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Abstract

Embedding conglomerability as a rationality requirement in probability was among the aims of Walley’s behavioural
theory of coherent lower previsions. However, recent work has shown that this attempt has only been partly successful.
If we focus in particular on the extension of given assessments to a rational and conglomerable model (in the
least-committal way), we have that the procedure used in Walley’s theory, the natural extension, provides only an
approximation to the model that is actually sought for: the so-called conglomerable natural extension. In this paper
we consider probabilistic assessments in the form of a coherent lower prevision P , which is another name for a lower
expectation functional, and make an in-depth mathematical study of the problem of computing the conglomerable
natural extension for this case: that is, where it is defined as the smallest coherent lower prevision F ≥ P that is
conglomerable, in case it exists. Past work has shown that F can be approximated by an increasing sequence (En)n∈N
of coherent lower previsions. We solve an open problem by showing that this sequence can consist of infinitely many
distinct elements. Moreover, we give sufficient conditions, of quite broad applicability, to make sure that the point-wise
limit of the sequence is F in case P is the lower envelope of finitely many linear previsions. In addition, we study the
question of the existence of F and its relationship with the notion of marginal extension.

Keywords: Coherent lower previsions, conglomerability, conglomerable natural extension, natural extension, marginal
extension.

1. Introduction

Within subjective probability, one of the most influential approaches is Bruno de Finetti’s theory [4, 7]. It considers
probability as derived from expectation, which de Finetti calls prevision. The prevision of a gamble (that is, a bounded
real-valued variable) is behaviourally interpreted as a fair price for buying or selling the gamble itself.

De Finetti’s work on subjective probability has been extended to the imprecise case to deal with situations where
we are not capable of assessing a fair price for a gamble. In that case, instead of previsions we use lower and upper
previsions, which can be interpreted as supremum acceptable buying prices and infimum acceptable selling prices,
respectively. However, the extension to the imprecise case is not straightforward; we distinguish between two main
approaches: that of Peter Williams [18] and Peter Walley’s [17]. The main difference between the two approaches, in
addition to some structural requirements in Walley’s case, has to do with the notion of conglomerability.

Conglomerability was first discussed by de Finetti himself in 1930 [3] as a property that a finitely additive probability
that is not countably additive may not satisfy. Roughly speaking, a finitely additive probability is conglomerable with
respect to a partition B of the possibility space, when it holds that

P (A) ∈
[

inf
B∈B

P (A|B), sup
B∈B

P (A|B)

]
for all events A. Although the lack of conglomerability leads to some counterintuitive properties [8], de Finetti argued
[6, 7] that conglomerability should not be imposed as a rationality requirement in the subjective approach to probability

∗Corresponding author
Email addresses: mirandaenrique@uniovi.es (Enrique Miranda), zaffalon@idsia.ch (Marco Zaffalon)

1



given by the theory of previsions. Let us stress that this question is relevant only for the case of infinite partitions,
because in the remaining case conglomerability is actually secured by de Finetti’s axioms. The issue has remained
a controversial one in time (again, only for the case of infinite partitions) and there has been quite some literature
devoted to this subject (e.g., [1, 9, 16]). Taking this into account, it is not surprising that conglomerability has also been
a subject of discussion when extending de Finetti’s theory to the case where we consider lower and upper previsions
instead of linear ones.

In that case, conglomerability is usually formulated in an alternative manner: if we consider a partition B of the set
of outcomes (that is, the possibility space) and a gamble that we are disposed to accept once we know the element of
the partition that includes the outcome, irrespectively of which set this is, then conglomerability means that we should
also accept the gamble without knowing which of the sets in the partition includes the outcome (this is equivalent to
assuming that a particular infinite sum of acceptable gambles should be acceptable).

Using this idea, we have on the one hand Williams’ approach [14, 18], which is close to de Finetti’s, and which is
purely finitary in its formulation: conglomerability is considered as a rationality requirement only if the partition is
finite. One argument against the extension of such a requirement to the case of infinite partitions is that many useful, and
somewhat intuitive, properties of the class of coherent lower previsions do not hold if we impose conglomerability. This
is detailed in Section 2.5 and in Appendix A of this paper: the class of conglomerable and coherent lower previsions is
not closed under convex combinations or point-wise limits.

On the other hand, Walley has argued at some length in [17, Section 6.8] that conglomerability should be imposed.
The main motivation for such a standpoint seems his support to the idea that the sum of infinitely many acceptable
gambles should be acceptable; conglomerability follows from this as an implication.1 For these reasons, Walley’s
theory of imprecise previsions imposes a conglomerative axiom when dealing with the conditional case.

The two pillars of Walley’s theory of lower previsions are the notion of coherence, which determines whether or not
the assessments modeled by the lower previsions are consistent with each other, and that of natural extension, which
allows us to correct incoherent assessments into coherent ones in a least-committal way (these and other concepts of
Walley’s theory are summarised in Section 2). The extent to which conglomerability is taken into account in Walley’s
procedures of coherence and natural extension has been the subject of some recent work [12, 13].

It has turned out [12] that the definition of coherence does not always consider all the implications of conglomerab-
ility and that to solve this problem ones needs to employ an alternative definition of coherence. The two definitions are
equivalent in the special case where we consider just one conditional and one unconditional lower prevision [12, 13].

When we focus the attention on the notion of the natural extension, the problem comes up even in the simplest case.
If we use conglomerability as a rationality requirement, then the correction of a coherent lower prevision P that is
not conglomerable should provide us with the weakest conglomerable and coherent lower prevision F that extends P .
However, such a model does not necessarily exist, and in Section 3 we give necessary and sufficient conditions for the
correction to be feasible.

Even if the conglomerable natural extension exists, its construction can well be problematic; in fact, Walley’s
notion of natural extension does not provide the closest conglomerable model, but only a conservative (i.e., an outer)
approximation. This approximation is iterated in [13] so as to approximate F better and better through a sequence of
coherent lower previsions (En)n∈N such that P ≤ E1 ≤ E2 ≤ · · · ≤ Ei ≤ · · · ≤ F . What was known so far is that if
the sequence becomes stable, that is, if Ei = Ei+1 for some i, then Ei = F ; and, conversely, if the sequence breaks
down, which means that Ei+1 cannot be produced for some i, then F does not exist.

However, some fundamental questions were left open with regard to the sequence (En)n∈N. One of them was
whether or not it may be made of infinitely many distinct elements; in this case we also say that the sequence does
not stabilise. If that is the case, then the next question would be whether or not the point-wise limit Q of the sequence
equals F . In fact, in principle it could be the case that Q is not conglomerable while F exists; this would mean that we
should restart a new sequence from Q in order to get to F (and possibly another, and another, and another, etc.).

In this paper we answer the first question mentioned above: we construct in Example 4 in Appendix A a model P
whose related sequence (En)n∈N does not stabilise. In this specific case the limit Q of the sequence equals F ; this

1Walley tried to support conglomerability also by giving examples that aimed to show that the failure of conglomerability may have us subject to
a Dutch book. It has been argued recently that for this to be the case one has to consider a dynamic interpretation of probability that explicitly deals
with both present and future probability models, and moreover that these have to be established by a subject at the same time [20]. This indeed gives
support to conglomerability, but to a lesser extent than Walley seemed to be aiming at.
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does not allow us to address the second question, which remains open.
In Section 5 we deepen the study, started in [13], on the relationship between marginal extension and conglomerable

natural extension. We consider in particular the relationship between (En)n∈N and the sequence (Mn)n∈N, where
Mn := En−1(En−1(·|B)) is the marginal extension of En−1 and its conditional natural extension En−1(·|B) (which
is the least-committal coherent extension of En−1 to the conditional case, see Eq. (4) in Section 2.4). It turns out
that (Mn)n∈N is also an increasing sequence of coherent lower previsions that is dominated by F ; however we show
in Example 5 in Appendix A that the point-wise limit Q′ of the sequence (Mn)n∈N may differ from F . In addition,
by detailing the relationships between P , Q, Q′ and F we deduce in Proposition 9 that if (En(·|B))n∈N converges
uniformly to the conditional natural extension Q(·|B) of Q, then Q = F .

In Section 6 we focus on the special case where P is the lower envelope of finitely many linear previsions. This
allows us to deduce two new simple conditions, which seem to be quite broadly applicable, that make sure that
(En(·|B))n∈N converges uniformly to Q(·|B), and hence, through Proposition 9, that Q = F . This analysis shows in
particular that Q always equals F when P is the lower envelope of two linear previsions.

We report a summary of our views in Section 7. To ease the reading, all the counterexamples have been gathered
in Appendix A.

2. Introduction to imprecise probabilities

Let us introduce the basics of the theory of coherent lower previsions that we use in this paper. We refer to [17] for
an in-depth study, and to [11] for a survey.

2.1. Unconditional coherent lower previsions
Consider a possibility space Ω (very often in the examples of this paper Ω will be equal, or related, to the set of

positive natural numbers, which we denote by N). A gamble is a bounded map f : Ω → R. The set of all gambles
is denoted by L(Ω), or simply by L when there is no ambiguity about the possibility space we are working with. In
particular, we use f � 0 to denote a gamble f ≤ 0, f 6= 0 (and we will refer to this as a negative gamble), and f 
 0
to denote a gamble f ≥ 0, f 6= 0 (this will be called a positive gamble). We use the notation L+(Ω), or simply L+, to
refer to the set of positive gambles.

A lower prevision P is a real-valued functional defined on some set of gambles K ⊆ L. It determines a conjugate
upper prevision P on −K := {−f : f ∈ K} by P (−f) := −P (f). When the domain K of P is a linear space—closed
under point-wise addition and multiplication by real numbers—P is called coherent when it satisfies the following
conditions:

C1. P (f) ≥ inf f for all gambles f ∈ K;

C2. P (λf) = λP (f) for all gambles f ∈ K and all positive real λ;

C3. P (f + g) ≥ P (f) + P (g) for all gambles f, g ∈ K.

We shall let
P := {P : L → R coherent} (1)

denote the class of coherent lower previsions defined on the set L of all gambles.
A particular case of coherent lower previsions is that of linear previsions. A linear prevision is a functional

P : L → R satisfying conditions C1 and C2, and

P (f + g) = P (f) + P (g) for all f, g ∈ L.

In this paper we identify an event B ⊆ Ω with its corresponding indicator function IB—and in fact we shall often use
B to denote the indicator IB . With this in mind, we can consider the restriction of P to P(Ω), the powerset of Ω: it
turns out that such a restriction is a finitely additive probability and that P is the corresponding expectation operator.2

2The expectation is obtained by taking the Dunford integral [2].
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The set of all linear previsions is denoted by P. Let P be a coherent lower prevision on K. We define its associated
credal set as

M(P ) := {P ∈ P : (∀f ∈ K)P (f) ≥ P (f)} ,

and each P inM(P ) is said to dominate P .
We say that a lower prevision P avoids sure loss when its associated credal setM(P ) is not empty. In that case, its

natural extension is simply the lower envelope ofM(P ), and it corresponds to the smallest coherent lower prevision
on L that dominates P on its domain. It represents the least-committal correction of the assessments present in P that
is necessary to satisfy the property of coherence.

The same notion can be used to extend a coherent lower prevision from its domain K to the set L of all gambles:
the lower envelope ofM(P ) is again the smallest coherent lower prevision on L that dominates P on its domain.

2.2. Separately coherent conditional lower previsions

Similar concepts arise in the conditional case. Consider a partition B of Ω and a lower prevision P (·|B) on L(Ω)
for each event B ∈ B. The collection of all these functionals summarised by P (·|B) :=

∑
B∈B BP (·|B) is called a

conditional lower prevision on L(Ω). P (·|B) is said separately coherent when P (·|B) is coherent and P (B|B) = 1
for every B ∈ B. For every gamble f , P (f |B) is a gamble on Ω that is constant on the elements of B; such gambles
are called B-measurable. It may be convenient to regard a separately coherent conditional lower prevision P (·|B) also
as the functional3 from L(Ω)×Ω to R such that P (f |B)(ω) = P (f |B), with B 3 ω.

In an analogous way, a conditional linear prevision is a functional P (·|B) from L(Ω) × Ω to R such that
P (B|B) = 1 and P (·|B) is a linear prevision for every B ∈ B.

Similarly to the unconditional case, a conditional lower prevision P (·|B) is separately coherent if and only if
P (·|B) is, for all B ∈ B, the lower envelope of a family of linear previsions (we shall sometimes abuse terminology by
saying that P (·|B) is the lower envelope of a family of conditional linear previsions). As a consequence, the theory can
be given a Bayesian sensitivity analysis interpretation. In this regard, it is important to keep in mind that the precise
models correspond to expectation functionals with respect to finitely additive probabilities that need not be σ-additive.

2.3. The behavioural interpretation

The concepts above can be given a behavioural interpretation, in terms of buying and selling prices [7, 17]. Given a
gamble f , its lower prevision P (f) can be seen as the supremum acceptable buying price for f , in the sense that for
every µ < P (f), and for no µ > P (f), we would accept the gamble f − µ in case it was offered to us (sometimes this
is also referred to as an acceptable transaction).

When this supremum acceptable buying price coincides with the infimum acceptable selling price for f , which
is equal to −P (−f), this common value can be seen as a fair price for f , and if we can establish fair prices for all
gambles, we determine a linear prevision. A similar interpretation can be provided for the conditional lower previsions:
P (f |B) is the supremum price we would (currently) give for f , if we observed the event B.

