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Abstract. This work proposes an extended version of the well-known
tree-augmented naive Bayes (TAN) classifier where the structure learning
step is performed without requiring features to be connected to the class.
Based on a modification of Edmonds’ algorithm, our structure learning
procedure explores a superset of the structures that are considered by
TAN, yet achieves global optimality of the learning score function in a
very efficient way (quadratic in the number of features, the same com-
plexity as learning TANs). A range of experiments show that we obtain
models with better accuracy than TAN and comparable to the accuracy
of the state-of-the-art classifier averaged one-dependence estimator.

1 Introduction

Classification is the problem of predicting the class of a given object on the ba-
sis of some attributes (features) of it. A classical example is the iris problem by
Fisher: the goal is to correctly predict the class, that is, the species of iris on the
basis of four features (sepal and petal length and width). In the Bayesian frame-
work, classification is accomplished by updating a prior density (representing
the beliefs before analyzing the data) with the likelihood (modeling the evidence
coming from the data), in order to compute a posterior density, which is then
used to select the most probable class.

The naive Bayes classifier [1] is based on the assumption of stochastic inde-
pendence of the features given the class; since the real data generation mech-
anism usually does not satisfy such a condition, this introduces a bias in the
estimated probabilities. Yet, at least under the zero-one accuracy, the naive
Bayes classifier performs surprisingly well [1, 2]. Reasons for this phenomenon
have been provided, among others, by Friedman [3], who proposed an approach
to decompose the misclassification error into bias error and variance error; the
bias error represents how closely the classifier approximates the target function,
while the variance error reflects the sensitivity of the parameters of the classifier
to the training sample. Low bias and low variance are two conflicting objectives;
for instance, the naive Bayes classifier has high bias (because of the unrealistic
independence assumption) but low variance, since it requires to estimate only
a few parameters. A way to reduce the naive Bayes bias is to relax the inde-
pendence assumption using a more complex graph, like a tree-augmented naive
Bayes (TAN) [4]. In particular, TAN can be seen as a Bayesian network where



each feature has the class as parent, and possibly also a feature as second par-
ent. In fact, TAN is a compromise between general Bayesian networks, whose
structure is learned without constraints, and the naive Bayes, whose structure is
determined in advance to be naive (that is, each feature has the class as the only
parent). TAN has been shown to outperform both general Bayesian networks
and naive Bayes in a range of experiments [5, 4, 6].

In this paper we develop an extension of TAN that allows it to have (i)
features without the class as parent, (ii) multiple features with only the class as
parent (that is, building a forest), (iii) features completely disconnected (that is,
automatic feature selection). The most common usage of this model is traditional
classification. However it can also be used as a component of a graphical model
suitable for multi-label classification [7].

Extended TAN (or simply ETAN) can be learned in quadratic time in the
number of features, which is essentially the same computational complexity as
that of TAN. The goodness of each (E)TAN structure is assessed through the
Bayesian Dirichlet likelihood equivalent uniform (BDeu) score [8, 9, 10]. Because
ETAN’s search space of structures includes that of TAN, the BDeu score of the
best ETAN is equal or superior to that of the best TAN. ETAN than provides a
better fit: a higher score means that the model better fits the joint probability
distribution of the variables. However, it is well known that this fit does not
necessarily imply higher classification accuracy [11]. To inspect that, we perform
extensive experiments with these classifiers. We empirically show that ETAN
yields in general better zero-one accuracy and log loss than TAN and naive
Bayes (where log loss is computed from the posterior distribution of the class
given features). Log loss is relevant in cases of cost-sensitive classification [12, 13].
We also study the possibility of optimizing the equivalent sample size of TAN,
which makes its accuracy become closer to that of ETAN (although still slightly
inferior).

This paper is divided as follows. Section 2 introduces notation and defines the
problem of learning Bayesian networks and the classification problem. Section
3 presents our new classifier and an efficient algorithm to learn it from data.
Section 4 describes our experimental setting and discusses on empirical results.
Finally, Section 5 concludes the paper and suggests possible future work.

