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1. Introduction

The Dirichlet process (DP) is one of the most popular Bayesian nonparametric models. It was
introduced by Ferguson [1] as a prior over probability distributions. In his seminal paper, Fer-
guson showed that the DP leads to tractable posterior inferences and can be used for Bayesian
analysis of several nonparametric models, such as the estimation of a distribution function, of a
mean, of quantiles, of a variance, etc. He also considered the estimation of P(X ≤ Y ) assigning
independent Dirichlet process priors to the distribution functions of X and Y . The Mann-Whitney
statistic naturally arises in this case. Susarla and Van Ryzin [2] and Blum and Susarla [3] ex-
tended the results of Ferguson on estimation of the distribution function in case of right censored
data obtaining a Bayesian version of the Kaplan-Meier estimator. Dalal and Phadia [4] consid-
ered the problem of estimating a measure of dependence for a bivariate distribution. The Bayes
estimate is computed using a two-dimension Dirichlet prior and Kendall’s tau is seen to appear
naturally. A review of other similar applications of the DP can be found in [5].

The beauty of the DP is that most of these results are in closed form and that it provides a
Bayesian justification of the classic nonparametric estimators. In spite of all these nice prop-
erties and of the promising initial outcomes, such a research did not result in the development
of DP-based Bayesian nonparametric procedures for hypothesis testing. For instance, the most
used statistical packages for DP-based Bayesian nonparametric modeling, “DPpackage” [6] and
“Bayesm” [7], include procedures for density estimation, clustering and regression, but do not
include any Bayesian version of the Wilcoxon rank sum, Wilcoxon sign test or other classic
nonparametric tests. It is arguable that this absence may be related to the unsettled question of
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how to choose the prior “parameters” of the DP in case of lack of prior information. Only very
recently there has been a renewed interest in the development of Bayesian nonparametric pro-
cedures for hypothesis testing [8, 9, 10, 11, 12] – we will return on these approaches later in the
paper. However, also in these cases, the choice of the prior parameters is critical, as is evident
from the solution commonly chosen to address this problem, namely, the empirical Bayesian
approach.

It is well known that a DP is completely characterized by its prior “parameters”: the prior
strength (or precision), which is a positive scalar number, and the normalized base measure. The
question is, how should we choose these prior “parameters” in case of lack of prior information?
The only non-empirical solution to this problem that has been proposed so far, first by Ferguson
[1] and then by Rubin [13] under the name of Bayesian Bootstrap (BB), is the limiting DP ob-
tained when the prior strength goes to zero. But the BB model has faced quite some controversy,
since it is not actually noninformative and moreover it assigns zero posterior probability to any
set that does not include the observations. We will discuss these two points in more detail in
Section 3.

In this paper we present an alternative viewpoint to the problem of choosing the prior base
measure of the DP in case of lack of prior information that overcomes the above drawbacks
of the BB. The model we present generalizes to nonparametric setting earlier ideas developed
in Bayesian parametric robustness, see Berger [14] and Berger et al. [15] for a review. Here
lack of prior information is expressed in terms of a family T consisting of all prior probability
measures that are compatible with the available prior information. Inferences are then carried
out by considering the whole family T . In case almost no prior information is available on
the parameters of interest, T should be as large as possible in order to describe this state of
prior ignorance. The natural candidate for T to represent complete ignorance is the set of all
probability measures. However, it turns out that the posterior inferences obtained from this set
are vacuous [16, Sec. 7.3.7], i.e., the posterior set coincides with the prior set. This means that
there is no learning from data. Therefore, the vacuous prior model is not a practically useful
way to model our prior ignorance. There is then a compromise to be made. Pericchi and Walley
[17] and Walley [16] suggest, as an alternative, the use of an almost vacuous model which they
call “near-ignorance” or “imprecise” model. This is a model that behaves a priori as a vacuous
model for some basic inferences (e.g., prior mean, prior credible regions) but always provides
non-vacuous posterior inferences.

While Bayesian robust models have already been extended to the nonparametric setting [18],
that has not been the case for near-ignorance models. Note that, a nonparametric model that
uses lower and upper bounds for probabilities to quantify uncertainty has been proposed by
Augustin and Coolen [19], Coolen and Augustin [20]. However, this model is a purely predic-
tive model, based on post-data assumptions, and, thus, it cannot be used straightforwardly (i.e.,
without bootstrap) to perform hypothesis tests. The main aim of this paper is to derive a prior
near-ignorance DP, called Imprecise DP (IDP). This is the class T of all DPs obtained by fix-
ing the prior strength of the DP and letting the normalized base measure vary in the set of all
probability measures. We will show that the IDP behaves a priori as a vacuous model for all
predictive inferences. This, together with the fact that it is a nonparametric model, allows us to
start a statistical analysis with very weak assumptions about the problem of interest. However,
contrarily to a full vacuous model, we will show that the IDP can learn from data.

Moreover, we will employ the IDP to develop a new Bayesian nonparametric hypothesis test
on the probability that X ≤ Y ; we will call this test IDP rank-sum test, due to its similarity with
the Mann-Whitney-Wilcoxon (MWW) rank-sum test. This hypothesis test is widely applied; for
instance, if X and Y are health status measures in a clinical trial, P(X ≤ Y ) is, roughly speak-
ing, the probability that the treatment represented by Y is better (not worse) than the treatment
represented by X . A Bayesian nonparametric near-ignorance model presents several advantages
with respect to a traditional approach to hypothesis testing. First of all, the Bayesian approach
allows us to formulate the hypothesis test as a decision problem. This means that we can verify
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the evidence in favor of the null hypothesis and not only rejecting it, as well as take decisions
that minimize the expected loss. Second, because of the nonparametric near-ignorance prior, the
IDP rank-sum test allows us to start the hypothesis test with very weak prior assumptions, much
in the direction of letting data speak for themselves. From a computational point of view, we
will show that posterior inferences from the IDP can be derived by computing lower and upper
bounds of expectations w.r.t. the class of DPs T and that, for certain inference, these lower and
upper bounds can be computed in closed-form (e.g., mean and variance of P(X ≤ Y )). When
no closed form expression exists, these bounds can be computed by a simple Monte Carlo sam-
pling from two Dirichlet distributions. This means that we do not need to use “stick breaking”
Sethuraman [21] or other sampling approaches specific for DP. This computational advantage is
an effect of our prior near-ignorance model.

In our view, the IDP rank-sum test appears to be a natural way to complete the work of
Ferguson [1], who first showed the connection between the expectation of P(X ≤ Y ) w.r.t. the
DP and the Mann-Whitney statistic: it develops a Bayesian nonparametric near-ignorance-prior
test for the probability that X ≤ Y , which is computationally efficient and that, also for this
reason, provides an effective practical alternative to the MWW test.

Note that, although the IDP test shares several similarities with a standard Bayesian approach,
at the same time it embodies a significant change of paradigm when it comes to take decisions.
In fact the IDP rank-sum test has the advantage of producing an indeterminate outcome when
the decision is prior-dependent. In other words, the IDP test suspends the judgment (which can
be translated as “I do not know whether Y is better than X”) when the option that minimizes
the expected loss changes depending on the DP base measure we focus on. Therefore, the IDP-
based test is robust in the sense that it provides a determinate decision only when all the DPs,
in the class the IDP represents, agree on the same decision. We will show that the number of
indeterminate instances decreases as the evidence accumulates and thus that the IDP-based test
is always asymptotically consistent for P(X ≤ Y ). This is not always true for the MWW test,
even though the MWW test is commonly employed as a test about P(X ≤ Y ).

Finally, we will compare our IDP test with the MWW test and the DP-based test obtained as
the prior strength goes to zero (called BB-DP test). We empirically show on several different
case studies that when the IDP test is indeterminate, the MWW and BB-IDP tests are virtually
behaving as random guessers. For a sample size of 20 observations, the percentage of these
instances can reach almost 20%. We regard this surprising result as an important finding, with
practical consequences in hypothesis testing. Assume that we are trying to compare the effects
of two medical treatments (“Y is better than X”) and that, given the available data, the IDP
test is indeterminate. In such a situation the MWW test (or the BB-IDP test) always issues a
determinate response (for instance, “I can tell that Y is better than X”), but it turns out that its
response is virtually random (like if we were tossing a coin). In these cases by using MWW we
would choose treatment Y , but this decision would not be reliable. In fact in these instances the
MWW test could randomly return the other hypothesis (“it is not true that Y is better than X”).
On the other side, the IDP test acknowledges the impossibility of making a decision in these
cases. Thus, by saying “I do not know”, the IDP test provides a richer information to the analyst.
The analyst could for instance use this information to collect more data.

