . , n}, Bj ∈ Bj)(∃B ∈

∪Si(fi) ∪ {Bj}):

sup
B

n∑
i=1

G(fi|Bi)−G(f0|Bj) ≥ 0;

◦ be Williams coherent when (∀f0, f1, . . . , fn ∈ L(Ω), j ∈ {1, . . . , n}, Bj ∈ Bj :

(∀i) Si(fi) finite )(∃B ∈ ∪Si(fi) ∪ {Bj}):

sup
B

n∑
i=1

G(fi|Bi)−G(f0|Bj) ≥ 0,

where Si(fi) := {Bi ∈ Bi : Bifi 6= 0}.

The two most important conditions here are that of coherence and of Williams coherence,

which can both be given a behavioural interpretation similar to the one in the unconditional

case. In particular, given a coherent lower prevision P and a separately coherent conditional

lower prevision P (·|B), they are (jointly) coherent when the following two conditions are

satisfied:

JC1. (∀f ∈ L(Ω), B ∈ B) P (G(f |B)) = 0,

JC2. (∀f ∈ L(Ω)) P (G(f |B)) ≥ 0.

The coherence of the conditional lower previsions P (·|B1), . . . , P (·|Bn) implies, but is not

equivalent to, the existence of an unconditional lower prevision P that is pairwise coherent

with each of them [Miranda and Zaffalon, 2013, Lemma 1].

The notion of natural extension can also be considered in the conditional case. Given a

coherent lower prevision P and a partition B of Ω, its conditional natural extension P (·|B)

is given by

P (f |B) :=

{
infB f if P (B) = 0,

sup{µ : P (B(f − µ)) ≥ 0} otherwise
(2.2)

for any f ∈ L(Ω). This conditional lower prevision always satisfies JC1 with P , so

P , P (·|B) are coherent if and only if P (G(f |B)) ≥ 0 ∀f ∈ L(Ω). Moreover, if P is a



8 MIRANDA AND ZAFFALON

linear prevision and P (B) > 0 for every B ∈ B (so that its conditional natural extension

P (·|B)) is linear), then P is coherent with P (·|B) if and only if P coincides with the

concatenation P (P (·|B)). In general, condition JC2 follows from JC1 and the super-

additivity of the coherent lower prevision P when the partition B is finite, and in particular

when Ω is finite.

On the other hand, given P (·|B1), . . . , P (·|Bn) with domain L(Ω) and avoiding partial

loss, their unconditional natural extension is given by

E(f) := sup

{
µ : (∃g1, . . . , gn ∈ L(Ω)) f − µ ≥

n∑
i=1

G(gi|Bi)

}
(2.3)

for any f ∈ L(Ω).

2.3. Shorthand notations. In the following we shall often make use of the set of positive

natural numbers N. Yet, we shall hide the symbol N when its use is obvious, so as to avoid

repeating the symbol over and over. For instance, sequences of gambles indexed by natural

numbers will be denoted by (fn)n rather than (fn)n∈N. The notation will be analogous for

sequences of lower previsions or of other objects. Similarly we shall write
∑
n (or ∪n, infn,

...) to represent
∑
n∈N (or ∪n∈N, infn∈N, ...). Also in the case of limits of gambles (or of

lower previsions), we shall use the shorthand limn fn in the place of limn→∞ fn.

3. DIFFERENT NOTIONS OF CONGLOMERABILITY IN THE LITERATURE

Although this paper places in the framework of Walley’s theory of coherent lower

prevision and we shall investigate the notion of conglomerability as considered in Walley

[1991], the term has also appeared in the literature with a somewhat different meaning.

In order to avoid confusions, we discuss here the different approaches and clarify the

connections between them. A somewhat more detailed summary of the precise case may be

found in [Petturiti and Vantaggi, 2017, Section 3].

3.1. Traditional approaches to conglomerability for the precise case. As we mentioned

in the Introduction, conglomerability was first introduced by de Finetti [1930] in terms

of Eq. (1.1). This property was also discussed by Lévy, as reported by Cantelli [1935].

The conditional probability P (A|B) in that equation is derived from the unconditional one

by Bayes’ rule, so that P (A|B) = P (A ∩ B)/P (B), whenever P (B) 6= 0. However, as

argued by de Finetti [1972, Chapter 5], it also makes sense to consider the conditional

probability P (A|B) when the event B has probability 0 but is not deemed impossible. In

that case, he suggested to define what Dubins called a full conditional probability [Dubins,

1975, Section 3] as a functional P : A× (A \ ∅)→ [0, 1], where A is a field of subsets of

Ω, satisfying the following conditions:
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FC1. (∀B ∈ A \ ∅) P (·|B) is a probability measure on A.

FC2. (∀B ∈ A \ ∅)P (B|B) = 1.

FC3. (∀A,B,C ∈ A : B ∩ C ∈ A \ ∅) P (A ∩B|C) = P (B|C)P (A|B ∩ C). [Condi-

tional coherence]

Note that in particular we recover the product (Bayes’) rule by considering C = Ω in the

last condition.

There exists a connection between full conditional measures and the theory of coherent

previsions: if we represent a full conditional measure on P(Ω)× (P(Ω) \ ∅) as a family

of conditional and unconditional assessments {P (·|B) : B ⊆ Ω}, then the axioms FC1–

FC3 above are equivalent to Williams coherence of any finite subset of conditional linear

previsions [Williams, 2007, Proposition 6].

As a consequence, Dubins [1975] result guaranteeing that any linear prevision can be

extended into a full conditional measure can also be understood as the possibility of deriving

conditional linear previsions satisfying Williams coherence. However, these conditional

previsions may violate the notion of conglomerability: as established in [Schervisch et al.,

1984, Seidenfeld et al., 1998], if the linear prevision that results from restricting a full

conditional measure to P(Ω) is not countably additive, then there is some partition B of

Ω where Eq. (1.1) is violated. In other words, the only full conditional measures that may

satisfy the notion of full conglomerability are the countably additive ones.4

3.2. Walley’s approach to conglomerability. Walley [1991, Section 6.8.1] calls a coher-

ent lower prevision P B-conglomerable when it satisfies the following condition:

(∀B ∈ B with P (B) > 0) P (Bf) ≥ 0⇒ P

 ∑
P (B)>0

Bf

 ≥ 0 (3.1)

for any f ∈ L(Ω).

In this equation, only those events from the partition with positive lower probability are

taken into account. Since there are at most a countable number of such events, this means

that only countable partitions matter when studying full conglomerability, taking also into

account that in the case of finite partitions we can use super-additivity to verify Eq. (3.1).

See also [Walley, 1991, Section 6.8.3].

Interestingly, a coherent lower prevision is B-conglomerable if and only if there exists

a conditional lower prevision P (·|B) such that P , P (·|B) are jointly coherent, and if and

only if P is coherent with its conditional natural extension, given by Eq. (2.2). Thus,

4But note that there can be countably additive ones that are not conglomerable; this may happen with
uncountable partitions, as shown by Kadane et al. [1986, Appendix] and more recently by Seidenfeld et al. [2013,
Example 2].
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conglomerability means that the coherent lower prevision P can be updated in a coherent

way to a conditional lower prevision P (·|B). The notion can be applied in particular to

linear previsions. However, in that case we may also require that the linear prevision can be

updated into a linear model; this gives rise to a stronger notion, called B-disintegrability.

From [Walley, 1991, Theorem 6.5.7], theB-disintegrability of a linear prevision is equivalent

to the existence of a conditional linear prevision P (·|B) such that P = P (P (·|B)).

Similarly, given a familyB of countable partitions ofΩ, we say thatP isB-conglomerable

when it is B-conglomerable for every B ∈ B, and we say that P is fully conglomerable

when it is B-conglomerable for every countable partition B of Ω. In a similar manner, we

say that a linear prevision P is fully B-disintegrable when for every countable partition B

there is some conditional linear prevision P (·|B) such that P = P (P (·|B)).

Now, if a lower prevision P is fully conglomerable, then we can define a family of

conditional lower previsions H := {P (·|B) : B partition of Ω} with the property that

P , P (·|B) are coherent for every countable partition B. However, this does not guarantee

that these conditional lower previsions are also coherent with each other: we only have

what Walley called weak coherence, that does not prevent some inconsistencies from arising

[Walley, 1991, Section 7.3.5]. Next we are going to show that the conditional lower

previsions we can derive from a fully conglomerable lower prevision are indeed coherent

with each other.

To see how this comes about, we are going to consider the stronger notion of conglom-

erable coherence studied in much detail in Miranda and Zaffalon [2013]. We say that a

coherent lower prevision P is B-conglomerably coherent when there is a B-conglomerable

set of gambles R inducing it by means of Eq. (2.1), where R is called B-conglomerable

when

(∀B ∈ B) Bf ∈ R ⇒ f ∈ R. (3.2)

Eq. (3.2) is called the conglomerative principle by Walley. It lies at the core of the disagree-

ment between Walley and de Finetti: although coherence only guarantees that a finite sum

of desirable transactions should again be a desirable transaction, Walley considers that an

infinite sum of desirable gambles is again desirable when the gambles only act on different

elements of the same partition. For this reason, the gamble f − P (f |B) is almost desirable

for Walley, while it need not be so for de Finetti. If we do not accept the conglomerative

principle then the notion of conditional coherence we should employ is Williams coherence.

We refer to [Miranda et al., 2012] for a comparison of the notions of conglomerability for

lower previsions and for sets of desirable gambles. Although B-conglomerable coherence is

not equivalent in general to B-conglomerability [Miranda and Zaffalon, 2013, Example 1],
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the differences between the two notions vanish when we consider conglomerability with

respect to all partitions:

Proposition 1. Let P be a coherent lower prevision on L(Ω). It is fully conglomerable if

and only if there exists a fully conglomerable coherent set of desirable gamblesR inducing

it. In that case, for any finite set of partitions B1, . . . ,Bn the conditional natural extensions

P (·|B1), . . . , P (·|Bn) of P are coherent.

Proof. Assume first of all that P is fully conglomerable and letR be its associated set of

strictly desirable gambles. It follows from [Miranda et al., 2012, Theorem 3] that R is

B-conglomerable for every partition B, and as a consequence it is a fully conglomerable set

of gambles that induces P .