2 Classification and Learning TANs

The classifiers that we discuss in this paper are all subcases of a Bayesian net-
work. A Bayesian network represents a joint probability distribution over a col-
lection of categorical random variables. It can be defined as a triple (G,X ,P),
where G = (VG , EG) is a directed acyclic graph (DAG) with VG a collection of
nodes associated to random variables X (a node per variable), and EG a collec-
tion of arcs; P is a collection of conditional mass functions p(Xi|Πi) (one for
each instantiation of Πi), where Πi denotes the parents of Xi in the graph
(Πi may be empty), respecting the relations of EG . In a Bayesian network
every variable is conditionally independent of its non-descendant non-parents



given its parents (Markov condition). Because of the Markov condition, the
Bayesian network represents a joint probability distribution by the expression
p(x) = p(x0, . . . , xn) =

∏
i p(xi|πi), for every x ∈ ΩX (space of joint configura-

tions of variables), where every xi and πi are consistent with x.
In the particular case of classification, the class variable X0 has a special

importance, as we are interested in its posterior probability which is used to
predict unseen values; there are then several feature variables Y = X \ {X0}.
The supervised classification problem using probabilistic models is based on the
computation of the posterior density, which can then be used to take decisions.
The goal is to compute p(X0|y), that is, the posterior probability of the classes
given the values y of the features in a test instance. In this computation, p is
defined by the model that has been learned from labeled data, that is, past data
where class and features are all observed have been used to infer p. In order to
do that, we are given a complete data set D = {D1, . . . , DN} with N instances,
where Du = xu ∈ ΩX is an instantiation of all the variables, the first learning
task is to find a DAG G that maximizes a given score function, that is, we look
for G∗ = argmaxG∈G sD(G), with G the set of all DAGs with nodes X , for a given
score function sD (the dependency on data is indicated by the subscript D).3

In this work we only need to assume that the employed score is decomposable
and respects likelihood equivalence. Decomposable means it can be written in
terms of the local nodes of the graph, that is, sD(G) =

∑n
i=0 sD(Xi, Πi). Like-

lihood equivalence means that if G1 6= G2 are two arbitrary graphs over X such
that both encode the very same conditional independences among variables, then
sD is likelihood equivalent if and only if sD(G1) = sD(G2).

The naive Bayes structure is defined as the network where the class variable
X0 has no parents and every feature (the other variables) has X0 as sole parent.
Figure 1(b) illustrates the situation. In this case, there is nothing to be learned,
as the structure is fully defined by the restrictions of naive Bayes. Nevertheless,
we can define G∗naive as being its (fixed) optimal graph.

The class X0 has also no parents in a TAN structure, and every feature must
have the class as parent (as in the naive Bayes). However, they are allowed to
have at most one other feature as parent too. Figure 1(c) illustrates a TAN
structure, where X1 has only X0 as parent, while both X2 and X3 have X0 and
X1 as parents. By ignoring X0 and its connections, we have a tree structure,
and that is the reason for the name TAN. Based on the BDeu score function, an
efficient algorithm for TAN can be devised. Because of the likelihood equivalence
of BDeu and the fact that every feature has X0 as parent, the same score is
obtained whether a feature Xi has X0 and Xj as parent (with i 6= j), or Xj has
X0 and Xi, that is,

sD(Xi, {X0, Xj}) + sD(Xj , {X0}) = sD(Xj , {X0, Xi}) + sD(Xi, {X0}) . (1)

This symmetry allows for a very simple and efficient algorithm [14] that is proven
to find the TAN structure which maximizes any score that respects likelihood

3 In case of many optimal DAGs, then we assume to have no preference and argmax
returns one of them.



equivalence, that is, to find

G∗TAN = argmax
G∈GTAN

sD(G) , (2)

where GTAN is the set of all TAN structures with nodes X . The idea is to find
the minimum spanning tree in an undirected graph defined over Y such that the
weight of each edge (Xi, Xj) is defined by w(Xi, Xj) = −(sD(Xi, {X0, Xj}) −
sD(Xi, {X0})). Note that w(Xi, Xj) = w(Xj , Xi). Without loss of generality, let
X1 be the only node without a feature as parent (one could rename the nodes
and apply the same reasoning). Now,

max
G∈GTAN

sD(G) = max
Π′

i:∀i>1

(
n∑
i=2

sD(Xi, {X0, XΠ′
i
}) + sD(X1, {X0})