The rationality of our buying and selling prices can be verified by means of a number of axioms: for instance,
we may require that a transaction that can never make us lose utiles, and possibly make us gain some, should be
acceptable; that one that can never make us win utiles should not be acceptable; and that a positive linear combination
of acceptable gambles should again be acceptable. All these axioms together imply that by combining a finite number
of acceptable transactions a Dutch book cannot be built against us, and moreover that our supremum buying prices
are the result of some thorough reflection, in the sense that one cannot force a change in our prices by taking into
account the implications of any finite number of our acceptable gambles. These ideas lie behind the definition of natural
extension we have given in Section 2.1: it is the lower prevision associated to the buying prices whose rationality is
guaranteed by the assessments that are implicit in P .

3We are abusing terminology here as, strictly speaking, P (·|B) is a collection of functionals.
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2.4. Coherence of conditional and unconditional models
The behavioral interpretation allows us to determine when the assessments present in a (conditional or an uncondi-

tional) lower prevision are compatible with each other, in the sense that they are mutually consistent, which also implies
that they cannot be exploited to make a Dutch book against us. When we have a conditional and an unconditional lower
prevision, we need to verify that the assessments present in these two models are also compatible when taken together.
This gives rise to a joint notion of coherence.

For every lower prevision P and every conditional lower prevision P (·|B), we use the notations:

GP (f) := f − P (f), GP (f |B) := B(f − P (f |B)),

GP (f |B) := f − P (f |B) =
∑
B∈B

GP (f |B).

Definition 1 (Coherence of conditional and unconditional lower previsions). If we consider a coherent lower
prevision P on L and a separately coherent conditional lower prevision P (·|B) on L, they are called coherent4 if and
only if for every gamble f and every B ∈ B,

P (GP (f |B)) ≥ 0 (CNG)

and
P (GP (f |B)) = 0. (GBR)

The first is a condition of conglomerability, which will be discussed at some length later in this section; for the time
being, it is enough to notice that conglomerability is always relative to a given partition B. The second condition is
called the Generalised Bayes Rule, and if P (B) > 0 it can be used to uniquely determine the value P (f |B): in that
case there is only one value satisfying (GBR) with respect to P . If P and P (·|B) satisfy (GBR), we also say that they
are Williams coherent [18].5

One particular case of coherent P , P (·|B) are the vacuous unconditional and conditional lower previsions, given by

P (f) := inf
ω∈Ω

f(ω) and P (f |B) := inf
ω∈B

f(ω) for all f ∈ L and all B ∈ B.

Another instance can be constructed by means of marginal extension: given a coherent lower prevision P and a
separately coherent conditional lower prevision P (·|B) on L, their marginal extension is the coherent lower prevision

P (P (·|B)). (2)

Then P (P (·|B)) and P (·|B) are coherent.
A weaker requirement of coherence is avoiding partial loss.

Definition 2 (Avoiding partial loss of conditional and unconditional coherent lower previsions). Given a coherent
lower prevision P and a separately coherent conditional lower prevision P (·|B) on L, they are said to avoid partial
loss when

sup
[
GP (f) +GP (g|B)

]
≥ 0 (3)

for every pair of gambles f, g ∈ L.
Eq. (3) holds whenever P (·|B) is the vacuous conditional lower prevision irrespective of the coherent lower

prevision P , because in that case GP (f |B) ≥ 0 for any gamble f .
Similarly to the unconditional case, we can also determine the conditional behavioural implications of a coherent

lower prevision. Given a coherent lower prevision P , its conditional natural extension is given by

P (f |B) =

{
infω∈B f(ω) if P (B) = 0

min{P (f |B) : P ≥ P} otherwise
(4)

for every B ∈ B and every f ∈ L. It follows from this definition that if P ,Q are coherent lower previsions and Q ≥ P ,
then the conditional natural extension of Q must dominate that of P .

4See [17, Section 6.3.2] for a definition of coherence on more general domains.
5Williams coherence is not constrained to gambles whose conditioning events form a partition of the sure event; this is one of the reasons why it

does not necessarily satisfy conglomerability, as we shall see later on.
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Proposition 1. [17, Section 6.8] Let P be a coherent lower prevision, and let P (·|B) be its conditional natural
extension, given by Eq. (4).

1. P (·|B) is a separately coherent conditional lower prevision.

2. P , P (·|B) always satisfy (GBR). Thus, they are coherent if and only if (CNG) holds.

3. The following are equivalent:

(a) P is coherent with some conditional lower prevision Q(·|B).

(b) P is coherent with its conditional natural extension P (·|B).

Taking this into account, we consider the following definition:

Definition 3 (Conglomerably coherent lower prevision). We say that a coherent lower prevision P is a conglomerably
coherent lower prevision relative to B, or simply that it is B-conglomerable, when it is coherent with its conditional
natural extension P (·|B).

Similarly to Eq. (1), we denote by

F := {P : L → R conglomerably coherent relative to B}

the class of B-conglomerable coherent lower previsions. This class includes for instance the lower previsions that
are constructed by means of marginal extension as in Eq. (2). Conglomerably coherent lower previsions relative to B
are those that can be coherently updated into a lower prevision conditional on B. In that case, the conditional natural
extension is the smallest conditional lower prevision that is coherent with them. Let us recall that in this paper we
restrict the attention to the case of one partition only. For this reason, we shall often drop the reference to B and more
simply say that a coherent lower prevision is conglomerable.6

Conglomerability holds trivially whenever P (B) = 0 for all but a finite number of conditioning events B ∈ B, as it
is often the case when the partition B is uncountable. In particular, (CNG) always holds whenever the support of the
gamble f ,

S(f) := {B ∈ B : Bf 6= 0},

is finite. This means that conglomerability holds trivially for finite partitions. In fact, in that case condition (CNG) is a
consequence of (GBR), which means that Walley’s and Williams’ notions of coherence are equivalent.

Remark 1. Let us recall that given a separately coherent conditional lower prevision P (·|B), by letting C ⊆ Ω be the
union of some arbitrary elements of the partition B, it holds for all f ∈ L that

GP (f |B) = f − P (f |B) = Cf + Ccf −
∑
B∈B

BP (Cf + Ccf |B)

=

Cf − ∑
B∈B:B⊆C

BP (Cf |B)

+

Ccf − ∑
B∈B:B⊆Cc

BP (Ccf |B)


= GP (Cf |B) +GP (Ccf |B).

If P (·|B) is given by (4), i.e., if it is the conditional natural extension of a coherent lower prevision P , then if we let
C := ∪B∈B:P (B)>0B, we have in addition that GP (Ccf |B) ≥ 0, taking into account that P (·|B) is vacuous for all
B ⊆ Cc, whence, applying the super-additivity (due to coherence) of P ,

P (GP (f |B)) ≥ P (GP (Cf |B)) + P (GP (Ccf |B)) ≥ P (GP (Cf |B)).�

6It is also possible to study the other extreme called full conglomerability, in which a coherent lower prevision is conglomerable with respect to
all partitions of the possibility space (see [17, Sections 6.8 and 6.9] for a discussion).
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This remark shows that we may as well restrict the attention to countable partitions to the extent of studying
conglomerability, and more specifically to the partition {B ∈ B : B ⊆ C}

⋃
{Cc}.

In the particular case of linear previsions, P is conglomerable if and only if it is coherent with its conditional natural
extension P (·|B); note however that this conditional prevision may not be precise (as we have seen, P (·|B) is vacuous
if P (B) = 0). Indeed, there are conglomerable linear previsions P that are not coherent with any conditional linear
prevision P (·|B) (see [17, Example 6.6.10] for an example). A sufficient condition for the conglomerability of a linear
prevision P is that it is countably additive on B, in the sense that

∑
B∈B P (B) = 1. However, this condition is not

necessary, and there are interesting situations that can be modeled by means of conglomerable linear previsions that are
not countably additive [17, Examples 6.6.4 and 6.6.5]. If instead we require that the linear prevision be conglomerable
with respect to all partitions, then there is a very strong relationship to countable additivity,7 and de Finetti and others
have argued [3] that in some cases countable additivity can give rise to unreasonable conclusions.

The reason why conglomerability is controversial is because, unlike coherence, it involves the combination of an
infinite number of transactions:8 it means that the infinite sum of acceptable gambles that depend on different elements
of a partition should be acceptable. This is called the conglomerative principle in [17] and implies, for instance, that
the gamble GP (f |B) + ε should be acceptable for all ε > 0. This assumption is not made by authors such as Williams,
for whom the gamble GP (f |B) + ε is acceptable for all ε > 0 only when f has a finite support in B, i.e., when there
is only a finite number of elements of B on which f is non-zero. Walley’s position on the other hand is to support
conglomerability, and for this reason his definition of coherence for conditional and unconditional lower previsions is
based on the conglomerative principle.

In this paper, we study this property in detail and we investigate to which extent conglomerability can be fully
incorporated into the theory of coherent lower previsions as a rationality assessment, in the sense that we can extend a
coherent, but non-conglomerable, model into a conglomerably coherent one in the least-committal way.

2.5. Basic properties of conglomerability

A useful feature of coherence, as discussed by Walley in [17, Section 2.6], is that the class P of coherent lower
previsions is closed under lower envelopes, point-wise limits, and convex combinations.

The situation is not so straightforward if we restrict our attention to the subclass F of the conglomerably co-
herent lower previsions: for instance, there are coherent conditional and unconditional lower previsions that are
not necessarily the lower envelopes of a set of coherent conditional and unconditional linear previsions (see [17,
Examples 6.6.9, 6.6.10]). In other words, the notion of conglomerable coherence is only partially compatible with the
Bayesian sensitivity analysis interpretation: even though the lower envelope of a family of conglomerably coherent
lower previsions is again conglomerable by [17, Theorem 6.9.3], it may even happen that a conglomerably coherent
lower prevision is not dominated by any conglomerably coherent linear prevision.

On the other hand, we show in Example 1 in Appendix A that conglomerability is not preserved by point-wise limits
(note that a similar observation was made by Walley in [17, Section 6.6.7]); moreover, in [15, Example 4.1] it is showed
that conglomerability is not preserved by convex combinations. These two properties differentiate conglomerably
coherent lower previsions from those that are simply coherent. Indeed, the second example shows perhaps better than
others the counterintuitive nature of conglomerability: in fact, “one would expect convex combinations of reasonable
models to be reasonable”, quoting Walley from note 4 to [17, Section 6.9.2]—where he made a point similar to that of
[15, Example 4.1] while focusing on the case of fully conglomerable models.9

3. On the existence of the conglomerable natural extension

The preliminary results reported above illustrate the fact that some of the properties of coherent lower previsions do
not extend themselves to the more stringent framework originated by the additional requirement of conglomerability.

7Specifically, countable additivity is necessary for full conglomerability (that is, conglomerability with respect to all partitions) when the linear
prevision takes infinitely many values on events. See [15] and [17, Section 6.9] for details.

8But see also [20] for a recent finitary interpretation.
9However Walley used that to argue that some fully conglomerable models could be unreasonable and one should rather consider countably

additive models.
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Another example of this is that a lower prevision P that avoids sure loss has always a dominating coherent lower
prevision (its natural extension), but it may not have a dominating conglomerably coherent lower prevision.

As discussed at the beginning of Section 2.5, F is closed under taking lower envelopes. Hence, if P has a
dominating conglomerable model, then there is also a smallest dominating conglomerable model. We shall refer to it as
the conglomerable natural extension of P .

Definition 4 (Conglomerable natural extension of a coherent lower prevision). Let P be a coherent lower prevision
on L(Ω) and let B be a partition of Ω. If it exists, the smallest coherent lower prevision F on L(Ω) that dominates P
and is conglomerable with respect to B, is called the B-conglomerable natural extension of P . (In the following we
shall refer to F more simply as the conglomerable natural extension, given that we always focus on the single partition
B.)

In other words, the conglomerable natural extension of P is the lower envelope of the set {Q ∈ F : Q ≥ P}.
However, this set may be empty, and in that case the conglomerable natural extension of a lower prevision P does not
exist. An instance is given by [15, Example 4.1], where a linear prevision P is not conglomerable: sinceM(P ) = {P},
any dominating coherent lower prevision P must coincide with P , and therefore there are no dominating conglomerably
coherent models.10 Note that it follows from the above definition that if P ,Q are coherent lower previsions and Q ≥ P
then the conglomerable natural extension of Q must dominate that of P .

We see then that the existence of the conglomerable natural extension is not a trivial matter. Next, we provide a
number of necessary and sufficient conditions:

Proposition 2. Let P be a coherent lower prevision on L(Ω), B a partition of Ω, and P (·|B) a separately coherent
lower prevision. Consider the following statements:

(a) P , P (·|B) are coherent.

(b) P , P (·|B) are dominated by coherent Q,Q(·|B).

(c) The conglomerable natural extension of P exists.

(d) P , P (·|B) are dominated by Q,Q(·|B) that avoid partial loss.

(e) P , P (·|B) avoid partial loss.

Then the following implications hold:
(a)
⇓

(b) ⇒ (c)
⇓

(d) ⇔ (e).
If, in addition, P (·|B) is the conditional natural extension of P , then (c)⇒ (b) holds as well, and if in particular P is
linear then we have also that (b)⇒ (a) and (d)⇒ (b), so all of them are equivalent conditions:

(a)⇔ (b)⇔ (c)⇔ (d)⇔ (e).

Proof. Let us prove the different implications in the case of generic P , P (·|B).

(a)⇒ (b) Trivial.

