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Abstract

Influence diagrams are intuitive and concise representations of structured decision problems. When the
problem is non-Markovian, an optimal strategy can be exponentially large in the size of the diagram. We
can avoid the inherent intractability by constraining the size of admissible strategies, giving rise to limited
memory influence diagrams. A valuable question is then how small do strategies need to be to enable
efficient optimal planning. Arguably, the smallest strategies one can conceive simply prescribe an action for
each time step, without considering past decisions or observations. Previous work has shown that finding
such optimal strategies even for polytree-shaped diagrams with ternary variables and a single value node
is NP-hard, but the case of binary variables was left open. In this paper we address such a case, by first
noting that optimal strategies can be obtained in polynomial time for polytree-shaped diagrams with binary
variables and a single value node. We then show that the same problem is NP-hard if the diagram has
multiple value nodes. These two results close the fixed-parameter complexity analysis of optimal strategy
selection in influence diagrams parametrized by the shape of the diagram, the number of value nodes and
the maximum variable cardinality.

Keywords: decision theory, influence diagrams, decision networks, probabilistic planning, computational
complexity.

1. Introduction

Planning with influence diagrams in partially observable domains suffers from the so-called curse of
history: the size of an optimal strategy grows exponentially large with the number of look-ahead steps con-
sidered. Lauritzen and Nilsson proposed using limited-memory strategies to avoid the complexity blow up,
coining the term limited memory influence diagrams (limids) [1]. Limids relax the no-forgetting requirement
of traditional influence diagrams, and require (implicitly) that the maximum size of an optimal strategy be
given as part of the input. In fact, the use of finite-state controllers, which in the influence diagram formal-
ism corresponds to limited memory, has long been seen as a viable alternative in probabilistic planning for
long- or infinite-horizon problems, especially when teams are considered [2, 3, 4, 5, 6].

In many cases, however, limiting the agent’s memory resources does not make the problem tractable,
and computing optimal strategies even for structurally very simple limids can be hard. We have shown in a
previous work that finding an optimal strategy for polytree-shaped limids is NP-hard even if variables are
ternary and there is only a single value node [7]. Also finding a strategy whose expected utility is within a
factor of 2P of the maximum expected utility, where p denotes the number of numerical parameters in the
model, is NP-hard, even in polytree-shaped diagrams (with variables taking on arbitrarily many values). On
the other hand, we have shown that when the variable cardinalities and the treewidth of the diagram are
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Table 1: Parametrized complexity of the decision version of the optimal strategy selection problem in limids of bounded
treewidth.

topology num of value max variable complexity

nodes cardinality
polytree  one two P
polytree  unbounded two NP-complete
polytree  one three NP-complete
polytree  one unbounded NP-complete
loopy one two NP-complete
loopy unbounded bounded NP-complete

bounded, a fully polynomial-time approximation scheme exists [8], and that optimal strategies can often be
obtained in feasible time [9]. For the remaining cases, efficiency can be achieved at the expense of provably
good accuracy by local search methods [1, 4] and message-passing algorithms [10, 11], while branch-and-
bound procedures can be used for guaranteed accuracy [12, 13]. Table 1 summarizes the fixed-parameter
computational complexity of the decision version of finding optimal strategies in limids of bounded treewidth
with respect to topology, number of value nodes and maximum variable cardinality.! The first two rows
contain novel results presented here. The results in the remaining rows appeared in references [7] and [8].

De Campos and Ji showed that the problem of selecting an optimal strategy in limids with a single value
node can be reduced to that of computing a (tight) marginal probability bound in a credal network, and
subsequently addressed by credal network inference algorithms [12]. The reduction preserves the topology of
the graph and the cardinality of the variables; in particular, the reduction maps polytree-shaped diagrams
with binary variables into credal polytrees with binary variables [14].

Credal networks are generalizations of Bayesian networks designed to cope with set-valued specifications
of the numerical parameters of the model [15]. Computing tight bounds on the marginal probability of
some variable in a credal network is NP-hard even when the network is polytree-shaped and variables are
ternary [16]. However, Fagiuoli and Zaffalon’s 2U algorithm [17] is able to obtain tight marginal bounds in
polynomial time in polytree-shaped credal networks with binary variables. Therefore, we can find optimal
strategies in polytree-shaped limids with binary chance variables and a single value node by running 2U in
the corresponding credal network obtained by de Campos and Ji’s reduction. This immediate and important
result, which we discuss in Section 3, has apparently not been noticed before in the literature.