A desirable test should have a low Type I error, high power, but also high replicability. The
replicability is the probability that the same conclusion is achieved in two experiments involving
the same pair of treatments (i.e., the null hypothesis is accepted or rejected in both cases). Since
the response of the MWW test (or of the BB-IDP test) is virtually random when the IDP is
indeterminate, it is then clear that a sharp drop of replicability affects the MWW test (or the
BB-IDP test) when the IDP test becomes indeterminate. Therefore, one of the advantages of
the IDP test w.r.t. the MWW test (or the BB-IDP test) is the higher replicability. This has also
been observed for other (imprecise) robust models, see in particular Coolen and Bin Himd [22],
Benavoli et al. [23]. Finally, note that IDP tests can be used in many other applications beside the
medical one (i.e., not only for comparing two treatments), For instance, we have implemented
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an IDP version of the Wilcoxon signed rank sum test and used it to compare the performance
of classifiers (or algorithms, more in general), see Benavoli et al. [23]. We have extended the
IDP rank-sum test to account for censored data, which are common in reliability and survival
analysis. R and Matlab codes of the IDP rank-sum test and these other tests are freely available
at http://ipg.idsia.ch/software/IDP.php.

2. Dirichlet process

The Dirichlet process was developed by Ferguson [1] as a probability distribution on the space
of probability distributions. Let X be a standard Borel space with Borel σ -field BX and P be
the space of probability measures on (X,BX) equipped with the weak topology and the corre-
sponding Borel σ -field BP. Let M be the class of all probability measures on (P,BP). We call
the elements µ ∈M nonparametric priors.

An element of M is called a Dirichlet process distribution D(α) with base measure α if for
every finite measurable partition B1, . . . ,Bm of X, the vector (P(B1), . . . ,P(Bm)) has a Dirichlet
distribution with parameters (α(B1), . . . ,α(Bm)), where α(·) is a finite positive Borel measure
on X. Consider the partition B1 = A and B2 = Ac = X\A for some measurable set A ∈ X, then if
P∼D(α) from the definition of the DP we have that (P(A),P(Ac))∼Dir(α(A),α(X)−α(A)),
which is a Beta distribution. From the moments of the Beta distribution, we can thus derive that:

E [P(A)] =
α(A)
α(X)

, E [(P(A)−E [P(A)])2] =
α(A)(α(X)−α(A))
(α(X)2(α(X)+1))

, (1)

where we have used the calligraphic letter E to denote expectation w.r.t. the Dirichlet process.
This shows that the normalized measure α(·)/α(X) of the DP reflects the prior expectation
of P, while the scaling parameter α(X) controls how much P is allowed to deviate from its
mean α(·)/α(X). Let s = α(X) stand for the total mass of α(·) and α∗(·) = α(·)/s stand for
the probability measure obtained by normalizing α(·). If P ∼ D(α), we shall also describe
this by saying P ∼ Dp(s,α∗) or, if X = R, P ∼ Dp(s,G0), where G0 stands for the cumulative
distribution function of α∗.

Let P ∼ Dp(s,α∗) and f be a real-valued bounded function defined on (X,B). Then the
expectation with respect to the Dirichlet process of E[ f ] is

E
[
E( f )

]
= E

[∫
f dP

]
=
∫

f dE [P] =
∫

f dα
∗. (2)

One of the most remarkable properties of the DP priors is that the posterior distribution of P
is again a DP. Let X1, . . . ,Xn be an independent and identically distributed sample from P and
P∼ Dp(s,α∗), then the posterior distribution of P given the observations is

P|X1, . . . ,Xn ∼ Dp

(
s+n,

s
s+n

α
∗+

1
s+n

n

∑
i=1

δXi

)
, (3)

where δXi is an atomic probability measure centered at Xi. This means that the Dirichlet process
satisfies a property of conjugacy, in the sense that the posterior for P is again a Dirichlet process
with updated unnormalized base measure α +∑

n
i=1 δXi . From (3) and (1)–(2), we can easily

derive the posterior mean and variance of P(A) and, respectively, posterior expectation of f .
Hereafter we list some useful properties of the DP that will be used in the sequel (see Ghosh and
Ramamoorthi [24, Ch. 3]).
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(a) In case X = R, since P is completely defined by its cumulative distribution function F ,
a-priori we say F ∼ Dp(s,G0) and a posteriori we can rewrite (3) as follows:

F |X1, . . . ,Xn ∼ Dp

(
s+n,

s
s+n

G0 +
n

s+n
1
n

n

∑
i=1

I[Xi,∞)

)
, (4)

where I is the indicator function and 1
n ∑

n
i=1 I[Xi,∞) is the empirical cumulative distribu-

tion.
(b) Consider an element µ ∈M which puts all its mass at the probability measure P = δx for

some x ∈ X. This can also be modeled as Dp(s,δx) for each s > 0.
(c) Assume that P1 ∼ Dp(s1,α

∗
1 ), P2 ∼ Dp(s2,α

∗
2 ), (w1,w2) ∼ Dir(s1,s2) and P1, P2, (w1,w2)

are independent, then [24, Sec. 3.1.1]:

w1P1 +w2P2 ∼ Dp
(

s1 + s2,
s1

s1 + s2
α
∗
1 +

s2

s1 + s2
α
∗
2

)
. (5)

(d) Let Px have distribution Dp(s+n, s
s+n α∗+ 1

s+n ∑
n
i=1 δXi). We can write

Px = w0P+
n

∑
i=1

wiδXi , (6)

where ∑
n
i=0 wi = 1, (w0,w1, . . . ,wn) ∼ Dir(s,1, . . . ,1) and P ∼ Dp(s,α∗). This follows

from (b)-(c).

3. Prior ignorance

How should we choose the prior parameters (s,α∗) of the DP, in particular the infinite-
dimensional α∗, in case of lack of prior information? To address this issue, the only prior that
has been proposed so far is the limiting DP obtained for s→ 0, which has been introduced under
the name of Bayesian Bootstrap (BB) by Rubin [13]; in fact it can be proven that the BB is
asymptotically equivalent (see Lo [25] and Weng [26]) to the frequentist bootstrap introduced
by Efron [27].

The BB has been criticized on diverse grounds. From an a-priori point of view, the main
criticism is that taking s→ 0 is far from leading to a noninformative prior. Sethuraman and
Tiwari [28] have shown that for s→ 0 a measure sampled from the DP is a degenerated (atomic)
measure centered on X0, with X0 distributed according to α∗. As a further consequence, from an
a-posteriori point of view, this choice for the prior gives zero probability to the event that a future
observation is different from the previously observed data. Rubin [13] reports the following
extreme example. Consider the probability that X >C where C is a value larger than the largest
observed value of X , i.e., X(n). The standard BB and bootstrap methods estimate such probability
to be 0 with zero variance, which is untenable if X can assume different values from the n
previously observed. Rubin also remarks that one should expect a probability that X is greater
than or equal to X(n) of about 1/(n+ 1). This shows that a Dirichlet prior with s→ 0 implies
definitely a very strong (and not always reasonable) information about P, and hence it cannot
be considered a noninformative prior. On the other side, if we choose a DP prior with s > 0, the
inferences provided by this model will be sensitive to the choice of the normalized measure α∗.
If, for example, we decide to assign a “tail” probability of 1/(n+1) to X > X(n), in agreement
with Rubin’s intuition, the inferences will be different if we assume that the tail probability is
concentrated on X(n) or if we assume that it is spread from X(n) to a very large value of X .
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To answer to the initial question of this section, we propose the imprecise Dirichlet process
(IDP). The main characteristic of the IDP is that it does not require any choice of the normalized
measure α∗, it is a prior near-ignorance model and solves the issues of the BB. Before introduc-
ing the IDP, it is worth to explain what is a prior near-ignorance model with the example of a
parametric model [16, Sec. 5.3.1].
Example 1. Let A be the event that a particular thumbtack lands pin-up at the next toss. Your in-
formation is that there have been m occurrences of pin up in n previous tosses. Using a Bernoulli
model, the likelihood function generated by observing m successes in n trials is then propor-
tional to θ n(1− θ)n−m where θ is the chance of pin-up. To complete the model, we need to
specify prior beliefs concerning the unknown chance θ . We can use a conjugate Beta prior
p(θ) = Be(θ ;α,β ), where α,β > 0 are the prior parameters of the Beta density. A-posteriori
we have that p(θ |m,n) = Be(θ ;α +m,β + n−m). Thus, the prior and posterior probabilities
of A are:

P(A) = E[θ ] = t, P(A|m,n) = E[θ |m,n] =
st +m
s+n

,

where s = α +β is the prior strength and t = α/(α +β ) the prior mean. The problem is how
to choose the parameters s, t in case of lack of prior information. Walley [16, Ch. 5] proposes to
use a prior near-ignorance model. A near-ignorance prior model for this example is any set of
priors which generates vacuous prior probabilities for the event of interest A, i.e.,

P(A) = 0, P(A) = 1,

where P,P are lower and upper bounds for P(A). These vacuous probabilities reflect a complete
absence of prior information concerning A. For the Beta prior, since P(A) = E[θ ] = t, the class
of priors is simply:

p(θ) ∈ {Be(θ ;st,s(1− t)) : 0 < t < 1} ,

for some fixed s > 0, i.e., this is the set of priors obtained by considering all the Beta densities
whose mean parameter t is free to span the interval (0,1). Posterior inferences from this model
are derived by computing lower and upper posterior bounds; in the case of event A these bounds
are:

P(A|m,n) =
m

s+n
, P(A|m,n) =

s+m
s+n

,

where the lower is obtained for t → 0 and the upper for t → 1. We point the reader to Walley
[29] for more details about this model and to Benavoli and Zaffalon [30] for an extension of
near-ignorance to one-parameter exponential families.