Conversely, ifR is a fully conglomerable set of gambles that induces P , then for every

partition B of Ω it holds that R is B-conglomerable and again by [Miranda et al., 2012,

Theorem 3] we conclude that P is B-conglomerable.

Finally, given partitions B1, . . . ,Bn of Ω, it follows from [Miranda et al., 2012, The-

orem 25(i)] that the setR of strictly desirable gambles associated with P induces the con-

ditional natural extensions P (·|B1), . . . , P (·|Bm) of P . SinceR is Bi-conglomerable for

i = 1, . . . ,m, [Miranda and Zaffalon, 2013, Theorem 8] implies that P (·|B1), . . . , P (·|Bm)

are coherent. �

In the same manner that the natural extension of a lower prevision is the smallest dom-

inating coherent lower prevision, given a partition B of Ω the B-conglomerable natural

extension of P is the smallest dominating coherent lower prevision that is B-conglomerable

and the fully conglomerable natural extension is the smallest dominating fully conglomer-

able coherent lower prevision. Note that in both cases the extension may not exist.

3.3. Comparison between the two approaches. One immediate difference between the

traditional approaches to conglomerability and Walley’s is that the former are only estab-

lished for the precise case, while the latter is also valid for coherent lower previsions.5 This

means that a linear prevision that is conglomerable in the traditional sense should satisfy

what we have called full disintegrability in this paper.

However, even when we stick to the precise case, the two approaches are not equival-

ent, due to the different treatment they give to the problem of conditioning on events of

probability zero.

In fact, if we look at the particular case of partitions B of Ω such that P (B) > 0 for

every B ∈ B, then the conditional models {P (·|B) : B ∈ B} follow from the unconditional

5But see Doria [2011, 2015] for an interesting approach in the imprecise case based on disintegrability.
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one by means of Bayes’ rule. If we consider the analogue of Eq. (1.1) in terms of gambles,

which would be

(∀f ∈ L(Ω)) inf
B∈B

P (f |B) ≤ P (f) ≤ sup
B∈B

P (f |B), (3.3)

then Eq. (3.3) is equivalent to the following condition:

(∀B ∈ B) P (Bf) ≥ 0⇒ P (f) ≥ 0,

which is precisely Walley’s notion of conglomerability in Eq. (3.1). In other words, in

the precise case, and for partitions with positive probability on all its elements, the tradi-

tional notion of conglomerability is equivalent to Walley’s. This case was called positive

conglomerability by Armstrong [1990].

In spite of this, any time the possibility space Ω is uncountable, we are bound to find

partitions B where some of the conditioning events have zero probability, and in those cases

the two approaches yield different results: in Walley’s case, the notion of conglomerability

for coherent lower previsions is established in terms of the unconditional model only;

in particular, the elements of the partition with zero lower probability are not taken into

account. This means for instance that a linear prevision whose restriction to events is

{0, 1}-valued is always fully conglomerable in the sense of Walley. On the other hand, in

the traditional approaches the conditional previsions should at least satisfy condition FC3,

which eventually implies that full conglomerability will only hold when the unconditional

prevision is countably additive.

The problem of conditioning on events of probability zero is one of the most important,

both in the precise and in the imprecise case. Within the behavioural theory of imprecise

probabilities, which is based on the notion of desirability, it can be overcome by means

of conditioning on sets of desirable gambles [Walley, 1991, Section 3.7, Appendix F].

See Augustin et al. [2014, Chapter 2], Miranda and Zaffalon [2010], Moral [2005] for

more information. Conditioning on sets of desirable gambles produces in general more

informative models that those derived from lower previsions by the notion of coherence,

and in general the definition of conglomerability is different (see Miranda et al. [2012] for a

comparison). The approach based on desirable gambles is also relevant for full conditional

measures, because these are related to Williams coherence and by [Miranda and Zaffalon,

2013, Williams, 1975] any finite family of conditional lower previsions that is Williams

coherent can be obtained by conditioning a coherent set of desirable gambles.

Then, the key issue here in our view is that, both in the traditional approaches and in

Walley’s, a principle of conditional coherence is established. The principles are different,

because Walley’s makes use of the conglomerative principle and, e.g., de Finetti’s does
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not (and this is what gives rise to the notion of Williams coherence). In Walley’s case,

it is shown that full conglomerability of a linear prevision is equivalent to the existence

of a conditional model that is coherent with the unconditional one, but this conditional

model may not be linear; in fact, there are cases of linear previsions that are coherent with

some conditional lower prevision but not with any conditional linear prevision [Walley,

1991, Example 6.6.10]. And although this kind of models would be considered acceptable

in Walley’s sense, they would not be so in the traditional precise frameworks, for once

imprecision enters the picture they cannot be represented as full conditional measures. In

other words, one of the differences between the two approaches is that full conglomerability

and full disintegrability are not equivalent for linear previsions.

In summary, Walley’s approach to conglomerability can be seen as weaker/more general,

than the traditional approaches, in two respects: the neglect of the events of the partition

with zero (lower) probability, for which the traditional approaches adopt the axiom of

conditional coherence FC3; and the focus on coherent lower and upper previsions, not

necessarily linear.

Although conglomerability for full conditional measures has been quite extensively

studied by Seidenfeld and colleagues, we think that full conglomerability under Walley’s

approach has not been investigated in all detail, other than the results from Walley [1991,

Sections 6.8, 6.9]. For this reason, in the coming sections we shall investigate the connection

of some families of fully conglomerable lower previsions with continuity, super-additivity

and with concatenation models, both in the precise and the imprecise case.

4. FULL CONGLOMERABILITY IN THE PRECISE CASE

We begin by studying the notion of conglomerability for precise previsions. Let us stress,

once again, that we are dealing with Walley’s approach, where a linear prevision on L(Ω)

is fully conglomerable if and only if for every partition B of Ω there exists a conditional

lower prevision P (·|B) such that P, P (·|B) are (Walley-) coherent. Because of the features

of Walley’s notion of coherence discussed above, full conglomerability (in the sense of

Walley) holds if and only if P is coherent with some conditional lower prevision P (·|B),

and this for any countable partition B of Ω.

To see the implications of this notion, we consider three properties:

M1. P is countably additive.

M2. P is fully disintegrable.

M3. P is fully conglomerable.
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A countably additive linear prevision is always fully disintegrable, as shown by Walley

[1991, Theorem 6.9.1]; on the other hand, it follows from its definition that a fully disin-

tegrable linear prevision is in particular fully conglomerable. With respect to the converse

implication, we shall consider two cases: linear previsions whose restrictions to events

have a finite range (called molecular by Armstrong and Prikry [1982]) and those whose

restrictions to events have infinite range (called non-molecular in Armstrong and Prikry

[1982]).

All molecular linear previsions are fully conglomerable:

Proposition 2. Let P be a molecular linear prevision on L(Ω). Then for every partition B

of Ω, |{B ∈ B : P (B) > 0}| < +∞, and as a consequence, P is fully conglomerable.

Proof. Consider a partition B of Ω, and let α := min{P (A) : A ⊆ Ω,P (A) > 0}. Then

α > 0 because the range of P is finite. Then {B ∈ B : P (B) > 0} = {B ∈ B : P (B) ≥

α}, and since the elements of B are pairwise disjoint we deduce that this class is finite.

Using now the finite additivity of P , we conclude that it satisfies Eq. (3.1). �

On the other hand, there are molecular linear previsions that are fully conglomerable but

not fully disintegrable [Walley, 1991, Example 6.6.10]. This shows that the implication M2

⇒M3 is not an equivalence.

It was shown by Armstrong and Prikry [1982] that any molecular probability measure is a

convex combination of {0, 1}-valued measures. This representation was used by Schervisch

et al. [1984, Theorem 3.3] to show that any full conditional measure whose associated

unconditional probability is molecular and not countably additive is not fully disintegrable.

In other words, countable additivity and full disintegrability are equivalent in the molecular

case provided we enter the framework of full conditional measures. But it follows from

[Berti et al., 1991, Theorem 1.6] and [Berti and Rigo, 1992, Corollary 2.6] that a fully

disintegrable probability on P(Ω) can be represented as a full conditional measure with

respect to the family of conditional previsions P (·|B) it satisfies disintegrability with. Then,

applying Schervisch et al. [1984, Theorem 3.3] we deduce that P must be countably additive.

See also [Petturiti and Vantaggi, 2017, Section 3.1].

Thus, in the case of molecular linear previsions full disintegrability in the sense of Walley

is equivalent to countable additivity. With respect to non-molecular linear previsions, we

have the following:

Proposition 3. A non-molecular linear prevision is countably additive if and only if it is

fully conglomerable. Moreover, if P is countably additive and the cardinality of |Ω| is

smaller or equal than ℵ1, then P ({ω ∈ Ω : P (ω) > 0}) = 1.
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Proof. The equivalence has been established by Walley [1991, Theorem 6.9.2].

With respect to the second statement, it holds trivially when Ω is countable. Assume

then that it has cardinality ℵ1, and denote A := {ω ∈ Ω : P (ω) > 0}. Take the partition

B := {Ac, {ω} : ω ∈ A}. If P (A) < 1, then we can define the functional P ′ : L(Ac)→ R

by P ′(f) := P (f ′|Ac), where f ′ ∈ L(Ω) denotes the gamble onΩ given by f ′(ω) := f(ω)

if ω ∈ Ac, and f(ω) = 0 otherwise.

It follows from [Walley, 1991, Section 6.4.1] that P ′ is a linear prevision on L(Ac);

moreover, by construction P ′(ω) = 0 for every ω ∈ Ac. Since P is countably additive by

assumption we deduce that P ′ is also countably additive. This means that the restriction

of P ′ to events is a countably additive probability that gives zero probability to all the

singletons. Since moreover, |Ac| = ℵ1, we obtain a contradiction with Ulam’s theorem

Ulam [1930]. As a consequence, it must be P (A) = 1. �

The extension of the proof above to arbitrary cardinalities is not immediate, due to issues

of measurable cardinals; see for instance [Bogachev, 2007, Section 1.12(x)].