)

= sD(X1, {X0})− min
Π′

i:∀i>1

(
−

n∑
i=2

sD(Xi, {X0, XΠ′
i
})

)

=

n∑
i=1

sD(Xi, {X0})− min
Π′

i:∀i>1

n∑
i=2

w(Xi, XΠ′
i
) . (3)

This last minimization is exactly the minimum spanning tree problem, and the
argument that minimizes it is the same as the argument that maximizes (2).
Because this algorithm has to initialize the Θ(n2) edges between every pair
of features and then to solve the minimum spanning tree (e.g. using Prim’s
algorithm), its overall complexity time is O(n2), if one assumes that the score
function is given as an oracle whose queries take time O(1). In fact, because we
only consider at most one or two parents for each node (two only if we include the
class), the computation of the whole score function can be done in time O(Nn2)
and stored for later use. As a comparison, naive Bayes can be implemented in
time O(Nn), while the averaged one-dependence estimator (AODE) [15] needs
Θ(Nn2), just as TAN does.

2.1 Improving Learning of TANs

A simple extension of this algorithm can already learn a forest of tree-augmented
naive Bayes structures. One can simply define the edges of the graph over Y
as in the algorithm for TAN, and then remove those edges (Xi, Xj) such that
sD(Xi, {X0, Xj}) ≤ sD(Xi, {X0}), that is, when w(Xi, Xj) ≥ 0, and then run
the minimum spanning tree algorithm over this reduced graph. The optimality
of such an idea can be easily proven by the following lemma, which guarantees
that we should use only X0 as parent of Xi every time such choice is better than
using {X0, Xj}. It is a straightforward generalization of Lemma 1 in [16].

Lemma 1. Let Xi be a node of G, a candidate DAG where the parent set of Xi

is Π ′i. Suppose Πi ⊂ Π ′i is such that sD(Xi, Πi) ≥ sD(Xi, Π
′
i), where sD is a

decomposable score function. If Π ′i is the parent set of Xi in an optimal DAG,
then the same DAG but having Πi as parent of Xi is also optimal.



Using a forest as structure of the classifier is not new, but to the best of our
knowledge previous attempts to learn a forest (in this context) did not globally
optimize the structure, they instead selected a priori the number of arcs to
include in the forest [17].

We want to go even further and allow situations as in Figs. 1(a) and 1(d). The
former would automatically disconnect a feature if such feature is not important
to predict X0, that is, if sD(Xi, ∅) ≥ sD(Xi, Πi) for every Πi. The latter case
allows some features to have another feature as parent without the need of having
also the class. For this purpose, we define the set of structures named Extended
TAN (or ETAN for short), as DAGs such that X0 has no parents and Xi (i 6= 0)
is allowed to have the class and at most one feature as parent (but it is not
obliged to having any of them), that is, the parent set Πi is such that |Πi| ≤ 1,
or |Πi| = 2 and Πi ⊇ {X0}.

G∗ETAN = argmax
G∈GETAN

sD(G) . (4)

This is clearly a generalization of TAN, of the forest of TANs, and of naive
Bayes in the sense that they are all subcases of ETAN. Note that TAN is not a
generalization of naive Bayes in this sense, as TAN forces arcs among features
even if these arcs were not useful. Because of that, we have the following result.
The next section discusses how to efficiently learn ETANs.

Lemma 2. The following relations among subsets of DAGs hold.

sD(G∗ETAN) ≥ sD(G∗TAN) and sD(G∗ETAN) ≥ sD(G∗naive) .