3.1 Imprecise Dirichlet process

Before introducing the IDP, we give a formal definition of (nonparametric) prior ignorance for
predictive inferences. Let f be a real-valued bounded function on X, we call E[ f ] =

∫
f dP a

predictive inference about X and P ∈ P. Let µ ∈M be a nonparametric prior on P and Eµ [E(P)]
the expectation of E[ f ] w.r.t. µ .
Definition 1. A class of nonparametric priors T ⊂M is called a prior ignorance model for

predictive inferences about X, if for any real-valued bounded function f on X it satisfies:

E [E( f )] = inf
µ∈T

Eµ [E( f )] = inf f , E [E( f )] = sup
µ∈T

Eµ [E( f )] = sup f , (7)
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where E [E( f )] and E [E( f )] denote respectively the lower and upper bound of Eµ [E(P)] calcu-
lated w.r.t. the class T .

From (7) it can be observed that the range of Eµ [E( f )] under the class T is the same as the
original range of f . In other words, by specifying the class T , we are not giving any information
on the value of the expectation of f . This means that the class T behaves as a vacuous model.
We are now ready to define the IDP.
Definition 2. IDP. We call prior imprecise DP the following class of DPs:

T = {Dp(s,α∗) : α
∗ ∈ P} . (8)

The IDP is the class of DPs obtained for a fixed s > 0 and by letting the normalized measure
α∗ to vary in the set of all probability measures P on (X,BX).
Theorem 1. The IDP is a model of prior ignorance for all predictive inferences about X, i.e.,

for any real-valued bounded function f on X it satisfies:

E [E( f )] = inf f , E [E( f )] = sup f , (9)

where E [E( f )] and E [E( f )] denote respectively the lower and upper bound of E [E( f )] defined
in (2) calculated w.r.t. the class of DPs (8).

The proofs of this and the next theorems are in the Appendix. To show that the IDP is a model
of prior ignorance, consider for instance the indicator function f = IA for some A ⊆ X. Since
E[IA] = P(A), from (2) we have that E [P(A)] =

∫
IAdα∗. Then if we choose α∗ = δxl with xl /∈ A

and, respectively, α∗ = δxu with xu ∈ A:

E [P(A)] =
∫

IAdδxl = min IA = 0, E [P(A)] =
∫

IAdδxu = max IA = 1, (10)

where E [P(A)] and E [P(A)] are the lower and upper bounds for E
[
P(A)

]
. This is a condition

of prior ignorance for P(A), since we are saying that the only information about P(A) is that
0≤ P(A)≤ 1. The lower and upper bounds are obtained from the degenerate DPs Dp(s,δxl ) and
Dp(s,δxu), which belong to the class (8). Note that, although the lower and upper bounds are
obtained by degenerate DPs, to obtain these bounds we are considering all possible Dp(s,α∗)
with α∗ ∈ P (even the ones with continuous probability measures α∗).
Theorem 2. Posterior inference. Let X1, . . . ,Xn be i.i.d. samples from P and P ∼ Dp(s,α∗).

Then for any real-valued bounded function f on X, the lower and upper bounds of
E [E( f )|X1, . . . ,Xn] under the IDP model in (8) are:

E
[
E( f )|X1, . . . ,Xn

]
=

s
s+n

inf f +
n

s+n
Sn( f ),

E
[
E( f )|X1, . . . ,Xn

]
=

s
s+n

sup f +
n

s+n
Sn( f ),

(11)

where Sn( f ) = ∑
n
i=1 f (Xi)

n .
A-posteriori the IDP does not satisfy anymore the prior ignorance property (9). This means

that learning from data takes place under the IDP. In fact let S( f ) be equal to limn→∞ Sn( f ),
a-posteriori for n→ ∞ we have that:

E
[
E( f )|X1, . . . ,Xn

]
,E
[
E( f )|X1, . . . ,Xn

]
→ S( f ), (12)

i.e., the lower and upper bounds of the posterior expectations converge to S( f ), which only
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depends on data. In other words, the effect of prior ignorance vanishes asymptotically:

E
[
E( f )|X1, . . . ,Xn

]
−E

[
E( f )|X1, . . . ,Xn

]
=

s
s+n

(sup f − inf f )→ 0,

for any finite s. To define the IDP, the modeler has only to choose s. This explains the meaning
of the adjective near in prior near-ignorance, because the IDP requires by the modeller the
elicitation of a parameter. However, this is a simple elicitation problem for a nonparametric prior,
since we only have to choose the value of a positive scalar (there are not infinitely dimensional
parameters left). Section 4 gives some guidelines for the choice of this parameter.

Observe that IDP solves the two main drawbacks of Bayesian Bootstrap. From the a-priori
point of view, we have shown in (9) that the IDP is a model of prior ignorance for predictive
inferences. Moreover, the prior distributions considered can assign a non-null probability to un-
observed values of X . Then, considering Rubin’s example about the probability that X is greater
than or equal to X(n), which is obtained as the expectation of f = I[C,∞) with C > X(n), from
(11) we have a-posteriori that E

[
E( f )|X1, . . . ,Xn

]
= 0 and E

[
E( f )|X1, . . . ,Xn

]
= s

s+n . The up-
per expectation is greater than zero and, for s = 1, it is equal to 1/(1+n). This result is obtained
without specifying how the probability of 1/(1+n) is spread between the values X > X(n), and
thus it is insensitive to the model specification of tail probabilities. Note that the IDP reduces
to the imprecise Dirichlet model proposed by Walley [29], see also Bernard [31], de Cooman
et al. [32]), when we limit ourselves to consider a finite measurable partition B1, . . . ,Bm of X. In
this case, the set of priors {Dp(s,α∗), α∗ ∈ P}, reduces to a set of Dirichlet distributions with
parameters (sα∗(B1), . . . ,sα∗(Bm)).

4. An application to hypothesis testing

Hypothesis testing is an important application of nonparametric statistics. Recently there has
been an increasing interest in the development of Bayesian nonparametric procedures for hy-
pothesis testing. For instance Bayesian nonparametric approaches to the two-sample problem
have been proposed using Dirichlet process mixture models or (coupling-optional) Polya trees
priors by Borgwardt and Ghahramani [8], Holmes et al. [9], Ma and Wong [10], Chen and Han-
son [11] and Martin and Tokdar [12]. Although prior near-ignorance may also be useful in these
models and in the two-sample problem, we do not follow this avenue in the present study. Our
focus is instead the hypothesis test P(X ≤Y )Q P(X >Y ) (equivalently P(X ≤Y )Q 0.5), given
independent samples of sizes n1 and n2 from two populations. This problem arises, for example,
if one wishes to compare the response X of a population with respect to the response Y of a
different population in order to establish whether the two populations perform equally well or
one population has generally “better” responses than the other.

The nonparametric test traditionally applied in such situations is the Mann-Whitney-Wilcoxon
(MWW) rank-sum test. The null hypothesis of the MWW rank-sum test is that the two pop-
ulations are equal, that is, they come from the same distribution FX(x) = FY (x). Let Xn1 =
{X1, . . . ,Xn1} and Y n2 = {Y1, . . . ,Yn2} be two sequences of observations from the two popula-
tions. The MWW test is based on the fact that, if the two populations have the same distribution,
the distribution of the linear rank statistic

U =
n1

∑
i=1

n2

∑
j=1

I[Xi,∞)(Yj), (13)

can be computed by considering all the possible arrangements of the observations in Xn1 and
Y n2 . At the increase of n1 and n2, this distribution converges to a Normal distribution with mean
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and variance given by

E
[

U
n1n2

]
=

1
2
, Var

[
U

n1n2

]
=

n1 +n2

12n1n2
. (14)