Next we study the connection between full conglomerability and continuity. We consider

the following continuity conditions:

C1. (fn)n → f ⇒ (P (fn))n → P (f).

C2. (fn)n ↓ f ⇒ (P (fn))n ↓ P (f).

C3. (fn)n ↓ 0⇒ (P (fn))n ↓ 0.

C4. (fn)n ↑ f ⇒ (P (fn))n ↑ P (f).

It is easy to prove that

C1 ⇒ C2 ⇒ C3
⇓

C4.

Countably additive linear previsions can be characterised by most of (but not all) the

continuity conditions above:

Proposition 4. Let P be a linear prevision on L(Ω). The following are equivalent:

◦ P satisfies M1.

◦ P satisfies C2.

◦ P satisfies C3.

◦ P satisfies C4.

Proof. The restriction to events of any linear prevision is a finitely additive probability,

and it is well known that countable additivity is equivalent to the continuity for sequences

of events (An)n ↓ ∅ and also for sequences (An)n ↑ Ω. As a consequence, any of the
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conditions C2, C3, C4 implies M1. That the converse implication also holds follows from

the monotone convergence theorem, taking into account that gambles are bounded and that

they are trivially measurable with respect to the σ-field P(Ω) where P is defined. �

We deduce from this that a linear prevision satisfying condition C1 is always countably

additive. To prove that the converse is not true, consider the following example:

Example 1. Consider Ω := N and let P be the linear prevision whose restriction to events

is the countably additive probability with mass function P ({n}) := 1
2n . The sequence of

gambles (fn)n given by fn := 2nI{n} converges point-wise to f = 0 but P (fn) = 1 for

every n. ♦

Next we focus on condition M3. It follows from Proposition 4 that any of the continuity

conditions is sufficient for P to be fully conglomerable. Let us show that none of them (not

even the weakest ones, C2 and C4) is necessary:

Example 2. First of all, note that if P is a linear prevision then conditions C2 and C4 are

equivalent, because P is self-conjugate. Consider now Ω := N and letA be a free ultrafilter

of subsets of Ω. Let P be the linear prevision it induces, so that its restriction to events

satisfies P (A) = 1 if A ∈ A, and P (A) = 0 otherwise.

P is fully conglomerable, since for any partition B of Ω there is at most one B ∈ B with

P (B) > 0. On the other hand, since A is free, {n} /∈ A for any n ∈ Ω. As a consequence,

An := {m ∈ Ω : m ≥ n} ∈ A for every n ∈ N, and (An)n ↓ ∅ /∈ A. Thus, P does not

satisfy C2. ♦

We conclude that when P is a linear prevision,

C1⇒M1⇔ C2⇔ C3⇔ C4⇒M2⇒M3,

and that moreover M1 is equivalent to M2 when the cardinality of Ω is ℵ1.

5. FULL CONGLOMERABILITY IN THE IMPRECISE CASE

Next we consider fully conglomerable coherent lower previsions. We shall consider the

following properties for a coherent lower prevision P :

M4. P is the lower envelope of a family of countably additive linear previsions.

M5. P is the lower envelope of a family of fully conglomerable linear previsions.

M6. P is a fully conglomerable coherent lower prevision.

Note that conditions analogous to M4, M5 can be established for coherent upper previ-

sions P , considering upper envelopes.6

6Note also that condition M4 does not imply that any linear prevision in the credal set M(P ) is count-
ably additive, as this credal set shall also include in general linear previsions associated with finitely additive
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It is immediate to prove that the following relations hold:

M1⇒ ⇒

M3 M4
⇒ ⇒

M5
⇓

M6.

However, the remaining implications do not hold: on the other hand, a linear prevision

may be fully conglomerable without being countably additive, as we can see from Example 2;

moreover, there are fully conglomerable coherent lower previsions that are not dominated

by any fully conglomerable (and as consequence by any countably additive) linear prevision

[Walley, 1991, Example 6.9.6].

With respect to envelopes of countably additive linear previsions, the following result

was established by Krätschmer [2003]:

Proposition 5. [Krätschmer, 2003, Section 5] Let P be a 2-alternating upper probability

on P(Ω). Then P is the upper envelope of a family of countably additive probabilities if

and only if

(∀A ⊆ Ω) P (A) = sup{P (B) : B ⊆ A,B finite}. (5.1)

More in general, we have proven the following characterisation of M4 when Ω = N:

Proposition 6. Let P be a coherent upper prevision on L(N). The following are equivalent:

(1) P is an upper envelope of a family of countably additive linear previsions.

(2) (∀n ∈ N) P = supMn, where Mn := {P ≤ P : limm P ({1, . . . ,m}) ≥

1− 1
n}.

(3) (∀f) P (f) = limn P (fI{1,...,n}) ≥ 0.

(4) (∀f ≥ 0) P (f) = sup{P (g) : g ≤ f, supp(g) finite}.

Proof. Since the class M = {P ≤ P : P countably additive} is included in Mn for

every natural number n, we deduce that the first statement implies the second. Conversely,

consider a gamble f ∈ L(N). By constant additivity, we can assume without loss of

generality that f ≥ 0.

For every ε > 0 and n ∈ N, there is some Pnε ∈Mn such that P (f)− Pnε (f) < ε. The

mass function pnε of Pnε can be regarded as an element of [0, 1]N such that
∑
m p

n
ε (m) ≥

1 − 1
n . Since [0, 1] is a compact metric space, it is sequentially compact; and since a

countable product of sequentially compact spaces is again sequentially compact [Joshi,

probabilities that are not countably additive. Moreover, the condition means that P (f) = inf{P (f) : P ≥
P , P countably additive} for every f , but this infimum need not be a minimum.
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1983], we deduce that the space [0, 1]N is sequentially compact. Thus, the sequence

(pnε )n has a convergent subsequence (pn
′

ε )n′ to some p ∈ [0, 1]N, and by construction∑
m p(m) ≥ 1 − 1

n for all n, whence
∑
m p(m) = 1. This means that p determines a

countably additive linear prevision P .

For any fixed n, we can consider the linear functional Pn∗ε given by Pn∗ε (g) :=∑
m g(m)pnε (m) for all g ∈ L(Ω). Then for any gamble g ∈ L(Ω), it holds that

Pn∗ε (g) = lim
m
Pn∗ε (gI{1,...,m}) and Pn∗ε (gI{1,...,m}) = Pnε (gI{1,...,m}).

As a consequence, given h ∈ L+(Ω),

(∀m ∈ N) Pnε (h) ≥ Pnε (hI{1,...,m}) = Pn∗ε (hI{1,...,m})⇒ Pnε (h) ≥ Pn∗ε (h).

Now there are two possibilities:

(a) If Pn∗ε (Ω) = 1, then Pn∗ε is a linear prevision. Since Pn∗ε ≤ Pnε on non-negative

gambles, it follows from constant additivity that Pn∗ε (g) ≤ Pnε (g) for every gamble

g. But this is only possible if Pn∗ε = Pnε .

(b) If Pn∗ε (Ω) < 1, then we can define the functional Qnε :=
Pn

ε −P
n∗
ε

(Pn
ε −Pn∗

ε )(Ω) . This

is a linear functional and it satisfies moreover Qnε (1) = 1, Qnε (h) ≥ 0 for every

h ∈ L+(Ω), whence by Walley [1991, Corollary 2.8.5] it is a linear prevision. Thus,

for any gamble g on Ω, Qnε (g) ≤ sup g, and therefore Pnε (g)−Pn∗ε (g) ≤ 1
n sup g

for all g ∈ L(Ω).

Now, for any gamble h ∈ L+(Ω),

P (h) =
∑
m

h(m)p(m) = lim
n′

∑
m

h(m)pn
′

ε (m)

= lim
n′
Pn
′∗

ε (h) ≤ lim
n′
Pn
′

ε (h) ≤ lim
n′
P (h) = P (h).

Using constant additivity, we deduce that also P (g) ≤ P (g) for any g ∈ L(Ω). Thus, the

countably additive linear prevision P is dominated by P .

If we now consider the non-negative gamble f fixed at the beginning, we obtain that

P (f)− P (f) = lim
n′
P (f)− Pn

′∗
ε (f) ≤ lim

n′
P (f)− Pn

′

ε (f) +
1

n′
sup f

≤ lim
n′

(
ε+

1

n′
sup f

)
= ε,

where the first inequality follows from points (a) and (b) above.

Thus, given f ≥ 0 and ε > 0 there exists a countably additive linear prevision P

dominated by P such that P (f) − P (f) ≤ ε. Since this can be done for any ε > 0, we

conclude that P is the upper envelope of a family of countably additive linear previsions.

To prove that the second statement implies the third, consider a gamble f ≥ 0 and fix

ε > 0. Since the equality holds trivially when f = 0, let us assume that sup f > 0. Then
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we can find some n1 ∈ N such that 1
n1

< ε
2 sup f . By assumption, for f, ε fixed there is

some n2 ∈ N and P ∈Mn2
such that

P (f)− P (f) <
ε

2
. (5.2)

Moreover, since the sequence (Mn)n is increasing, we may assume without loss of gener-

ality that n2 ≥ n1.

On the other hand, P ∈ Mn2 implies that there is some finite set {1, . . . ,m} such

that P ({1, . . . ,m}) ≥ 1 − 1
n2

, so that P (f) − P (fI{1,...,m}) = P (fI{1,...,m}c) ≤

P ({1, . . . ,m}c) sup f ≤ sup f
n1

< ε
2 , whence

P (f)− P (fI{1,...,m}) <
ε

2
. (5.3)

Adding up (5.2) and (5.3), we get P (f)− P (fI{1,...,m}) < ε and since we can do this for

every ε > 0 we deduce that P (f) = limn P (fI{1,...,n}).

