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Abstract We investigate fully conglomerable coherent lower previsions in
the sense of Walley, and some particular cases of interest: envelopes of fully
conglomerable linear previsions, envelopes of countably additive linear pre-
visions and fully disintegrable linear previsions. We study the connections
with continuity and countable super-additivity, and show that full conglom-
erability can be characterised in terms of a supremum of marginal extension
models.
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1 Introduction

Conglomerability of a probability P was first discussed by Bruno de Finetti in
[4]. If we consider a partition B of the possibility space Ω such that P (B) > 0
for every B ∈ B, conglomerability means that

(∀A ⊆ Ω) inf
B∈B

P (A|B) ≤ P (A) ≤ sup
B∈B

P (A|B). (1)

A related (but stronger) notion was later studied by Dubins, with the name
disintegrability [3]. Other studies in the precise case were made in [1, 2, 9, 10].

Imposing as well as checking conglomerability can be technically difficult.
Partly for this reason, there are different schools of thought about the previ-
ous question: those who reject that conglomerability should be a rationality
requirement—among them looms the figure of de Finetti himself; and those
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who think it should be imposed, often in the light of the paradoxical situa-
tions that the lack of conglomerability may lead to. Among the latter stands
Peter Walley, who has proposed a behavioural theory of imprecise probabil-
ities, where the core modelling unit is a closed convex set of finitely additive
probabilities [11]. This theory is essentially Peter Williams’ earlier theory of
imprecise probability [12] with an additional axiom of conglomerability for
sets of probabilities, which coincides with Eq. (1) in the special case of precise
probability (and with disintegrability if we require that the conditional model
is also precise). The notion of conglomerability is nonetheless not univocally
defined in the literature; for this reason, in Section 3 we try to sort out the
situation by examining and comparing the different proposals in some detail.

In previous papers we have provided a behavioural support for conglom-
erability [13] and we have showed that it may be a difficult condition to work
with in practice [7, 8]. Here we investigate whether at least the notion of full
conglomerability (that is, conglomerability with respect to every partition)
admits a simple treatment. To this end, we make a thorough mathematical
study of the properties of full conglomerability and its relations to other no-
tions: continuity (in various forms), countable super-additivity, and marginal
extension. Due to limitations of space, the proofs of the results as well as
some relevant counterexamples have been omitted.

2 Preliminary notions

Let us introduce the basic elements of the theory of coherent lower previsions.
We refer to [11] for more details. Consider a possibility space Ω. A gamble is a
bounded map f : Ω→ R. One instance of gambles are the indicator gambles
of sets B ⊆ Ω, which we shall denote by IB or B. We denote by L(Ω) the
space of all gambles on Ω.

A linear prevision on L(Ω) is a linear operator satisfying P (f) ≥ inf f for
all f ∈ L(Ω). It is the expectation operator with respect to a finitely additive
probability. When its restriction to events is countably additive, meaning that
P (∪nBn) =

∑
n P (Bn) for any countable family (Bn)n of pairwise disjoint

events, we say that P is a countably additive linear prevision.
A coherent lower prevision P on L(Ω) is the lower envelope of a closed

and convex set of linear previsions. The conjugate upper envelope P is called
a coherent upper prevision, and it holds that P (f) = −P (−f) for all f . We
let M(P ) := {P linear prevision : (∀f) P (f) ≥ P (f)} and call it the credal
set associated with P . More generally, we say that a map P : L(Ω) → R
avoids sure loss when it is dominated by some coherent lower prevision. The
smallest such prevision is called its natural extension, and it coincides with
the lower envelope of the non-empty set M(P ).

A coherent lower prevision is in a one-to-one correspondence with its as-
sociated set of strictly desirable gambles R := {f : P (f) > 0 or f 
 0}, in
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the sense that P (f) = sup{µ : f − µ ∈ R} for all f ∈ L(Ω); the closure R of
the set of strictly desirable gambles in the topology of uniform convergence is
called the set of almost-desirable gambles, and it satisfiesR = {f : P (f) ≥ 0}.

The notion of coherence can also be extended to the conditional case. Let
B be a partition of Ω. A separately coherent conditional lower prevision is a
map P (·|B) :=

∑
B∈B IBP (·|B), and where for every B ∈ B the functional

P (·|B) : L(Ω)→ R is a coherent lower prevision satisfying P (B|B) = 1.
Given a coherent lower prevision P and a separately coherent conditional

lower prevision P (·|B), they are (jointly) coherent when P (G(f |B)) = 0 for
all f ∈ L(Ω), B ∈ B and P (G(f |B)) ≥ 0 for all f ∈ L(Ω), where G(f |B) :=
B(f − P (f |B)) and G(f |B) :=

∑
B G(f |B) = f − P (f |B).