It is worth to stress that FX(x) = FY (x) implies P(X ≤Y ) = 0.5 (i.e., it is not true that Y is better
than X) but not vice versa. Thus, the MWW test cannot be used in general as a test for P(X ≤Y ).
This limitation of the test is due to the choice of U statistic functions as the test statistic instead of
estimator and the need of any frequentist method to specify the distribution of the statistic under
the null hypothesis. The null hypothesis FX(x) = FY (x) is thus selected to be able to compute the
distribution of the statistic, although, in practice, one is interested in a much weaker hypothesis
to test P(X ≤ Y ) (see Fay and Proschan [33] for a detailed discussion). To overcome this issue
of the MWW test, it is often common to assume a location-shift model, which states that the
two populations can only differ in locations: FY (y) = FX(y−∆). The goal is then to test the
hypothesis that there is no treatment effect ∆ = 0 (P(X ≤ Y ) = 0.5) versus the alternative ∆ > 0
(P(X ≤ Y ) > 0.5) or ∆ < 0 (P(X ≤ Y ) < 0.5). Under this assumption, the MWW test can be
interpreted as a Hodges and Lehmann [34] estimator. On the other side, the Bayesian approach
provides the posterior distribution of P(X ≤ Y ), which can be used to compute the probability
of any hypothesis of interest. Therefore, we are not limited in the choice of the null hypothesis.
Moreover, the MWW test is affected by all the drawbacks which characterize null hypothesis
significance tests (NHST). Such tests “allow one either to reject the null hypothesis or to fail to
reject it, but they do not provide any measure of evidence for the null hypothesis” (Raftery [35]).
This prevents associating a cost to Type I and Type II errors and taking decisions by minimizing
the expected loss. Instead, decision are taken on the basis of the chosen significance γ , namely
the probability of rejecting the null hypothesis when it is true. In principle, one should balance
significance and power of the test. Yet, a principled way of doing this is lacking (Kruschke
[36]). Hence, decisions are simply taken by setting γ =0.01 or 0.05, without considering the
probability of Type II errors. Moreover, the p-value and thus the outcome of the test depend
on the intention of the person who has collected the data (Kruschke [36], Goodman [37]). The
Bayesian approach to decision making allows basing the decisions on the value of the expected
loss, whose practical meaning is much more intuitive. For example, the hypothesis test:

P(X ≤ Y )≤ P(X > Y )︸ ︷︷ ︸
P(X ≤ Y )≤ 0.5 vs.

P(X ≤ Y )> P(X > Y )︸ ︷︷ ︸
P(X ≤ Y )> 0.5

can be performed in a Bayesian way in two steps. First we define a loss function

L(P,a) =
{

K0I{P(X≤Y )>0.5} if a = 0,
K1I{P(X≤Y )≤0.5} if a = 1. (15)

The first row gives the loss we incur by taking the action a = 0 (i.e., declaring that P(X ≤ Y )≤
0.5) when actually P(X ≤ Y )> 0.5, while the second row gives the loss we incur by taking the
action a = 1 (i.e., declaring that P(X ≤ Y ) > 0.5) when actually P(X ≤ Y ) ≤ 0.5. Second, we
compute the expected value of this loss:

E [L(P,a)] =
{

K0P [P(X ≤ Y )> 0.5] if a = 0,
K1P [P(X ≤ Y )≤ 0.5] if a = 1, (16)

where we have used the calligraphic letter P to denote the probability w.r.t. the DP priors for
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FX and FY . Thus, we choose a = 1 if

K1P [P(X ≤ Y )≤ 0.5]≤ K0P [P(X ≤ Y )> 0.5]⇒P [P(X ≤ Y )> 0.5]>
K1

K1 +K0
, (17)

or a = 0 otherwise. When the above inequality is satisfied, we can declare that P(X ≤ Y )> 0.5
with probability K1

K1+K0
= 1− γ . For the choice γ = 0.05, the MWW test and DP are closely

matched. However, in the Bayesian setting, γ = 0.05 plays no special role and other choices are
possible.

Finally, based on the imprecise DP model developed in this paper, we can perform a Bayesian
nonparametric test that, besides overcoming the limitation of the frequentist test described above,
is based on extremely weak prior assumptions, and easy to elicit, since it requires only to choose
the strength s of the DP instead of its infinite-dimensional parameter α . When using the IDP
set of priors, we consider for FX and FY all the possible DP priors with strength lower than or
equal to s (since all inferences obtained for s′ < s are encompassed by those obtained for s, see
Walley [29]). All these priors give a posterior probability P [P(X ≤ Y )> 0.5] included between
the lower and upper bounds P [P(X ≤ Y )> 0.5] and P [P(X ≤ Y )> 0.5]. Thus, according to
the decision rule in (17) for some γ = K0

K0+K1
, we verify if

P
[
P(X ≤ Y )> 0.5|Xn1 ,Y n2

]
> 1− γ, P

[
P(X ≤ Y )> 0.5|Xn1 ,Y n2

]
> 1− γ,

and then proceed as follows:

(1) if both the inequalities are satisfied we can declare that P(X ≤ Y ) is greater than 0.5 with
probability larger than 1− γ;

(2) if only one of the inequality is satisfied (which has necessarily to be the one for the upper),
we are in an indeterminate situation, i.e., we cannot decide;

(3) if both are not satisfied, we can declare that the probability that P(X ≤Y ) is greater than 0.5
is lower than the desired probability of 1− γ .

When our model of prior ignorance returns an indeterminate decision, it means that the evidence
from the observations is not enough to declare either that the probability of the hypothesis being
true is larger or smaller than the desired value 1− γ; more measurements are necessary to take a
decision.

The three cases are respectively depicted in Figure 1. Observe that the posterior distributions
of P(X ≤ Y ), from which the lower and upper probabilities above are derived, give us much
more information than the simple result of the hypothesis test. In particular we can derive the
posterior lower and upper probabilities of P(X ≤ Y )< 0.5. For instance, from both Figure 1 (c)
and (d) we can see that Y is not greater than X at 95%, but only in Figure (d) it is evident that
X is greater than Y at 95%. While in the case shown in Figure 1 (b), we can say neither that Y
is greater than X nor that X is greater than Y . (To distinguish these two cases it would be more
appropriate to perform a “two-sided” hypothesis test.)

In the next section we prove that the IDP is a model of prior ignorance for P(X ≤ Y ) and
derive the posterior results which are necessary to evaluate P [P(X ≤ Y )> 0.5] and perform
the test. Note that, for the moment, we assume that there are no ties between X and Y ; we will
discuss how to account for the presence of ties in Section 4.3.

4.1 IDP model for P(X ≤ Y )

Let the samples Xn1 and Y n2 be drawn, respectively, from FX and FY . As prior for (FX ,FY ),
we assume that FX ∼ Dp(s1,G1) and FY ∼ Dp(s2,G2), where s1,s2 ∈ R and G1, G2 are two
cumulative distribution functions. Hereafter, to simplify the presentation, we take s1 = s2 = s.
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(a) “Y is greater than X” at 95% (b) “Indeterminate” at 95%

(c) “Y is not greater than X” at 95% (d) “Y is not greater than X” at 95%
Figure 1. Four possible results of the hypothesis test. The dark and light filled areas correspond respectively to the lower and upper
probabilities of the event P(X ≤ Y ) > 0.5. The numerical values of these lower and upper probabilities are also reported in the
figures.

FX and FY are assumed to be independent. The probability P(X ≤ Y ) is given by P(X ≤ Y ) =
E[I[X ,∞)(Y )] =

∫
FX(y)dFY (y). As derived by Ferguson [1], by the properties of the Dirichlet

process, it follows that a-priori E [P(X ≤ Y )] =
∫

G1(y)dG2(y). It can be shown that the set
of priors T in (8) satisfies the condition of prior ignorance also for P(X ≤ Y ). In fact, since
E [P(X ≤ Y )] =

∫
G1(y)dG2(y), if Gi ∈ P, we have that

E [P(X ≤ Y )] = 0, E [P(X ≤ Y )] = 1,

where the lower (upper) bound is obtained for dG1 = δX0 and dG2 = δY0 with X0 >Y0 (X0 <Y0).
Thus, prior ignorance about the mean of P(X ≤ Y ) is satisfied. Furthermore, let us consider the
probability of P(X ≤Y )< 0.5 with respect to the Dirichlet process. A-priori, for dG1 = δX0 and
dG2 = δY0 we have that

if X0 < Y0, then P[P(X ≤ Y ) = 1] = 1 and thus P[P(X ≤ Y )≤ 0.5] = 0
if X0 > Y0, then P[P(X ≤ Y ) = 0] = 1 and thus P[P(X ≤ Y )≤ 0.5] = 1.

