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Abstract

Credal nets are probabilistic graphical models which extend Bayesian nets to cope
with sets of distributions. An algorithm for approximate credal network updating is
presented. The problem in its general formulation is a multilinear optimization task,
which can be linearized by an appropriate rule for fixing all the local models apart
from those of a single variable. This simple idea can be iterated and quickly leads
to accurate inferences. A transformation is also derived to reduce decision making in
credal networks based on the maximality criterion to updating. The decision task is
proved to have the same complexity of standard inference, being NPPP-complete for
general credal nets and NP-complete for polytrees. Similar results are derived for the
E-admissibility criterion. Numerical experiments confirm a good performance of the
method.

Keywords: Credal Networks, Bayesian Networks, Linear Programming, Decision
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1. Introduction

Credal networks (Cozman, 2000) are a generalization of Bayesian networks (Pearl,
1988) based on the notion of credal sets. A credal set is a set of probability mass func-
tions, it represents quite a general and expressive model of uncertainty. Other uncer-
tainty models like belief functions (Shafer, 1976) or possibility measures (Dubois and
Prade, 1988) can be regarded as (special classes of) credal sets. A Bayesian network
can be turned into a credal network by replacing the local models, which are condi-
tional probability mass functions, with conditional credal sets over the same variables.
Exactly as a Bayesian network defines a joint probability mass function over its whole
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set of variables, a credal network defines a joint credal set, which is (the convex closure
of) the set of all joint mass functions obtained from the Bayesian networks consistent
with the local credal sets.

Inference in credal networks is intended as the computation of the lower and up-
per bounds of expectations and probabilities with respect to that joint credal set. This
makes inference considerably harder than in the case of Bayesian networks. For in-
stance, a marginalization task corresponds to a multilinear optimization problem, while
updating is a multilinear-fractional task (de Campos and Cozman, 2004). This problem
is known to be NP-hard even for singly connected networks (de Campos and Cozman,
2005), while the analogous inference in Bayesian networks can be performed in poly-
nomial time (e.g., Koller and N. Friedman, 2009). Despite the hardness of the problem,
some algorithms are known to perform reasonably well under certain conditions. Exact
approaches have been proposed that implement some branch-and-bound method with
local searches (da Rocha et al., 2003; de Campos and Cozman, 2005; Cano et al., 2007;
de Campos and Cozman, 2007). Unfortunately they all suffer from serious efficiency
issues unless the credal network is very simple. For instance, none of these methods
can deal well with a binary node having four ternary parents, because this setting is al-
ready equivalent to 34 = 81 free optimization variables to be chosen, meaning a space
of 281 possible solutions just locally on this node! On the other hand, approximate
methods either are fast and provide no accuracy guarantee (Cano et al., 2007; da Rocha
et al., 2003; Antonucci et al., 2010) or provide theoretical guarantees but are as slow
as exact methods (Mauá et al., 2012a). Moreover, all these approximate methods are
only capable of treating credal networks whose credal sets are specified by enumerat-
ing the extreme points, while a constraint-based specification still lacks any practical
algorithm. An exception is the exact algorithm for trees by de Cooman et al. (2010),
which considers the independence concept of epistemic irrelevance, while the more
popular notion of strong independence is considered here (see Sect. 4.5 for a more
detailed discussion on this point).

In this paper we present a fast approximate algorithm, called A-LP, for inferences in
credal networks based on solving a sequence of linear programming problems. It uses
a constraint-based specification, which allows us to deal with domains where the local
credal sets are given by their linear constraints. It does not suffer from large credal sets
because the optimization is done by compact linear problems, and the complexity with
respect to the topology is the same as in the Bayesian network case. To the best of our
knowledge, this is the first method for general credal networks to truly run the infer-
ence with a constraint-based specification. We describe the method and some heuristic
ideas to improve its accuracy. Unlike similar ideas already proposed by da Rocha et al.
(2003), our approach does not require an explicit enumeration of the extreme points
of the credal sets and should be therefore used when the number of extreme points
in the local credal sets is exponentially large (e.g., variables with many states and/or
parents, credal sets defined by probability intervals). We also discuss decision making
in credal networks based on the maximality criterion (Walley, 1991). We evaluate the
computational complexity of this decision task, and show how to reduce the problem
to updating by simple graphical transformations. An approximate approach to the de-
cision problem can be therefore achieved by means of the proposed algorithm. Similar
results are obtained for the E-admissibility criterion (Levi, 1980).
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The paper is organized as follows. Sects. 2 and 3 review the basic notation and
definitions of Bayesian and credal networks. The proposed procedure is presented in
Sect. 4 and extended to decision making in Sect. 5. Numerical experiments in Sect. 6
show that the proposed method compares favorably against other available methods
in the literature. Conclusions and outlooks are in Sect. 7, while the proofs are in the
appendix.

2. Bayesian networks

Consider a set of variables X := (X0, X1, . . . , Xn) in one-to-one correspondence
with the nodes of an acyclic directed graph G. For each i = 0, . . . , n, the joint variable
Πi ⊂ X denotes the parents of Xi according to G. All these variables are categorical:
Xi takes its values on the finite set ΩXi

and so does Πi in ΩΠi
:= ×Xj∈Πi

ΩXj
, for

each i = 0, . . . , n (symbol × denotes Cartesian set product). The graph G represents
stochastic independence relations by means of a Markov condition: any variable is
conditionally independent of its non-descendant non-parents given its parents (e.g.,
Koller and N. Friedman, 2009). The specification of a conditional probability mass
function P (Xi|πi) for each πi ∈ ΩΠi

and i = 0, . . . , n, induces through the graph, for
each x ∈ ΩX := ×ni=0ΩXi , the factorization:

P (x) :=

n∏
i=0

P (xi|πi), (1)

where the values of xi and πi are those consistent with x. A specification of the con-
ditional probability mass functions {P (Xi|πi)}

πi∈ΩΠi
i=0,...,n, together with Eq. (1) (or the

graph) is called a Bayesian network.
In particular, the mass functions associated with Xi, i.e., {P (Xi|πi)}πi∈ΩΠi

are
called the local models of Xi, for each i = 0, . . . , n. Inference in Bayesian networks
is based on the joint probability mass function in Eq. (1). Marginals, for instance, are
obtained by summing out other variables from the joint, e.g., the marginalization ofX0

corresponds to the computation, for each x0 ∈ ΩX0 , of:

P (x0) =
∑

x1,...,xn

n∏
i=0

P (xi|πi), (2)

where
∑
x is a shortcut notation for

∑
x∈ΩX

. Alternatively, the marginal in Eq. (2) can
also be expressed as a linear combination of the local probabilities associated with an
arbitrary Xj ∈X , i.e.,

P (x0) =
∑
xj ,πj

[P (x0|xj , πj) · P (πj)] · P (xj |πj), (3)

where the probabilities P (xj |πj) are already available in the Bayesian network speci-
fication, the unconditional probabilities P (πj) are computed as in Eq. (2), and for the
conditional ones P (x0|xj , πj) = P (x0, xj , πj)/P (xj , πj), assuming P (xj , πj) > 0.
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If Xj = X0, Eq. (3) becomes P (x0) =
∑
π0
P (π0) · P (x0|π0), and, if X0 ∈ Πj , then

it becomes P (x0) =
∑
xj ,π′j

P (x0, π
′
j)P (xj |x0, π

′
j), with Π′j := Πj \ {X0}.