(b)⇒ (c) If Q,Q(·|B) are coherent, then Q is conglomerable and dominates P , so the conglomerable natural extension of
P exists.

(b)⇒ (d) Trivial.

10Indeed, for any linear prevision P there are only two possible scenarios: either P is conglomerable (and then it coincides with its conglomerable
natural extension) or the conglomerable natural extension does not exist. This is because the set {Q ∈ F : Q ≥ P} is equal to either {P} or the
empty set.
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(d)⇒ (e) Given gambles f, g it holds that

sup
Ω

[GP (f) +GP (g|B)] ≥ sup
Ω

[GQ(f) +GQ(g|B)]
(d)
≥ 0,

so Eq. (3) holds and therefore P , P (·|B) avoid partial loss.

(e)⇒ (d) Trivial.

In case P (·|B) is the conditional natural extension of P , then:

(c)⇒ (b) If F exists, then P , P (·|B) are dominated by the coherent F , F (·|B), where F (·|B) is the conditional natural
extension of F .

Finally, if in addition P is linear, then:

(b)⇒ (a) If P , P (·|B) are dominated by coherentQ,Q(·|B), then it must beQ = P . Thus, P,Q(·|B) are coherent, whence
P is conglomerable and as a consequence P, P (·|B) are coherent. The last implication holds also because P (·|B)
is the conditional natural extension of P , so that P, P (·|B) satisfy (GBR).

(d)⇒ (b) If P, P (·|B) are dominated by Q,Q(·|B) that avoid partial loss, then P, P (·|B) avoid partial loss; applying the
second part of the consequences of avoiding partial loss from [17, Theorem 6.3.5(3)] together with the linearity of
P , it follows that P (GP (f |B)) ≥ 0 for every gamble f . Since a coherent lower prevision always satisfies (GBR)
with its conditional natural extension, we obtain that P, P (·|B) are coherent.

Example 2 in Appendix A shows that there is no additional implication.
Now, if we consider a coherent lower prevision P , it follows that its conglomerable natural extension exists if and

only if there is a coherent lower prevision F ≥ P that is conglomerable. Since conglomerability is equivalent to the
coherence with the conditional natural extension, it follows that the conglomerable natural extension of P exists if and
only if P , P (·|B) are dominated by coherent Q,Q(·|B), where P (·|B) denotes the conditional natural extension of P .
We deduce from Proposition 2 that the following implications hold:

P , P (·|B) coherent ⇒ the conglomerable natural extension of P exists⇒ P , P (·|B) avoid partial loss, (5)

and moreover the conglomerable natural extension of P exists if and only if P , P (·|B) avoid conglomerable partial
loss, in the sense of [12, Definition 21]. The converses of the implications in (5) do not hold in general: on the one
hand, there are previsions P that are not conglomerable but whose conglomerable natural extension exists (for instance
the one in Example 4 in Appendix A). We also show in Example 3 in Appendix A that the converse of the second
implication does not hold either. In other words, the conditions of avoiding partial loss and avoiding conglomerable
partial loss are not equivalent in general. This second finding is important because it shows that the notion of logical
consistency in the conditional case, which means that our assessments can be corrected into coherent ones, is not
the notion of avoiding partial loss proposed by Walley in [17, Section 7.1]; we should instead consider the notion of
avoiding conglomerable partial loss, which is equivalent to the existence of the conglomerable natural extension.

We can get more, and different, results in the special case where the conditional natural extension of P is linear. In
order to establish this result, we need to define the notion of unconditional natural extension:

Definition 5 (Unconditional natural extension of P , P (·|B)). Let P be a coherent lower prevision and P (·|B) be a
separately coherent conditional lower prevision on L. Their unconditional natural extension E is

E(f) := sup{α : f − α ≥ GP (g) +GP (h|B) for some g, h ∈ L}. (6)

E expresses the coherent implications of P , P (·|B) on an unconditional model, and it is itself a coherent lower
prevision, on L, if and only if P , P (·|B) avoid partial loss. Moreover, if P (·|B) is the conditional natural extension of
P and E(·|B) is that of E, then any coherent Q,Q(·|B) that dominate P , P (·|B) must also dominate E,E(·|B). In
other words, {Q ∈ F : Q ≥ P} = {Q ∈ F : Q ≥ E}, and therefore the conglomerable natural extensions of P and E
coincide.
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Proposition 3. Let P be a coherent lower prevision on L and assume that its conditional natural extension is a linear
prevision P (·|B). Then:

(a) P , P (·|B) avoid partial loss if and only if P , P (·|B) avoid conglomerable partial loss.11

(b) P is conglomerable if and only if it is a lower envelope of conglomerable linear models.

Proof.

(a) The converse implication is trivial. To show the direct implication, let us assume that P , P (·|B) avoid partial
loss. Then we can build their natural extension E, which is a coherent lower prevision. Its conditional natural
extension E(·|B) must dominate that of P , so E(·|B) = P (·|B). But by construction of E, we have that
E(GP (f |B)) ≥ 0 for all f ∈ L, whence E,P (·|B) are coherent and as a consequence E is conglomerable.
Hence, the conglomerable natural extension of P exists.

(b) The converse implication is trivial. To show the direct implication, note that if P is conglomerable then it
is coherent with its conditional natural extension P (·|B). From the results on conditional coherence in [17,
Section 6.5.5], a conditional linear prevision is coherent with an unconditional lower prevision if and only
if P = P (P (·|B)). The envelope theorem for marginal extension models established in [17, Theorem 6.7.4]
implies then that P (P (·|B)) is the lower envelope of the set {P (P (·|B)) : P ≥ P}. Thus, if P is conglomerable
then it is a lower envelope of conglomerable linear models.

As we mentioned in Section 2.5, the set of conglomerably coherent lower previsions is closed under lower envelopes,
but not every conglomerably coherent lower prevision is the lower envelope of a family of conglomerably coherent
linear previsions. Hence, the Bayesian sensitivity analysis interpretation is not fully compatible with conglomerable
coherence. Proposition 3 provides a particular situation when the set of conglomerably coherent lower previsions is
necessarily the lower envelope of a set of conglomerably coherent linear previsions: when the conditional natural
extension of P is linear.

Note that in that case the equivalence in Proposition 3(b) is not trivial, in the sense that even if the conditional
natural extension of P is linear the coherent lower prevision P may not be conglomerable. To see this, we refer to
Example 1 in Appendix A.

4. Approximation by a sequence

In [13], a procedure was devised to approximate the conglomerable natural extension (if it exists) of a coherent
lower prevision P : we consider the sequence of coherent lower previsions (En)n∈N, where E0 := P and for every
n ≥ 1:

En is the natural extension of En−1, En−1(·|B), given by Eq. (6); (7)
En−1(·|B) is the conditional natural extension of En−1, given by Eq. (4). (8)

Then {Q ∈ F : Q ≥ En} = {Q ∈ F : Q ≥ P} for every n, so the conglomerable natural extension of P coincides
with that of En for every n. It can be also checked that:

Proposition 4 (See [13]). Assume that the conglomerable natural extension F of P exists. Then:

1. (En)n∈N is an increasing sequence of coherent lower previsions, and (En(·|B))n∈N is an increasing sequence
of separately coherent conditional lower previsions.

2. Given their point-wise limits Q,Q(·|B), it holds that Q(·|B) is the conditional natural extension of Q.

3. Q ≤ F , and they coincide if and only if Q is conglomerable.

11This has essentially been shown already in [13, Proposition 15].
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Moreover, it was shown in [13, Example 5] that the sequence does not necessarily stabilise in the first step, or, in
other words, that the natural extension of P , P (·|B) does not always coincide with the conglomerable natural extension.

In terms of credal sets, we have the following:

Proposition 5 (Propositions 13 and 14 in [13]). Let P be a coherent lower prevision on L(Ω), B a partition of Ω and
P (·|B) its conditional natural extension. Let E be the unconditional natural extension of P , P (·|B). Then

M(E) = {P ∈M(P ) : (∀f ∈ L)P (GP (f |B)) ≥ 0} =M(P ) ∩M(M),

where M = P (P (·|B)).

In addition, it was shown in [13] that if the sequence stabilises in a finite number of steps, i.e., if Q = En for
some n, then Q is the conglomerable natural extension of P . However, the question of whether or not the sequence
always stabilises in a finite number of steps was left open. We solve this problem by means of Proposition 21 and
Example 4 in Appendix A: the example shows that it may happen that the sequence is made of infinitely many
distinct elements. This is the most important result in this paper, for it shows that in general the computation of the
consequences of the conglomerative axiom cannot be made in a finitary manner. The idea underlying the example is to
consider the lower envelope P of two non-conglomerable linear previsions, of which only one convex combination is
conglomerable (and this is the conglomerable natural extension of P ); then the sequence (En)n∈N defined by Eq. (6)
is in a one-to-one correspondence with a strictly decreasing sequence of subintervals of [0, 1], whose intersection
determines the conglomerable natural extension.

5. Conglomerability and marginal extension

When Q does not coincide with En for any n (as in Example 4 in Appendix A), it is an open problem whether Q
always coincides with the conglomerable natural extension or not. Here, we give a number of sufficient conditions for
the equality Q = F . We show that one particular case of interest is that where Q is a marginal extension model (see
Eq. (2)) and we are going to explore in more detail the connection between conglomerably coherent lower previsions
and marginal extensions.

We begin by proving an elementary, and yet interesting, result. The interest arises in particular from the following
reasoning: given a coherent lower prevision P , we can deduce from it both its B-marginal model, which is P
itself restricted to the subset of B-measurable gambles, and the weakest (i.e., more conservative) conditional model
that is compatible with it, that is, its conditional natural extension P (·|B); then we can re-agglomerate these two
pieces of information in what appears to be the weakest possible way, that is, by creating their marginal extension
M := P (P (·|B)) (remember that the marginal extension is the generalisation of the law of iterated expectation to the
case of coherent lower previsions). So it is tempting to somewhat take for granted that M cannot be more informative
than P , in the sense that it should be dominated by P . But the following result shows that the reasoning so far is correct
if and only if P is conglomerable:

Proposition 6. Let P be a coherent lower prevision on L, B a partition of Ω and P (·|B) the conditional natural
extension of P . Let M := P (P (·|B)). Then

M ≤ P ⇔ P conglomerable. (9)

Proof. (⇒) If M ≤ P , thenM(M) ∩M(P ) = M(P ). By Proposition 5, the natural extension E of P , P (·|B)
coincides with P . But this can only hold (that the sequence stabilises) when P is conglomerable, by [13,
Proposition 16].

(⇐) By definition, if P is conglomerable then P , P (·|B) are coherent, and by [17, Theorem 6.3.5(5)] a consequence
of coherence is that P ≥ P (P (·|B)) = M .

Example 5 in Appendix A shows that we do not necessarily have the equality P = M in Eq. (9).
Next, drawing inspiration from Proposition 5, we investigate the properties of the sequence of marginal extensions

(Mn)n∈N associated to (En)n∈N, where Mn := En−1(En−1(·|B)) for every n > 1 and M1 = P (P (·|B)), recalling
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that En−1(·|B) and P (·|B) are the conditional natural extensions of En−1 and P , respectively. Remember that
Mn is conglomerable for all n because all marginal extension models are, by [17, Theorem 6.7.2]. It follows from
Proposition 5 thatM(En) =M(En−1)∩M(Mn), so Mn ≤ En for all n. Since the sequence (En(·|B))n∈N is also
increasing, we deduce that so is the sequence (Mn)n∈N. Thus, (Mn)n∈N is an increasing sequence of conglomerable
and coherent lower previsions that is dominated by F , the conglomerable natural extension of P . Moreover, if En is
not conglomerable, then it cannot be Mn ≥ P , because, since Mn is conglomerable, it would be P ≤ Mn = F ≤
En ≤ F , and therefore also En = F would be conglomerable. In other words, if the sequence does not stabilise in a
finite number of steps (and therefore En is not conglomerable for any n), then

∀n ∈ N,∃f ∈ L such that Mn(f) = En−1(En−1(f |B)) < P (f) ≤ En−1(f).

This notwithstanding, the sequence of marginal extensions can actually converge to the conglomerable natural extension
in the limit; it can be checked that this is in fact the case of the model in Example 4 in Appendix A; an easier (trivial)
example can be made by considering a lower prevision P satisfying P = P (P (·|B)), for which F = M = P .

However, it may be that the conglomerable natural extension is not a marginal extension model, and therefore that
the increasing sequence of marginal extensions stabilises on a model that is not the conglomerable natural extension.
This is showed in Example 5 in Appendix A.

Let us study in more detail the sequence (Mn)n∈N. We begin by characterising the relationship between these
marginal extensions and Q in terms of credal sets.

Proposition 7. Let P be a coherent lower prevision and (En)n∈N the sequence of coherent lower previsions it origin-
ates by Eq. (7). Assume that the limit of the sequence exists and let Q := limn→∞En, Q′ := limn→∞Q(En(·|B))
and Mn := En−1(En−1(·|B)) for n > 1, M1 := P (P (·|B)). Then:

(a) M(Q) = {P ≥ P : (∀f ∈ L)(∀n ∈ N)P (GEn(f |B)) ≥ 0}.

(b) M(Q) =M(P ) ∩ (∩n∈NM(Mn)).

(c) M(Q) =M(P ) ∩M(Q′) sinceM(Q′) = ∩n∈NM(Mn).

Proof.