A similar reasoning leads to P[P(X ≤ Y ) > 0.5] = 0, P[P(X ≤ Y ) > 0.5] = 1, thus, prior
ignorance about the hypothesis P(X ≤ Y ) > 0.5 is also satisfied. Given the two sequences of
measurements, a-posteriori one has:

E [P(X ≤ Y )|Xn1 ,Y n2 ] =
∫

G∗n1
(y)dG∗n2

(y),
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with G∗ni
= s

s+ni
Gi +

1
s+ni

∑
ni
j=1 I[Z j,∞), where Z j = X j for i = 1 and Z j = Yj for i = 2. It follows

that:

E [P(X ≤ Y )|Xn1 ,Y n2 ] = s
s+n1

s
s+n2

∫
G1(y)dG2(y)+

n1
s+n1

s
s+n2

1
n1

n1
∑
j=1

(1−G2(X−j ))

+ s
s+n1

n2
s+n2

1
n2

n2
∑
j=1

G1(Yj)+
n1

s+n1

n2
s+n2

U
n1n2

,
(18)

where 1−G2(X−) =
∫

I[X ,∞)dG2. Then, the lower and upper posterior bounds of the posterior
expectations of P(X ≤ Y ) given the set of priors T are:

E [P(X ≤ Y )|Xn1 ,Y n2 ] = U
(s+n1)(s+n2)

,

E [P(X ≤ Y )|Xn1 ,Y n2 ] = U
(s+n1)(s+n2)

+ s(s+n1+n2)
(s+n1)(s+n2)

,
(19)

obtained in correspondence of the extreme distributions dG1 → δX0 , dG2 → δY0 , with X0 >
max({Y0, . . . ,Yn1}), Y0 < min({X0, . . . ,Xn2}) (lower) and X0 < min({Y0, . . . ,Yn1}),
Y0 > max({X0, . . . ,Xn2}) (upper) and U is given in (13). The posterior probability distribution of
P(X ≤Y ) w.r.t. the Dirichlet processes, which is used to perform the Bayesian test of the differ-
ence between the two populations, is, in general, computed numerically (Monte Carlo sampling)
by using the stick-breaking construction of the Dirichlet process. We will show in the remaining
part of this section that, in correspondence to the discrete priors that give the upper and lower
bounds of the posterior distributions of P(X ≤ Y ), a more efficient procedure can be devised.
Consider the limiting posteriors that give the posterior lower and upper expectations in (19):

Gni(y) =
s

s+ni
I[Z0,∞)+

1
s+ni

ni

∑
j=1

I[Z j,∞), (20)

where the lower bound is obtained with Z0 = X0 > max({Y0, . . . ,Yn1}) for i = 1 and Z0 = Y0 <
min({X0, . . . ,Xn2}) for i = 2, and the upper bound with Z0 = X0 > max({Y0, . . . ,Yn1}) for i = 1,
and Z0 = Y0 < min({X0, . . . ,Xn2}) for i = 2.
Lemma 1. A cumulative distribution function Fni sampled from the Dirichlet process Dp(s+

ni,Gni) with base probability distribution Gni as that defined in (20) is given by:

Fni = wi0I[Z0,∞)+
ni

∑
j=1

wi jI[Z j,∞), (21)

where wi· = (wi0,wi1, . . . ,wini)∼ Dir(s,

ni︷ ︸︸ ︷
1, . . . ,1).

Lemma 1 states that any distribution Fni sampled from DP(s+ ni,Gni) has the form (21).
Since the probability density function relative to Fni , i.e., wi0δZ0 +∑

ni
j=1 wi jδZ j , has a discrete

support, we do not need stick-breaking to sample from a Dirichlet Process when its base measure
is discrete; we only need to sample the weights (wi0,wi1, . . . ,wini) in (21) from the Dirichlet
distribution with parameters (s,1, . . . ,1). Moreover, if the distributions of X and Y are DPs with
discrete base measures Gn1 and Gn2 , each predictive inference E[ f (X ,Y )] can be written as a
function of the weights (wi0,wi1, . . . ,wini) only, and the relative distribution can be derived from
the (Dirichlet) distribution of these weights. Using this result and the fact that the posteriors that
give lower and upper bounds for P

[
P(X ≤ Y ) > c|Xn1 ,Y n2

]
have the discrete base measures
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(20), we can obtain the following result.
Theorem 3. For any c ∈ [0,1], it holds that

P
[
P(X ≤ Y )> c|Xn1 ,Y n2

]
= PD [g(w1·,w2·,Xn1 ,Y n2)> c] , (22)

with

g(w1·,w2·,Xn1 ,Y n2) =
n1

∑
j=1

n2

∑
k=1

w1 jw2kI(X j,∞)(Yk)

where (wi0,wi1, . . . ,wini) ∼ Dir(s,

ni︷ ︸︸ ︷
1, . . . ,1) for i = 1,2 and the probability PD is computed w.r.t.

the Dirichlet distributions of w1· and w2·. The mean and variance of g(w1·,w2·,Xn1 ,Y n2) are:

µ = EW [W ]T AEV [V ], σ
2 = trace[AT EW [WW T ]AEV [VV T ]]−µ

2, (23)

where W = [w11, . . . ,w1n1 ]
T , V = [w21, . . . ,w2n2 ]

T and their expectations EW ,EV are taken w.r.t.
the Dirichlet distributions of w1· and w2·, E[WW T ] and E[VV T ] are ni× ni square-matrix of
elements e jk = (s + ni)

−1(s + ni + 1)−1(1 + I{ j}(k)) (i = 1 and 2, respectively), and A is an
n1×n2 matrix with elements a jk = I(X j,∞)(Yk).
Corollary 1. For any c ∈ [0,1], it holds that

P
[
P(X ≤ Y )> c|Xn1 ,Y n2

]
= PD [g(w1·,w2·,Xn1 ,Y n2)> c] , (24)

with

g(w1·,w2·,Xn1 ,Y n2) = w10w20 +w10

n2

∑
j=1

w2 j +w20

n1

∑
j=1

w1 j +
n1

∑
j=1

n2

∑
k=1

w1 jw2kI(X j,∞)(Yk),

where (wi0,wi1, . . . ,wini) ∼ Dir(s,

ni︷ ︸︸ ︷
1, . . . ,1) for i = 1,2. Consider the augmented vectors

W = [w10,w11, . . . ,w1n1 ]
T , V = [w20,w21, . . . ,w2n2 ]

T , and the matrix A with elements a jk =
I(X j−1,∞)(Yk−1) for all j,k 6= 1 and a jk = 1 if j = 1 or k = 1. The mean and variance of
g(w1·,w2·,Xn1 ,Y n2) can be computed using the same formulas as in (23), where, this time,
E[WW T ] and E[VV T ] are (ni + 1)× (ni + 1) square-matrices (i = 1 and 2, respectively) of
elements e jk = (s+ ni)

−1(s+ ni + 1)−1ẽ jk with ẽ jk = (1+ I{ j}(k)) for all j,k 6= 1 and ẽ jk =
s(1+ sI{ j}(k)) if j = 1 or k = 1.

Theorem 3 and Corollary 1 show that the lower and upper bounds of P
[
P(X ≤ Y ) >

c|Xn1 ,Y n2
]

can be computed by Monte Carlo sampling from the Dirichlet distributions of the
weight vectors w1·,w2· and, thus, no stick-breaking is necessary.

To perform the hypothesis test, we select c = 1/2 and, according to the decision rule (17) for
some K0, K1, we check if

P
[
P(X ≤ Y )> 1

2 |X
n1 ,Y n2

]
> 1− γ, P

[
P(X ≤ Y )> 1

2 |X
n1 ,Y n2

]
> 1− γ,

where γ = K0
K0+K1

∈ (0,1) (e.g., 1− γ = 0.95).
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4.2 Choice of the prior strength s

The value of s determines how quickly lower and upper posterior expectations converge at the
increase of the number of observations. A way to select a value of s is by imposing that the
degree of robustness (indeterminacy) E [P(X ≤ Y )|Xn1 ,Y n2 ]−E [P(X ≤ Y )|Xn1 ,Y n2 ] is reduced
to a fraction of its prior value (E [P(X ≤ Y )]−E [P(X ≤ Y )] = 1) after one observation (X1,Y1).
Imposing a degree of imprecision close to 1 after the first observation increases the probability
of an indeterminate outcome of the test, whereas, a value close to 0 makes the test less reliable
(in fact the limiting value of 0 corresponds to the BB which will be shown in Section 6 to be less
reliable than the IDP). Then, the intermediate value of 1/2 is a frequent choice in prior-ignorance
modeling [17, 29]. Although this is a subjective way to choose the degree of conservativeness
(indeterminacy), we will show in Section 6 that it represents a reasonable trade-off between the
reliability and indeterminacy of the decision. From (19) for n1 = n2 = 1, it follows that

E [P(X ≤ Y )|X1,Y1]−E [P(X ≤ Y )|X1,Y1] =
s2+2s
(s+1)2 .

Thus, by imposing that,

s2 +2s
(s+1)2 =

1
2
,

we obtain s=
√

2−1. Observe that the lower and upper probabilities produced by a value of s are
always contained in the probability intervals produced by the larger value of s. Then, whenever
we are undecided for s1 we are also for s2 > s1. Nonetheless as, for large n the distance between
the upper and lower probabilities goes to 0, also the indeterminateness goes to zero.