The values of P (πj) and P (x0|xj , πj), for each xj ∈ ΩXj
and πj ∈ ΩΠj

, are
not affected by those of the local models of Xj . To see that, note that when comput-
ing a marginal, removing the descendants and their local models does not affect the
probability. As Xj is a child of all the variables in Πj , the computation of P (πj) is not
affected by the values of {P (Xj |πj)}πj∈ΩΠj

. Similarly, when computing a conditional
probability, arcs leaving the variables after the conditioning bar can be removed: thus,
in the case of P (x0|xj , πj), we can disconnect Xj from the rest of the network, thus
making its local model irrelevant for the particular calculation. This remark, together
with Eq. (3) will be exploited by the A-LP approximate algorithm presented later.

3. Credal sets and credal networks

3.1. Credal sets

The Bayesian theory of subjective probability has been extended by more general
uncertainty theories in order to model situations of highly incomplete or conflicting
information. Among others, the theory of imprecise probability (Walley, 1991) adopts
credal sets, which are closed and convex sets of probability mass functions, as a more
general model of uncertainty about the state of a categorical variable.

In particular, here we focus on finitely generated credal sets, which are specified by
a finite number of linear constraints on the probabilities (e.g., see Fig. 1). A credal set
over X is denoted here as K(X), while its extreme points (i.e., points of the set which
cannot be expressed as a convex combination of other ones) are denoted as ext[K(X)].
As we cope with finitely generated credal sets, the number of extreme points is finite.

Expectations. Given a single probability mass function P (X), the expectation of a
real-valued function, or gamble in the behavioural jargon, g : ΩX → R is E(g) :=∑
x P (x) · g(x). If K(X) is given instead, only the bounds with respect to the mass

functions in the credal set can be evaluated, i.e., for the lower bound:

E(g) := min
P (X)∈K(X)

∑
x∈ΩX

P (x) · g(x), (4)

and similarly with a maximum replacing the minimum for the upper bound E(g). As
K(X) is defined by linear constraints, the optimization in Eq. (4) is a linear program-
ming task. It is well known that the optimum is achieved in ext[K(X)]. We will exploit
this property further on.

Decision making. Given a single probability mass function P (X), the optimal op-
tion under zero-one loss, i.e., the most probable state, is x∗ := arg maxx∈ΩX

P (x).
When coping with credal sets, different mass functions in K(X) might assign the
highest probability to different options, and there is not a single way to extend the
decision criterion adopted in the Bayesian framework. The so-called Γ-maximin cri-
terion takes the options maximizing the lower probability, i.e., those such that x∗ :=
arg maxx∈ΩX

P (x), where P (x) is the lower expectation of the indicator associated
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with x. Γ-maximax does the same with the upper probabilities replacing the lower
ones. Alternatively, the overlap among the ranges of the probabilities can be consid-
ered: states whose upper probabilities is smaller than the lower of some other state are
discarded. This is called interval dominance, and leads to the following set Ω∗X ⊆ ΩX
of optimal options:1

Ω∗X :=
{
x′ ∈ ΩX

∣∣@x′′ ∈ ΩX : P (x′′) > P (x′)
}
. (5)

According to the maximality criterion, a state is discarded if, for each element of the
credal set, there is another state with higher probability, i.e.,

Ω∗X := {x′ ∈ ΩX |@x′′ ∈ ΩX : P (x′′) > P (x′),∀P (X) ∈ K(X)} . (6)

Another approach is E-admissibility, where only options which are optimal for at least
a probability mass function of the credal set are adopted, i.e.,

Ω∗X :=

{
x′ ∈ ΩX

∣∣∣∣∃P (X) ∈ K(X) : P (x′) ≥ max
x′′∈ΩX

P (x′′)

}
. (7)

Let us use a superscript to distinguish between the sets of optimal options based on the
different criteria. The following chain of inclusions holds:

ΩΓ-maximax
X ⊆ ΩE-admissibility

X ⊆ Ωmaximality
X ⊆ Ωinterval dominance

X , (8)

together with:
ΩΓ-maximin
X ⊆ Ωmaximality

X . (9)

The proofs can be found in (Troffaes, 2007). Despite a substantial lack of unanim-
ity about the best way to take decisions based on credal sets, maximality and E-
admissibility seem a reasonable compromise between the necessary caution when tak-
ing decisions and the need of avoiding too a high number of possible options.

3.2. Credal networks
Credal sets can be used to extend Bayesian networks to imprecise probabilities. To

do that, in the definition of a Bayesian network, every conditional probability mass
function P (Xi|πi) is replaced by a conditional credal set K(Xi|πi). A specification
of the conditional credal sets {K(Xi|πi)}

πi∈ΩΠi
i=0,...,n together with the graph G is called a

credal network. Under this generalized setting, Eq. (1) can be used to obtain different
joint probability mass functions. Let us consider all the possible combinations of the
extreme points in the local models, and then take the convex hull (denoted as CH), i.e.,
build the following joint credal set:

K(X) := CH

P (X)

∣∣∣∣∣∣P (x) :=

n∏
i=0

P (xi|πi),
∀x ∈ ×ni=0ΩXi

,
∀P (Xi|πi) ∈ ext[K(Xi|πi)]
∀i = 0, . . . , n, ∀πi ∈ ΩΠi

 .

(10)

1The set in Eq. (5) can be equivalently obtained as {x′ ∈ ΩX |P (x′) ≥ maxx′′∈ΩX
P (x′′)}. This

makes the identification time linear instead of quadratic in the number of options.
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(1,0,0)

(0,1,0)

(0,0,1) (a)

(1,0,0)

(0,1,0)

(0,0,1) (b)

Figure 1: Credal sets over a ternary variable X (i.e., ΩX = {x′, x′′, x′′′}). The representation is in
a three-dimensional space with coordinates [P (x′), P (x′′), P (x′′′)]. The dark grey polytopes represent
respectively: (a) the credal set defined by constraint P (x′) ≥ P (x′′); (b) a credal set whose extreme points
are {[.1, .3, .6]T , [.3, .3, .4]T , [.1, .5, .4]T }. Note that P (x′′) = .5 for both credal sets, which corresponds
to the black extreme point [.5, .5, 0]T of the first credal set and [.1, .5, .4]T for the second.