3 Learning Extended TANs

The goal of this section is to present an efficient algorithm to find the DAG
defined in (4). Unfortunately the undirected version of the minimum spanning
tree problem is not enough, because (1) does not hold anymore. To see that, take
the example in Fig. 1(d). The arc from X1 to X2 cannot be reversed without
changing the overall score (unless we connect X0 to X2). In other words, every
node in a TAN has the class as parent, which makes possible to use the minimum
spanning tree algorithm for undirected graphs by realizing that any orientation
of the arcs between features will produce the same overall score (as long as the
weights of the edges are defined as in the previous section).

Edmonds’ algorithm [18] (also attributed to Chu and Liu [19]) for finding
minimum spanning arborescence in directed graphs comes to our rescue. Its
application is however not immediate, and its implementation is not as simple as
the minimum spanning tree algorithm for TAN. Our algorithm to learn ETANs is
presented in Algorithm 1. It is composed of a preprocessing of the data to create
the arcs of the graph that will be given to Edmonds’ algorithm for directed
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(d) Possible only with ETAN.

Fig. 1. Some examples of structures allowed by the different classifiers. The labels
indicate which classifier allows them as part of their whole structure.

minimum spanning tree (in fact, we assume that Edmonds’ algorithm computes
the directed maximum spanning tree, which can be done trivially by negating all
weights). EdmondsContract and EdmondsExpand are the two main steps of that
algorithm, and we refer the reader to the description in Zwick’s lecture notes
[20] or to the work of Tarjan [21] and Camerini et al. [22] or Gabow et al. [23]
for further details on the implementation of Edmonds’ idea. In fact, we have not
been able to find a stable and reliable implementation of such algorithm, so our
own implementation of Edmonds’ algorithm has been developed based on the
description in [20], even though some fixes had to be applied. Because Edmonds’
algorithm finds the best spanning tree for a given “root” node (that is, a node
that is constrained not to have features as parents), Algorithm 1 loops over the
possible roots and extract from Edmonds’ the best parent for each node given
that fixed root node (line 6), and then stores the best solution over all such
possible root nodes. At each loop, Algorithm 3 is called and builds a graph using
the information from the result of Edmonds’. Algorithm 1 also loops over a set of



score functions that are given to it. This is used later on to optimize the value of
the equivalent sample size in each of the learning steps by giving a list of scores
with different prior strengths to the algorithm.

Algorithm 1 ETAN(X , S): X are variables and S is a set of score functions

1: s∗ ← −∞
2: for all sD ∈ S do
3: (arcs, classAsParent)← ArcsCreation(X , sD)
4: EdmondsContract(arcs)
5: for all root ∈ X \ {X0} do
6: in← EdmondsExpand(root)
7: G ← buildGraph(X , root, in, classAsParent)
8: if sD(G) > s∗ then
9: G∗ ← G

10: s∗ ← sD(G)

11: return G∗

The particular differences with respect to a standard call of Edmonds’ algo-
rithm are defined by the methods ArcsCreation and buildGraph. The method
ArcsCreation is the algorithm that creates the directed graph that is given as
input to Edmonds’. The overall idea is that we must decide whether the class
should be a parent of a node or not, and whether it is worth having a feature
as a parent. The core argument is again given by Lemma 1. If sD(Xi, {X0}) ≤
sD(Xi, ∅), then we know that no parent is preferable to having the class as a par-
ent for Xi. We store this information in a matrix called classAsParent (line 2
of Algorithm 2). Because this information is kept for later reference, we can use
from that point onwards the value max(sD(Xi, ∅), sD(Xi, {X0})) as the weight
of having Xi with only the class as parent (having or not the class as parent can-
not create a cycle in the graph, so we can safely use this max value). After that,
we loop over every possible arc Xj → Xi between features, and define its weight
as the maximum between having X0 also as parent of Xi or not, minus the value
that we would achieve for Xi if we did not include Xj as its parent (line 8). This
is essentially the same idea as done in the algorithm of TAN, but here we must
consider both Xj → Xi and Xi → Xj , as they are not necessarily equivalent
(this happens for instance if for one of the two features the class is included in its
parent set and for the other it is not, depending on the maximization, so scores
defining the weight of each arc direction might be different). After that, we also
keep track of whether the class was included in the definition of the weight of
the arc or not, storing the information in classAsParent for later recall. In case
the weight is not positive (line 9), we do not even include this arc in the graph
that will be given to Edmonds’ (recall we are using the maximization version of
Edmonds’), because at this early stage we already know that either no parents
for Xi or only the class as parent of Xi (which one of the two is the best can
be recalled in classAsParent) are better than the score obtained by including