4.3 Managing ties

To account for the presence of ties between samples from the two populations (Xi = Yj), the
common approach is to test the hypothesis [P(X < Y ) + 1

2 P(X = Y )] ≤ 0.5 against [P(X <

Y )+ 1
2 P(X = Y )]> 0.5. Since

P(X < Y )+
1
2

P(X = Y ) = E
[
I(X ,∞)(Y )+

1
2 I{X}(Y )

]
= E[H(Y −X)],

where H(·) denotes the Heaviside step function, i.e., H(z) = 1 for z > 0, H(z) = 0.5 for z = 0
and H(z) = 0 for z < 0, in case of ties the U statistic becomes

U =
n1

∑
i=1

n2

∑
j=1

H(Yj−Xi), (25)

and it represents the number of pairs (Xi,Yj) for which Xi < Yj plus half of the number of pairs
(Xi,Yj) for which Xi = Yj. The results presented in Section 4 are still valid if we substitute
I(X j,∞)(Yk) with H(Yk−X j) in matrix A.

5. Asymptotic consistency

From the expression of the lower and upper means in (19), it can be verified that for n1,n2→∞:

E [P(X ≤ Y )|Xn1 ,Y n2 ],E [P(X ≤ Y )|Xn1 ,Y n2 ]' E [P(X ≤ Y )|Xn1 ,Y n2 ]' U
n1n2

.
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Notice that in this section the symbol ' will be used to indicate asymptotic equivalence. The
imprecision (degree of robustness) goes to zero for n1,n2 → ∞ and the expectation E [P(X ≤
Y )|Xn1 ,Y n2 ] is asymptotically equivalent to the Mann-Whitney statistic [1]. The consistency of
the IDP rank-sum test can be verified by considering the asymptotic behavior of the posterior
lower and upper distributions of P(X ≤ Y ) and compare it to the asymptotic distribution of the
statistic U/n1n2. For ease of presentation, we limit ourselves to the case n1 = n2 = n. In Lehmann
and D’Abrera [38, Appendix A.5] it is proved that U/n1n2 converges for n1,n2→∞ to a Normal
distribution with mean E[Ui j] = P(X ≤ Y ), for all i = 1, . . . ,n1 and j = 1, . . . ,n2, and variance

1
n

Cov[Ui j,Ui,k 6= j]+
1
n

Cov[Ui j,Uk 6=i, j], (26)

where Urt = I(Xr,∞)(Yt). In the following theorem an equivalent result is proved for the lower
distribution of P(X ≤ Y ) in the IDP rank-sum test
Theorem 4. Assuming that n1 = n2 = n, for n→∞ the IDP rank-sum test lower distribution con-
verges to a Normal distribution with mean E[Ui j] = P(X ≤ Y ) and variance given by Equation
(26).

The above proof can be easily generalized to the upper distribution (the terms due to w10 and
w20 vanish asymptotically) and to the case n1 6= n2 (following the same procedure as in Lehmann
and D’Abrera [38, Th. 9]). Theorem 4 proves that the (upper and lower) distribution of the IDP
rank-sum test is asymptotically equivalent to the distribution of the statistic U/n1n2 and, thus,
the IDP rank-sum test is consistent as a test for P(X ≤ Y ). Conversely, the MWW test is only
consistent in the case P(X ≤ Y ) = 0.5 and FX = FY or P(X ≤ Y ) 6= 0.5 and FX 6= FY , while it is
not consistent for P(X ≤ Y ) = 0.5 and FX 6= FY . For instance if X ∼ N(0,1) and Y ∼ N(0,σ2)
with σ2 > 1, two Normal distributions with different variance, then P(X ≤ Y ) = 0.5 but the
distributions are different. In this case, if we apply MWW test with a significance level γ = 0.05,
MWW will return the alternative hypothesis in approximatively 8.7% of the cases (for a large
σ2), see DasGupta [39, Sec. 25.5]. This means that MWW is not calibrated as a test for P(X ≤
Y ) = 0.5 and it is not powerful as a test for FX(x) 6= FY (x). Conversely, because of Theorem 4,
our IDP test with γ = 0.05 will return the alternative hypothesis (asymptotically) in 5% of the
cases, which is correct since P(X ≤ Y ) = 0.5.

6. Numerical simulations

Consider a Monte Carlo experiment in which n1, n2 observations X ,Y are generated based on

X ∼ N(0,1), Y ∼ N(∆,1),

with ∆ ranging on a grid from −1.5 to 1.5. To facilitate the comparison of IDP tests with more
traditional tests (which never issue indeterminate outcomes) we introduce a new test (called
“50/50 when indeterminate”) which returns the same response as the IDP when this is determi-
nate, and issues a random answer (with 50/50 chance) otherwise. We want to stress that the test
“50/50 when indeterminate” has been introduced only for the sake of comparison. We are not
suggesting that when the IDP is indeterminate we should toss a coin to take the decision. On
the contrary we claim that the indeterminacy of the IDP is an additional useful information that
our approach gives to the analyst. In these cases she/he knows that (i) her/his posterior decisions
would depend on the choice of the prior G0; (ii) deciding between the two hypotheses under
test is a difficult problem as shown by the comparison with the Bayesian Bootstrap DP (BB-DP)
rank-sum test (s = 0) and MWW tests. Based on this additional information, the analyst can for
example decide to collect additional measurements to eliminate the indeterminacy (in fact we
have seen that when the number of observations goes to infinity the indeterminacy goes to zero).
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We start by comparing the performance of the BB-DP and IDP tests. To evaluate the perfor-
mance of the tests, we have used the loss function defined in (15). In particular, for each value
of ∆ we have performed 20000 Monte Carlo runs by generating in each run n1 = n2 = 20 ob-
servations for X ,Y . The average loss for the cases (i) K1 = K2 = 1 (i.e., γ = 0.5) (ii) K1 = 1 and
K2 = 9 (i.e., γ = 0.1) and (iii) K1 = 1 and K2 = 19 (i.e., γ = 0.05) is shown in Figure 2 as a
function of ∆. In particular, we report (i) the loss of the BB-DP test (s = 0); (ii) the loss of the
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Figure 2. Loss as a function of ∆ for the case K0 = K1 = 1 (left), K0 = 1,K1 = 9 (center) and K0 = 1,K1 = 19 (right).

IDP test when it is determinate; (iii) the indeterminacy of the IDP test, i.e., the number of times
it returns an indeterminate response divided by the total number of Monte Carlo runs; (iv) the
loss of the “50/50 when indeterminate” test.

From Figure 2, it is evident that the performance of the BB-DP and 50/50 tests practically
coincide. Furthermore, since we noticed from experimental evidence that in all cases in which
IDP is determinate, BB-DP returns the same response as IDP, the difference between the two
tests is only in the runs where the IDP is indeterminate. In these runs, BB-DP is clearly guessing
at random, since overall it has the same loss as the 50/50 test. Therefore, the IDP is able to isolate
several instances in which BB-DP is guessing at random, thus providing useful information to
the analyst. Assume, for instance, that we are trying to compare the effects of two medical
treatments (“Y is better than X”) and that, given the available data, the IDP is indeterminate. In
such situation the BB-DP test always issues a determinate response (I can tell if “Y is better than
X”), but it turns out that its response is virtually random (like if we were tossing a coin). On
the other side, the IDP acknowledges the impossibility of making a decision and thus, although
BB-DP and the IDP (more precisely the “50/50 when indeterminate” test) have the same loss,
the IDP provides more information. Note that, for all the three loss functions, the maximum
percentage of runs in which the IDP is indeterminate is about 18%; this means that for some
value of ∆, BB-DP is issuing a random answer in 18% of the cases, which is a large percentage.
For large |∆|, i.e. when the hypothesis test is easy, there are no indeterminate instances and both
the BB-DP and the IDP tests have zero loss. It is interesting to note that, for the cases K1 = 1
and K2 = 9 (or K2 = 19) (Figure 2 center and right) it is more risky (we may incur a greater
loss) taking the action a = 1 than a = 0, and thus the indeterminacy curve is shifted to the ∆ > 0
quadrant.

We have also compared the IDP test and the one-sided MWW NHST implemented according
to the conventional decision criterion, p < 0.05. It is well known that the decision process in
NHST is flawed. It is based on asking what is the probability of the data statistic if the null
hypothesis were true. This means that NHST can only reject the null hypothesis (∆ ≤ 0), con-
trarily to a Bayesian analysis that can also accept this hypothesis. Furthermore, in a Bayesian
analysis we have a principled way to determine γ (i.e., by means of a loss function) which is
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lost when putting decisions in the format p < 0.05 (or the more vague p < 0.1). Because of
these differences, it is difficult to compare the Bayesian with the NHST approach, where we
do not have a clear interpretation of the significance level. However, we believe a relatively fair
comparison can be carried out by setting γ equal to the significance level of the NHST test, so
that the decision criteria adopted by the two test are as similar as possible. Figure 3 shows the
power for the case γ = 0.05, n1 = n2 = 10 and n1 = n2 = 20. In case n1 = n2 = 20 (Figure 3,
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Figure 3. Power as a function of the difference of the medians ∆ for the case n1 = n2 = 10 (left) and n1 = n2 = 20 (right) with
γ = 0.05. Here “Freq” denotes the MWW test.

right) it is evident that the performance of the MWW and 50/50 tests practically coincide. Since
it can be verified experimentally that when the IDP is determinate the two tests return the same
results, this again suggests that when the IDP is indeterminate we have equal probability that
p < 0.05 or p > 0.05, as it is shown in Figure 4. The IDP test is able to isolate some instances
in which also the MWW test is issuing a random answer. Note that, for ∆ = 0.5, the maximum
percentage of runs in which the IDP test is indeterminate is large, about 18%; this means that
MWW is issuing a random answer in 18% of the cases.
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Figure 4. Distribution of MWW p-values in the IDP indeterminate cases for n1 = n2 = 20, γ = 0.05 and ∆ = 0.5.