The credal set in Eq. (10) is called the strong extension of the credal network (Cozman,
2000). The name comes from strong independence, an independence concept for credal
sets requiring stochastic independence on the extreme points. Each extreme point of
the strong extension factorizes as in Eq. (1) and hence satisfies the stochastic indepen-
dence relations induced by G (see, e.g., Prop. 1 in Antonucci and Zaffalon, 2008). The
strong extension of a credal network represents a generalization, based on credal sets,
of the joint probability mass function associated with a Bayesian network as in Eq. (1).
Inference in credal networks is based on the strong extension. For instance, the lower
bound of the marginal probability in Eq. (2) is:

P (x0) := min
P (X)∈K(X)

P (x0) = min
P (Xi|πi)∈K(Xi|πi)
πi∈ΩΠi

,i=0,...,n

∑
x1,x2,...,xn

n∏
i=0

P (xi|πi), (11)

and similarly for P (x0). Eq. (11) represents a non-linear optimization problem, with
a multilinear objective function over a feasible region defined by linear constraints on
the optimization variables. In the next section we present an approximate algorithm to
solve such a problem.

4. The A-LP algorithm

4.1. Solving the linear program

The idea. The A-LP algorithm presented here is based on the ideas of Lukatskii and
Shapot (2000) to approximate the solution of multilinear problems. In essence, a multi-
linear optimization can be converted into a linear one if we fix all but one optimization
variable in each of its multilinear terms. In Lukatskii and Shapot’s terminology, there
is a partition of the optimization variables such that, fixing the optimization variables
in every set of the partition apart from one, the multilinear problem becomes linear.
By iterating over the index defining the set to remain free, one can approximate the
solution of the multilinear problem with a sequence of linear ones.
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The linear program. Following the above mentioned ideas, we reduce the multilinear
optimization to a linear one by shrinking all the local credal sets to singletons, namely
extreme points, apart from those of a variableXj ∈X , which we call the free variable.
Given Xj , we therefore pick an extreme point P̃ (Xi|πi) ∈ ext[K(Xi|πi)], for each
i = 0, . . . , n such that i 6= j and each πi ∈ ΩΠi . These are additional constraints to
the optimization problem in Eq. (11), which becomes:

P ′(x0) := min
P (Xj |πi)∈K(Xj |πj)

πj∈ΩΠj

∑
x1,x2,...,xn

 n∏
i=0,i6=j

P̃ (xi|πi)

 · P (xj |πj) =

= min
P (Xj |πj)∈K(Xj |πj)

πj∈ΩΠj

∑
xj ,πj

[
P̃ (x0|xj , πj) · P̃ (πj)

]
· P (xj |πj),

(12)

where the last derivation is based on Eq. (3), and probabilities P̃ (x0|xj , πj) and P̃ (πj)
are denoted by a tilde as they are computed from the joint of a Bayesian network with
local models {P̃ (Xi|πi)}πi∈ΩΠi for each i 6= j, while the local models of Xj can be
arbitrarily specified as already discussed at the end of Sect. 2.

Let us comment on some important facts about Eq. (12). Firstly, being the solution
of an optimization with additional constraints with respect to Eq. (11) (see the second
term in the equation), we have P ′(x0) ≥ P (x0). Secondly, it is clear from the third
term of Eq. (12) that the computation of P ′(x0) is a linear program whose optimiza-

tion variables are the local probabilities of Xj , i.e., {P (xj |πj)}
πj∈ΩΠj

xj∈ΩXj
. Lastly, as the

solution of a linear program lies on an extreme point of the feasible region, there is a
P ∗(Xj |πj) ∈ ext[K(Xj |πj)], for each πj ∈ ΩΠj such that:

P ′(x0) =
∑

x1,x2,...,xn

 n∏
i=0,i6=j

P̃ (xi|πi)

 · P ∗(xj |πj). (13)

4.2. Searching for the optimum
The procedure detailed in the previous section provides an upper approximation of

the lower probability P (x0). A credal network whose local credal sets are singletons
apart from those associated with a single variable can be called an almost-Bayesian
network. The proposed optimization consists therefore in taking an almost-Bayesian
network consistent with the original credal network (i.e., its strong extension is in-
cluded in that of the original credal network) and exploiting the fact that marginaliza-
tion of almost-Bayesian networks is a linear problem. By solving this linear problem,
we obtain: (i) an upper approximation of the lower probability; (ii) a specification of
the extreme points of the credal sets associated with the only ‘non-Bayesian’ variable
in the almost-Bayesian network leading to the optimum. The extreme points in (ii) can
be an assignment for the corresponding credal sets, and another variable can be freed,
leading to a new linear program.

The above procedure can be arbitrarily iterated. This implements a local search
approach to the optimization task in Eq. (11). The neighborhood concept here is less
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sparse than that considered by da Rocha et al. (2003). Instead of considering all the
extreme configurations of the models, only the one leading to the best solution for each
variable is regarded as a neighbor. This makes unnecessary an explicit enumeration of
the extreme points. In the rest of this section we suggest a possible architecture for
the iterative process based on standard stategies for discrete optimization (Glover and
Kochenberger, 2003).

Initialization. Before any iteration, the optimization in Eq. (12) requires an almost-
Bayesian network consistent with the credal network. The local credal sets are defined
by linear constraints and enumerating their extreme points can be unfeasible. We there-
fore generate an extreme point of each credal set as the solution of a linear program
whose feasible region is the credal set itself and with a random objective function.

Improving the solution. The solution in Eq. (13) of the linear program in Eq. (12) pro-
vides an approximate solution of Eq. (11). As already noticed, to iterate the procedure
another ‘free’ variable can be picked and the optimal solution {P ∗(Xj |πj)}πj∈ΩΠj

of
the previous problem can be used for a new initialization. The effect is shown here.

Proposition 1. Let {P̃ (Xi|πi)}
πi∈ΩΠi
i=0,1,...,n be a Bayesian network specification con-

sistent with a credal network specification {K(Xi|πi)}
πi∈ΩΠi
i=0,1,...,n. As in Eq. (2), let

P̃ (x0) :=
∑
x1,...,xn

∏n
i=0 P̃ (xi|πi) and, as in Eq. (12),

P̃
′
(x0) := min

P (Xj |πj)∈K(Xj |πj)
πj∈ΩΠj

∑
x1,...,xn

 n∏
i=0
i 6=j

P̃ (xi|πi)

P (xj |πj). (14)

Then P̃
′
(x0) ≤ P̃ (x0).

The proof of this proposition is in Appendix A, together with those of all the other
technical results presented in this paper. As a corollary of Prop. 1, it follows that each
iteration of our procedure produces a better (or equal) approximation.