Xj as parent, and using once more the arguments of Lemma 1 and the fact that
the class as parent never creates a cycle, we can safely disregard Xj as parent
of Xi. All these cases can be seen in Fig. 1 by considering that the variable X2

shown in the figure is our Xi. There are four options for Xi: no parents (a), only
X0 as parent (b), only Xj as parent (d), and both Xj and X0 (c). The trick is
that Lemma 1 allows us to reduce these four options to two: best between (a)
and (b), and best between (c) and (d). After the arcs with positive weight are
inserted in a list of arcs that will be given to Edmonds’ and classAsParent is
built, the algorithm ends returning both of them.

Algorithm 2 ArcsCreation(X , sD)

1: for all Xi ∈ X \ {X0} do
2: classAsParent[Xi]← sD(Xi, {X0}) > sD(Xi, ∅)
3: arcs← ∅
4: for all Xi ∈ Y do
5: for all Xj ∈ Y do
6: twoParents← sD(Xi, {X0, Xj})
7: onlyFeature← sD(Xi, {Xj})
8: w ← max(twoParents, onlyFeature)−max(sD(Xi, ∅), sD(Xi, {X0}))
9: if w > 0 then

10: Add Xj → Xi with weight w into arcs
11: classAsParent[Xj → Xi]← twoParents > onlyFeature
12: else
13: classAsParent[Xj → Xi]← classAsParent[Xi]

14: return (arcs, classAsParent)

Finally, Algorithm 3 is responsible for building back the best graph from
the result obtained by Edmonds’. Inside in is stored the best parent for each
node, and root indicates a node that shall have no other feature as parent. The
goal is to recover whether the class shall be included as parent of each node,
and for that we use the information in classAsParent. The algorithm is quite
straightforward: for each node that is not the root and has a parent chosen by
Edmonds’, include it as parent each check if that arc was associated to having
or not the class (if it had, include also the class); for each node that has no
parent as given by Edmonds’ (including the root node), simply check whether it
is better to have the class as parent.

Somewhat surprisingly, learning ETANs can be accomplish in time O(n2)
(assuming that the score function is given as an oracle, as discussed before), the
same complexity for learning TANs. Algorithm 2 takes O(n2), because it loops
over every pair of nodes and only performs constant time operations inside the
loop. EdmondsContract can be implemented in time O(n2) and EdmondsExpand

in time O(n) [21, 22]. Finally, buildGraph takes time O(n) because of its loop
over nodes, and the comparison between scores of two ETANs as well as the copy
of the structure of an ETANs takes time O(n). So the overall time of the loop



Algorithm 3 buildGraph(X , root, in, classAsParent)

1: G ← (X , ∅)
2: for all node ∈ X \ {X0} do
3: Πnode ← ∅
4: if node 6= root and in[node] 6= null then
5: Πnode ← Πnode ∪ {in[node]}
6: if classAsParent[in[node]→ node] then
7: Πnode ← Πnode ∪ {X0}
8: else if classAsParent[node] then
9: Πnode ← Πnode ∪ {X0}

10: return G

in Algorithm 1 takes time O(n2). Our current implementation can be found at
http://ipg.idsia.ch/software.