To prove the converse, assume ex-absurdo that there is a gamble f , a natural number n

and some ε > 0, such that P (f)− ε > supP∈Mn
P (f). Then we can assume without loss

of generality that inf f = 1, because of constant additivity. For every P ∈M(P ) \Mn, it

holds that, ∀m ∈ N,

P (f)− P (fI{1,...,m}) = P (fI{1,...,m}c) ≥ P (inf fI{1,...,m}c) = P ({1, . . . ,m}c) ≥ 1

n
,

taking into account that P /∈Mn. As a consequence,

(∀m ∈ N) P (fI{1,...,m}) = max{ sup
P∈Mn

P (fI{1,...,m}), sup
P∈M(P )\Mn

P (fI{1,...,m})}

≤ max

{
sup

P∈Mn

P (f), P (f)− 1

n

}
≤ max

{
P (f)− ε, P (f)− 1

n

}
,

whence limm P (fI{1,...,m}) ≤ max{P (f)− ε, P (f)− 1
n} < P (f). This contradicts the

third statement.

Finally, to prove that the third and fourth statements are equivalent, note that given f ≥ 0,

any g ≤ f with finite support will be bounded by fI{1,...,n} for some n. As a consequence,

sup{P (g) : g ≤ f, supp(g) finite} = supn P (fI{1,...,n}) = limn P (fI{1,...,n}). �

This result provides a number of necessary and sufficient conditions for a coherent

upper prevision to be the supremum of a family of countably additive linear previsions.

Nevertheless, this does not imply that it is the maximum, or, in other words, the set of

dominated countably additive linear previsions is not closed: if we let P be the vacuous

upper prevision on N, given by P (f) = sup f for every f , it follows immediately that P is

the upper envelope of a family of countably additive linear previsions: those associated with

the degenerate probability measures. However, the gamble f given by f(n) = 1− 1
n satisfies

P (f) = 1 while for any countably additive linear prevision P it holds that P (f) < 1.



20 MIRANDA AND ZAFFALON

Proposition 6 allows us to extend Krätschmer’s Proposition 5 to the case of gambles:

Corollary 7. Let P be a 2-alternating upper prevision on L(N). Then P is the upper

envelope of a family of countably additive linear previsions if and only if its restriction to

events satisfies Eq. (5.1).

Proof. The direct implication follows applying Proposition 6(4) to indicators of events. To

see the converse, consider a gamble f ≥ 0. Since any gamble may be approximated as

a uniform limit of simple gambles, given ε > 0 there is some simple gamble 0 ≤ g ≤ f

such that P (f)− P (g) < ε
2 . We can denote g =

∑n
i=1 xiIAi for x1 > x2 > · · · > xn =

0, {A1, . . . , An} being a partition of N. Since P is 2-alternating, it follows from Walley

[1981] that it can be computed as the Choquet integral of its restriction to events, meaning

that Denneberg [1994]

P (g) =

n−1∑
i=1

(xi − xi+1)P (A1 ∪ · · · ∪Ai).

By Eq. (5.1), for every i = 1, . . . , n− 1 there exists a finite set Bi ⊆ A1 ∪ · · · ∪ Ai such

that P (A1 ∪ · · · ∪ Ai) − P (Bi) <
ε

2nx1
, and we may assume without loss of generality

that Bi ⊆ Bi+1 for i = 1, . . . , n − 1. Thus, the gamble h := x1IB1
+
∑n
i=2 xiIBi\Bi−1

satisfies

P (g)− P (h) =

n−1∑
i=1

(xi − xi+1)(P (A1 ∪ · · · ∪Ai)− P (Bi)) <
ε

2
,

whence P (f)− P (h) < ε. Since h has finite support and we can do this for every ε > 0,

we deduce that condition (4) in Proposition 6 holds and as a consequence P is the upper

envelope of a family of countably additive linear previsions. �

5.1. Full conglomerability and continuity. Next, we study the connections between the

continuity properties C1–C4 considered in Section 4 and fully conglomerable coherent

lower previsions. We begin by studying which of these continuity conditions is necessary

for full conglomerability. In this respect, we deduce from Example 2 that none of them

is necessary for P to satisfy M5, M6. With respect to condition M4, we can establish the

following:

Proposition 8. If P satisfies M4, then it also satisfies C2 (and as a consequence also C3)

but not necessarily C4.

Proof. LetM be a family of countably additive linear previsions such that P = infM, and

consider a decreasing sequence of gambles (fn)n that converges towards f . Then for any

ε > 0 there is some P ∈M such that P (f)− P (f) < ε
2 . Since by Proposition 4 P (f) =
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limn P (fn), there is some n ∈ N such that P (fn)−P (f) < ε
2 , whence P (fn)−P (f) < ε.

Therefore, P (f) = limn P (fn) and condition C2 holds.

To prove that condition C4 may not hold, take Ω := N and let P be the vacuous coherent

lower prevision. For any n ∈ N, let δn be the countably additive linear prevision associated

with the degenerate probability measure on n. It is given by δn(f) := f(n) for any gamble

f . Then P (f) = inf f = infn∈N δn(f), whence P satisfies M4. On the other hand, the

sequence (An)n given by An := {1, . . . , n} converges to Ω but limn P (An) = 0. Thus, P

does not satisfy C4. �

Next we study which of the continuity conditions is sufficient for full conglomerability.

With respect to M4, we have the following:

Proposition 9. Let P be a coherent lower prevision. If it satisfies C4, then it is the lower

envelope of a family of countably additive linear previsions.

Proof. Consider a linear prevision P ∈M(P ). Then for any sequence (An)n ↑ Ω it holds

that limn P (An) ≥ limn P (An) = 1. Thus, P satisfies C4, and applying Proposition 4 we

deduce that it is countably additive. Therefore, P satisfies M4. �

As a consequence, condition C1 is also sufficient for P to satisfy M4 (and therefore

also M5, M6). Note that a similar result has been established for coherent lower probabilities

by Krätschmer [2003, Proposition 2.3].

Our next example shows that condition C3 is not sufficient for P to be fully conglom-

erable (and as a consequence it does not imply that P satisfies M4, M5 either). The key

here is that a coherent lower prevision satisfies C3 as soon as one of the dominating linear

previsions does:

Example 3. Consider Ω := N, and let P1 be the countably additive linear prevision

whose restriction to events satisfies P1({n}) = 1
2n for every n. Consider now a linear

prevision P2 satisfying P2({2n}) := P2({2n− 1}) := 1
2n+2 , P2({2n : n ∈ N}) > 1

2 . Let

P := min{P1, P2}.

If we take B := {{2n, 2n − 1} : n ∈ N}, and f := I{2n−1:n∈N} + ε − I{2n:n∈N} for

0 < ε < P2({2n : n ∈ N}) − P2({2n − 1 : n ∈ N}), we obtain that P (Bn) > 0 for

all n ∈ N, P (Bnf) ≥ 0 for all f because P1(Bnf), P2(Bnf) ≥ 0 for all f . However,

P (f) ≤ P2(f) < 0, so P is not fully conglomerable.

On the other hand, for any decreasing sequence (fn)n ↓ 0, it holds that limn P (fn) ≤

limn P1(fn) = 0, whence P satisfies C3. ♦

With respect to condition C2, we can establish the following:
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Proposition 10. Let P be a coherent lower prevision on L(Ω). If it satisfies C2, then it

satisfies M6.

Proof. We begin by showing that for any sequence (fn)n such that P (fn) ≥ 0 ∀n, it holds

that P (lim sup fn) ≥ 0, when the gamble lim sup fn is well defined. For this, note that

lim sup fn = infk supn≥k fn = limk gk, where gk := supn≥k fn. Since the sequence

(gk)k is decreasing, we deduce that P (limk gk) = limk P (gk) ≥ limk P (fk) ≥ 0.

Now, consider a partition B and a gamble f such that P (Bf) ≥ 0 whenever P (B) >

0. Denote {Bn : n ∈ N} the family of elements of B with positive lower probabil-

ity. Then the sequence fn := fI∪n
i=1Bi

satisfies P (fn) ≥ 0 by super-additivity, and

lim sup fn = fI∪nBn
. Applying the first part, we deduce that P (fI∪nBn

) ≥ 0, whence

P is B-conglomerable. Since this holds for any partition B, we deduce that P is fully

conglomerable. �

To prove that the converse does not hold, we refer to Example 2. On the other hand,

condition C2 does not imply M5 (and therefore it does not imply M4 either):

Example 4. Let P be the natural extension of Lebesgue measure P on [0,1], which is given

by

P (f) := sup{P (g) : f ≥ g, g is β[0,1]-measurable}. (5.4)

It has been established by Walley [1991, Section 6.9.6] that P is fully conglomerable but

has no dominating fully conglomerable linear prevision (whence P does not satisfy M5).

To prove that P satisfies condition C2, consider a decreasing sequence of gambles

(fn)n ↓ f . By Eq. (5.4), for any ε > 0, there is some β[0,1]-measurable gamble gn such

that gn ≤ fn and P (fn) ≤ P (gn) + ε. If we also consider a β[0,1]-measurable gamble

g ≤ f such that P (f) ≤ P (g) + ε, then we can assume without loss of generality that

gn ≥ g for every n: otherwise, it suffices to consider g′n := max{gn, g}, which satisfies

g′n ≤ max{fn, f} = fn and also P (g′n) ≥ P (gn) ≥ P (fn)− ε. As a consequence,

P (f) ≤ lim
n
P (fn) = lim supP (fn) ≤ lim supP (gn)+ε ≤ P (lim sup gn)+ε ≤ P (f)+ε,

where the third inequality follows from Fatou’s lemma and the fourth from monotonicity,

because lim sup gn ≤ lim sup fn = lim fn = f . Since this holds for any ε > 0, then

P (f) = limn P (fn). Thus, P satisfies C2. ♦

We conclude this section by summarising the implications between full conglomerability

and continuity in the imprecise case:
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C1 ⇒ C4 ⇒ M4⇒ ⇒

C3 ⇐ C2 M5
⇒ ⇒

M6.

No additional implication other than the ones that derive from this diagram holds.

5.2. Full conglomerability and super-additivity. Next we investigate the connection

between full conglomerability and countable super-additivity of the coherent lower prevision.

Consider the following condition:

M7. (∀(fn)n ⊆ L(Ω) :
∑
n fn ∈ L(Ω)) P (

∑
n fn) ≥

∑
n P (fn).

The reason for our investigation is that both countable super-additivity and conglomerab-

ility are quite related to the closedness of the set of desirable gambles under countable sums.