Iteration architecture. Before any iteration, we only have to choose the variable to be
freed. As any choice can only improve the quality of the approximation, randomly
picking a free variable at each iteration with no particular strategies could be an option.
Yet, to decide whether or not variable Xj should be the free variable, we can better
compare the improved solution P ′j(x0) obtained by freeing Xj with the previous can-
didate solution P ′(x0). A greedy strategy consists in picking the variable leading to
the best improvement, i.e., Xj∗ where j∗ := arg minj=0,...,n P

′
j(x0). A lazy alterna-

tive is to pick as free variable the first (according to some random ordering) improving
the approximation, i.e., such that P ′j(x0) < P ′(x0). As far as we know there is no
evidence in the literature to support that one is always preferred to the other, so in the
rest of this paper we employ the lazy approach.
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Stopping rule. The above described iteration strategy needs a stopping criterion. The
simplest think to do is to keep iterating the algorithm unless it is not possible to further
improve the approximation. According to Prop. 1, this means that the procedure stops
when the next iteration returns the same approximation, no matter which one is the
picked free variable. This can be a local (or global) optimum, but also a non-optimal
saddle point. To avoid stops in saddle points, we keep iterating (for a while) even if
no improvements cannot be achieved. The choice of the free variable cannot be any-
more based on the improvement in the approximation, which is zero for all variables.
Thus, we just select, again in a lazy way, the first free variable leading to a different
specification of the extreme points for the local models (even if the same approxima-
tion is achieved). The algorithm stops when, no matter the variable we free, the same
solution and the same extreme points are returned. Regardless of that, we stop the al-
gorithm after a maximum number of iterations for which the approximation cannot be
improved.

Random restarts. To achieve robust results with respect to the initialization of the ex-
treme points, we repeat the search process a number of times with different initializa-
tions. As the objective functions used to initialize the extreme points of the local credal
sets are randomly specified, multiple runs produce different initializations. The above
described iteration part is therefore executed separately for each initialization and the
best (i.e., for lower probabilities, smallest) result is eventually returned.

Pseudocode. Alg. 1 contains the pseudocode of the overall algorithm with both the
iteration strategy and the random restart procedure. We call the algorithm A-LP (ap-
proximation with linear programming). We randomly restart the search t times (line
3). Variables p and pp are, respectively, the approximation associated with the cur-
rent restart and the minimum over all the restarts returned in output (line 39). These
variables are initialized to 1.0 as their values can only decrease when iterating. The
initialization of the extreme points of the local credal sets (line 7) is based on the lin-
ear programs with randomly specified objective function. A candidate free variable is
randomly picked from a replica X ′ of X (line 10). If freeing the variable improves the
accuracy (line 12), the variable is actually freed and the extreme points associated with
the solution used in the next iteration (line 14). If this is not the case the actual variable
is removed from the list of candidates X ′ (line 17). If no candidate remains available
(line 19), we pick from a second replica X′′ of X (line 20) by looking for a variable
such that the linear program, although leading to the same approximation, returns a
different specification of the extreme points (line 22). The iteration stops if even the
second list of candidates remains empty (line 36), or if the counter b of consecutive
iterations without improvements reaches the threshold s (line 32).

By changing the direction of the inequalities in lines 12, 24, and 40, and comput-
ing the maximum instead of the minimum in the linear programs (lines 11 and 21), a
lower approximation P

′
(x0) of the upper probability P (x0) is obtained instead. Over-

all, A-LP finds an inner approximation of the interval [P (x0), P (x0)], i.e., an upper
approximation of the lower probability as in Eq. (11) and a lower approximation of
the corresponding upper probability. The extension of these ideas to the computation
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Algorithm 1 The A-LP algorithm
[Parameters] s (maximum number of no-improve iterations) and t (number of restarts)

[Input] a credal network specification {K(Xi|πi)}
πi∈ΩΠi
i=0,...,n

[Output] p an upper approximation of P (x0)

1: pp← 1.0
2: b← 0
3: for count← 1, t do . random restarts
4: p← 1.0
5: X ′,X ′′ ←X
6: iterate← TRUE
7: P̃ (Xi|πi)← randomly pick from ext[K(Xi|πi)] ∀i, πi . initialization
8: while iterate do
9: if X ′ 6= ∅ then

10: Xj ← randomly pick from X ′

11: P ′(x0), P ∗(Xj |πj)← LP with Xj , {P (Xi|πi)}i6=j . Eqs. (11) (12)
12: if P ′(x0) < p then
13: p← P ′(x0)
14: P̃ (Xj |πj)← P ∗(Xj |πj) ∀πj
15: X ′ ←X \ {Xj}
16: else
17: X ′ ←X ′ \ {Xj}
18: end if
19: else
20: Xj ← randomly pick from X ′′

21: P ′(x0), P ∗(Xj |πj)← LP with Xj , {P (Xi|πi)}i6=j . as in line 11
22: if P̃ 6= P ∗ then
23: P̃ (Xj |πj)← P ∗(Xj |πj) ∀πj
24: if P ′(x0) < p then
25: p← P ′(x0)
26: X ′ ←X \ {Xj}
27: X ′′ ←X
28: b← 0
29: else
30: b++
31: X ′′ ←X \ {Xj}
32: if b ≡ s then iterate← FALSE . too many no-improvements
33: end if
34: else
35: X ′′ ←X ′′ \ {Xj}
36: if X ′′ ≡ ∅ then iterate← FALSE . no way to continue
37: end if
38: end if
39: end while
40: if p < pp then pp← p . take the best
41: end for
42: return pp
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of posterior (instead of marginal) probabilities deserves a specific discussion that is
presented in the next section.

4.3. Extension to the conditional case
While the version of the A-LP algorithm presented in the previous section is de-

signed to approximate lower and upper marginal probabilities, a typical inference task
in Bayesian and credal networks is the evaluation of the posterior beliefs about a
variable given an observation of some other variables. This task is called updating.
Without lack of generality, X0 is still the variable of interest. The observed vari-
ables are XE ⊆ X \ {X0} and xE ∈ ΩXE

is the outcome of the observation. For
Bayesian networks, the task is to compute P (x0|xE) = P (x0,xE)/P (xE), provided
that P (xE) > 0. This generalizes to credal networks as follows:

P (x0|xE) = min
P (Xi|πi)∈K(Xi|πi)
πi∈ΩΠi

,i=0,...,n

∑
x′
∏n
i=0 P (xi|πi)∑

x0,x′
∏n
i=0 P (xi|πi)

. (15)

where X ′ := X\({X0}∪XE), and a similar relation holds forP (x0|xE). Thus, while
the marginal computation in Eq. (11) is a multilinear task, the posterior corresponds to a
multilinear-fractional problem. Unlike the case of Bayesian networks, credal networks
updating cannot be reduced to the computation of (joint) marginals. Mauá et al. (2014)
provide an analysis of the differences between marginal and conditional queries in
credal networks from the point of view of computational complexity.