When the diagram has multiple value nodes, the transformation of de Campos and Ji reduces the selection
of an optimal strategy to the computation of a tight bound for a sum of marginals of variables in a credal
network, which cannot be solved in polynomial time by standard inference algorithms for credal networks
and more specifically by 2U. A possible workaround is to apply a preprocessing step that transforms any
diagram into an equivalent diagram that contains a single value node. However, known techniques to map a
limid with multiple value nodes into an equivalent limid containing a single value node do not preserve the
topology [8]. In particular, they map polytrees into multiply connected graphs. Thus, while the mapping
from limids into credal networks enlarges the available toolset of algorithms for solving limids with that of
credal network inference, it does not help us in answering the question of whether polytree-shaped diagrams
with binary variables and multiple value nodes are in fact NP-hard to solve.

In Section 4, we answer that question affirmatively by a reduction from the partition problem. This
result closes the fixed-parameter complexity analysis of the optimal strategy selection problem in limids in
what regards the topology of the diagram, the number of values nodes, and the cardinality of the variables:
polytree-shaped limids with binary variables and a single value node can be solved in polynomial time, and
relaxing any of these assumptions leads to NP-hard problems.

1The decision version of the optimal strategy selection problem is to decide, for a given a limid, whether there is a strategy
whose expected utility exceeds a given rational number.



2. Limited Memory Influence Diagrams

To help introduce the concepts and motivate the use of limited memory influence diagrams, consider the
following illustrative example of a decision problem under uncertainty.

Consider a system whose failure depends on statistically independent events e, ..., e, which occur with
known probabilities p1, ..., pn, respectively. Let E; (¢ = 1,...,n) be a binary variable denoting whether
e; occurs (E; =1 if e; occurs), and assume that the system failure is determined by a logical function
F(E;, ..., Ey) of the causing events (F =1 if the system fails). Suppose that at a given time, the system
administrator can intervene to prevent any event e; from occurring at a cost v;. Let D; denote the
decision of intervening on event e;. The conditional probability of the event e; given an intervention
policy for the ith event is given by P(E; =1|D;=1) = 0 and P(E; =1|D; =0) = p;. The cost of a system
failure is represented by a variable C. Thus, the expected cost of a combination of intervention policies
01, -.,0n is given by
n n

> E[C|IFIP(F|E, ..., En) [[ P(Ei|Di=6) + > vidi.
i=1

F.Eq,....Epn i=1

The goal is to select the combination of policies that minimizes the expression above. Figure 1 shows
the influence diagram representation of the intervention problem where system failure is determined by
F = (E1 A E2) A (Eg Vv E4).

Figure 1: Influence diagram representation of the intervention policy problem described in the text.

As in the example above, the quantities in a decision problem can be partitioned into state (or chance)
variables S = {S1,...,S,}, action (or decision) variables A = {A1,..., A}, and value variables V =
{V1,...,Va}. The state variables represent the unknown quantities over which the agent has no control.
The action variables enumerate the alternative courses of action. The value variables assess the quality of
decisions for a given state of the world. We assume that variables take on finitely many values.

Influence diagrams are graph-based representations of structured decision problems [18]. An influence
diagram represents both the agent’s architecture (i.e., what information is available to the agent at each
decision stage of the problem) and the environment by means of a directed acyclic graph where each node
is associated with exactly one variable of the problem. The nodes in the graph are also partitioned into sets
of state, action and value nodes, according to the type of variable with which they are associated, and we
refer to nodes and their associated variables interchangeably. An arc from a node X into an action node A
in the graph indicates that a different action A=a can be taken for each possible value of X.

A strategy 6 =(d1,...,0m) is a vector of local decision rules, or policies, one for each action variable in
the problem. Each policy ¢; is a mapping from the configurations of the values of the parents Pa(A;) of A;
to values of A;. A policy for an action variable with no parents is simply an assignment of a value to that
variable. We assume that policies are encoded as tables. Hence, the size of a policy is exponential in the



number of parents of the corresponding action variable, which in real scenarios force us to constraint the
maximum number of parents of an action node lest the implementation of a policy be not practicable.

The no-forgetting condition (a.k.a. perfect recall) assumes that all decisions and observations are “re-
membered”. Graphically, it entails that if A and A’ are two action nodes such that A is a parent of A’,
then all parents of A are also parents of A’.2 An influence diagram is said to have limited memory if the
no-forgetting condition is not met. The least memory intensive strategy is the one in which actions are
taken unconditionally. It is graphically represented by a limid whose action nodes have no parents.