(a) To prove the direct inclusion, consider that Q ≥ En ≥ P , and also that by construction Q(GEn(f |B)) ≥
En+1(GEn(f |B)) ≥ 0 for all f ∈ L and n ∈ N, where the last inequality follows from Proposition 5. Hence,
any P ∈ M(Q) also satisfies these two conditions. For the converse inclusion, if P (GEn(f |B)) ≥ 0 for all
f ∈ L, n ∈ N and P ≥ P , it follows by Eqs. (7), (8) that P ≥ En for all n ∈ N, whence P ≥ Q.

(b) For the direct inclusion, given P ∈ M(Q), it holds that P ≥ En ≥ Mn for all n, where the last inequal-
ity follows from Proposition 5. Hence, P ∈ ∩n∈NM(Mn); and by construction P ∈ M(P ). Conversely,
if P ∈ ∩n∈NM(Mn) for all n, then for any gamble f and any n > 1 it holds that P (f) ≥ Mn(f) =
En−1(En−1(f |B)). In particular, P (GEn−1

(f |B)) ≥ En−1(En−1(GEn−1
(f |B)|B)) = En−1(0) = 0, be-

cause for any conditioning event B, En−1(GEn−1
(f |B)|B) = En−1(f |B)− En−1(f |B) = 0. Applying (a),

we conclude that P ∈M(Q).

(c) The statement follows from (b) if we show thatM(Q′) = ∩n∈NM(Mn). If P ≥ Q′ = limn→∞Q(En(·|B)),
then in particular for any fixed n it holds that P (f) ≥ En−1(En−1(f |B)) = Mn(f). Thus P ∈ ∩n∈NM(Mn).
Conversely, if P ∈ ∩n∈NM(Mn), then for any f , P (f) ≥ En(En(f |B)). Therefore P (f) ≥ En(En−1(f |B))
and hence, for any fixed n, P (f) ≥ Em(En(f |B)) for all m ≥ n. Thus, P (f) ≥ limm→∞Em(En(f |B)) =
Q(En(f |B)), and since this happens for every n, P (f) ≥ limn→∞Q(En(f |B)) = Q′.

So we see that Q′ actually defines the limit of the sequence of marginal extensions (Mn)n∈N and that there is a
tight relationship between this limit and the limit Q of the sequence of natural extensions (En)n∈N. We can moreover
use these results to characterise when Q′ is conglomerable:

12



Corollary 8. Under the previous conditions,

Q′ conglomerable ⇔ Q′ = Q(Q(·|B)), (10)

where Q(·|B) is the conditional natural extension of Q.

Proof. Since Q′ ≥ En(En(·|B)) for every n, its conditional natural extension Q′(·|B) dominates the conditional
natural extension of Mn+1, that in turn dominates En(·|B) because Mn+1, En(·|B) are coherent. On the other hand,
Q′ ≤ Q by Proposition 7(c), and therefore its conditional natural extension satisfies Q′(·|B) ≤ Q(·|B). Thus,

En(·|B) ≤ Q′(·|B) ≤ Q(·|B)

for every n. Since by Proposition 4 Q(·|B) is the point-wise limit of (En(·|B))n∈N, we deduce that Q′(·|B) = Q(·|B).
By Proposition 5, the conglomerable natural extension of Q′ must dominate Q′(Q′(·|B)). Since for any B-

measurable gamble g it holds that Q′(g) = limn→∞Q(En(g|B)) = limn→∞Q(g) = Q(g), we have Q′(Q′(·|B)) =

Q(Q(·|B)), and therefore the conglomerable natural extension of Q′ dominates Q(Q(·|B)).
On the other hand, it follows from monotonicity that Q′ = limn→∞Q(En(·|B)) ≤ Q(Q(·|B)); a marginal

extension (i.e., the concatenation of a conditional and a marginal model) is always a conglomerable model because
of [17, Theorem 6.7.2]. We deduce that the conglomerable natural extension of Q′ is given by Q(Q(·|B)). Since a
coherent lower prevision is conglomerable if and only if it coincides with its conglomerable natural extension, we
conclude that Eq. (10) holds.

Taking all this into account, we can establish a sufficient condition for the limit of the sequence of marginal
extensions to be conglomerable, and use this to show that the limit of the natural extensions has then to be the
conglomerable natural extension.

Proposition 9. Let P be a coherent lower prevision on L, B a partition of Ω and (En)n∈N, (En(·|B))n∈N the
sequences it determines by means of Eqs. (7) and (8). Let Q := limn→∞En, Q(·|B) := limn→∞En(·|B), and
Q′ := limn→∞Q(En(·|B)). Consider the following statements:

(a) Q(f |B) is the uniform limit of the sequence (En(f |B))n∈N for all f ∈ Ω.12

(b) Q = Q′ = F .

(c) Q′ is conglomerable.

(d) Q is conglomerable.

(e) Q = F .

Then the following implications hold:
(a) ⇒ (c) ⇐ (b)

⇓
(d) ⇔ (e).

If in addition Q′ ≥ P , then:

1. (b)⇔ (c)⇔ Q′ = Q(Q(·|B)).

2. (d)⇔ (e)⇔ Q = Q(Q(·|B)).

3. (a)⇒ (b)⇔ (c)⇒ (d)⇔ (e).

Proof.

12By an abuse of terminology, in the following we shall also say that Q(·|B) is the uniform limit of the sequence (En(·|B))n∈N.
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(a)⇒ (c) If Q(·|B) is the uniform limit of (En(·|B))n∈N, then, since coherent lower previsions are continuous under
uniform convergence (this is established in [17, Theorem 2.6.1(`)]), it follows that given f ∈ L, Q′(f) =

limn→∞Q(En(f |B)) = Q(Q(f |B)). Applying Corollary 8, we deduce that Q′ is conglomerable.

(b)⇒ (c) If Q = Q′ = F , then trivially Q′ is conglomerable.

(c)⇒ (d) IfQ′ is conglomerable, then it follows from Corollary 8 thatQ′ = Q(Q(·|B)). Since by Proposition 7(c)Q ≥ Q′,
we conclude that Q ≥ Q(Q(·|B)) and, applying Proposition 6, Q is conglomerable.

(d)⇔ (e) SinceQ ≤ F , it follows thatQ is conglomerable if and only if it agrees with the conglomerable natural extension,
that is, if and only if Q = F .

Assume next that Q′ ≥ P .

1. By Corollary 8, (c) ⇔ Q′ = Q(Q(·|B)), so it suffices to show that (c) implies (b). Now, if Q′ ≥ P , then
P ≤ Q′ ≤ Q ≤ F . Hence, if Q′ is conglomerable, then we have Q′ = Q = F .

2. The equivalence between (d) and (e) has already been established in the first part of the proposition. To see they
are moreover equivalent to Q = Q(Q(·|B)), note that if Q is conglomerable, then Q ≥ Q(Q(·|B)) ≥ Q′ ≥ P .
But since Q(Q(·|B)) is a conglomerable model that dominates P , we must have Q ≤ F ≤ Q(Q(·|B)), whence
Q = Q(Q(·|B)). For the converse implication, note that if Q = Q(Q(·|B)) then it is trivially a conglomerable
model, because all marginal extensions are.

3. The last statement is a consequence of the previous two and the first part of the proposition.

The importance of Proposition 9 lies especially in the link that it establishes between the condition of uniform
convergence of the sequence of conditionals (En(·|B))n∈N to Q(·|B) and the fact that the sequence (En)n∈N attains
the conglomerable natural extension in the limit. We shall exploit this connection in Section 6 to give relatively simple
sufficient conditions for the sequence (En)n∈N to get to the conglomerable natural extension when P is a finitary
model.

Remark 2. For any B ∈ B such that Q(B) = 0, it holds that En(B) = 0 for every n and then Q(·|B), En(·|B) are
vacuous for every n. This means that condition (a) in Proposition 9 can be simplified as follows: for any gamble
f , (En(f |B))n∈N converges uniformly to Q(f |B) if and only if (En(Cf |B))n∈N converges uniformly to Q(Cf |B),
where C := ∪{B : Q(B) > 0}.

In particular, P (B) = 0⇒ Q(B) = 0⇒ Q(B) = 0, so this holds for the conditioning events that have zero upper
probability with respect to the initial model. �

6. Sufficient conditions for getting to the conglomerable natural extension in the limit

As we show in Example 4 in Appendix A, the sequence (En)n∈N of coherent lower previsions that provides a
lower bound for the conglomerable natural extension may not stabilise in a finite number of steps. On the other hand,
in Proposition 9 we have shown that a sufficient condition for En to converge towards the conglomerable natural
extension is the uniform convergence of the sequence of conditional lower previsions given by Eq. (8). In this section,
we give two sufficient conditions for this uniform convergence. Taking into account Remark 2, we are going to assume
without loss of generality that P (B) > 0 for every B ∈ B.

We focus on the case of an initial lower prevision P characterised by an associated credal setM(P ) that contains
finitely many extreme points. We call this a finitary model, or a finitary lower prevision. In other words, we consider
finitely many linear previsions P1, . . . , Pk on L and let P := min{P1, . . . , Pk}. We have that

M(P ) = {α1P1 + · · ·+ αkPk : (α1, . . . , αk) ∈ ∆} = {Pᾱ : ᾱ ∈ ∆},

where ∆ := {(α1, . . . , αk) : (∀i)αi ≥ 0,
∑k
i=1 αi = 1} is the (k − 1)-dimensional simplex, and where we simplify

the notation by letting Pᾱ := α1P1 + · · ·+αkPk, with ᾱ := (α1, . . . , αk). We consider as usual a partition B of Ω and
the sequence (En)n∈N of coherent lower previsions that we use to approximate the conglomerable natural extension
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F of P (provided that it exists). Let Q in particular be the point-wise limit of the coherent lower previsions in the
sequence (En)n∈N. We aim at giving conditions on P to make sure that Q is the conglomerable natural extension of P .

If there is m ∈ N such that Em = Em−1, then limn→∞En = Em = F and in particular Q = F . Otherwise, if
the sequence never stabilises, then En � En+1 for all n, whenceM(En) )M(En+1). Moreover, given that En
dominates P for all n ∈ N, we can represent its corresponding credal set as

M(En) = {Pᾱ : ᾱ ∈ ∆n},

for some ∆n ⊆ ∆. Let us show that ∆n is in addition closed and convex as a consequence of the fact thatM(En) is a
closed and convex set of linear previsions: this follows taking into account that

Pλᾱ1+(1−λ)ᾱ2
= λPᾱ1

+ (1− λ)Pᾱ2

for every λ ∈ [0, 1] and ᾱ1, ᾱ2 ∈ ∆n, and moreover

(ᾱm)m → ᾱ⇒ Pᾱm → Pᾱ

for every (αm)m, α ∈ ∆n, where the convergence is in the metric associated with the Euclidean distance.
Hence (∆n)n∈N is a strictly decreasing sequence of closed and convex subsets of ∆; since ∆ is a compact subset

of Rk, we deduce that limn→∞∆n =: ∆′ is a compact subset of ∆. By construction, ∆′ must determine a coherent
lower prevision that dominates all En for all n ∈ N, and in particular their limit Q = limn→∞En; conversely, Q is
the smallest coherent lower prevision that dominates En for all n ∈ N, so it must be associated to the intersection of
the credal sets. This means that ∆′ determines the lower prevision Q.

We are going to use these sets to give a sufficient condition for the uniform convergence of the sequence of
conditional natural extensions. For this, it will be important the characterisation of compactness by means of the finite
intersection property: a decreasing sequence of compact sets has empty intersection if and only if there is a finite n
such that the intersection of the first n elements of the sequence is empty. In particular, we have the following:

Lemma 10. Given a compact set X and a decreasing sequence (Bn)n∈N of non-empty closed sets of X , it holds that
∩n∈NBn 6= ∅.

Lemma 11. Let (∆n)n∈N be a decreasing sequence of closed convex subsets of the (k − 1)-dimensional simplex ∆,
and let ∆′ := ∩n∈N∆n. Let d(γ̄, γ̄′) denote the Euclidean distance between vectors γ̄ and γ̄′, and let d(γ̄,∆′) :=
inf{d(γ̄, γ̄′) : γ̄′ ∈ ∆′}. Then given dn := sup{d(γ̄,∆′) : γ̄ ∈ ∆n}, limn→∞ dn = 0.

Proof. Since (∆n)n∈N is a decreasing sequence, (dn)n∈N is a decreasing sequence of non-negative numbers, which
therefore has a non-negative limit. Assume ex-absurdo that limn→∞ dn = ε > 0. Consider the set B := {γ̄ ∈ ∆ :
d(γ̄,∆′) ≥ ε}. Then its complementary Bc := {γ̄ ∈ ∆ : d(γ̄,∆′) < ε} is an open set, using that d(γ̄′,∆′) ≤
d(γ̄′, γ̄) + d(γ̄,∆′), and thus B is closed. As a consequence, (∆n ∩ B)n∈N is a decreasing sequence of non-empty
compact subsets of the simplex ∆. Applying Lemma 10, we deduce that ∅ 6= ∩n∈N(∆n ∩ B) = ∆′ ∩ B = ∅, a
contradiction.