To apply A-LP to conditional queries like in Eq. (15), we manipulate the Bayesian
expression as in the marginal case. Given a Bayesian network and a Xj ∈ X , the
analogous of Eq. (3) with (x0,xE) instead of x0 is:

P (x0,xE) =
∑
xj ,πj

[P (x0,xE |xj , πj) · P (πj)] · P (xj |πj). (16)

Summing over all the x0 ∈ ΩX0
, we obtain:

P (xE) =
∑
xj ,πj

[P (xE |xj , πj) · P (πj)] · P (xj |πj). (17)

Thus, the posterior probability, i.e., the objective function in Eq. (15), is:

P (x0|xE) =

∑
xj ,πj

[P (x0,xE |xj , πj) · P (πj)] · P (xj |πj)∑
xj ,πj

[P (xE |xj , πj) · P (πj)] · P (xj |πj)
. (18)

It is therefore possible to shrink all the local credal sets associated with the non-
free variables to single extreme points, say P̃ (Xi|πi) ∈ ext[K(Xi|πi)] for each i =
0, 1, . . . , n, i 6= j and πi ∈ ΩΠi

, and leave unchanged those of the free variable Xj .
This reduces the multilinear-fractional task in Eq. (15) to the following linear-fractional
problem:

P ′(x0|xE) := min
P (Xj |πj)∈K(Xj |πj)

πj∈ΩΠj

∑
x′

[∏i6=j
i=0,...,n P̃ (xi|πi)

]
· P (xj |πj)∑

x0,x′

[∏i 6=j
i=0,...,n P̃ (xi|πi)

]
· P (xj |πj)

, (19)
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which, exploiting that P̃ (x0,xE |xj , πj) = P̃ (x0|xE , xj , πj) · P̃ (xE |xj , πj), and be-
cause of Eq. (18), rewrites as follows:

min
P (Xj |πj)∈K(Xj |πj)

πj∈ΩΠj

∑
xj ,πj

[
P̃ (x0|xE , xj , πj) · P̃ (xE |xj , πj) · P̃ (πj)

]
· P (xj |πj)∑

xj ,πj

[
P̃ (xE |xj , πj) · P̃ (πj)

]
· P (xj |πj)

.

(20)
We have already shown in Sect. 2 that the computation of P̃ (πj) in a Bayesian network
with local models P̃ (Xi|πi) for the non-free variables is not affected by the local mod-
els of the free variable Xj . The same holds for any probability conditional on (xj , πj),
like P̃ (x0|xE , xj , πj) and P̃ (xE |xj , πj). Overall, Eq. (20) corresponds to a linear-
fractional program, whose feasible region is defined by the linear constraints definining
the local models of Xj and such that the coefficients of the (linear-fractional) objective
function can be computed by standard inferences in a Bayesian network with the same
structure of the original credal network. The linear-fractional task can be eventually
reduced to a linear one by the classical transformation of Charnes and Cooper (1962).2

Special cases. Let us discuss the special situations with respect to the choice of the
free variable and show how these do not affect the applicability of our procedure.

(i) The free variable is the query (i.e., j = 0). The term P̃ (x0|xE , xj , πj) in Eq. (20)
is one if xj = x0 and zero otherwise. The sum over Xj in the numerator can be
therefore removed and only the term associated with x0 remains.

(ii) The query is a parent of the free variable (i.e., X0 ∈ Πj). Let Π′j := Πj \ {X0}.
The term P̃ (x0|xE , xj , πj) in Eq. (20) is one if πj is consistent with x0 and zero
otherwise. The sum in the numerator is therefore restricted to (Xj ,Π

′
j) only.

(iii) The free variable is observed (i.e., Xj ∈ XE). P̃ (xE |xj , πj) in Eq. (20) is one
if xj is consistent with xE and zero otherwise. So, in both the numerator and the
denominator the sums over xj can be removed and only the term corresponding
to the observed state kept. We similarly proceed if some of the parents of Xj are
observed. Thus, in general, we just have to restrict the sums to the variables of
(Xj ,Πj) which are not in XE .

Coping with zero probabilities. A further discussion is required in the case of zero
probabilities. Let us consider a particular iteration of the A-LP algorithm, and note
that the coefficients of the objective function in the linear-fractional problem require
the computation of conditional probabilities in the Bayesian network with arbitrary
specification of the local models of the free variable and the given specification for the
others. Yet, this is not possible if the Bayesian network assigns zero probability to a
conditioning event. Let us analyze these situations.

2The same procedure can be applied even if constraints among the different credal sets of the same
variable are specified. This corresponds to the so-called extensive specification of the credal sets in a credal
network (Antonucci and Zaffalon, 2008).

12



(i) If there is a (xj , πj) ∈ ΩXj × ΩΠj such that P̃ (xj , πj) = 0, P̃ (xE |xj , πj)
which appears in both the numerator and the denominator of Eq. (20) cannot be
computed. Yet, in both cases it is multiplied by P̃ (xj |πj) · P̃ (πj) = P̃ (xj , πj),
which is zero. We can therefore cope with this case by setting the coefficient
associated with the optimization variable P (xj |πj) equal to zero.

(ii) If there is a (xj , πj) ∈ ΩXj × ΩΠj such that P̃ (xj , πj ,xE) = 0, we proceed in
a similar way. The conditional P̃ (x0|xj , πj ,xE) is multiplied by a null term and
the coefficient associated with P (xj |πj) can be therefore safely set equal to zero.

Finally consider the zero-probability issues for the conditioning event XE = xE .
Remember that we are discussing a single iteration of the algorithm. First solve the
two linear programs leading to P ′(xE) and P

′
(xE). Joint queries like these can be

reduced to single-variable queries by the technique proposed by Mauá et al. (2012b).
If P

′
(xE) = 0, all the models corresponding to the current choice of the extreme

points of the non-free variables assign zero probability to the conditioning event. An-
other free variable, possibly leading to strictly positive upper probability, should be
picked instead. If this is not possible, we adopt the natural extension of the model
(Walley, 1991), which corresponds to set P ′(x0|xE) = 0 and P

′
(x0|xE) = 1.

If P
′
(xE) > 0 but P ′(xE) = 0, there is at least a specification of the local models

of the free variable that assigns zero probability to the conditioning event. If this is
the case, we adopt the regular extension (Walley, 1991, App. J), which discards spec-
ifications of this kind. The constraint P (xE) > 0 is therefore added to Eq. (20) by
requiring the strict positivity of the denominator of the objective function. As linear
solvers cannot cope with strict inequalities, the constraint is converted into a non-strict
one with the machine epsilon instead of the zero.

4.4. Computational complexity of A-LP

Let m and l denote, respectively, the maximum number of states and incoming
parents (i.e., the indegree) of the network variables: m := maxi=0,...,n |ΩXi

| and
l := maxi=0,...,n |Πi|. Let q be the maximum number of linear constraints required to
define a local credal set. A linear program as in Eq. (11) has at most ml+1 variables
and ml · q constraints. Because the size of the input should be already proportional to
ml · q, the algorithm spends time equivalent to run a linear programming solver on the
(local) input specification times the total number of iterations. Moreover, to compute
the coefficients of the objective function in Eq. (20) a constant number of Bayesian
inferences is required for each optimization variable, this task being exponential in the
treewidth of G.