Specifically, we have proven the following:

Proposition 11. Let P be a coherent lower prevision and let R,R denote its associated

sets of strictly desirable and almost desirable gambles, respectively. Then each of the

following statements implies the next:

◦ P satisfies M7.

◦ (∀(fn)n ⊆ R :
∑
n fn ∈ L(Ω))

∑
n fn ∈ R.

◦ (∀(fn)n ⊆ R :
∑
n fn ∈ L(Ω))

∑
n fn ∈ R.

◦ P satisfies C3.

Proof. Let us show that the first statement implies the second. Consider a sequence

(fn)n ⊆ R such that
∑
n fn ∈ L(Ω). If fn 
 0 for every n, we deduce that

∑
n fn 
 0,

and therefore it belongs to R. If there is some natural number m such that P (fm) > 0,

then since for any other n it holds that P (fn) ≥ 0, we deduce that
∑
n P (fn) > 0, whence,

applying condition M7, we deduce that P (
∑
n fn) > 0. Hence,

∑
n fn ∈ R.

That the second statement implies the third is trivial.

Finally, to prove that the third statement implies the fourth, consider a sequence (fn)n ↓ 0,

and assume ex-absurdo that limn P (fn) = infn P (fn) = ε > 0.

For every ω ∈ Ω, limn fn(ω) = 0, whence there is some nω ∈ N such that fn(ω) < ε
4

for every n ≥ nω. As a consequence,
∑
n(fn(ω)− ε

2 ) = −∞ for every ω, and therefore

there is some minimum n∗ω such that
∑n∗ω
i=1(fi(ω)− ε

2 ) < − ε4 .

Consider the gamble gn given by

gn(ω) :=

{
fn(ω)− ε

2 if n ≤ n∗ω
0 otherwise.
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By construction gn ≥ fn − ε
2 , whence P (gn) > 0 for every n. On the other hand,∑

n gn(ω) < − ε4 for every ω, and therefore P (
∑
n gn) < − ε4 , meaning that

∑
n gn /∈

R. �

In fact, the third condition in the above proposition suffices to guarantee full conglomer-

ability:

Proposition 12. Let P be a coherent lower prevision, and assume that any countable sum

of strictly desirable gambles is almost desirable (whenever the countable sum belongs to

L(Ω)). Then P is fully conglomerable.

Proof. Ex-absurdo, assume there is a partition B ofΩ and a gamble f such that P (Bf) ≥ 0

for every B with P (B) > 0 and P (
∑
P (B)>0Bf) < 0. Then there is some ε > 0 such

that P (
∑
P (B)>0B(f + ε)) < 0. On the other hand, for every B with P (B) > 0,

P (B(f + ε)) ≥ P (Bf) + P (Bε) ≥ εP (B) > 0.

Thus, the gamble B(f + ε) is strictly desirable for every B in the countable set {B ∈ B :

P (B) > 0}, but the sum
∑
P (B)>0B(f +ε) is not almost desirable. This is a contradiction

with our hypotheses. Thus, P is fully conglomerable. �

However, the converse does not hold, as we can deduce from Proposition 11 and Ex-

ample 2.

Next, we study the connection between this condition and the continuity conditions we

studied in the previous section. With respect to conditions C1–C4, we have established the

following:

Proposition 13. Let P be a coherent lower prevision on L(Ω). Then

C2⇒M7⇒ C3.

Proof. Let us begin with the first implication. Consider a sequence (fn)n of gambles

such that their sum
∑
n fn exists and belongs to L(Ω). Then

∑
n fn = limn Sn, where

Sn := f1 + · · ·+ fn. Since the limit of the sequence (Sn)n exists, then we have limn Sn =

lim supn Sn = infk supn≥k Sn, and if we consider the sequence of gambles (gk)k given by

gk := supn≥k Sn, we obtain that (gk)k is a decreasing sequence and moreover limk gk =

infk gk = limn Sn. Applying C2,

lim
k
P (gk) = P (lim

k
gk) = P (lim

n
Sn) = P

(∑
n

fn

)
,

and since on the other hand

P (gk) = P (sup
n≥k

Sn) ≥ P (Sk) ≥
k∑
i=1

P (fi),
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we deduce that

lim
k
P (gk) ≥ lim

k

k∑
i=1

P (fi) =
∑
n

P (fn),

whence P satisfies M7.

The second implication follows from Proposition 11. �

This, together with our previous results, implies that a coherent lower prevision satisfying

conditions C1 or C4 also satisfies M7.

Next we investigate the connection between condition M7 and full conglomerability.

It is not difficult to prove that any coherent lower prevision P satisfying M7 is a fully

conglomerable coherent lower prevision, but it need not satisfy M5 (and therefore not M4

either):

Proposition 14. M7 implies M6, but not necessarily M5.

Proof. Consider a partition B on Ω and a gamble f such that P (Bf) ≥ 0 for every

B ∈ B with positive lower probability. Since there are at most a countable number of

such B, we deduce from M7 that P (
∑
P (B)>0Bf) ≥

∑
P (B)>0 P (Bf) ≥ 0. Thus, P is

B-conglomerable; since we can do this for any partition B, we conclude that P satisfies M6.

To prove that M7 does not imply that M5, it suffices to consider the coherent lower

prevision P from Example 4 and apply Proposition 13. �

Finally, to prove that condition M7 is not equivalent to C3, it suffices to consider the

coherent lower prevision P from Example 3, which satisfies C3 but not M6 (whence,

applying Proposition 14, it does not satisfy M7 either). As a consequence, the place of super

σ-additivity in our diagram is given by the following:

C1 ⇒ C4 ⇒ M4⇒ ⇒

C2 M5
⇓

⇒

C3 ⇐ M7 ⇒ M6.

On the other hand, if P is a linear prevision, we deduce from our results in the previous

section that:

C1⇒M1⇔ C2⇔M7⇔ C3⇔ C4⇒M2⇒M3.

The only open problem at this stage is whether conditions M7 and C2 are equivalent.

One particular case where both conditions hold is for vacuous lower previsions on some

subsetA ofΩ, given by PA(f) := infω∈A P (f) for every f ∈ L(Ω), because these models

satisfy trivially M4.
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To prove that conditions C1, C4 do not necessarily hold for vacuous lower previsions,

it suffices to consider the vacuous lower prevision P on N, for which limn P (I{1,...,n}) =

0 6= P (limn I{1,...,n}) = P (1) = 1.

6. CONGLOMERABILITY AND MARGINAL EXTENSION

From Walley [1991, Theorem 6.8.2], given a coherent lower prevision P and a partition

B of Ω, it holds that P is B-conglomerable if and only if P ≥ P (P (·|B)), where P (·|B) is

the conditional natural extension of P , given by Eq. (2.2). As a consequence, we have the

following:

P is fully conglomerable ⇔ P ≥ sup
B
P (P (·|B)). (6.1)

Thus, given a coherent lower prevision P , we can define

Q := sup{P (P (·|B)) : B is a partition of Ω}. (6.2)

The concatenation P (P (·|B)) of a marginal and a conditional lower prevision is called a

marginal extension model [Walley, 1991, Section 6.7], and is an extension of the product

rule to the imprecise case. Thus, the functional Q given by Eq. (6.2) is the supremum of a

family of marginal extension models. In this section, we are going to study the properties

of this functional. It follows immediately that Q(f) ≥ inf f and Q(λf) = λQ(f) for all

f ∈ L(Ω) and λ > 0. However, Q is not a coherent lower prevision in general:

Example 5. Let Ω := N, and consider a free ultrafilter F of N. Let P1 denote its associated

linear prevision. Let P2 be the countably additive linear prevision whose restriction to

singletons satisfies P2(n) = 1
2n for every n, and define P = 1

2P1 + 1
2P2. Then since P1

is not countably additive we deduce that neither is P . Since on the other hand P is non-

molecular because so is P2, we deduce from Proposition 3 that P is not fully conglomerable.

Consider then a partition B such that P is not coherent with its conditional natural extension.

Since by construction P (n) > 0 for every n, we deduce that P (B) > 0 for every B ∈ B,

and therefore this conditional natural extension is linear. Thus, P 6= P (P (·|B)), whence

Q ≥ max{P, P (P (·|B))} 
 P , and since P is a linear prevision then it will be

M(Q) ⊆M(P ) ∩M(P (P (·|B))) = {P} ∩ {P (P (·|B))} = ∅,

taking into account that for any linear prevision P ′ its associated credal set isM(P ′) =

{P ′}. Thus, Q does not avoid sure loss, and as a consequence it is not coherent either. ♦

Next we investigate in more detail the relationship between a coherent lower prevision

P and the functional Q given by Eq. (6.2). We can prove the following:
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Proposition 15. P ≤ Q. As a consequence, P is fully conglomerable if and only if

coincides with Q, and the fully conglomerable natural extension of P dominates Q.

Proof. To prove that Q(f) ≥ P (f) for every gamble f , it suffices to consider the partition

B := {{ω} : ω ∈ Ω}, for which we obtain P (f |{ω}) = f(ω) for every ω ∈ Ω, whence

P (f |B) = f and therefore P (P (f |B)) = P (f). Now, since by Eq. (6.1) P is fully

conglomerable if and only if it dominates Q, we deduce that P ≥ Q if and only if they are

equal.

To prove the second statement, note that if P ′ ≥ P is fully conglomerable, then P ′ ≥

supB P
′(P ′(·|B)) ≥ supB P (P (·|B)) = Q. �

It is an immediate consequence of Proposition 15 that if P is fully conglomerable then

Q avoids sure loss. The converse is not true: if Q avoids sure loss but is not coherent, then

it will not coincide with P , and therefore the latter will not be fully conglomerable.

Example 6. Consider [Miranda et al., 2012, Example 9], where Ω = N ∪ −N, P :=

min{P1, P2}, P1 is fully conglomerable and P2 is not, and where for a given B it holds that

theB-conglomerable natural extension of P is P1, which is then also the fully conglomerable

natural extension of P . Then it follows from Proposition 15 that P ≤ Q ≤ P1, whence

M(Q) ⊆M(P ) = {αP1 + (1− α)P2 : α ∈ [0, 1]}. Thus, we can identifyM(Q) with a

closed and convex subset of [0, 1], namely {α ∈ [0, 1] : αP1 + (1− α)P2 ≥ Q}. This set

is not empty as α = 1 belongs to it. Also, it is shown in the example that for every α 6= 1

there is a gamble h such that

(αP1 + (1− α)P2)(h) < P (P (h|B))⇒ (αP1 + (1− α)P2)(h) < Q(h),

whenceM(Q) = P1.