One important issue when studying the uniform convergence of (En(f |B))n∈N towards Q(f |B) is that of the
positivity of the lower probabilities of the conditioning events: as we have shown in (4), Q(f |B) can only be non-
vacuous when Q(B) > 0, and similarly for En. Then it may be that Q(B) > 0 for all B in B while for every n there is
an infinity of B for which En(B) = 0, preventing the uniform convergence. Our next result shows that for finitary
models this situation cannot arise:

Lemma 12. Let (∆n)n∈N be a decreasing sequence of non-empty closed subsets of the simplex, and let ∆′ := ∩n∈N∆n.
Consider Q := min{Pᾱ : ᾱ ∈ ∆′} and let B be a partition of Ω. Then there is some natural number n such that, for
all B ∈ B,

Q(B) > 0⇒ En(B) > 0, (11)

where En := min{Pᾱ : ᾱ ∈ ∆n}.
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Proof. Consider B ∈ B. If Pi(B) > 0 for all i = 1, . . . , k, then En(B) ≥ mini∈{1,...,k} Pi(B) > 0 for all n ∈ N. On
the other hand, if CB := {i ∈ {1, . . . , k} : Pi(B) = 0}} 6= ∅, then En(B) = 0 if and only if there is some ᾱ ∈ ∆n

such that
∑
i∈CB αi = 1.

Now, Q(B) > 0 implies that there is no ᾱ ∈ ∆′ such that
∑
i∈CB αi = 1. Since ∆′ = ∩n∈N∆n, this means that

if we let DB := {ᾱ ∈ ∆ :
∑
i∈CB αi = 1}, then there is some nB ∈ N such that ∆n ∩ DB = ∅ for all n ≥ nB;

otherwise we would contradict Lemma 10.
Since the sets CB , for B ∈ B, are subsets of {1, . . . , k}, there are at most a finite number of them. Each of them has

an associated nB such that ∆n ∩DB = ∅ for all n ≥ nB , and if we let n? := max{nB : Q(B) > 0}, we obtain that

En(B) > 0 for every n ≥ n? and every B ∈ B with Q(B) > 0.

Recall that the conglomerable natural extension of P coincides with that of En for every n ∈ N. Taking this
into account, Lemma 12 allows us to assume that P (B) > 0 whenever Q(B) > 0; otherwise, it suffices to start the
sequence at the n for which Eq. (11) holds.

Next, we shall establish in Propositions 15 and 18 two sufficient conditions for the uniform convergence of the
sequence of conditional lower previsions. The first of these two conditions depends on the ratios between the upper and
the lower probabilities of the conditioning events, and is a consequence of the following two lemmas:

Lemma 13. Consider two vectors ᾱ, β̄ ∈ ∆ such that ‖ᾱ− β̄‖ < δ for some δ > 0, where ‖·‖ denotes the Euclidean
distance, and B ∈ B such that P (B) > 0. Then

Pᾱ(B)

Pβ̄(B)
∈
[
1− kδP (B)

P (B)
, 1 + kδ

P (B)

P (B)

]
.

Proof. Since |αi − βi| ≤ ‖ᾱ − β̄‖ < δ, we deduce that αiPi(B) ≤ (βi + δ)Pi(B) ≤ βiPi(B) + δP (B) for every
i = 1, . . . , k, whence

Pᾱ(B)

Pβ̄(B)
=

α1P1(B) + . . . αkPk(B)

β1P1(B) + . . . βkPk(B)
≤ β1P1(B) + . . . βkPk(B) + kδP (B)

β1P1(B) + . . . βkPk(B)

= 1 + kδ
P (B)

Pβ̄(B)
≤ 1 + kδ

P (B)

P (B)
.

Similarly, since αiPi(B) ≥ (βi − δ)Pi(B) ≥ βiPi(B)− δP (B),

Pᾱ(B)

Pβ̄(B)
≥ β1P1(B) + . . . βkPk(B)− kδP (B)

β1P1(B) + . . . βkPk(B)
= 1− kδ P (B)

Pβ̄(B)
≥ 1− kδP (B)

P (B)
.

As a consequence of Lemma 13, we have the following:

Lemma 14. Consider two vectors ᾱ, β̄ ∈ ∆ such that ‖ᾱ− β̄‖ < δ for some δ > 0, where ‖·‖ denotes the Euclidean
distance, and take B ∈ B such that P (B) > 0. Given f ∈ L and the linear previsions Pᾱ, Pβ̄ , it holds that

|Pᾱ(f |B)− Pβ̄(f |B)| ≤ kδP (B)

P (B)

[
k
P (B)

P (B)
+ 1

]
sup
B
|f |.

Proof. Since Pᾱ(B), Pβ̄(B) > 0, it follows from the definition of conditional linear previsions that

|Pᾱ(f |B)− Pβ̄(f |B)| =

∣∣∣∣∣
∑k
i=1 Pi(Bf)[αiPβ̄(B)− βiPᾱ(B)]

Pᾱ(B)Pβ̄(B)

∣∣∣∣∣ ≤
k∑
i=1

∣∣∣∣Pi(Bf)

Pᾱ(B)

∣∣∣∣ ∣∣∣∣αi − βiPᾱ(B)

Pβ̄(B)

∣∣∣∣ .
Now,

Pi(Bf)

Pᾱ(B)
=
Pi(f |B)Pi(B)

Pᾱ(B)
≤ supB |f | P (B)

P (B)
.
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It also follows from Lemma 13 that ∣∣∣∣Pᾱ(B)

Pβ̄(B)
− 1

∣∣∣∣ ≤ kδP (B)

P (B)
,

whence ∣∣∣∣βiPᾱ(B)

Pβ̄(B)
− βi

∣∣∣∣ ≤ βikδP (B)

P (B)

and since |αi − βi| ≤ ‖ᾱ− β̄‖ < δ, we deduce that∣∣∣∣βiPᾱ(B)

Pβ̄(B)
− αi

∣∣∣∣ ≤ βikδP (B)

P (B)
+ δ ≤ kδP (B)

P (B)
+ δ = δ

[
k
P (B)

P (B)
+ 1

]
,

taking into account that βi ≤ 1. Hence,

|Pᾱ(f |B)− Pβ̄(f |B)| ≤ kδP (B)

P (B)

[
k
P (B)

P (B)
+ 1

]
sup
B
|f |.

Proposition 15. Consider any gamble f ∈ L. Then Q(f |B) is the uniform limit of (En(f |B))n∈N provided that there

is some N > 0 such that P (B)
P (B) < N for all B ∈ B such that P (B) > 0.

Proof. Consider B ∈ B. If Q(B) = 0, then En(B) = 0 for all n, and Q(f |B) = infB f = En(f |B) for all n ∈ N.
On the other hand, from Lemma 12 there is some n1 ∈ N such that Eq. (11) holds for every n ≥ n1. Fix B ∈ B

such that Q(B) > 0 (and also En(B) > 0). Then for every n ≥ n1, it follows from [17, Theorem 6.4.2] that the
conditional natural extensions can be computed by

Q(f |B) = min{Pᾱ(f |B) : ᾱ ∈ ∆′},
En(f |B) = min{Pᾱ(f |B) : ᾱ ∈ ∆n}.

Fix ε > 0. From Lemma 14, there is δ > 0 such that if ‖ᾱ− β̄‖ < δ, then |Pᾱ(f |B)− Pβ̄(f |B)| < ε: it suffices
to consider

δ <
ε

k supB |f |N(kN + 1)
,

where N is the uniform bound on P (B)
P (B) that exists by hypothesis.

On the other hand, Lemma 11 implies that there is some n2 ∈ N such that d(γ̄,∆′) ≤ δ for all γ̄ ∈ ∆n, n ≥ n2.
This means that for every ᾱ ∈ ∆n there exists β̄ ∈ ∆′ such that ‖ᾱ− β̄‖ ≤ δ. Consider then n? := max{n1, n2}. For
every B such that Q(B) > 0, there is some ᾱB ∈ ∆n? such that En?(f |B) = PᾱB (f |B). Given β̄B ∈ ∆′ such that
‖ᾱB − β̄B‖ ≤ δ, it follows from the property established above that |PᾱB (f |B)− Pβ̄B (f |B)| ≤ ε. Therefore,

|Q(f |B)− En?(f |B)| = Q(f |B)− En?(f |B) ≤ Pβ̄B (f |B)− En?(f |B)

= |Pβ̄B (f |B)− En?(f |B)| = |Pβ̄B (f |B)− PᾱB (f |B)| ≤ ε.

Since this holds irrespectively of B, we conclude that ‖Q(f |B)−En?(f |B)‖ ≤ ε, and this implies that (En(f |B))n∈N
converges uniformly to Q(f |B).

As we shall see later, this sufficient condition is not necessary. Next, we give another condition, which depends on
the features of the subset of ∆ we have in the limit:

Lemma 16. Consider two vectors ᾱ, β̄ ∈ ∆ such that ‖ᾱ− β̄‖ < δ and minki=1 αi > δ > 0. Given B ⊆ Ω such that
Pᾱ(B) > 0, Pβ̄(B) > 0, then for all f ∈ L it holds that

‖Pᾱ(f |B)− Pβ̄(f |B)‖ ≤ δk(k − 1)
1

(minki=1 αi − δ)2
sup
B
|f |.
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Proof.

|Pᾱ(f |B)− Pβ̄(f |B)| =

∣∣∣∣Pᾱ(Bf)Pβ̄(B)− Pβ̄(Bf)Pᾱ(B)

Pᾱ(B)Pβ̄(B)

∣∣∣∣
=

∣∣∣∣
∑
i 6=j(αiβj − αjβi)(Pi(Bf)Pj(B))

Pᾱ(B)Pβ̄(B)

∣∣∣∣
≤ δ

∣∣∣∣
∑
i 6=j Pi(Bf)Pj(B)

Pᾱ(B)Pβ̄(B)

∣∣∣∣
≤ δ sup

B
|f |
∑
i 6=j

Pi(B)Pj(B)

Pᾱ(B)Pβ̄(B)
.

To prove the first inequality, note that

|αiβj − αjβi| = |αi(βj − αj)− αj(βi − αi)| ≤ αi|βj − αj |+ αj |αi − βi| ≤
k

max
`=1
{|β` − α`|} ≤ δ,

because αi, αj ∈ [0, 1], and moreover ‖ᾱ− β̄‖ ≥ |αi − βi| for i = 1, . . . , k.
Now, given i 6= j in {1, . . . , k} such that Pi(B) 6= 0 6= Pj(B),

Pi(B)Pj(B)

Pᾱ(B)Pβ̄(B)
≤ Pi(B)Pj(B)

αiβjPi(B)Pj(B)
≤ 1

αi(αj − δ)
≤ 1

(minki=1 αi)(minki=1 αi − δ)
≤ 1

(minki=1 αi − δ)2
,

and therefore
|Pᾱ(f |B)− Pβ̄(f |B)| ≤ δk(k − 1)

1

(minki=1 αi − δ)2
sup
B
|f |.

From this we deduce the following:

Corollary 17. Consider (ᾱn)n∈N, ᾱ ∈ ∆ such that minki=1 αi > δ > 0 and (ᾱn)n∈N converges to ᾱ. Then for every
gamble f the sequence (Pᾱn(f |B))n∈N converges uniformly to Pᾱ(f |B).

Proof. Consider B ∈ B. Since by Remark 2 we can assume without loss of generality that P (B) > 0 and we have that
minki=1 αi > δ > 0, it follows that Pᾱ(B) > 0: the inequality P (B) > 0 means that Pi(B) > 0 for some i and since
αi > 0 by assumption, then Pᾱ(B) > 0.

Moreover, reasoning as in Lemma 12, if (ᾱn)n∈N → ᾱ then there is some natural number n1 such that for all
n ≥ n1,

Pᾱ(B) > 0⇒ Pᾱn(B) > 0.

This means that we can assume without loss of generality that Pᾱ(B) > 0, Pᾱn(B) > 0 for all B. Now, if we apply
Lemma 16, we deduce that

|Pᾱ(f |B)− Pᾱn(f |B)| ≤ ‖ᾱ− ᾱn‖k(k − 1)
1

(mini αi − δ)2
sup
B
|f |.

If we now consider n2 such that

‖ᾱ− ᾱn‖ ≤
ε(mini αi − δ)2

k(k − 1) sup |f |
for all n ≥ n2, we deduce that for every n ≥ n2 and every B ∈ B it holds that |Pᾱ(f |B) − Pᾱn(f |B)| ≤ ε. As a
consequence, we have uniform convergence.

Proposition 18. If there is some ν > 0 such that minki=1 αi ≥ ν for all ᾱ ∈ ∆′, then (En(f |B))n∈N converges
uniformly towards Q(f |B) for every f ∈ L.
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Proof. Consider B ∈ B. If Q(B) = 0, then En(B) = 0 for all n, and Q(f |B) = infB f = En(f |B) for all n ∈ N.
On the other hand, from Lemma 12 there is some n1 ∈ N such that Eq. (11) holds for all n ≥ n1. Fix B ∈ B such

that Q(B) > 0. Then for every n ≥ n1,

Q(f |B) = inf{Pᾱ(f |B) : ᾱ ∈ ∆′},
En(f |B) = inf{Pᾱ(f |B) : ᾱ ∈ ∆n}.

Fix ε > 0, and consider 0 < δ ≤ min{ν2 ,
ε ν

2

4

k(k−1) sup |f |}. It follows from Lemma 16 that if ‖ᾱ − β̄‖ < δ and
Pα(B) > 0, Pβ(B) > 0, then

|Pᾱ(f |B)− Pβ̄(f |B)| ≤ δk(k − 1)
1

(minki=1 αi − δ)2
sup |f | ≤ δk(k − 1)

1

(ν2 )2
sup |f | ≤ ε; (12)

to prove the second inequality, note that since minki=1 αi ≥ ν and we have selected δ ≤ ν
2 , it follows that minki=1 αi −

δ ≥ ν
2 ; the third inequality holds because δ ≤ ε ν

2

4

k(k−1) sup |f | .
On the other hand, Lemma 11 implies that there is some n2 ∈ N such that d(γ̄,∆′) ≤ δ for all γ̄ ∈ ∆n, n ≥ n2.