4 Experiments

This section presents results with naive Bayes, TAN and ETAN using 49 data
sets from the UCI machine learning repository [24]. Data sets with many dif-
ferent characteristics have been used. Data sets containing continuous variables
have been discretized in two bins, using the median as cut-off. Our empirical
results are obtained out of 20 runs of 5-fold cross-validation (each run splits the
data into folds randomly and in a stratified way), so the learning procedure of
each classifier is called 100 times per data set. For learning the classifiers we use
the Bayesian Dirichlet equivalent uniform (BDeu) and assume parameter inde-
pendence and modularity [10]. The BDeu score computes a function based on
the posterior probability of the structure p(G|D). For that purpose, the following
function is used:

sD(G) = log

(
p(G) ·

∫
p(D|G,θ) · p(θ|G)dθ

)
,

where the logarithm is used to simplify computations, p(θ|G) is the prior of θ
(vector of parameters of the Bayesian network) for a given graph G, assumed to
be a symmetric Dirichlet. BDeu respects likelihood equivalence and its function is
decomposable. The only free parameter is the prior strength α (assuming p(G) is
uniform), also known as the equivalent sample size (ESS). We make comparisons
using different values of α. We implemented ETAN such that α ∈ {1, 2, 10, 20, 50}
is chosen according to the value that achieves the highest BDeu for each learning
call, that is, we give to ETAN five BDeu score functions with different values of
α. Whenever omitted, the default value for α is two.

As previously demonstrated, ETAN always obtains better BDeu score than
its competitors. TAN is usually better than naive Bayes, but there is no theoret-
ical guarantee it will always be the case. Table 1 shows the comparisons of BDeu



Table 1. Median value of the BDeu difference between ETAN and competitor (positive
means ETAN is better), followed by number of wins, ties and losses of ETAN over
competitors, and p-values using the Wilcoxon signed rank test on 49 data sets (one-
sided in the direction of the median difference). Names of competitors indicate their
equivalent sample size (ESS), and All means that ESS has been optimized at each
learning call.

Competitor BDeu
vs. ETAN Median W/T/L p-value

Naive(1) 454 49/0/0 2e-15
Naive(2) 340 48/0/1 3e-15
Naive(10) 276 48/0/1 4e-15
TAN(1) 182 49/0/0 1e-15
TAN(2) 129 46/0/3 8e-13
TAN(10) 23.6 40/1/8 3e-9
TAN(All) 128 46/0/3 2e-8

scores achieved by different classifiers. It presents the median value of the dif-
ference between averaged BDeu of the classifiers on the 49 datasets, followed by
the number of wins, ties and losses of ETAN against the competitors, and finally
the p-value from the Wilcoxon signed rank test (one-sided in the direction of the
median value). We note that naive Bayes and TAN might win against ETAN
(as it does happen in Tab. 1) because the values of α used by the classifiers in
different learning problems are not necessarily the same (the learning method is
called 100 for each dataset over different data folds). Nevertheless, the statisti-
cal test indicates that the score achieved by ETAN is significantly superior than
scores of the other methods.
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Fig. 2. Computational time to learn the classifier as a ratio ETAN time divided by
TAN time, so higher values mean ETAN is slower.



Figure 2 shows the computational time cost to run the learning in the 100
executions per data set for ETAN and TAN (both optimizing α as described
before), that is, each of the 20 times 5-fold cross-validation executions. We can
see in the graph that learning ETAN has been less than five times slower than
learning TAN in all situations (usually less than three times) and has performed
better than TAN in a reasonable amount of instances. We recall that both clas-
sifiers can be run in quadratic time in the number of features and linear in the
sample size, which is asymptotically as efficient as other state-of-the-art classi-
fiers, such as the averaged one-dependence estimator (AODE) [15].

We measure the accuracy of classifiers using zero-one accuracy and log loss.
Zero-one accuracy is the number of correctly classified instances divided by the
total number of instances, while log loss equals minus the sum (over the testing
instances) of the log-probability of the class given the instance’s features.

Table 2. Median value of the difference between ETAN and competitor (positive
means ETAN is better), followed by number of wins, ties and losses of ETAN over
competitors, and p-values using the Wilcoxon signed rank test on 49 data sets (one
sided in the direction of the median difference). Names of competitors indicate their
equivalent sample size.