On the other hand, if we take f := I{−n}, there are the following options for an arbitrary

partition B′:

◦ If the set B ∈ B′ that includes {−n} strictly does so, then{
P (f |B) ≤ P2(f |B) = 0 if P2(B) > 0,

P (f |B) = minB f = 0 if P2(B) = 0,

because the linear prevision P2 in [Miranda et al., 2012, Example 9] satisfies

P2({−n}) = 0; and hence P (P (f |B′)) = 0.

◦ The other possibility is that B = {−n}, whence P (f |B) = 1; but then

P (P (f |B′)) = min{P1({−n}), P2({−n})} = 0.

Thus Q({−n}) = 0 < P1({−n}), so Q avoids sure loss but is not coherent. ♦
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This would mean that if Q avoids sure loss but is not coherent, then it cannot be Q = P

coherent so P would not be fully conglomerable. Thus, if P is fully conglomerable then Q

is coherent. Although it is an open problem whether the converse holds in general, it is easy

to prove that when P is linear, then Q ≥ P is coherent if and only if Q = P (it cannot be

that Q(f) > P (f) and still be that Q is coherent). Hence, in the precise case we have the

equivalence.

Remark 1. The above example suggests a different procedure: for each partition B, we

define PB as the natural extension of P , P (·|B), and then let Q′ := supB PB. Then

P ′ ≥ P fully conglomerable⇒ P ′ ≥ Q′,

so we can also use Q′ as a conservative approximation of the fully conglomerable natural

extension. Moreover, Q′ ≥ Q ≥ P by construction, so

P fully conglomerable⇔ P = Q′.

A difference is that in Example 6 Q avoids sure loss but is not coherent, while the lower

prevision Q′ defined as above would be coherent and agree with the fully conglomerable

natural extension. Moreover, we still have that if P fully conglomerable then Q′ is coherent,

and Example 6 shows that the converse is not true. ♦

On the other hand, even if the results above establish a connection between coherent

lower previsions and marginal extension models, there are fully conglomerable coherent

lower previsions that are not marginal extension models:

Example 7. Consider Ω := {1, 2, 3, 4} andM := {Pij : i, j ∈ Ω, i 6= j}, where Pij is the

linear prevision given by

Pij(f) :=
1

2
f(i) +

1

2
f(j)

for all f . Let P be the coherent lower prevision that we obtain by taking the lower envelope

ofM. It is trivially fully conglomerable becauseΩ is finite. Let us show that we do not have

the equality P = P (P (·|B)) for any non-trivial partition B. This will hold if for every B

we can find a gamble f (possibly dependent on the partition) such that P (f) 6= P (P (f |B)).

Since by construction P is invariant under permutations of the elements of Ω, it suffices to

look at the following partitions:

◦ B = {{1, 2}, {3, 4}}. If P = P (P (·|B)), then as P ({1, 2}) = 0 < P ({1, 2}) =

1, we should have P (f) = min{P (f |{1, 2}), P (f |{3, 4})}. Moreover, since

P ({1, 2}) = 0 = P ({3, 4}) = 0, it follows from Eq. (2.2) that{
P (f |{1, 2}) = min(f(1), f(2)),

P (f |{3, 4}) = min(f(3), f(4)).
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But then we obtain P (P (·|B)) vacuous, which will not coincide with P (use

f := I{1,2,3}, for instance).

◦ B = {{1, 2, 3}, {4}}. If P = P (P (·|B)), then by looking at the marginal distribu-

tion we get

P (f) = min

{
1

2
P (f |{1, 2, 3}) +

1

2
f(4), P (f |{1, 2, 3})

}
.

On the other hand, using that

P (f |{1, 2, 3}) ≤ min{P1,4(f |{1, 2, 3}), P2,4(f |{1, 2, 3}), P3,4(f |{1, 2, 3})}

= min(f(1), f(2), f(3))

for all f , we obtain that

P (f) = min

{
1

2
min(f(1), f(2), f(3)) +

1

2
f(4),min(f(1), f(2), f(3))

}
.

But this does not coincide with P : take f equal to the identity function, then

P (f) = 3
2 and the equation above gives P (f) = 1.

◦ B = {{1, 2}, {3}, {4}}. Since P ({1, 2}) = 0, we get P (·|{1, 2}) vacuous. Then

P (P (f |B)) = min{min(f(1), f(2)),
1

2
f(3) +

1

2
f(4),

1

2
f(3) +

1

2
min(f(1), f(2)),

1

2
f(4) +

1

2
min(f(1), f(2))},

and again with f equal to the identity function, we obtain P (P (f |B)) = 1 <

P (f) = 3
2 .

The other cases are just permutations of these. ♦

6.1. Conglomerability for an arbitrary number of partitions. Next, we are going to

investigate a more general scenario: that where we study the conglomerability of a coherent

lower prevision P with respect to a family B of partitions of Ω. This includes in particular

the case where B consists of a single partition (which was discussed in Miranda and Zaffalon

[2015], Miranda et al. [2012]) and the case where B is the set of all partitions, which would

correspond to the case of full conglomerability.

As we did in the previous section, we can define the lower prevision

Q := sup
B∈B

P (P (·|B)), (6.3)

where P (·|B) is derived from P by natural extension. Then P ≤ Q if we include in B either

the finest {{ω} : ω ∈ Ω} or the coarsest {Ω} partition, and any dominating coherent lower

prevision that is B-conglomerable must dominate Q; we shall always assume that this is

the case in this section, and otherwise redefine Q := max{P , supB∈B P (P (·|B))}. This

means that if the B-conglomerable natural extension exists, thenM(Q) 6= ∅. However, the
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converse is not true, as we see in the following example, based on [Miranda and Zaffalon,

2015, Example 3]:

Example 8. Consider Ω := N ∪ −N, let P3, P4 be the linear previsions from [Miranda and

Zaffalon, 2015, Example 3] and take P := min{P3, P4}. Given the partition B := {Bn :

n ∈ N}, for Bn := {−n, n}, it has been shown that {P ≥ P : P (GP (·|B)) ≥ 0} = {P3}.

Thus, P3 ≥ P3(P (·|B)) ≥ P (P (·|B)).

Considered the partition B′ := {{−2n,−2n + 1} : n ∈ N} ∪ {N}, it holds that

P ({−2n,−2n + 1}) = P4({−2n,−2n + 1}) = 0, whence P (·|{−2n,−2n + 1}) is

vacuous for every n. From this it follows that, for every gamble f ,

P3(GP (f |B′)) ≥ P3(GP (f |N)) ≥ P3(GP3
(f |N)) = 0,

whence P3 ≥ P3(P (·|B′)) ≥ P (P (·|B′)).

As a consequence, we deduce thatM(Q) = {P3}, so this is the only candidate to the

{B,B′}-conglomerable natural extension of P . However, P3 is not B-conglomerable, as

shown in [Miranda and Zaffalon, 2015, Example 3]. ♦

When the family B is finite, we can extend some results from [Miranda et al., 2012,

Section 4] and characterise the natural extension of Q:

Proposition 16. Let P be a coherent lower prevision, and let B1, . . . ,Bn partitions of Ω.

Define P (·|B1), . . . , P (·|Bn) by natural extension and let E be the natural extension of

P , P (·|B1), . . . , P (·|Bn), given by Eq. (2.3).

◦ M(E) = {P ∈M(P ) : (∀i = 1, . . . , n)(∀f) P (GP (f |Bi)) ≥ 0}.

◦ M(E) =M(P ) ∩M(P (P (·|B1))) ∩ · · · ∩M(P (P (·|Bn))) =M(Q).

Proof. ◦ We begin with the direct inclusion. From Eq. (2.3), given that P can be

regarded as a conditional lower prevision P (·|B) with B = {Ω}, we deduce that

E(f) = sup{µ : (∃g, h1, . . . , hn ∈ L(Ω)) f − µ ≥ GP (g) +

n∑
i=1

GP (hi|Bi)}, (6.4)

from which E ≥ P . If we take hi := f, hj := g := 0 for all j 6= i, we obtain that

E(GP (f |Bi)) ≥ 0 for every i.

Conversely, let P be a linear prevision satisfying P ≥ P and P (GP (f |Bi)) ≥ 0

for every i = 1, . . . , n and every f ∈ L(Ω). If P (f) < E(f) for some f , then by

Eq. (6.4) there are gambles g, h1, . . . , hn such that

f − P (f)− ε ≥ GP (g) +

n∑
i=1

GP (hi|Bi)
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for some ε > 0, whence

−ε = P (f − P (f)− ε) ≥ P (GP (g) +

n∑
i=1

GP (hi|Bi)) ≥ 0,

a contradiction.

◦ We begin with the direct inclusion. From the first statement,M(E) ⊆M(P ) and

given P ∈M(E) it holds that

P (f) = P (GP (f |Bi) + P (f |Bi)) ≥ P (P (f |Bi)) ≥ P (P (f |Bi))

for every gamble f and every i = 1, . . . , n.

Conversely, if P ∈M(P )∩M(P (P (·|B1)))∩· · ·∩M(P (P (·|Bn))), then for

every gamble f and every i = 1, . . . , n P (GP (f |Bi)) ≥ P (P (GP (f |Bi)|Bi)) =

0. Applying the first statement, we deduce that P ∈M(E). Finally, the definition

ofQ implies thatM(P )∩M(P (P (·|B1)))∩· · ·∩M(P (P (·|Bn))) =M(Q). �

We deduce from this result that Q avoids sure loss if and only if the lower previsions

P , P (·|B1), . . . , P (·|Bn) avoid partial loss, and it is coherent if and only if it agrees with

E, which corresponds to its natural extension. This equality can also be characterised in

terms of the conditional natural extensions of E, as we show next:

Proposition 17. Under the previous conditions, E = Q if and only if

(∀Bi ∈ Bi, i = 0, . . . , n) E(f |Bi) = max{P (f |Bi),M j(f |Bi), j = 1, . . . , n},

where we are denoting B0 := {Ω} and M j := P (P (·|Bj)) for j = 1, . . . , n, and where

E(·|Bi), P (·|Bi),M j(·|Bi) are defined by conditional natural extension.