This means that for every ᾱ ∈ ∆n, there exists β̄ ∈ ∆′ such that ‖ᾱ− β̄‖ ≤ δ.
Consider then n? := max{n1, n2}. For every B such that En(B) > 0, there is some ᾱ ∈ ∆n? such that

En?(f |B) = Pᾱ(f |B). Given β̄ ∈ ∆′ such that ‖ᾱ− β̄‖ ≤ δ, it follows from Eq. (12) that |Pᾱ(f |B)−Pβ̄(f |B)| ≤ ε.
Therefore,

|Q(f |B)− En?(f |B)| ≤ |Pβ̄(f |B)− En?(f |B)| = |Pβ̄(f |B)− Pᾱ(f |B)| ≤ ε.

Since this holds irrespectively of B, we conclude that ‖Q(f |B)−En?(f |B)‖ ≤ ε, and this implies that (En(f |B))n∈N
converges uniformly to Q(f |B).

This result is particularly revealing in the binary case, that is, where we consider the lower envelope of two linear
previsions, P := min{P1, P2}. If we let Pα := αP1 + (1−α)P2, then we can identify each ∆n with a subset of [0, 1]:

M(P ) : = {Pα : α ∈ [0, 1]},
M(En) : = {Pα : α ∈ [an, bn]},
M(Q) : = {Pα : α ∈ [a, b]},

where 0 ≤ an ≤ bn ≤ 1 for all n, and (an)n∈N ↑ a, (bn)n∈N ↓ b. We obtain that:

Corollary 19. If P is the lower envelope of two linear previsions and the conglomerable natural extension of P exists,
then it coincides with Q.

Proof. If Q(B) = 0, then we have that Q(f |B) = En(f |B) = infB f for every n ∈ N. On the other hand, taking
into account Lemma 12, we are going to assume that P (B) > 0 whenever Q(B) > 0 (otherwise we would start the
sequence with the coherent lower prevision En given by that lemma). It then follows from Eq. (4) that, for every
gamble f on Ω and every B ∈ B such that P (B) > 0, it holds that

En(f |B) = min{Pan(f |B), Pbn(f |B)} and Q(f |B) = min{Pa(f |B), Pb(f |B)}.

Now note that we have the following:

. If a = b = 1, then Q = P1, so the conglomerable natural extension F ≥ Q exists if and only if it coincides with
Q = P1.

. If a = b = 0, then Q = P2, so the conglomerable natural extension F ≥ Q exists if and only if it coincides with
Q = P2.
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On the other hand, when a < b or a = b ∈ (0, 1) we can apply Corollary 17 to deduce that Pa(f |B) is the uniform
limit of (Pan(f |B))n∈N (note that the result is trivial for a = 0, and we only need to invoke the corollary for a > 0);
similarly, Pb(f |B) is the uniform limit of (Pbn(f |B))n∈N. As a consequence, given ε > 0 there are natural numbers
n1, n2 such that

(∀B ∈ B)(∀n ≥ n1)|Pan(f |B)− Pa(f |B)| < ε and (∀B ∈ B)(∀n ≥ n2)|Pbn(f |B)− Pb(f |B)| < ε.

By taking n? := max{n1, n2} we deduce that |Q(f |B)−En(f |B)| < ε for every B ∈ B and every n ≥ n?, and as a
consequence, Q(f |B) is the uniform limit of (En(f |B))n∈N.

We summarise the previous findings in the following theorem:

Theorem 20. The limit Q of the sequence (En)n∈N is the conglomerable natural extension of P provided any of the
following conditions holds:

1. There is some N > 0 such that P (B)
P (B) < N for all B ∈ B.

2. There is some ν > 0 such that minki=1 αi ≥ ν > 0 for all ᾱ ∈ ∆′.

Proof. From Propositions 15 and 18, under any of these conditions Q(f |B) is the uniform limit of (En(f |B))n∈N for
every gamble f ∈ L. The result follows then from Proposition 9.

However, neither of these sufficient conditions is necessary for the limit to be conglomerable, as Example 6
in Appendix A shows.

7. Conclusions

Conglomerability has been advocated by Walley as a rationality requirement in the theory of coherent lower
previsions, when establishing the consistency of the assessments between the unconditional and the conditional models
[17]. Even though controversial, the requirement of conglomerability has recently received some renewed support, in a
special case, through considerations of dynamic coherence [20]. However, the notion of conglomerability is not fully
incorporated within Walley’s theory, as recently shown in [12, 13]: the two fundamental procedures of checking the
coherence of a number of assessments, and of extending them to coherent ones in case they are not, which is called
natural extension, take the requirement of conglomerability only partially into account. In other words, coherence and
natural extension may be understood as ways to approximate the actual procedures fully based on conglomerability.

For the case of coherence, the situation is not problematic in the context considered in this paper: if we only
deal with one conditional and one unconditional lower prevision, then Walley’s coherence is all we need to deal
properly with conglomerability. However, the problem remains also in the simplest of the cases when we want to extend
some non-conglomerable assessments into the least-committal coherent and conglomerable model: in fact, Walley’s
procedure of natural extension has been shown to provide only an approximation even in that case.

In this paper, we have studied in which cases it is possible to make the aforementioned correction in the case of an
unconditional model; it is called its conglomerable natural extension. The importance of this notion can perhaps be
appreciated when one realises that it is the counterpart, for a theory of probability based on conglomerability, of the
deductive closure in logic.

One of the main drawbacks of the conglomerable natural extension, as we can see from recent and current results,
is the lack of a constructive definition: the most we can do is to approximate it as the limit of an increasing sequence of
coherent lower previsions, each of them defined by means of Walley’s notion of natural extension. Solving an open
problem from [13], we have shown that this sequence may be infinite, meaning that the closure operator represented by
the conglomerable natural extension is not finitary. This may be due to the fact that the very notion of conglomerability
involves an infinite number of acceptable transactions, and we conjecture that using tools from infinitary logic may
prove useful in this context. The infinitary character of conglomerability may also be at the heart of some of the
examples mentioned in Section 2.5, showing that the class of conglomerably coherent lower previsions is not closed
under convex combinations or point-wise limits.
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Taking this into account, we have obtained a number of sufficient conditions for the approximating sequence to
converge towards the conglomerable natural extension, when the initial model is the lower envelope of a finite number
of linear previsions. This kind of models may be of interest in practice, for instance when aggregating the opinions
of several experts. In particular, we have shown that if the unconditional model is the lower envelope of two linear
previsions, our sequence always gets to the conglomerable natural extension, when it exists.

The main open problem still pending is whether the sequence of coherent lower previsions always gets to the
conglomerable natural extension. Taking into account our results in this paper, a possible approach may be the study of
the uniform convergence of the increasing sequence of conditional lower previsions.

Another problem of interest would be the study of a notion of conglomerable natural extension with respect to
several partitions simultaneously. In this respect, we think that it will be necessary to deal with the notions of weak and
strong coherence in [17], as well as with the results in [12] about the coherence of several conditional lower previsions
and their relationship with conglomerability. We conjecture that it should be possible to extend our results to that
context for some particular situations, such as the case where the partitions are nested (taking into account the results in
[13]) or when the unconditional model is finitary (using our results in Section 6).
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Appendix A. Counterexamples

In this appendix, we have gathered a number of counterexamples related to conglomerability and to the existence
and properties of the conglomerable natural extension. We shall denote by N the set of natural numbers without zero,
and consider the possibility space Ω := N∪−N and conglomerability with respect to the partition B := {Bn : n ∈ N},
where Bn := {n,−n} for every n.

Example 1 (F is not closed under point-wise limits; P (·|B) linear ; P conglomerable). Consider the linear
prevision Qn := P (Pn(·|{N,−N})), where P (N) := P (−N) := 1

2 , Pn(·| − N) is a finitely additive probability
that gives probability zero to all the singletons (the same one for all n ∈ N) and Pn(·|N) is a σ-additive probability
characterised by the mass function Pn({m}|N) := 1

2m for m = 1, ..., n− 1, Pn({n}|N) := 1
2n−1 , Pn({m}|N) := 0

for all m > n.
Then Qn(Bm) > 0 only for m ≤ n, so Qn is conglomerable. But the point-wise limit Q′ of Qn as n goes to

infinity becomes the non-conglomerable linear prevision in [17, Example 6.8.5], that is,

Q′ := P (P ′(·|{N,−N})),

where P ′(·| − N) is the same finitely additive probability that gives probability zero to all the singletons we had before
and P ′(·|N) is a σ-additive probability characterised by the mass function Pn({m}|N) := 1

2m for all m ∈ N. To prove
this, it suffices to consider that

P ′(f |N) = lim
n→∞

Pn(f |N)

for any gamble f on Ω: indeed, |P ′(f |N)− Pn(f |N)| ≤ 1
2n−1 sup |f | for every n.

Since on the other hand we have that P ′(f | − N) = Pn(f | − N) for every gamble f on Ω, we deduce that

|Q′(f)−Qn(f)| = |0.5P ′(f |N) + 0.5P ′(f |N)− 0.5Pn(f |N)− 0.5Pn(f | − N)|

= 0.5|P ′(f |N)− Pn(f |N)| ≤ 1

2n
sup |f |,

whence limnQn(f) = Q′(f) for any gamble f on Ω.
Finally, note that Q′(Bn) = 1

2n−2 > 0 for every n. This means that the conditional natural extension P ′(·|B) of Q′

is uniquely determined by (GBR), and since Q′ is a linear prevision this implies that this conditional natural extension
is linear: P ′(f |Bn) = Q′(Bnf)

Q′(Bn) for any gamble f on Ω and every natural number n. This shows that the equivalence in
Proposition 3(b) is not trivial. �
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Example 2 (No additional implication between the conditions in Proposition 2 holds in general). Let us show that
there is no additional implication:

(b); (a) Let P be non-conglomerable but such that the conglomerable natural extension exists, and let P (·|B) be its
conditional natural extension. Then P , P (·|B) are not coherent but they are dominated by coherent models.

(c); (e) Let P be a linear prevision that is conglomerable and P (·|B) a linear conditional prevision that is not coherent
with P . It follows that P, P (·|B) do not avoid partial loss, because the two conditions are equivalent under
linearity. Nevertheless, the conglomerable natural extension of P exists (it is P itself).

(c); (b) This follows from the previous point and Proposition 2.

(e); (c) Let P be a linear prevision that is not conglomerable, and let P (·|B) be the vacuous coherent lower prevision.
Since P (·|B) is vacuous, it avoids partial loss with any unconditional coherent lower prevision (and in particular
with P ), so P, P (·|B) avoid partial loss. However, the conglomerable natural extension of P does not exist
because it should be P itself.

(e); (b) This follows from the previous point and Proposition 2. �

Example 3 (P , P (·|B) APL; {Q ∈ F : Q ≥ P} 6= ∅). Let us start by defining a few linear previsions.

. Let P1 be a linear prevision on L given by

P1(f) :=
∑
n∈N

[f(n) + f(−n)]
1

2n+1

for every f ∈ L. Since its restriction to events is a σ-additive probability, P1 is conglomerable.

. Let on the other hand P be a linear prevision on L(N) whose restriction to events satisfies P ({n}) = 0 for all n,
P ({2n+ 1 : n ∈ N}) = 0. Then we can use P to define a linear prevision P2 on L by

P2(f) :=
3

4
P (f+) +

1

4
P (f−),

where f+, f− are given by
f+ : N→ R

n 7→ f(n)
and

f− : N→ R
n 7→ f(−n).

(A.1)

From this we derive the linear prevision

P3 :=
1

2
P1 +

1

2
P2.

. Let now P ′ be another linear prevision on L(N) whose restriction to events satisfies P ′({n}) = 0 for all n, and
such that P ′({2n− 1 : n ∈ N}) = 1

2 = P ′({2n : n ∈ N}), and define the linear prevision P4 on L by

P4(g) :=
1

4

∑
n∈N

g(n)
1

2n
+

3

4
P ′(g−).

. Take P := min{P3, P4}. Given n ∈ N,

P (Bn) = min{P3(Bn), P4(Bn)} = min

1

2
P1(Bn) +

1

2

3

4
P (Bn ∩ N)︸ ︷︷ ︸

=0

+
1

4
P (−(Bn ∩ −N))︸ ︷︷ ︸

=0

 , 1

4

1

2n


= min

{
1

2n+1
,

1

2n+2

}
> 0,
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whence the conditional natural extension of P is

P (f |Bn) = min{P3(f |Bn), P4(f |Bn)} = min

{
P3(Bnf)

P3(Bn)
,
P4(Bnf)

P4(Bn)

}
= min

{
f(n) 1

2n+2 + f(−n) 1
2n+2

1
2n+1

,
f(n) 1

2n+2 + f(−n)0
1

2n+2

}
= min

{
f(n) + f(−n)

2
, f(n)

}
for every f ∈ L and every n ∈ N.

Fix a gamble f and let C := ∪n∈N:f(n)<f(−n)Bn, so that P (f |Bn) = f(n) if Bn ⊆ C and P (f |Bn) =
f(n)+f(−n)

2 otherwise. Then, using Remark 1, GP (f |B) = GP (Cf |B) +GP (Ccf |B) ≥ GP (Ccf |B) because{
GP (f |B)(n) = 0

GP (f |B)(−n) = f(−n)− f(n) > 0

if Bn ⊆ C.