The results for the case n1 = n2 = 10 (Figure 3, left) lead to similar conclusions. The per-
formance of the MWW and 50/50 tests (almost) coincide. The 50/50 test is slightly better for
∆≤ 0.9 and slightly worse for ∆ > 0.9. ∆ = 0.9 is the value which corresponds to the maximum
indeterminacy of the IDP, i.e. 30%. Thus, for ∆ = 0.9, MWW is guessing at random in 30% of
the runs.

It is worth analyzing also the case ∆ = 0. We know that in this case the frequentist test is
calibrated, i.e., when γ = 0.05 the percentage of correct answers is 95% (although it can be no-
ticeably larger for small values of n1, n2 since the discreteness of the MWW statistic originates
a gap between the chosen γ and the actual significance of the MWW test). Table 1 shows the
accuracy (percentage of correct answers) for ∆ = 0. The performance of the MWW and 50/50
tests are similar also in this case. The difference is about 1% (for n1 = n2 = 10) and 0.5% (for
n1 = n2 = 20).
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Accuracy n1 = n2 = 10 Accuracy n1 = n2 = 20
MWW 0.955 0.952

50/50 test 0.945 0.947
IDP when determinate 0.911 0.924

Indeterminacy 0.068 0.045
Table 1. Accuracy for ∆ = 0 and γ = 0.05.

Accuracy γ = 0.1 Accuracy γ = 0.25
MWW 0.8995 0.7552

50/50 test 0.8993 0.7482
IDP when determinate 0.8568 0.6777

IDP indeterminacy 0.081 0.142
Table 2. Accuracy in case ∆ = 0 for n1 = n2 = 20

Also in this case, when the IDP is determinate, it returns the same responses as MWW. This
result holds independently of the choice of γ , as shown by Figure 5 and Table 2 where we have
repeated the above experiment for n1 = n2 = 20 with, this time, γ = 0.1 and γ = 0.25.

Finally, Figure 6 shows the error (one minus the accuracy) of the IDP test as a function of
s, when γ = 0.1, n1 = n2 = 20 and ∆ = 0. Clearly, the error of the MWW test is constantly
equal to γ = 0.1 (we are under the null hypothesis of MWW). The error of the IDP test when
determinate decreases with s, because of the increase of the indeterminacy. The error of the
50/50 test has a convex trend, clearly decreasing for s < 0.2 and increasing for s > 0.5. This
(together with the other results of this section) may be seen as an empirical confirmation that the
choice of s =

√
2−1 is appropriate, since it guarantees a good trade-off between robustness and

indeterminacy.
Finally , note that all the above differences/similarities between the three tests appear also

in the case where we consider location-shift models with distributions different from Gaussians
(e.g., Student-t distribution with one or two degrees of freedom). These results have been omitted
for shortness.
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Figure 5. Power as a function of the difference of the medians ∆ for n1 = n2 = 20, γ = 0.1 (left) and γ = 0.25 (right). Here “Freq”
denotes the MWW test.

7. Conclusions

In this paper we have proposed a model of prior ignorance for nonparametric inference based
on the Dirichlet process (DP), by extending the approach proposed by Pericchi and Walley [17],
Walley [29] and based on the use of sets of prior distributions. We developed a prior near-
ignorance DP model (IDP) for inference about a variable X by fixing the prior strength of the
DP and letting the normalized probability measure vary in the set of all distributions. We have
proved that the IDP is consistent and a-priori vacuous for all predictive inferences that can be
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Figure 6. Error as a function of s for n1 = n2 = 20, γ = 0.1 and ∆ = 0. Here “Freq” denotes the MWW test.

defined as the expectation of a real-valued bounded function of X . The proposed IDP model has
two main merits. First, it removes the need for specifying the infinite-dimensional parameter
of the DP (only an upper bound for the strength s of the DP must be assumed a-priori), thus
making the elicitation of the prior very easy. Second, it allows computing the posterior inferences
for which no closed form expression exists, by simple Monte Carlo sampling from the Dirichlet
distribution, thus avoiding more demanding sampling approaches typically used for the DP (e.g.,
stick breaking). Based on this new prior near-ignorance model, we have proposed a general,
simple and conservative approach to Bayesian nonparametric tests, and in particular we have
developed a robust Bayesian alternative to the Mann-Whitney-Wilcoxon test: the IDP rank-
sum test. We have shown that our test is asymptotically consistent, while this is not always
the case for the Mann-Whitney-Wilcoxon test. Finally, by means of numerical simulations, we
have compared the IDP rank-sum test to the Mann-Whitney-Wilcoxon test and the Bayesian test
obtained from the DP when the prior strength goes to zero. Results have shown that the IDP test
is more robust, in the sense that it is able to isolate instances in which these tests are practically
guessing at random. Given these interesting results, as future work we plan to use this approach
to implement Bayesian versions of the most used frequentist nonparametric tests. In the long
run, our aim is to build a statistical package for Bayesian nonparametric tests.

8. Appendix

Proof of Theorem 1: From (2) assuming that P ∼ Dp(s,α∗) one has that E [E( f )] =
∫

f dα∗.
Define xl = arg infx∈X f (x) and xu = argsupx∈X f (x), then (9) follows by:

E [E( f )] = inf
α∗∈P

∫
f dα

∗ =
∫

f dδxl = f (xl), E [E( f )] = sup
α∗∈P

∫
f dα

∗ =
∫

f dδxu = f (xu),

which are the infimum and supremum of f by definition. The lower and upper bounds are thus
obtained by the following degenerate DPs Dp(s,δxl ) and Dp(s,δxu), which belong to the class
(8). In case xl is equal to ∞ (or −∞), with f (xl) we mean limxl→∞ f (xl), similar for the upper.
Proof of Theorem 2: By exploiting the fact that E [E( f )|X1, . . . ,Xn] =

∫
f d( s

s+n α∗ +
n

s+n
1
n ∑

n
i=1 δXi), the proof is similar to that of Theorem 1 (the lower and upper bounds are again

obtained by degenerate DPs Dp(s,δxl ) and Dp(s,δxu)).
Proof of Lemma 1: It follows from the properties (a) and (c) of the DP in Section 2.
Proof of Theorem 3: Based on the stick-breaking construction, a sample F0 from the generic DP

Dp(s,G0) can be written as F0(x) =
∞

∑
k=1

πkδX̃k
where πk = βk

k−1
∏
i−1

(1−βi), βk ∼ Beta(1,s), and
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Xk ∼ G0. Then, using (6), we have that

Fn(x) =
n

∑
i=1

wiδXi +w0

∞

∑
k=1

πkδX̃k
, (27)

where (w0,w1, . . . ,wn) ∼ Dir(s,

ni︷ ︸︸ ︷
1, . . . ,1). Consider the two samples FX(x) and FY (y) from the

posterior distributions of X and Y given the generic DP priors Dp(s,G10) and Dp(s,G20). The
probability of P(X ≤Y )> c is P

[
P(X ≤Y )> c

]
=P[

∫
Fn1(y)dFn2(y)> c]. Then, the posterior

lower probability of P(X ≤ Y ) > c is obtained by minimizing
∫

Fn1(y)dFn2(y), which, by (27),
is equal to

∫ ( n1
∑

i=1
w1iI(Xi,∞)(y)+w10

∞

∑
k=1

π1kI(X̃k,∞)(y)
)(

n2
∑
j=1

w2 jδY j(y)+w20
∞

∑
l=1

π2lδỸl
(y)

)
dy

=
n1
∑

i=1

n2
∑
j=1

w1iw2 jI(Xi,∞)(Yj)+w20
n1
∑

i=1

∞

∑
l=1

w1iπ2lI(Xi,∞)(Ỹl)

+ w10
∞

∑
k=1

n2
∑
j=1

π1kw2 jI(X̃k,∞)(Yj)+w10w20
∞

∑
k=1

∞

∑
l=1

π1kπ2lI(X̃k,∞)(Ỹl)

(28)

The minimum of
∫

Fn1(y)dFn2(y) is always found in correspondence of prior DPs such that
the posterior probability of sampling X̃k < Yj,Ỹl or Ỹl > Xi is zero, so that only the term
n1
∑

i=1

n2
∑
j=1

w1iw2 jI(Xi,∞)(Yj) remains in (28). Priors of such kind are, for example, the extreme DP

priors that give the posterior lower mean in (19) and the posterior Dirichlet process Fni with
base probability Gni given by (20). From the property of the Dirichlet distribution, we know that
E[wi j] = 1/(s+ni) and, thus, we can rewrite the lower expectation given in the first equation of
(19) as

µ =
n1

∑
j=1

n2

∑
k=1

1
s+n1

1
s+n2

I(X j,∞)(Yk) = EW [W ]T AEV [V ],

For the variance, we have that σ2 = E[(
n1
∑
j=1

n2
∑

k=1
w1 jw2kI(X j,∞)(Yk))

2]−µ2. Thus, by exploiting the

equality (
n1

∑
j=1

n2

∑
k=1

w1 jw2kI(X j,∞)(Yk)

)2

=W T AVW T AV =V T ATWW T AV,

the linearity of expectation and the independence of W,V , one obtains

E[V T ATWW T AV ] = EV [V T AT EW [WW T ]AV ] = EV [V T AT EW [WW T ]AV ].