Competitor Zero-one accuracy Log loss
vs. ETAN Median W/T/L p-value Median W/T/L p-value

Naive(1) 0.74% 35/3/21 1e-5 0.17 45/0/4 3e-12
Naive(2) 0.64% 36/1/12 4e-5 0.13 46/0/3 5e-12
Naive(10) 1.35% 38/1/10 8e-6 0.12 38/0/11 8e-8
TAN(1) 0.13% 29/1/19 0.022 0.05 43/0/6 2e-8
TAN(2) 0.01% 27/2/20 0.087 0.03 38/1/10 3e-6
TAN(10) 0.01% 28/3/18 0.261 0.01 29/1/19 0.047
TAN(All) 0.06% 29/1/19 0.096 0.0004 26/0/23 0.418
AODE -0.07% 21/1/27 0.192 -0.005 24/0/25 0.437

Table 2 presents the results of ETAN versus other classifiers. Number of
wins, ties and losses of ETAN, as well as p-values from the Wilcoxon signed
rank test are displayed, computed over the point results obtained for each of
the 49 datasets using cross-validation. We note that ETAN is superior to the
other classifiers, except for AODE, in which case the medians are slightly against
ETAN and the difference is not significant (pvalues of 0.192 for zero-one accuracy
and 0.437 for log loss, in both cases testing whether AODE is superior to ETAN).
Median zero-one accuracy of ETAN is superior to TAN(All), although the signed
rank test does not show that results are significant at 5% confidence level. The
same is true for log loss. In fact, we must emphasize that TAN with optimized
choice of α could also be considered as a novel classifier (even if it is only a minor
variation of TAN, we are not aware of implementations of TAN that optimize
the equivalent sample size).



Figures 3 and 4 show the performance of ETAN versus AODE in terms of
zero-one accuracy and log loss, respectively. Each boxplot regards one data set
and considers 100 points defined by the runs of cross-validation. In Fig. 3, the
values are the zero-one accuracy of ETAN divided by the zero-one accuracy of its
competitor in each of the 100 executions. In Fig. 4, it is presented the difference
in log loss between AODE and ETAN. In both figures we can see cases where
ETAN performed better, as well as cases where AODE did.
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Ratio of correct classification: ETAN/AODE

Fig. 3. Comparison of zero-one loss with AODE. Values are ratios of the accuracy of
ETAN divided by the competitor, so higher values mean ETAN is better.

5 Conclusions

We presented an extended version of the well-known tree-augmented naive Bayes
(TAN) classifier, namely the extended TAN (or ETAN). ETAN does not demand
features to be connected to the class, so it has properties of feature selection
(when a feature ends up disconnected) and allows features that are important to
other features but are not directly depending on the class. We also extend TAN
and ETAN to optimize their equivalent sample size at each learning of the struc-
ture. We describe a globally optimal algorithm to learn ETANs that is quadratic
in the number of variables, that is, it is asymptotically as efficient as the algo-
rithm for TANs, as well as other state-of-the-art classifiers, such as the averaged
one-dependence estimator. The class of ETANs can be seen as the (currently)
most sophisticated Bayesian networks for which there is a polynomial-time al-
gorithm for learning its structure, as it has been proven that learning with two
parents per node (besides the class) is an NP-hard task [25].

Experiments demonstrate that the time complexity of our implementation
of ETAN is asymptotically equal to that of TAN, and show that ETAN pro-
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Log loss difference AODE-ETAN

Fig. 4. Comparison of log loss with AODE. Values are differences in the log loss of the
competitor minus ETAN, so higher values mean ETAN is better.

vides equal or better fit than TAN and naive Bayes. In our experiments, ETAN
achieves better performance in terms of zero-one accuracy and log loss than TAN
and naive Bayes under fixed values of the equivalent sample size. If one optimizes
the equivalent sample size of TAN, then ETAN has performed in general slightly
better than TAN (even though not significant in a statistical test). Future work
will investigate further the relation between BDeu and classification accuracy,
as well as scenarios where ETAN might be preferable, and will study additional
structures beyond ETAN that could be useful in building classifiers.
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