This notion is based on what Walley called the conglomerative principle,
which means that if a gamble f satisfies that IBf is desirable for any B ∈ B,
then f should also be desirable. This is the main point of controversy between
Walley’s and de Finetti’s approaches. The latter only requires that a finite
sum of desirable gambles is again desirable, and this yields a different notion
of conditional coherence, usually referred to as Williams coherence [12].

The notion of natural extension can also be considered in the conditional
case. Given a coherent lower prevision P and a partition B of Ω, its conditional
natural extension P (·|B) is given by

P (f |B) :=

{
infB f if P (B) = 0,

sup{µ : P (B(f − µ)) ≥ 0} otherwise
(2)

for any f ∈ L(Ω). It always holds that P (G(f |B)) = 0 for all f ∈ L(Ω), B ∈
B, so P , P (·|B) are coherent if and only if P (G(f |B)) ≥ 0 for all f ∈ L(Ω).

3 Different notions of conglomerability in the literature

As we mentioned in the Introduction, conglomerability was first introduced
by de Finetti in [4] in terms of Eq. (1). The conditional probability P (A|B)
in that equation is derived from the unconditional one by Bayes’ rule, so that
P (A|B) = P (A∩B)/P (B), whenever P (B) 6= 0. However, de Finetti argued
[5, Ch. 5] that it also makes sense to consider the conditional probability
P (A|B) when the event B has probability 0 but is not deemed impossible. In
that case, he suggested to define a full conditional measure as that considered
in [3, Sect. 3].

There exists a connection between full conditional measures and the theory
of coherent previsions: if we represent a full conditional measure on P(Ω)×
(P(Ω)\∅) as a family of conditional and unconditional assessments {P (·|B) :
B ⊆ Ω}, then these conditional previsions satisfy the notion of Williams
coherence [12, Prop. 6]. On the other hand, as Schervisch, Seidenfeld and
Kadane have established in [9, 10], if the linear prevision that results from
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restricting a full conditional measure to P(Ω) is not countably additive, then
there is some partition B of Ω where Eq. (1) is violated. In other words, under
this approach the only fully conglomerable models are the countably additive
ones.

On the other hand, Walley [11, Sect. 6.8.1] calls a coherent lower prevision
P on L(Ω) B-conglomerable if for any gamble f such that P (Bf) ≥ 0 for all
B ∈ B with P (B) > 0, it holds that P (

∑
P (B)>0Bf) ≥ 0. This is equivalent

to the existence of a conditional lower prevision P (·|B) such that P , P (·|B) are
jointly coherent, and also to the coherence of P with its conditional natural
extension. Thus, conglomerability means that the coherent lower prevision P
can be updated in a coherent way to a conditional lower prevision P (·|B). The
notion can be applied in particular to linear previsions. However, in that case
we may also require that the linear prevision can be updated into a linear
model; this gives rise to a stronger notion, called B-disintegrability. From [11,
Thm. 6.5.7], the B-disintegrability of a linear prevision is equivalent to the
existence of a conditional linear prevision P (·|B) such that P = P (P (·|B)).

We say that P is fully conglomerable when it is B-conglomerable for every
partition B of Ω. In a similar manner, we say that a linear prevision P is
fully disintegrable when for every partition B there is some conditional linear
prevision P (·|B) such that P = P (P (·|B)).

If a lower prevision P is fully conglomerable, then we can define a family
of conditional lower previsions H := {P (·|B) : B partition of Ω} with the
property that P , P (·|B) are coherent for every partition B. It can be checked
that these conditional lower previsions are also coherent with each other, in
the sense that they can all be induced by a common fully conglomerable
set of desirable gambles. This means that when we consider the family of
all partitions, coherence becomes equivalent to the notion of conglomerable
coherence studied in much detail in [7]. In the same manner that the natu-
ral extension of a lower prevision is the smallest dominating coherent lower
prevision, we shall call the fully conglomerable natural extension the small-
est fully conglomerable coherent lower prevision that dominates P , in case it
exists.