. Let Pα := αP3 + (1− α)P4.
We are going to determine for which α ∈ [0, 1] it holds that Pα(GP (f |B)) ≥ 0 for all f . Taking into account the

previous observation, we can conclude that

(∀f ∈ L)Pα(GP (f |B)) ≥ 0⇔ (∀f ∈ L : (∀n ∈ N)f(n) ≥ f(−n))Pα(GP (f |B)) ≥ 0.

In fact, the direct implication is trivial. For the converse implication it suffices to consider a gamble f for which it
does not hold that f(n) ≥ f(−n) for all n; then decomposing it as f = Cf + Ccf , we see that Pα(GP (Cf |B)) ≥ 0
(because GP (Cf |B) ≥ 0) while Pα(GP (Ccf |B)) ≥ 0 by assumption, whence Pα(GP (f |B)) ≥ 0.

Take therefore any f such that f(n) ≥ f(−n) for all n (in this case C is empty). Then{
GP (f |Bn)(n) = f(n)−f(−n)

2 ≥ 0

GP (f |Bn)(−n) = f(−n)−f(n)
2 ≤ 0.

(A.2)

P3(GP (f |B)) = P3(GP (f |B)IN) + P3(GP (f |B)I−N)

=
1

2

[
P1(GP (f |B)IN) + P1(GP (f |B)I−N)

]
+

1

2

[
P2(GP (f |B)IN) + P2(GP (f |B)I−N)

]
.

If we let g := GP (f |B), it holds that g(n) = −g(−n), whence P1(gIN) + P1(gI−N) = 0. On the other hand,
P2(g) = 3

4P (g+) + 1
4P (g−) = 1

2P (g+) ≥ 0, taking into account that g+ ≥ 0 by (A.2).
If in particular we fix n ∈ N and let f := 2I{2n+1,2n+3,... }, then, using (A.2) again,GP (f |B) = I{2n+1,2n+3,... }−

I{−2n−1,−2n−3,... } and

P1(GP (f |B)) = 0,

P2(GP (f |B)) =
3

4
P ({2n+ 1, 2n+ 3, . . . })− 1

4
P ({2n+ 1, 2n+ 3, . . . }) = 0,

because we have chosen P such that P ({2n+ 1 : n ∈ N}) = 0. Hence, P3(GP (f |B)) = 0.
On the other hand, for this gamble f we obtain that

P4(GP (f |B)) =
∑
k≥n

1

2(2k+1)+2
− 3

4
P ′({2n+ 1, 2n+ 3, . . . })

=
∑
k≥n

1

2(2k+1)+2
− 3

4
[P ′(2n− 1 : n ∈ N)︸ ︷︷ ︸

= 1
2

−P ′({2m+ 1 : m ∈ N,m < n})︸ ︷︷ ︸
=0 (as the set is finite)

]

=
∑
k≥n

1

2(2k+1)+2
− 3

8
< 0
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for n large enough.
This implies that Pα(GP (f |B)) < 0 for all α 6= 1. As a consequence {Pα : (∀f ∈ L)Pα(GP (f |B)) ≥ 0} =

P3 = E, taking into account that M(P ) = {Pα : α ∈ [0, 1]} and using Proposition 5. Since the unconditional
natural extension E of P , P (·|B) exists, it follows that P , P (·|B) avoid partial loss. But P3 is not conglomerable:
given g := 2I−N, we can use the expression of P3(·|Bn) (available from that of P (·|Bn)) to prove that P3(g|Bn) =
[2I−N](n)+[2I−N](−n)

2 = 2
2 = 1, so that GP3(g|B) = −IN + I−N and

P3(GP3
(g|B)) =

1

2
P1(GP3

(g|B)) +
1

2
P2(GP3

(g|B)) = 0 +
1

2

(
−3

4
1 +

1

4
1

)
= −1

4
< 0.

Thus P3, P3(·|B) do not avoid partial loss, and applying (5) we deduce that the conglomerable natural extension of P3

does not exist. But since P3 is the unconditional natural extension of P , P (·|B), the conglomerable natural extension
of P coincides with that of P3. This implies that the conglomerable natural extension of P does not exist, either. �

Now we proceed to show the most important result in this paper: that the sequence (En)n∈N may not stabilise in a
finite number of steps. To this end, we need a preliminary result, which provides a tool that allows us to build sequences
whose limits can be made either conglomerable or non-conglomerable depending on the choice of two parameters.

Proposition 21. Let P1, P2 be two linear previsions on L(N) characterised by the facts that the restriction to events of
P1 is a σ-additive probability such that P1({n}) > 0 for all n ∈ N, and that P2 is a finitely additive probability such
that P2({n}) = 0 for all n ∈ N. We consider Ω := N ∪ −N and B := {Bn : n ∈ N}, with Bn := {n,−n}. For any
gamble f on Ω, let us define the gambles f+, f− on N by Eq. (A.1).

Consider α, β ∈ [0, 1] and let Q1, Q2 on L be

Q1(f) := αP1(f+) + (1− α)P1(f−) and Q2(f) := βP2(f+) + (1− β)P2(f−).

Consider also γ ∈ (0, 1) and let Q := γQ1 + (1− γ)Q2. Then

Q is conglomerable⇔ α = β.

Proof. For n ∈ N, Q({n}) = αγP1({n}) and Q({−n}) = (1− α)γP1({n}), whence Q(Bn) = αγP1({n}) + (1−
α)γP1({n}) = γP1({n}) > 0. Moreover, Q(Bnf) = f(n)αγP1({n}) + f(−n)(1 − α)γP1({n}), so Q(f |Bn) =
αf(n) + (1− α)f(−n). As a consequence, using the conditional natural extension of Q, we get{

GQ(f |B)(n) = (1− α)[f(n)− f(−n)]

GQ(f |B)(−n) = α[f(−n)− f(n)].

Let g := GQ(f |B). Then αg(n) + (1− α)g(−n) = 0 for every n, or, equivalently, αg+ + (1− α)g− = 0. Hence,

Q(g) = γQ1(g) + (1− γ)Q2(g) = γ[αP1(g+) + (1− α)P1(g−)] + (1− γ)[βP2(g+) + (1− β)P2(g−)]

= γ[P1(αg+ + (1− α)g−)] + (1− γ)[P2(βg+ + (1− β)g−)]

= 0 + (1− γ)[P2(βg+ + (1− β)g−)].

If α = 0, then g− = 0 and Q(g) is equal to (1 − γ)βP2(g+). Since we can always find f such that P2(g+) 6= 0, it
follows that Q(g) = 0⇔ β = α = 0.

Similarly, if α 6= 0, the equation above becomes

Q(g) = (1− γ)[P2(βg+ + (1− β)g−)]

= (1− γ)[−β (1− α)

α
P2(g−) + (1− β)P2(g−)]

= (1− γ)P2(g−)(β − β/α+ 1− β) = (1− γ)P2(g−)(1− β/α),

and since we can always find f such that P2(g−) 6= 0, it follows that Q(g) = 0⇔ β/α = 1⇔ α = β.
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Example 4 (The sequence (En)n∈N may not stabilise in a finite number of steps). Consider the following linear
previsions on L:

P1(f) :=
∑
n∈N

(f(n) + f(−n))
1

2n+1
(A.3)

P2(f) :=
1

2

∑
n∈N

f(n)
1

2n
+

1

2
P (f−) (A.4)

P3(f) :=
3

4
P (f+) +

1

4
P (f−) (A.5)

P4(f) :=
1

2
P1(f) +

1

2
P3(f), (A.6)

where P is a finitely additive probability on N such that P ({n}) = 0 for all n ∈ N and f+, f− are determined by
Eq. (A.1). Given α ∈ [0, 1], we let

Qα := αP2 + (1− α)P4. (A.7)

It follows that

Qα(f) =
α

2

∑
n∈N

f(n)
1

2n
+
α

2
P (f−) + (1− α)

[
1

4

∑
n∈N

f(n)
1

2n
+

1

4

∑
n∈N

f(−n)
1

2n
+

3

8
P (f+) +

1

8
P (f−)

]

=

[∑
n∈N

f(n)
1

2n

](
α

2
+

1− α
4

)
+

[∑
n∈N

f(−n)
1

2n

](
1− α

4

)
+ (1− α)

3

8
P (f+) +

1 + 3α

8
P (f−)

=
1 + α

4
P̃1(f+) +

1− α
4

P̃1(f−) +
3− 3α

8
P (f+) +

1 + 3α

8
P (f−)

=
1

2

[
1 + α

2
P̃1(f+) +

1− α
2

P̃1(f−)

]
+

1

2

[
3− 3α

4
P (f+) +

1 + 3α

4
P (f−)

]
,

where P̃1 is the linear prevision determined by P̃1({n}) := 1
2n for all n ∈ N. At this point Proposition 21 yields:

Qα is conglomerable⇔ 1 + α

2
=

3− 3α

4
⇔ α =

1

5
.

Let P be the lower envelope of the credal set {Qα : α ∈ [a, b]}, for given a, b such that 0 < a < 1
5 < b < 1. The

conglomerable natural extension of P exists since P ≤ Q 1
5

. We aim at analysing whether the sequence of coherent
lower previsions P ,E1, E2, . . . , originated by P , yields the conglomerable natural extension in the limit and whether
or not the sequence itself stabilises in (i.e., becomes constant after) a finite number of steps.

We start by detailing the form of the conditional natural extension of P . From

P1({n}) =
1

2n+1
, P1({−n}) =

1

2n+1
,

P2({n}) =
1

2n+1
, P2({−n}) = 0,

P3({n}) = 0, P3({−n}) = 0,

P4({n}) =
1

2n+2
, P4({−n}) =

1

2n+2
,

we obtain, using Eq. (A.7),

Qα({n}) = (1 + α)
1

2n+2
, Qα({−n}) = (1− α)

1

2n+2

and hence Qα(Bn) = (1 + α)/2n+2 + (1− α)/2n+2 = 1/2n+1 > 0 for every α. Given f ∈ L, we have that

Qα(f |Bn) =
1 + α

2
f(n) +

1− α
2

f(−n).
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Since P (Bn) > 0, it follows from Eq. (4) and the expression for (GBR) in [17, Theorem 6.4.2] that for every gamble f
the natural extension of P conditional on Bn is

P (f |Bn) = min{Qα(f |Bn) : α ∈ [a, b]} = min{Qa(f |Bn), Qb(f |Bn)}

=

{
1+a

2 f(n) + 1−a
2 f(−n) if f(n) ≥ f(−n)

1+b
2 f(n) + 1−b

2 f(−n) if f(n) ≤ f(−n),

where Qα(f |Bn) is the natural extension of Qα conditional on Bn. Hence, if for a gamble f we let A := {n ∈ N :
f(n) ≤ f(−n)}, then given n ∈ A,{

GP (f |Bn)(n) = 1−b
2 [f(n)− f(−n)] ≤ 0

GP (f |Bn)(−n) = 1+b
2 [f(−n)− f(n)] ≥ 0.

Similarly, given n /∈ A, {
GP (f |Bn)(n) = 1−a

2 [f(n)− f(−n)] ≥ 0

GP (f |Bn)(−n) = 1+a
2 [f(−n)− f(n)] ≤ 0.

Now we would like to check for which values of α it is the case that Qα(GP (f |B)) ≥ 0 for all f ∈ L, because by
Proposition 5,M(E1) = {Qα : Qα(GP (f |B)) ≥ 0 for all f ∈ L}.

Given a gamble f , its associated set A := {n ∈ N : f(n) ≤ f(−n)} and C := ∪n∈ABn, it holds by Remark 1 that
GP (f |B) = GP (Cf |B) + GP (Ccf |B). Let g′ := GP (Cf |B), g′′ := GP (Ccf |B). We proceed to determine when
Qα(g′) ≥ 0, Qα(g′′) ≥ 0.

. Let us consider Qα(g′). If n /∈ A, then g′(−n) = g′(n) = 0; if n ∈ A, then g′(−n) = 1+b
2 [f(−n)− f(n)] and

g′(n) = 1−b
2 [f(n)− f(−n)]. As a consequence, g′(−n) = − 1+b

1−bg
′(n) ≥ 0. Then:

P2(g′) =
∑
n∈N

g′(n)
1

2n+1
+

1

2
P (g′−)

P4(g′) =
∑
n∈N

g′(n)
1

2n+2
+
∑
n∈N

g′(−n)
1

2n+2
+

3

8
P (g′+) +

1

8
P (g′−)

=
∑
n∈N

g′(n)
1

2n+2

(
1− 1 + b

1− b

)
+ P (g′−)

(
1

8
− 3

8

1− b
1 + b

)
=

∑
n∈N

g′(n)
1

2n+2

−2b

1− b
+ P (g′−)

1

8

4b− 2

1 + b

=
∑
n∈N

g′(n)
1

2n+1

−b
1− b

+ P (g′−)
1

4

2b− 1

1 + b
.