Since the result of this product is a scalar, it is equal to its trace and thus we can use
the cyclic property trace[EV [V T AT EW [WW T ]AV ]] = trace[AT EW [WW T ]AEV [VV T ]], and finally
obtain σ2 = trace[AT EW [WW T ]AEV [VV T ]]− µ2. The proof is easily completed by deriving
EW [WW T ] and EV [VV T ] from the fact that wi j,wkl are independent and EW [w2

i j] =
2

(s+ni)(s+ni+1) ,

EW [wi jwil] =
1

(s+ni)(s+ni+1) .
Proof of Corollary 1: First, observe that the posterior upper probability of P(X ≤ Y ) > c is ob-
tained in correspondence of the extreme DP prior that gives the posterior upper mean in (19) and
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has base probability dGni given by (20). The probability of X ≤ Y for a given realization Fn1 of
Dp(s,Gn1), and Fn2 of Dp(s,Gn2) is:

P
[
P(X ≤ Y )> c|Xn1 ,Y n2

]
= P

[∫
Fn1(y)dFn2(y)> c

]
= P

[∫ (
w10I(X0,∞)(y)+

n1

∑
j=1

w1 jI(X j,∞)(y)

)(
w20δY0(y)+

n2

∑
j=1

w2 jδY j(y)

)
dy > c

]

= P

[
w10w20 +w10

n2
∑
j=1

w2 j +w20
n1
∑
j=1

w1 j +
n1
∑
j=1

n2
∑

k=1
w1 jw2kI(X j,∞)(Yk)> c

]
.

The computations are similar to those in Theorem 3, but in this case we must also consider
the expectations EW [w2

i0] = s(s+1)/(s+ni)(s+ni +1), EW [wi0wi j] = s/(s+ni)(s+ni +1) for
j > 0.
Proof of Theorem 4: Our goal is to prove the convergence to a normal distribution of the Bayesian
bootstrapped two-sample statistic UDP = ∑

i, j
w1iw2 jI[Xi,∞)(Yj), which implies the asymptotic nor-

mality of the DP rank sum test lower distribution, since the contribution of the prior G0 van-
ishes asymptotically. The asymptotic normality of UDP can be proved by means of Lemma
6.1.3. of Lehmann [40], which states that given a sequence of random variables Tn, the dis-
tributions of which tend to a limit distribution L, the distribution of another sequence T ∗n sat-
isfying E[(T ∗n − Tn)

2] → 0 also tends to L. Said h(x,y) = I[x,∞)(y), h1(x) = EY [h(x,Y )] and
h2(y) = EX [h(X ,y)], the theorem will be proved by applying the lemma to

Tn =
√

n

[
1
n
(

n

∑
i=1

h1(Xi)−θ)+
1
n
(

n

∑
j=1

h2(Yj)−θ)

]

and T ∗n =
√

n(UDP−θ) where θ = E[Ui j] = E[h1(X)] = E[h2(Y )]. Tn is a sum of independent
terms and thus, from the central limit theorem, it converges to a Gaussian distribution with mean
0 and variance σ2 = σ2

1 +σ2
2 , where σ2

1 =Var[h1(X)] and σ2
2 =Var[h2(Y )]). Note that

σ2
1 =Cov[h(X ,Y ),h(X ,Y ′)] =Cov[Ui j,Ui,k 6= j],

σ2
2 =Cov[h(X ,Y ),h(X ′,Y )] =Cov[Ui j,Uk 6=i, j].

From Theorem 3, the mean of the lower distribution of UDP is µl = EW [W ]T AEV [V ] = U
(s+n)2 ,

and thus, for large n, it is asymptotic to U/n2 which converges, in turn, to E[Ui j] = θ .Then, also
E[T ∗n ] = 0 so that

E[(T ∗n −Tn)
2] =Var[T ∗n ]+Var[Tn]−2Cov[T ∗n ,Tn].

The proof will be completed by showing that Var[T ∗n ]→ σ2 and Cov[T ∗n ,Tn]→ σ2. For the
variance of UDP (23), first note that we can rewrite EW [WW T ] =EV [VV T ] = (D+Jn)

1
(s+n)(s+n+1)

where D is the diagonal matrix of ones (identity matrix) and Jn is the n×n matrix of ones. Thus,
we have that

AT EW [WW T ]AEV [VV T ] = AT (D+ Jn)A(D+ Jn)
1

(s+n)2(s+n+1)2 ,
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and, for large n,

trace(AT (D+Jn)A(D+Jn))
(s+n)2(s+n+1)2 → trace(AT A)+trace(AT AJn)+trace(AT JnA)+trace(AT JnAJn)

n2(n+1)2 .

The above sum has four terms at the numerator:

trace(AT A) = ∑i, j a2
i j = ∑i, j I(Xi,∞)(Yj),

trace(AT AJn) = ∑i, j ai j ∑k aik = ∑i, j I(Xi,∞)(Yj)+∑i, j 6=k I(Xi,∞)(Yj)I(Xi,∞)(Yk),
trace(AT JnA) = ∑i, j ai j ∑k ak j = ∑i, j I(Xi,∞)(Yj)+∑i 6=k, j I(Xi,∞)(Yj)I(Xk,∞)(Yj),

and trace(AT JnAJn) = trace(AT
11

T A11T ) = trace(1T A11T AT
1) = U2, where 1 is the unit

vector. Then we have that

σ2
l =

3∑i, j I2
(Xi,∞)(Y j)−3n2µ2

l

n2(n+1)2 +
∑i, j 6=k I(Xi,∞)(Y j)I(Xi,∞)(Yk)−n2(n−1)µ2

l
n2(n+1)2

+
∑i 6=k, j I(Xi,∞)(Y j)I(Xk ,∞)(Y j)−n2(n−1)µ2

l
n2(n+1)2 + 3n2+2n2(n−1)+n4

n2(n+1)2 µ2
l −µ2

l .

Note that (3n2+2n2(n−1)+n4

n2(n+1)2 − 1)µ2
l = 0 and, since the first term in σ2

l goes to zero as 1/n2, for
large n,

σ2
l →

∑i, j 6=k I(Xi,∞)(Y j)I(Xi,∞)(Yk)−n2(n−1)µ2
l

n2(n+1)2 +
∑i 6=k, j I(Xi,∞)(Y j)I(Xk ,∞)(Y j)−n2(n−1)µ2

l
n2(n+1)2 .

For large n, it can be shown Lehmann and D’Abrera [38, Th. 9] that the right-hand side of
the above equations tends to 1

nCov[Ui j,Ui,k 6= j] +
1
nCov[Ui j,Uk 6=i, j] =

1
n σ2, and thus Var[Tn] =

Var[
√

nUDP]→ σ2. For the covariance we have

Cov[Tn,T ∗n ] =

(
E[UDP

n
∑

i=1
h1(Xi)]+E[UDP

n
∑
j=1

h2(Yj)]−2θ

)

=

(
E[∑

i, j
w1iw2 jEY j [h(Xi,Yj)]

n
∑

i=1
h1(Xi)]+E[∑

i, j
w1iw2 jEXi [h(Xi,Yj)]

n
∑
j=1

h2(Yj)]−2θ

)

=

(
EX [

n
∑

i=1
E[w1i]h1(Xi)

n
∑

i=1
h1(Xi)]+EY [

n
∑
j=1

E[w2 j]h2(Yj)
n
∑
j=1

h2(Yj)]−2θ

)

= 1
n

(
(

n
∑

i=1
EX [h1(Xi))

2]+ (
n
∑
j=1

EY [h2(Yj))
2]−2θ

)
=Var[h1(X)]+Var[h2(Y )] = σ2.
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