We see then that the two approaches are different, basically because of
the manner the problem of conditioning on sets of (lower) probability zero
is dealt with. In de Finetti’s case, it is advocated to use full conditional
measures, while in Walley’s case these sets are not taken into account (in the
lower prevision approach we are considering here; a more informative model
would be that of sets of desirable gambles). In this sense, Walley’s condition is
close to what Armstrong called positive conglomerability in [1]. The different
approach means for instance that a linear prevision whose restriction to events
is {0, 1}-valued will always be fully conglomerable for Walley, while it may
not be so for de Finetti. Another key difference is in the rejection by de Finetti
of the conglomerative principle, that makes the conditional models subject
to a different consistency condition (Williams coherence for de Finetti, and
the stronger version of Walley in his case).
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4 Full conglomerability in the precise case

In the precise case, we consider three properties for a linear prevision P :

M1. P is countably additive.
M2. P is fully disintegrable.
M3. P is fully conglomerable.

By [11, Thm. 6.9.1], condition M1 implies M2; on the other hand, it follows
from its definition that a fully disintegrable linear prevision is in particular
fully conglomerable. With respect to the converse implication, we shall con-
sider two cases: linear previsions whose restrictions to events have a finite
range (called molecular in [2]) and those whose restrictions to events have
infinite range (called non-molecular in [2]).

Proposition 1. Let P be a linear prevision on L(Ω).

1. If P is molecular, then for every partition B of Ω, |{B ∈ B : P (B) > 0}| <
+∞, and as a consequence, P is fully conglomerable.

2. If P is non-molecular, then it is countably additive if and only if it is fully
conglomerable. In that case, P ({ω ∈ Ω : P (ω) > 0}) = 1.

In [9, Thm. 3.3] it is proven that any full conditional measure whose associ-
ated unconditional probability is molecular and not countably additive is not
fully disintegrable. In other words, countable additivity and full disintegra-
bility are equivalent in the molecular case provided we enter the framework
of full conditional measures.

Next we study the connection with continuity. We consider the following
continuity conditions:

C1. (fn)n∈N → f ⇒ (P (fn))n∈N → P (f).
C2. (fn)n∈N ↓ f ⇒ (P (fn))n∈N ↓ P (f).
C3. (fn)n∈N ↓ 0⇒ (P (fn))n∈N ↓ 0.
C4. (fn)n∈N ↑ f ⇒ (P (fn))n∈N ↑ P (f).

It is not difficult to show the following:

Proposition 2. For any linear prevision P , M1 ⇔ C2 ⇔ C3 ⇔ C4.

We deduce from this that condition C1 is sufficient for P to be countably
additive. However, it is not necessary. On the other hand, any of the condi-
tions C2–C4 is sufficient for P to be fully disintegrable, and as a consequence
also fully conglomerable.

The only open problem at this stage would be the equivalence between M2
and M1. A counterexample would require the definition of a family of con-
ditional linear previsions {P (·|B) : B partition of Ω} and an unconditional
linear prevision P such that P = P (P (·|B)) for every B (so P is fully disin-
tegrable) while there exists a finite sub-family of {P (·|B) : B partition of Ω}
which violates Williams coherence (so that we cannot make a representation
in terms of full conditional measures, because if we could, then P would be
countably additive by [9]). Such an example seems unlikely, in our opinion.
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5 Full conglomerability in the imprecise case

In the imprecise case, we consider three properties of a coherent lower previ-
sion P :

M4. P is the lower envelope of a family of countably additive linear previsions.
M5. P is the lower envelope of a family of fully conglomerable linear previsions.
M6. P is fully conglomerable.

Analogous conditions to M4, M5 (in terms of upper envelopes) can be
established for a coherent upper prevision P . It is immediate to see that

M1 ⇒ M3 ⇒ M5 ⇒ M6 and M1 ⇒ M4 ⇒ M5 ⇒ M6.

However, the remaining implications do not hold: on the one hand, a lin-
ear prevision may be fully conglomerable without being countably additive;
moreover, there are fully conglomerable coherent lower previsions that are not
dominated by any fully conglomerable (and as consequence by any countably
additive) linear prevision [11, Ex. 6.9.6].

With respect to M4, Krätschmer established in [6, Sect. 5] that a 2-
alternating upper probability on P(Ω) is the upper envelope of a family of
countably additive probabilities if and only if P (A) = sup{P (B) : A ⊇
B finite} for every A ⊆ Ω. However, we have shown that the above condition
does not characterise M4 in general. Nevertheless, we can give a necessary
and sufficient condition in the particular case where Ω = N:

Proposition 3. Let P be a coherent upper prevision on L(N). Then P sat-
isfies M4 ⇔ (∀n ∈ N) P = supMn ⇔ (∀f ≥ 0) P (f) = limn P (fI{1,...,n})⇔
(∀f ≥ 0) P (f) = sup{P (g) : g ≤ f, supp(g) finite}, where Mn := {P ≤ P :
limm P ({1, . . . ,m}) ≥ 1− 1

n} and (∀g) supp(g) = {n : g(n) 6= 0}.