Proof. Note that E(f |Bi) ≥ max{P (f |Bi),M j(f |Bi), j = 1, . . . , n} for all Bi ∈

Bi, i = 0, . . . , n because E ≥ Q.

We begin with the direct implication. The case i = 0 follows immediately from the

equality E = Q. On the other hand, given i = 1, . . . , n and Bi ∈ Bi, there are two

possibilities: if E(Bi) = 0, then E(·|Bi) is vacuous, and as a consequence it coincides

with P (f |Bi),M j(f |Bi), j = 1, . . . , n.

If E(Bi) > 0, then, taking into account that E = Q, we get

E(f |Bi) = sup{µ : E(Bi(f − µ)) ≥ 0}

= max{P (f |Bi), max
j=1,...,n

sup{µ : M j(Bi(f − µ)) ≥ 0}}

= max{P (f |Bi),M j(f |Bi), j = 1, . . . , n}

for every Bi ∈ Bi, i = 0, . . . , n.

The converse implication follows by applying the equality with i := 0 and Bi := Ω. �
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We can also give a necessary condition for the coherence of Q:

Proposition 18. Let B be a family of partitions of Ω, and define the lower prevision Q by

Eq. (6.3). If Q is coherent, then for every A ⊆ Ω, Q(A) > 0⇔ P (A) > 0.

Proof. Since Q ≥ P , it suffices to establish the direct implication. Assume ex-absurdo that

there is some set A such that P (A) = 0 < Q(A). Then there must be some partition B in

B such that P (P (A|B)) > 0, and as a consequence there must be some B ∈ B such that

P (A|B) > 0.

If B * A, then we should have P (B) > 0: otherwise, if P (B) = 0 Eq. (2.2) implies

that P (A|B) = infB IA∩B = 0, using that Ac ∩B 6= ∅. Now, P (B) > 0 implies that for

every P ≥ P we have that P (B) > 0, P (A|B) > 0, and as a consequence

P (A) ≥ P (A ∩B) = min{P (A ∩B) : P ≥ P} = min{P (A|B)P (B) : P ≥ P}

≥ P (A|B)P (B) > 0,

a contradiction. Thus, for every B ∈ B such that P (A|B) > 0 it must be B ⊆ A. Let

C := ∪{B ∈ B : B ⊆ A}. Then

P (P (A|B)) = P (P (C|B)) = P (C) ≤ P (A) = 0,

where the second equality holds because the indicator of C is B-measurable. But then we

conclude that P (P (A|B)) = 0, a contradiction. �

6.1.1. Two partitions. Next we shall investigate the properties of Q in the scenario made of

two partitions B1,B2:

Proposition 19. Let P be a coherent lower prevision on L(Ω),B1,B2 two partitions of Ω

and P (·|B1), P (·|B2) its conditional natural extensions. Let Ei be the natural extension of

P , P (·|Bi), M i := P (P (·|Bi)), and let Q be given by Eq. (6.3).

Q coherent ⇒ E = max{E1, E2} ⇔M(E1) ∪M(E2) convex.

Proof. On the one hand, E1 ≥ max{P ,M1}, E2 ≥ max{P ,M2}, so max{E1, E2} ≥

Q. On the other hand, Proposition 16 implies thatM(Q) =M(E) =M(P )∩M(M1)∩

M(M2). Moreover,M(Ei) =M(P )∩M(M i) for i = 1, 2, whenceM(E) =M(E1)∩

M(E2). Thus, E ≥ max{E1, E2}.

Now, if Q is coherent then Q = E and as a consequence Q = E = max{E1, E2}.

The equivalence is a consequence of [Zaffalon and Miranda, 2013, Theorem 6]. �

Unfortunately, the converse of the first implication does not always hold: it may be

that E = max{E1, E2} while it does not coincide with Q. In fact, the equality does not

guarantee that E is the {B1,B2}-conglomerable natural extension of P , as we show next:
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Example 9. Consider Ω := N ∪ −N and the partitions B1 := {{−n, n} : n ∈ N},B2 :=

{{−2n,−2n+ 1} : n ∈ N} ∪ {N}.

Let P1 be a linear prevision given by P1 := P1(P1(·|B1)) where P1(f |{−n, n}) =

f(n)+f(−n)
2 for all n, and whose B1-marginal satisfies P1({−2n, 2n}) = P1({−2n +

1, 2n− 1}) = 1
2n+2 for all n, P1({2n,−2n : n ∈ N}) = 3

4 . Consider on the other hand P2

given by

P2(f) =
∑
n

f(n)
1

2n+1
+

1

2
P (f−),

where P is a linear prevision on L(N) satisfying P ({n}) = 0 for every n and f− : N→ R

is given by f−(n) := f(−n) ∀n.

Let P := min{P1, P2}. Then P (f |{n,−n}) = min{f(n), f(n)+f(−n)2 } for all f ∈

L(Ω) and n ∈ N. As a consequence, if we fix some natural number n and take f :=

2In,n+1,..., we get GP (f |B1) = I{n,n+1,...} − I{−n,−n−1,...}, whence P2(GP (f |B1)) <

0 and P1(GP (f |B1)) = 0. Thus, M(E) ⊆ {P1}. Since by construction P1 is B1-

conglomerable, we deduce that E1 = P1.

On the other hand, by construction, P ({−2n,−2n + 1}) = 0 for every n, whence

P is B2-conglomerable and therefore E2 = P . Thus, max{E1, E2} = P1 = E, since

M(E) =M(E1)∩M(E2) =M(E1). However, P1 is not B2-conglomerable: if we take

f := 2I{−2n:n∈N} − 2I{−2n+1:n∈N}, we get P1(f |B2) = 0, whence P1(P1(f |B2)) = 0 6=

P1(f) = P1(P1(f |B1)) = 3
4 −

1
4 = 1

2 . ♦

Note that in the example above we do not have the equality Q = E = P1, because

Q({−n}) = max{P ({−n}), P (P ({−n}|B1)), P (P ({−n}|B2))} = 0 < P1({−n}).

Taking into account Proposition 18, we immediately deduce that Q is not coherent.

6.1.2. One partition. Finally, we consider the case of a single partition B. In that case, we

can prove that Q is coherent if and only if it is the B-conglomerable natural extension of P .

Proposition 20. Let P be a coherent lower prevision on L(Ω), B a partition of Ω and let

P (·|B) be the conditional natural extension of P . Let Q := max{P , P (P (·|B))} and E be

the natural extension of P , P (·|B). Then

Q coherent⇔ Q = E ⇔ Q is the B-conglomerable natural extension of P .

If in addition P (·|B) is linear then Q coherent⇒ Q = P or Q = P (P (·|B)).

Proof. The first equivalence follows from Proposition 16, so let us establish the second.

Assume that E = Q, and let us show that E(·|B) = P (·|B). We have that E(B) =
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Q(B) = max{P (B), P (P (B|B))} = P (B) for every B ∈ B. Thus, if P (B) = 0, then

both E(·|B) and P (·|B) are vacuous.

On the other hand, if E(B) > 0, then Proposition 17 implies that for any gamble f it

holds that

E(f |B) = max{P (f |B),M(f |B)},

where M(·|B) is the conditional natural extension of M := P (P (·|B)). Since M is

coherent with P (·|B) and M(B) = P (B) > 0, it must be M(·|B) = P (·|B).

Thus, E(·|B) = P (·|B) and this suffices to conclude that E (and therefore Q) is the

B-conglomerable natural extension of P , as established in [Miranda et al., 2012, Proposi-

tion 16].

The converse implication is trivial.

We move now towards the second part. Assume that P (·|B) is linear and that the

coherent lower prevision Q coincides neither with P nor with P (P (·|B)). This means

in particular that P does not dominate P (P (·|B)) or viceversa, or, in other words, that

both M(P ) \ M(P (P (·|B))) and M(P (P (·|B))) \ M(P ) are non-empty. Consider

P1 ∈M(P )\M(P (P (·|B))) and P2 ∈M(P (P (·|B)))\M(P ). If P1 /∈M(P (P (·|B))),

then it follows from Proposition 16 that P1 does not dominate the natural extension of

P , P (·|B) and that there is some gamble f such that P1(GP (f |B)) < 0.

On the other hand, since P2 ∈ M(P (P (·|B))), it follows from Walley [1991, The-

orem 6.7.4] that it must be P2 = P2(P (·|B)), and as a consequence P2(GP (f |B)) = 0.

But then it will be (αP1 + (1 − α)P2)(GP (f |B)) < 0 for any α ∈ (0, 1), and applying

Proposition 16 we deduce that αP1 + (1− α)P2 /∈M(P ) ∩M(P (P (·|B))).

We deduce thatQ = E, which is the lower envelope ofM(P )∩M(P (P (·|B))), cannot

coincide with the maximum of P , P (P (·|B)), as established in [Zaffalon and Miranda,

2013, Theorem 6, (b)⇔(c)]. This is a contradiction with the definition of Q. �

The second part of this proposition gives an example where the coherence of Q is very

stringent: it only holds when one of the coherent lower previsions P , P (P (·|B)) dominates

the other. Our next result gives another scenario where this property holds: that where

the coherent lower prevision P is the lower envelope of two linear previsions. This is a

particular case of finitary models, which we investigated in [Miranda and Zaffalon, 2015,

Section 6].

Proposition 21. Let P := min{P1, P2} be a coherent lower prevision on L(Ω), and

consider a partition B of Ω. Define Q := max{P , P (P (·|B))}. Then

Q coherent ⇔ Q = P or Q = P (P (·|B)).
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Proof. Let us establish the direct implication; the converse is trivial.