In our algorithm the local credal sets are assumed to be defined by linear con-
straints. This is a major difference with the algorithm of da Rocha et al. (2003), which
requires instead the availability of the extreme points of the local models. Polyhedra
algorithms (e.g., Avis, 2000) can be used to compute the extreme points of a credal
set defined by linear constraints and vice versa. Yet, both these conversions can in-
duce an exponential growth (Wallner, 2007; Avis, 2000). The choice between the two
algorithms should take this issue into account.
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4.5. Coping with other independence concepts

The A-LP algorithm is designed to compute approximate inferences based on the
strong extension of a credal network. Such an extension, defined as in Eq. (10), is
based on the notion of strong independence for credal sets. The notion of epistemic
irrelevance is an alternative independence concept which has been also considered for
credal networks (e.g., de Bock and de Cooman, 2014). The corresponding extension,
called epistemic, is a larger credal set possibly giving more conservative inferences.
The inferences provided by A-LP can be therefore regarded as an inner approxima-
tion also for inferences based on the epistemic extension. Yet, there is evidence in
the literature that even an exact computation based on the strong extension can be an
innacurate inner approximation for the epistemic extension (de Cooman et al., 2010).
We therefore do not recommend to use A-LP in the epistemic case, apart from the
special situations, considered by Mauá et al. (2014), in which the inferences associ-
ated with the two extensions coincide. A similar situation holds for the (less known)
Kuznetsov independence, as it is also a larger extension than the strong and results can
significantly differ (Cozman and de Campos, 2014).

5. Decision making with credal networks

Like Bayesian networks, credal networks are often used to implement classifiers
and knowledge-based decision-support systems (Corani et al., 2014, 2012; Antonucci
et al., 2014). In these applications the goal is not only to compute the posterior proba-
bilities but also to determine the most likely state for the variable of interest X0 given
the observation xE . This can be based on the decision criteria discussed in the second
part of Sect. 3.2.

For Bayesian networks the problem simply reduces to a number of updating tasks,
as the most probable a posteriori state is x∗0 := arg maxx0∈ΩX0

P (x0|xE). Deci-
sions based on the Γ-maximin/max and interval dominance criteria can be similarly
computed in credal networks. This can be achieved by considering the posterior inter-
vals only, i.e., {[P (x0|xE), P (x0|xE)]}x0∈ΩX0

. The A-LP algorithm can be therefore
used to directly address decision making based on those criteria. Maximality and E-
admissibility require instead, at least in their definitions, the availability of the credal
set (K(X0|xE) in this case). In this part of the paper we fill this gap by reducing
decision making based on maximality to a number of updating tasks (Sect. 5.2), and
by developing a variant of the A-LP algorithm able to detect the E-admissible options
(Sect. 5.3). To derive these results, we first reduce to a single updating task the com-
putation of the lower and upper expectations of a gamble over a variable in a credal
network. This reduction has been originally presented by Antonucci and de Campos
(2011).

5.1. Computing expectations

Consider the lower expectation E(g) in Eq. (4). Regard the credal set K(X) as the
local model, but also the strong extension, of a credal network with a single variable.
Augment the network with a variable Y , with ΩY := {0, 1}, which is assumed to be
a child of X . As local models for Y given X , adopt a ‘Bayesian’ specification: each
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conditional credal set is made of a single element. Assessing the values of P (Y = 0|x)
for each x ∈ ΩX is therefore a sufficient specification. The lower probability for the
first state of the auxiliary variable with respect to the augmented credal network is:

P (Y = 0) = min
P (X)∈K(X)

∑
x∈ΩX

P (x) · P (Y = 0|x). (21)

Setting P (Y = 0|x) := g(x) for each x ∈ ΩX , Eq. (21) coincides with Eq. (4), i.e.,
E(g) = P (Y = 0). In other words, an appropriate quantification of the conditional
probabilities for the auxiliary variable makes the lower (and similarly the upper) ex-
pectation of a gamble equal to the lower (upper) probability of the auxiliary variable.

In the above derivation the gamble g should have values in the [0, 1] interval. If this
is not the case, we can normalize its values as follows:

g̃(x) :=
g(x)−minx∈ΩX

g(x)

maxx∈ΩX
g(x)−minx∈ΩX

g(x)
. (22)

The values of gamble g̃ can be regarded as probabilities and its lower expectation com-
puted as in Eq. (21). Thus, for the original gamble:

E(g) = min
x∈ΩX

g(x) + [ max
x∈ΩX

g(x)− min
x∈ΩX

g(x)] · E(g̃). (23)

This is based on the fact that, given a gamble f , if α and β are real constants, with α
positive, E(αf + β) = αE(f) + β (Walley, 1991).

The augmentation of Y to X is a local transformation which can be equivalently
performed in networks with more than a single variable, by simply replacing K(X)
with K(X) as in Eq. (10). Similarly, the derivation holds even if the set of observed
variables XE is not empty. Summarising, in a generic credal network over X , we can
express the conditional lower expectation of a (normalised) gamble over a queried vari-
able X0 given evidence xE as a posterior lower probability in an augmented network,
i.e., E(g̃|xE) = P (Y = 0|xE). Thus, A-LP can be also used to evaluate expectations.

5.2. Maximality-based decision making

To practically compute the maximal states of the queried variable X0 in a credal
network given the observation xE we proceed as follows. The set of optimal options
Ω∗X0

is initialized to ΩX0 . Then, for each x′0, x
′′
0 ∈ ΩX0 , the following relation should

be checked:
min

P (X0|xE)∈K(X0|xE)
[P (x′′0 |xE)− P (x′0|xE)] > 0, (24)

and, every time it is satisfied, x′0 is removed from Ω∗X0
.

Complexity analysis. Let us call maximality dominance test the evaluation in Eq. (24)
Remember that the treewidth of a network measures the extent to which it resembles a
tree (Koller and N. Friedman, 2009), and that we assume all the states are mentioned
in the input specification. The computational complexity of maximality-based decision
making in credal networks can be characterized by the following result.
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Theorem 1. The maximality dominance test is coNP-complete in bounded treewidth
networks and coNPPP-complete in networks of general topology, irrespective of the
number of states in the queried variable.

Hence, deciding whether a class is in the maximal set is a very demanding query,
because it is tested against all other classes, and each of such tests can be itself hard.
Nevertheless, the problem of deciding whether a state x′0 is maximal can be shown to
be in NP (respectively NPPP for general topology).

Theorem 2. Deciding whether a given state of a queried variable is maximal is NP-
complete in bounded treewidth networks and NPPP-complete in networks of general
topology, irrespective of the number of states in the queried variable.