Next, we study the connection with the continuity properties C1–C4. On
the one hand, we deduce from the precise case that none of them is necessary
for P to belong to M5, M6. On the other hand, we have that:

Proposition 4. C1⇒ C4⇒ M4⇒ C2, M5⇒ M6 and C2⇒ C3. Moreover,
no additional implication other than the ones that immediately follow from
these holds.

Next we investigate the connection with the following condition:

M7. (∀(fn)n ⊆ L(Ω) such that
∑

n fn ∈ L(Ω)) P (
∑

n fn) ≥
∑

n P (fn).

The reason for our investigation is that both countable super-additivity and
conglomerability are quite related to the closedness of a set of desirable gam-
bles under countable sums. Specifically, we have proven the following:

Proposition 5. Let P be a coherent lower prevision and let R,R denote its
associated sets of strictly desirable and almost desirable gambles, respectively.
Then each of the following statements implies the next:
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1. P satisfies M7.
2. (∀(fn)n ⊆ R :

∑
n fn ∈ L(Ω))

∑
n fn ∈ R.

3. (∀(fn)n ⊆ R :
∑

n fn ∈ L(Ω))
∑

n fn ∈ R.
4. P satisfies C3.

The connection between M7 and the other conditions is given by

C2 ⇒ M7 ⇒ C3 and M7 ⇒ M6,

together with those derived from Prop. 4. We deduce that if P is linear,

C1 ⇒ M1 ⇔ C2 ⇔ M7 ⇔ C3 ⇔ C4 ⇒ M2 ⇒ M3.

The only open problem left at this stage is whether M7 and C2 are equivalent.

6 Full conglomerability and marginal extension

From [11, Thm. 6.8.2], given a coherent lower prevision P and a partition B
of Ω, it holds that P is B-conglomerable if and only if P ≥ P (P (·|B)), where
P (·|B) is the conditional natural extension of P , given by Eq. (2). Thus, P
is fully conglomerable if and only if P ≥ supB partition P (P (·|B)) := Q.

The concatenation P (P (·|B)) of a marginal and a conditional lower previ-
sion is called a marginal extension model [11, Sect. 6.7]; this is an extension of
the product rule to the imprecise case. The condition above tells us then that
fully conglomerable lower previsions are always the supremum of a family of
marginal extension models. Our next proposition summarizes the relationship
between P and the functional Q it determines:

Proposition 6. Let P be a coherent lower prevision and F its fully conglom-
erable natural extension (if it exists), and define Q as above.

1. P ≤ Q ≤ F .
2. P is fully conglomerable ⇔ P = Q.
3. Q does not avoid sure loss in general, and M(Q) 6= ∅; P satisfies M6.

Thus, the full conglomerability of P implies the coherence of Q. Although
it is an open problem whether the converse holds in general, it is easy to see
that when P is linear, then Q ≥ P is coherent if and only if Q = P (it cannot
be that Q(f) > P (f) and still be that Q is coherent), so in the precise case
we have the equivalence.

7 Conclusions

Our results show that countably additive models and their envelopes seem
to be easier to use in practice than fully conglomerable ones; although the
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connection with continuity in the precise case is well known, as it follows
almost immediately from existing results from probability theory, in the im-
precise case we have given a necessary and a sufficient condition, as well as a
characterisation in terms of the natural extension from gambles with a finite
range. In our view, this indicates that envelopes of countably additive linear
previsions may be more interesting in practice, and they could be a tool to
guarantee the property of full conglomerability.

The definition of joint coherence of a conditional and an unconditional
lower prevision has led us to define the functional Q as a supremum of
marginal extensions. A deeper study of this functional is one of the main open
problems for future work; in particular, we would like to determine whether
the existence of the fully conglomerable natural extension is equivalent (and
not only sufficient) to Q avoiding sure loss, and whether the coherence of Q
is sufficient (and not only necessary) for its equality with the fully conglom-
erable natural extension of P .

More generally, it would be interesting to make a deeper comparison be-
tween our results and the ones established by Seidenfeld et al. for the precise
case by means of full conditional measures.
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