First of all, if Q is coherent, then it coincides with the natural extension E of P , P (·|B),

and applying Proposition 16,

M(Q) = {P ≥ P : (∀f) P (GP (f |B)) ≥ 0}. (6.5)

If Q 6= P , thenM(Q) is a proper subset ofM(P ) = {αP1 + (1− α)P2 : α ∈ [0, 1]},

or, in other words, there is some [a, b] ( [0, 1] such that

M(Q) = {αP1 + (1− α)P2 : α ∈ [a, b]}. (6.6)

Let us assume without loss of generality that b < 1, so that P1 ∈M(P ) \M(Q).

Assume that Q does not coincide with P (P (·|B)) either, which means that the difference

M(P (P (·|B))) \M(P ) is non-empty. Take P ′1 ∈M(P (P (·|B))) \M(P ).

If Q = max{P , P (P (·|B))} is coherent, then it follows from [Zaffalon and Miranda,

2013, Theorem 6] that there is some α ∈ (0, 1) such that αP1 + (1 − α)P ′1 ∈ M(P ) ∩

M(P (P (·|B))) =M(Q), whence

αP1 + (1− α)P ′1 = βP1 + (1− β)P2 for some β ∈ [a, b].

Note that it cannot be β ≥ α, or we would obtain that P ′1 ∈M(P ); thus, β < α, and then

P ′1 =
(β − α)P1 + (1− β)P2

1− α
.

In other words, any linear prevision in the non-empty setM(P (P (·|B))) \M(P ) can be

expressed as γP1 + (1− γ)P2 for some γ < 0, and as a consequence

M(P (P (·|B))) = (M(P (P (·|B))) ∩M(P )) ∪ (M(P (P (·|B))) \M(P ))

=M(Q) ∪ (M(P (P (·|B))) \M(P ))

= {γP1 + (1− γ)P2 : γ ∈ [c, d]} (6.7)

for some interval [c, d], taking into account that the credal setM(P (P (·|B))) is convex and

that therefore it cannot beM(P (P (·|B))) = {γP1 + (1− γ)P2 : γ ∈ [a′, b′]∪ [a, b]} with

b′ < a. From this we also deduce that c < 0 (becauseM(P (P (·|B))) \M(P ) 6= ∅) and

that d = b (because of Eq. (6.6)). In particular we deduce that P2 ∈M(P (P (·|B))).

At this point we establish a couple of properties of P (P (·|B)):

◦ On the one hand, for any gamble f that is constant on the elements of B, we must

have P1(f) = P2(f); otherwise, we can find such a gamble g with P1(g) < P2(g)

and we would obtain P (g) = P1(g) < bP1(g) + (1 − b)P2(g) = Q(g) =

max{P (g), P (P (g|B))} = P (g), a contradiction.

◦ Thus, given B ∈ B, if P1(B) = P2(B) > 0, then for any γ ∈ R

(γP1 + (1− γ)P2)(f |B) =
(γP1 + (1− γ)P2)(fB)

P1(B)
= γP1(f |B) + (1− γ)P2(f |B),
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taking into account that P1(B) = P2(B) by the previous point.

From this it follows that it must be P1(f |B) = P2(f |B) for every f : otherwise,

if we can find a gamble f such that P1(f |B) < P2(f |B), then we get

min{P (f |B) : P ≥ P (P (·|B))}

= min{(cP1 + (1− c)P2)(f |B), (bP1 + (1− b)P2)(f |B)}

= min{cP1(f |B) + (1− c)P2(f |B), bP1(f |B) + (1− b)P2(f |B)}

= bP1(f |B) + (1− b)P2(f |B) > P1(f |B) = P (f |B),

because b < 1. And this means that P (P (·|B)) is not coherent with P (·|B), a

contradiction with [Walley, 1991, Section 6.7.2].

◦ The previous point means that P (·|B) must be linear when P (B) > 0, and vacuous

otherwise. Let C := ∪{B : P (B) = 0}; then GP (f |B) ≥ GP (fICc |B) for every

gamble f . Since P2 ≥ Q, we deduce from Eq. (6.5) that P2(GP (f |B)) ≥ 0 for

every f , and in particular for fICc . Since −P (P (fICc |B)) = P (P (−fICc |B))

because P is linear on the gambles that are constant on B and P (·|B) is linear on

Cc, we deduce that P2(GP (fICc |B)) = 0 for every gamble f .

Since P1 /∈ M(Q), it follows from Eq. (6.5) that there exists a gamble f1 such that

P1(GP (f1|B)) < 0. We deduce from the third point above that P1(GP (f1ICc |B)) < 0

and therefore P1(GP (−f1ICc |B)) > 0.

The coherence of P (P (·|B)) with P (·|B) implies that P (P (GP (g|B))) ≥ 0 for every

gamble g, and therefore for any linear prevision Q ∈ M(P (P (·|B))), it holds that

Q(GP (g|B)) ≥ 0. Taking the form of the credal set M(P (P (·|B))) (Eq. (6.7)) into

account, we observe that, if γ > 0,

(γP1 + (1− γ)P2)GP (f1ICc |B) < 0,

and if γ < 0,

(γP1 + (1− γ)P2)GP (−f1ICc |B) < 0.

Thus, γP1 + (1 − γ)P2 /∈ M(P (P (·|B))) for any γ 6= 0, whence M(P (P (·|B))) =

{P2}; but then it would be P (P (·|B)) ≥ P , and therefore Q = P (P (·|B)). This is a

contradiction. �

Thus, under the hypotheses of the previous result, for Q to be coherent, either P

dominates P (P (·|B)) (which means that P is itself B-conglomerable and coincides with Q)

or P (P (·|B)) dominates P . This second possibility is characterised in the following result:
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Proposition 22. Let P := min{P1, P2} be a coherent lower prevision on L(Ω) and let B

be a partition of Ω such that P (B) > 0 for every B. Define P (·|B) by Eq. (2.2). Then

P (P (·|B)) 
 P ⇒ P (P (·|B)) is linear.

Proof. If P (P (·|B)) 
 P , Proposition 21 implies that P (P (·|B)) is the B-conglomerable

natural extension of P . It also follows from the proof of this proposition that the restriction

of P to the gambles that are constant on the elements of B is linear.

On the other hand, if P (·|B) were not linear, then there would be some gamble f and

some B ∈ B such that P1(f |B) 6= P2(f |B). Since P1(B) = P2(B) = P (B) > 0, it

follows that for every α ∈ (0, 1),

(αP1 + (1− α)P2)(f |B) =
αP1(fB) + (1− α)P2(fB)

P (B)

belongs to the interval ∈ (min{P1(f |B), P2(f |B)},max{P1(f |B), P2(f |B)}); now, if

M(Q) )M(P ) then there is some [a, b] ( [0, 1] such thatM(Q) = {αP1 + (1− α)P2 :

α ∈ [a, b]}, and then we deduce that Q(·|B) = min{(αP1 + (1−α)P2)(·|B) : α ∈ [a, b]}

does not agree with P (·|B) in either f or −f . This is a contradiction. As a consequence,

P1(·|B) = P2(·|B) for every B and therefore P (P (·|B)) is linear. �

The above result does not hold when P is the lower envelope of more than two coherent

lower previsions: we can take for instance a linear conditional prevision P (·|B), two differ-

ent B-marginals P1, P2 and a third linear prevision P3 that is not B-conglomerable but has

marginal P2 and conditional P (·|B). Then given P := min{P1(P (·|B)), P2(P (·|B)), P3},

it will hold that P (P (·|B)) = min{P1(P (·|B)), P2(P (·|B))} 
 P , even if it is not linear.

7. CONCLUSIONS

In this paper, we have explored the notion of full conglomerability for coherent lower pre-

visions, using the definition considered by Walley [1991, Section 6.8]. We have considered

both the precise and imprecise cases.

First of all, we have investigated if full conglomerability can be characterised in terms of

some continuity or super-additivity conditions. We have considered a number of possibilities,

and have shown that, although there are some necessary or sufficient conditions, there is

none that is at the same time necessary and sufficient. This seems to indicate that there is

not immediate advantage to use the general notion of full conglomerability if our goal is to

have models that are regular enough to be somewhat easier to deal with in practice. Still,

our results may help to simplify the verification of full conglomerability of a coherent lower

prevision.



38 MIRANDA AND ZAFFALON

Since countably additive models and their envelopes are in particular fully conglomerable,

we have also investigated their connection with continuity and super-additivity. Our results

show that these models have good mathematical properties; although the connection with

continuity in the precise case is well known, as it follows almost immediately from existing

results from probability theory, in the imprecise case we have given a necessary and a

sufficient condition, as well as a characterisation in terms of the natural extension from

gambles with a finite range. In our view, this indicates that envelopes of countably additive

linear previsions may be an interesting special class of fully conglomerable models for

practical use. This is perhaps the main message that springs from the technical analysis in

this paper in terms of embedding conglomerability in a viable way in probability.

The definition of joint coherence of a conditional and an unconditional lower prevision

has led us to define the functional Q as a supremum of marginal extensions. We have

shown that this functional can be used to characterise the full conglomerability, and that

in general it provides a conservative approximation of the fully conglomerable natural

extension, whenever the latter exists. We have also shown that Q is not coherent in general,

and that in some particular cases its coherence is equivalent to its equality with the fully

conglomerable natural extension.

A deeper study of this functional is one of the main open problems for future work; in

particular, we would like to determine whether the existence of the fully conglomerable

natural extension is equivalent to (and not only sufficient for) Q to avoid sure loss, and

whether the coherence of Q is sufficient (and not only necessary) for its equality with the

conglomerable natural extension of P . These two problems are related to the extension of

some of the results we have established in Section 6.1 to the general case.

More generally, it would be interesting to make a deeper comparison between our results

and the ones established by Seidenfeld et al. for the precise case by means of full conditional

measures. These are particularly interesting because they have been established also for

unbounded random variables [Schervisch et al., 2014], while most work on coherent lower

previsions only applies to bounded random variables, with the notable exception of Troffaes

and de Cooman [2014].
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illimitata di eventi incompatibili. Gior. Ist. It. Attuari, 6(4):415–427, 1935.

B. de Finetti. Sulla proprietà conglomerativa delle probabilità subordinate. Rendiconti del
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