Solving Maximality. The maximality dominance test in Eq. (24) can be checked by
evaluating, for each x′0, x

′′
0 ∈ ΩX0

, the lower expectation of the gamble:

gx′0,x′′0 (x0) =

 −1 if x0 = x′0
+1 if x0 = x′′0

0 otherwise.
(25)

The task can be reduced to an updating task by using the transformation described in
the previous section. This means to augmentX0 with an auxiliary variable Y such that:

P (Y = 0|x0) =

 0 if x0 = x′0
1 if x0 = x′′0
1
2 otherwise.

(26)

The dominance test in Eq. (24) is equivalent to check whether P (Y = 0|xE) > 1
2 .

The A-LP algorithm can be therefore used to address the dominance test for each pair
of classes and determine the undominated ones according to maximality. As A-LP
returns an upper approximation P ′(Y = 0|xE) ≥ P (Y = 0|xE) some dominance
detected by the algorithm might not really take place. Hence, the set of optimal classes
evaluated by the approximate algorithm might be a subset of the exact one.

5.3. Decisions based on E-admissibility
Following the definition of E-admissibility in the second part of Sect. 3.1, the con-

dition for x0 ∈ ΩX0
being an admissible option in a credal network with queried

variable X0, strong extension K(X), and observation xE is:

∃P (X) ∈ K(X) : ∀x′0 ∈ ΩX0 : P (x0|xE) ≥ P (x′0|xE). (27)

Complexity analysis. Let us call E-admissibility test the evaluation in Eq. (27). The
computational complexity of decision making based on E-admissibility can be charac-
terized exactly like that based on maximality by the following result.

Theorem 3. The E-admissibility test is NP-complete in bounded treewidth networks
and NPPP-complete in networks of general topology, irrespective of the number of
states in the queried variable.
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Solving E-admissibility. The E-admissibility decision test for x0 ∈ ΩX0 in Eq. (27) is
equivalent to check whether or not the following constraints can be all satisfied:

∃P (X) ∈ K(X) : ∀x′0 ∈ ΩX0 : P (x0,xE) ≥ P (x′0,xE), (28)

as long as only specifications assigning strictly positive probability to the evidence
are considered, this being consistent with the regular extension. We are not aware of
any local transformation to the network that can be used to solve the E-admissibility
decision test, and unfortunately the attempt appearing in Antonucci and de Campos
(2011) is invalid. In spite of that, we can reduce the E-admissibility decision test to the
problem of whether the following optimization problem has a zero optimal value.

minimize w,

subject to 0 ≤ w ≤ 1,

P (Xi|πi) ∈ K(Xi|πi), ∀i,∀πi,
P (x0,xE) ≥ P (x′0,xE)− w, ∀x′0 ∈ ΩX0

.

This problem has always a feasible solution by choosing w = 1, while a feasible
solution withw = 0 exists if and only if x0 is E-admissible. The global constraint about
the joint probability belonging to the strong extension has been replaced by local ones;
this is possible as the convexification in Eq. (10) does not affect the extreme points.
The optimization variables are the local probabilities P (xi|πi) for each xi ∈ ΩXi ,
πi ∈ ΩΠi and i = 0, . . . , n, and the slack variable w. Apart from those in the last line,
all the other constraints are linear. The problem rewrites as follows.

minimize w,

subject to 0 ≤ w ≤ 1,

P (Xi|πi) ∈ K(Xi|πi), ∀i,∀πi,∑
xj ,πj

[P (x0,xE |xjπj)− P (x′0,xE |xj , πj)]P (πj)P (xj |πj) + w ≥ 0, ∀x′0 ∈ ΩX0
.

Now the constraints in the last line have a clear multilinear form, analogous to Eq. (11).
As in the case of A-LP, we add further constraints requiring the local credal sets of the
non-free variables to be shrunk to single extreme points P̃ (Xi|πi) ∈ ext[K(Xi|πi)] for
each πi ∈ ΩΠi

and i = 0, . . . , n, i 6= j. This produces the following linear problem.

minimize w,

subject to 0 ≤ w ≤ 1,

P (Xj |πj) ∈ K(Xj |πj), ∀πj ,∑
xj ,πj

[
P̃ (x0,xE |xjπj)− P̃ (x′0,xE |xj , πj)

]
P̃ (πj)P (xj |πj) + w ≥ 0, ∀x′0 ∈ ΩX0 .

The optimization variables are now {P (xj |πj)}
πj∈ΩΠj

xj∈ΩXj
and w. Their coefficients in

the constraints in the last line can be computed by inferences in a Bayesian network
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with arbitrary specification of the local models for the free variable Xj and the given
specification of the other local models. The procedure can be iterated by varying the
free variable like in the A-LP algorithm. At any moment that a solution yielding value
zero is reached, we may stop and declare that x0 is E-admissible. Unfortunately an
approximate method (as ours) may not be able to find a feasible solution with optimal
value zero even if it exists (that happens when the method gets stuck in local optima,
for example), and in such case we would not recognize x0 as admissible. Hence,
the proposed algorithm (when it fails to find the correct solution) produces an inner
approximation (i.e., a subset) of the set of E-admissible states. This relates to the NP-
hardness of the problem.

6. Experiments

In this section we report the results of a numerical validation of the algorithm, by
giving also some details about the implementation of the A-LP algorithm.

Benchmark. To validate the accuracy of the inferences computed by A-LP, we use a
benchmark made of different credal networks with random topology, either multiply or
singly connected, and two classical (multiply connected) models, namely the classical
Alarm and Insurance networks. The maximum indegree for the networks with random
topology is limited to 5. The number of states for the Alarm and the Insurance net-
works is the same as in their original specifications, while for the other networks the
number of states is randomly chosen between 2 and 8. All the models are quantified
by randomly generated conditional credal sets with a fixed number of extreme points,
whose number is ranging from 2 to 8 for each network. Both marginal and conditional
queries are considered in these models. In the unconditional case, the queried variable
is randomly selected. Only variables corresponding to root nodes are considered in-
stead in the conditional case, for which random observations are specified on a number
of variables ranging from 1 to 3 and corresponding to leaf nodes. The exact values
of these inferences have been computed by mapping the problem to an integer linear
program (de Campos and Cozman, 2007), which is solved by CPLEX. The network
specifications together with the results of these exact inferences are freely available.3

Software. Inferences are computed by a Java implementation of A-LP, which is avail-
able as a free software tool.4 The code is implemented on top of the Eclipse platform.
The algorithm is packaged into a console application along with a number of other
plugins for parsing of specific file formats, model data structures and search strategies.
The COIN-OR library for linear programming, accessible to Java with a selection of
JNI wrappers, is used to solve the linear tasks.5 The Bayesian network inferences are
computed with the JTree algorithm of the C++ LibDAI library for inference in graphi-
cal models (Mooij, 2010).