This implies that

Qα(g′) =
∑
n∈N

g′(n)
1

2n+1

[
α− (1− α)b

1− b

]
+ P (g′−)

1

4

[
2α+

1− α
1 + b

(2b− 1)

]
=

∑
n∈N

g′(n)
1

2n+1︸ ︷︷ ︸
≤0

α− b
1− b︸ ︷︷ ︸
≤0︸ ︷︷ ︸

≥0

+P (g′−)
1

4︸ ︷︷ ︸
≥0

3α+ 2b− 1

1 + b
. (A.8)
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. Let us focus now on Qα(g′′). It holds that g′′(n) = − 1−a
1+ag

′′(−n) ≥ 0 for every n /∈ A, and trivially also for
n ∈ A, given that in that case g′′(n) = g′′(−n) = 0. Then:

P2(g′′) =
∑
n∈N

g′′(n)
1

2n+1
+

1

2
P (g′′−)

P4(g′′) =
∑
n∈N

(g′′(n) + g′′(−n))
1

2n+2
+

3

8
P (g′′+) +

1

8
P (g′′−)

=
∑
n∈N

g′′(n)
1

2n+2

(
1− 1 + a

1− a

)
+ P (g′′−)

1

8

(
1− 3

1− a
1 + a

)
=

∑
n∈N

g′′(n)
1

2n+1

−a
1− a

+ P (g′′−)
1

4

2a− 1

1 + a
.

This implies that

Qα(g′′) =
∑
n∈N

g′′(n)
1

2n+1

α− a
1− a︸ ︷︷ ︸

≥0

+P (g′′−)
1

4︸ ︷︷ ︸
≤0

3α+ 2a− 1

1 + a
. (A.9)

This allows us to depict a number of possibilities:

. If 3α + 2b − 1 ≥ 0 and 3α + 2a − 1 ≤ 0 (note that we can attain this case given that 3b + 2b − 1 ≥ 0 and
3a+ 2a− 1 ≤ 0 if and only if a ≤ 1

5 ≤ b), then it follows from Eqs. (A.8), (A.9) that Qα(g′) ≥ 0, Qα(g′′) ≥ 0
and therefore Qα(GP (f |B)) ≥ 0; using Proposition 5 we obtain that Qα ∈M(E1).

. If 3α+ 2b− 1 < 0, fix n? ∈ N and let f := I{m∈−N:m≤−n?}. Then C = ∪{n∈N:f(n)≤f(−n)}Bn = Ω, so given
g′ = GP (f |B), it holds that∑

n∈N
g′(n)

1

2n+1
= −1− b

2

∑
n≥n?

1

2n+1
and P (g′−) =

1 + b

2
.

If in particular we choose n? such that ∑
n≥n?

1

2n+1
<

3α+ 2b− 1

4(α− b)
,

we deduce from Eq. (A.8) that Qα(g′) < 0. We conclude that we can always find some gamble f such that
Q
α

(GP (f |B)) = Qα(g′) < 0 when 3α+ 2b− 1 < 0. Applying Proposition 5, we deduce that Qα /∈M(E1).

. Finally, if 3α + 2a − 1 > 0, fix n? ∈ N and let f := I{m∈N:m≥n?}. Then C = ∪{n∈N:f(n)≤f(−n)}Bn =
∪{n<n∗}Bn, and g′ = GP (Cf |B) = 0, so given g′′ = GP (f |B), it holds that∑

n∈N
g′′(n)

1

2n+1
=

1− a
2

∑
n≥n?

1

2n+1
and P (g′′−) = −1 + a

2
.

If in particular we choose n? such that ∑
n≥n?

1

2n+1
<

3α+ 2a− 1

4(α− a)
,

we deduce from Eq. (A.9) that Qα(g′′) < 0. We conclude that we can always find some gamble f such
that Q

α
(GP (f |B)) = Qα(g′′) < 0 when 3α + 2a − 1 > 0. Applying again Proposition 5, we deduce that

Qα /∈M(E1).
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Thus, recalling thatM(P ) = {Qα : α ∈ [a, b]}, with 0 < a < 1
5 < b < 1, it follows that

M(E1) =

{
Qα : α ∈

[
max

{
a,

1− 2b

3

}
,min

{
1− 2a

3
, b

}]
, 0 < a <

1

5
< b < 1

}
.

Note that since a < 1
5 < b, it must be the case that [max{a, 1−2b

3 },min{ 1−2a
3 , b}] ( [a, b], because it is not possible

that both a ≥ 1−2b
3 and b ≤ 1−2a

3 hold. This means that at least one of the two extreme points of [a, b] must change.
Moreover, note that the new interval will have still to contain the value 1

5 properly, in the sense that 1
5 will have to be an

interior point of the new interval, because

a <
1

5
< b⇒ max

{
a,

1− 2b

3

}
<

1

5
and

a <
1

5
< b⇒ min

{
b,

1− 2a

3

}
>

1

5
.

This means that the infinite sequence P ,E1, E2, . . . will be in correspondence with an infinite sequence of intervals of
strictly decreasing length, each one containing 1

5 properly.
Let us show now that 1

5 is actually the limit of the sequence of these intervals. We must consider a number of cases:

. If in the passage fromM(P ) toM(E1) both extreme points of the interval change, then we go from [a, b] to
[ 1−2b

3 , 1−2a
3 ], and the length of the new interval is two thirds of the length of the previous one.

. Assume otherwise that in the passage fromM(P ) toM(E1) only the left extreme of the interval [a, b] changes
(if it were the right extreme, we would eventually obtain analogous conclusions). We can then rewrite the interval
as [max{a, 1−2b

3 },min{ 1−2a
3 , b}] = [1−2b

3 ,min{ 1−2a
3 , b}]. If we now do one more step, to get toM(E2), we

see that the left extreme cannot change and hence the new interval will be[
1− 2b

3
,min

{
1 + 4b

9
, b

}]
=

[
1− 2b

3
,

1 + 4b

9

]
,

taking into account that b > 1
5 . Hence, in two steps we go from [a, b] to [ 1−2b

3 , 1+4b
9 ], and the length of the latter

interval is 10b−2
9 . Now, since a ≤ 1−2b

3 , we deduce that 3a+ 2b ≤ 1, and as a consequence

3

2

10b− 2

9
=

5b− 1

3
≤ b− a.

This means that the length of [ 1−2b
3 , 1+4b

9 ] is at most two thirds of the length of [a, b].

By iterating the argument, we conclude that every two steps the length of the intervals decreases exponentially fast
by 2

3 . As a consequence, given that 1
5 is always included in the intervals, the sequence P ,E1, E2, . . . will converge

towards Q 1
5

, which, being conglomerable, is the conglomerable natural extension of P . �

Example 5 (The limit of the sequence of marginal extensions may differ from the conglomerable natural exten-
sion; P conglomerable; P = P (P (·|B))). Let P1, . . . , P4 be the linear previsions on L(Ω) given by Eqs. (A.3)–
(A.6), and let P := min{P1, P2, P4}. Given the gamble h := I−N, it holds that:

P1(h) =
1

2
,

P2(h) =
1

2
0 +

1

2
1 =

1

2
,

P3(h) =
3

4
0 +

1

4
1 =

1

4
,

P4(h) =
1

2

1

2
+

1

2

1

4
=

3

8
,

so P (h) = 3
8 .
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Let P (·|B) be the conditional natural extension of P . In [13, Example 5] it is shown that the natural extension of
P , P (·|B) is given by

E = min

{
P1, P4,

1

3
P2 +

2

3
P4

}
,

that the conditional natural extension of E is given by

E(f |Bn) = min

{
f(n) + f(−n)

2
,

2f(n) + f(−n)

3

}
,

for every Bn ∈ B and that P4(GE(f |B)) < 0 for some f , so E is not conglomerable. Let us give an upper bound of
the natural extension E2 of E,E(·|B).

. Since P1 is σ-additive, it is conglomerable, so P1(GE(f |B)) ≥ P1(GP1
(f |B)) ≥ 0 for all f ∈ L, where P1(·|B)

is the conditional natural extension of P1.

. Let us show that given P5 := 1
3P2 + 2

3P4, also P5(GE(f |B)) ≥ 0.

Consider a gamble f and let A := {n ∈ N : f(n) ≤ f(−n)}. Then:

E(f |Bn) =

{
2f(n)+f(−n)

3 if n ∈ A
f(n)+f(−n)

2 if n /∈ A.

GE(f |Bn)(n) =

{
f(n)−f(−n)

3 ≤ 0 if n ∈ A
f(n)−f(−n)

2 ≥ 0 if n /∈ A.

GE(f |Bn)(−n) =

{
2(f(−n)−f(n))

3 ≥ 0 if n ∈ A
f(−n)−f(n)

2 ≤ 0 if n /∈ A.

Letting C := ∪{Bn : n ∈ A}, we have by Remark 1 that GE(f |B) = GE(Cf |B) +GE(Ccf |B). We deduce
that P5(GE(f |B)) = P5(GE(Cf |B)) + P5(GE(Ccf |B)), and if we let f ′ := Cf and g′ := GE(f ′|B), then
we get that g′− = −2g′+ ≥ 0. Since

P2(g′) =
1

2

∑
n∈N

g′(n)
1

2n
+

1

2
P (g′−) =

1

2

∑
n∈N

g′(n)
1

2n
− P (g′+)

P3(g′) =
3

4
P (g′+) +

1

4
P (g′−) =

1

4
P (g′+)

P4(g′) =
1

2
P1(g′) +

1

2
P3(g′) =

1

2

∑
n∈N

[g′(n) + g′(−n)]
1

2n+1
+

1

2

1

4
P (g′+)

= −1

2

∑
n∈N

g′(n)
1

2n+1
+

1

8
P (g′+)

and since P5(g′) = 1
3P2(g′) + 2

3P4(g′), we obtain that

P5(g′) =
1

3

[
1

2

∑
n∈N

g′(n)
1

2n
− P (g′+)

]
+

2

3

[
−1

2

∑
n∈N

g′(n)
1

2n+1
+

1

8
P (g′+)

]
= −1

4
P (g′+) ≥ 0.

Now, let f ′′ := Ccf and g′′ := GE(f ′′|B). We get that g′′+ = −g′′− ≥ 0, whence

P2(g′′) =
∑
n∈N

g′′+(n)
1

2n+1
+

1

2
P (g′′−)

P3(g′′) =
3

4
P (g′′+) +

1

4
P (g′′−) =

1

2
P (g′′+)

P4(g′′) =
1

2
P1(g′′) +

1

2
P3(g′′) =

1

2

∑
n∈N

[g′′(n) + g′′(−n)]
1

2n+1
+

1

2

1

2
P (g′′+) =

1

4
P (g′′+),
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so that

P5(g′′) =
1

3
P2(g′′) +

2

3
P4(g′′) =

1

3

∑
n∈N

g′′+(n)
1

2n+1
+

1

6
P (g′′−) +

1

6
P (g′′+) =

1

3

∑
n∈N

g′′+(n)
1

2n+1
≥ 0.

The analysis so far has allowed us to deduce that both P1(GE(·|B)) ≥ 0 and P5(GE(·|B)) ≥ 0. It follows from
Proposition 5 that the natural extension E2 of E,E(·|B) is dominated by the lower envelope of {P1, P5}, from which
we obtain that E2(·|Bn) ≤ min{P1(·|Bn), P5(·|Bn)} and in particular that

E2(f |Bn) ≤ min

{
P1(Bnf)

P1(Bn)
,
P5(Bnf)

P5(Bn)

}
= min

{
[f(n) + f(−n)] 1

2n+1

1
2n

,
1
3P2(Bnf) + 2

3P4(Bnf)
1

2n+1

}
= min

{
1

2
[f(n) + f(−n)],

1
3

[
1
2f(n) 1

2n + 1
20
]

+ 2
3

[
1
2P1(Bnf) + 1

2P3(Bnf)
]

1
2n+1

}

= min

{
1

2
[f(n) + f(−n)], 2n+1

[
1

3

1

2n+1
f(n) +

2

3

1

2

1

2n+1
[f(n) + f(−n)] +

1

2
0

]}
= min

{
f(n) + f(−n)

2
,

2f(n) + f(−n)

3

}
= E(f |Bn),

which implies that E2(f |Bn) = E(f |Bn). This implies, by means of the sufficient condition for conglomerability
in [13, Proposition 16], that E2 is conglomerable and therefore it is the conglomerable natural extension of P .

Now, if we reconsider h = I−N, then E2(h|Bn) = 1
3 for all n, so if E2 were a marginal extension model, we

would have E2(h) = E2(E2(h|B)) = E2( 1
3 ) = 1

3 . But we know that E2(h) ≥ P (f) = 3
8 >

1
3 . This shows that the

sequence of marginal extensions may not become constant, after a finite number of steps, on the conglomerable natural
extension. �

Example 6 (The sufficient conditions in Theorem 20 are not necessary). Let P1, P2 be two σ-additive probabilities
on P(Ω) satisfying

P1(Bn) =
1

2n
for all n ∈ N

P2(Bn) =

{
1

4n if n is odd
1

2n/2
+ 1

2n/2−1
− 1

4n−1 if n is even.

Then
∑
n∈N P1(Bn) = 1 =

∑
n∈N P2(Bn) because P2(B2n) + P2(B2n−1) = P1(B2n) + P1(B2n−1) = 1

2n + 1
2n−1

for all n. Inside each Bn we can assume that P1 and P2 are uniform (although this is not really necessary). Then
P := min{P1, P2} is conglomerable because it is a lower envelope of conglomerable models. On the other hand, given
n odd, we have that

P (Bn)

P (Bn)
=

1
2n

1
4n

= 2n,

so
{
P (B)
P (B) : B ∈ B

}
is unbounded. Note also that in this case we have ∆′ = ∆ = {(α, 1− α) : α ∈ [0, 1]}, so we are

not in the interior of the simplex, either. �
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