3See CNBenchmark section at http://ipg.idsia.ch/software.
4See A-LP section at http://ipg.idsia.ch/software.
5See http://www.coin-or.org.
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Caching is used to speed up the performance. For instance, during the search, the
linear problems for each free variable are cached and only the objective function rede-
fined. Since the search does not affect the topology of the network, even the junction
tree is cached, and only the conditional probability tables of the free variable are up-
dated.

Results. Credal networks updating is an NP-hard task: the inferences computed with
A-LP are therefore compared with other approximate algorithms. We consider the
iterated local search (ILS, da Rocha et al., 2003) and the generalized loopy 2U (GL2U,
Antonucci et al., 2010).

Networks # of tests A-LP ILS GL2U
Alarm 973 .0474 .2709 .1218
Insurance 650 .0767 .2700 .1818
Random (single) 6162 .0816 .1528 .1724
Random (multi) 2963 .0855 .1269 .1594

Table 1: Simulations for unconditional queries

Networks # of tests A-LP ILS GL2U
Random (single) 97 .0347 .1462 .2359
Random (multi) 208 .0227 .1215 .2979

Table 2: Simulations for conditional queries

Before commenting on the results, note that our approach assumes the local credal
sets to be specified by linear constraints. This is often the case in real scenarios (e.g.,
credal classifiers or knowledge-based expert systems quantified by probability inter-
vals). Conversely, the credal networks used for benchmarking represent their local
credal sets by explicit enumeration of the extreme points. The reason is that the other
algorithms require the local credal sets to be described by their extreme points. To com-
pute inferences with A-LP in the benchmark networks, we first compute the constraint-
based representation of the local credal sets (e.g., see Avis, 2000).

Tables 1 and 2 contain the results for, respectively, unconditional and conditional
queries. The third column of both tables reports the mean square difference between the
inner approximation obtained with A-LP and the exact inferences. The value s = 10
for the maximum number of no-improve iterations is used. The number t of random
restarts is not fixed, and a one-minute timeout is used instead. The same timeout was
used for the other algorithms. The comparison with ILS and GL2U (fourth and fifth
columns) clearly illustrates a better performance of the approach proposed in this paper.
Note that we focus here on the updating task, as decision making has been reduced to
updating in Sect. 5. Note also that an approximation in the updating not necessarily
affects the identification of the optimal options.
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7. Conclusions and outlooks

A new algorithm based on a sequence of linear optimizations is proposed for ap-
proximate credal network updating. The algorithm can deal with a constraint-based
specification of credal networks, and provides inner approximate solutions. It is also
extended to find the maximal and the E-admissible classes in classification and decision-
making problem. The complexities of these problems and of the algorithm are pre-
sented. From a practical perspective, empirical results are promising: the algorithm
is fast and accurate. As future work, we intend to test the algorithm on larger net-
works and with other search heuristics. Also the combination of the proposed inner
approximation with outer approximations (e.g., Cano et al., 2007) can be considered as
a possible direction to obtain reliable inferences.

Appendix A. Proofs

Proof of Prop. 1. It suffices to put in evidence the terms {P̃ (xj |πj)}πj∈ΩΠi in the
definition of P̃ (x0) and note that, by definition of consistency between Bayesian and
credal networks, P̃ (Xj |πj) ∈ K(Xj |πj) for each πj ∈ ΩΠj

. �

Proof of Th. 1. Given a credal network, evidence xE , q ∈ ΩQ, and a rational
r ∈ [0, 1], the inference query decides whether there exists P ∈ K(X) such that
P (q|xE) ≥ r (de Campos and Cozman, 2005).

We show hardness by demonstrating that the complementary decision, that is, whether
the minimization of Eq. (24) is less than or equal to zero, is NPPP-hard in general, and
NP-hard for bounded treewidth networks. For that, we reduce the marginal inference
problem in a credal network to it. Marginal inference in credal networks is shown to
be NP-hard in polytrees with at most two parents per node and NPPP-hard in general
networks de Campos and Cozman (2005).

Take a credal network with inference query ∃P : P (q|xE) ≥ r, for a given rational
r, query q and evidence xE . Build a new network by adding a binary node X0, which
has Q as sole parent and precise probability mass functions defined as P (x′′0 |q) =
r
2 and P (x′′0 |¬q) = 1+r

2 . Note that the new network has the same topology (and
treewidth) of the original one. Now, the complement of the dominance test asks whether

min
P

[P (x′′0 |xE)− P (x′0|xE)] ≤ 0 ⇐⇒ min
P

[2P (x′′0 |xE)− 1] ≤ 0

⇐⇒ min
P

[rP (q|xE) + (1 + r)P (¬q|xE))− 1] ≤ 0 ⇐⇒

min
P

[r − P (q|xE)] ≤ 0 ⇐⇒ max
P

P (q|xE) ≥ r ⇐⇒ ∃P : P (q|xE) ≥ r,

which is exactly the credal network marginal query. As the treewidth of the network
has not been modified, the hardness results follow. Pertinence of this complementary
decision in NP for the case of bounded treewidth (respectively in NPPP for the general
case) is immediate, since given P ∈ K(X), we can use a Bayesian network inference
to certify that P (x′′0 |xE) ≤ P (x′0|xE) (in polynomial time for bounded treewidth nets
and by using the PP oracle for the general case). �
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Proof of Th. 2. Let x′0 ∈ ΩX0 be the state of interest of the queried variable X0. By
negating Eq. (24), we have that x′0 is maximal if and only if there are mass functions
{Px′′0 (X0|xE)}x′′0∈ΩX0

with Px′′0 (X0|xE) ∈ K(X0|xE) for each x′′0 ∈ ΩX0
, such

that, for each x′′0 ∈ ΩX0
:

Px′′0 (x′0|xE) ≥ Px′′0 (x′′0 |xE). (A.1)

Because given {Px′′0 (X0|xE)}∀x′′0 we can check in polynomial time whether all
these constraints of Expression (A.1) are satisfied (if the network has bounded treewidth,
otherwise we need PP machines), the problem is in NP (respectively in NPPP for gen-
eral topology). Hardness in those classes comes from Th. 1, applied to a case where
the queried variable is binary. In that case, if we can decide whether x′0 is maximal,
then we can decide whether

min
P (X0|xE)∈K(X0|xE)

[P (x′′0 |xE)− P (x′0|xE)] ≤ 0 , with x′′0 6= x′0,

which is an NP-hard (respectively NPPP-hard, in general topology) problem, as it is
the complement of Expression (24) of Th. 1. �

Proof of Th. 3. Pertinence is straightfoward from Expr. (27), as given P (X), one can
check the satisfiability of the constraints by using O(|ΩX0

|) queries in the correspond-
ing Bayesian networks (spending polynomial time for bounded treewidth networks, and
hence the problem is in NP, while using PP machines for general topology, and in this
case the problem is in NPPP). Hardness comes from the application of Th. 2 when the
queried variable is binary. Because the E-admissibility set and the maximal set are
identical in this case, the hardness follows. �
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