An arc from a node X into a state node S indicates that S is (potentially) stochastically dependent on
X. State variables satisfy the Markov condition, which states that any (state) variable is independent of
its non-descendant non-parents conditional on its parents. An arc entering a value node V from a node
X indicates that the variable V' is a (deterministic) function of X. The value variables are assumed to be
associated to leaf nodes in the graph, and the overall utility U is assumed to decompose additively in terms
of the value variables [19], that is, U(S, A)=V1(Pa(V1)) + - - - + Vo(Pa(Ve)).

An influence diagram specification consists of its graph, the tabular specification of each value variable as
a function Vi (Pa(Vy)) of the values of its parents, and the tabular specification of the conditional probability
distributions P(S;|Pa(S;)) of each state variable S;. We assume that any numerical parameter is given as a
rational number.

Given an action variable A; and a policy 6;, we let P(A;|Pa(A;),d;) be the collection of degenerate
conditional probability distributions that assign all mass to a; = d;(Pa(4;)) (or the degenerate marginal
distribution P(A,|0;) that places all mass on §; in case A; has no parents). With this correspondence
between policies and (conditional) probability distributions, we can define a joint probability distribution
over the state and action variables for any given strategy ¢ as

n m

P(S, Al5) = [T P(sipa(s)) [T P(A;IPa(4;),6). (1)

i=1 j=1

The expected utility of a strategy § is then

J4 14
E[US] =) EVils] =) <Z Vk(Pa(Vk))> P(S,Ald) . (2)

k=1 S, A \k=1

The optimal strategy selection problem consists in finding a strategy 6* such that E[U|§*] > E[U|d] for
all ¢, and to compute E[U|d*].

2.1. Polytrees, Treewidth and Minimality

The complexity of finding optimal strategies is greatly affected by the shape of the diagram. We say that
a limid is polytree-shaped if the undirected graph obtained by dropping arc directions is a tree. For example,
the limid in Figure 1 is polytree-shaped. A limid that is not polytree-shaped is said to be loopy. An important
graph-theoretic measure of the complexity of a limid is its treewidth, which measures its resemblance to a(n
undirected) tree. Polytree-shaped limids have treewidth given by the maximum in-degree of a node in the
graph.

Not all the information in a limid is necessarily relevant to the computation of optimal strategies, and
the complexity of the problem can be drastically reduced by removing nodes and arcs that do not affect the
expected utility of any strategy. A state or action node is called barren if it either has no children or all of its
children are barren. Barren nodes have no influence on any value node and thus no impact on the selection
of an optimal strategy [20]. Further irrelevances can be found by applying the concept of nonrequisiteness.
A parent X of an action node A is nonrequisite to A if X is d-separated from all the value nodes that descend
from A given Pa(A4) U{A} \ {X}. The arc from X to A is then said to be a nonrequisite arc. Nonrequisite
arcs indicate that variable X is irrelevant to selecting an optimal policy for A, and its removal leaves the

2We assume here that when no-forgetting is satisfied the “remembered” arcs are explicitly represented in the diagram.
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expected utility of the optimal strategy unchanged. A variable that is nonrequisite to all its children can
be safely removed from the diagram without affecting the expected utility of an optimal strategy.® Thus,
the exponential growth of policies can be avoided if all memory arcs (that is, arcs from parents of a parent
action node into an action node) are nonrequisite. This is the case, for instance, when state variables form
a chain of observable variables in the graph.

We say that a limid is minimal if it contains no nonrequisite arcs or barren nodes. Given a limid we can
obtain its corresponding minimal form in polynomial time by repeatedly removing nonrequisite arcs and
barren nodes [1].

In polytree-shaped diagrams, all arcs entering action nodes are by definition nonrequisite. Hence, minimal
polytree-shaped limids are the least memory-intensive architecture, since in this case a strategy simply
prescribes a value for every action variable.

3. The 2U Algorithm

A credal network is a concise representation of a set of Bayesian networks, all sharing the same set
of variables and graph structure. Formally, a credal network is a directed acyclic graph over a set of state
variables, where for each variable and each configuration of its parents there is an associated set of conditional
probability distributions. Marginal inference in credal networks consists in computing the upper and lower
marginal probabilities of a target variable on the set of Bayesian networks represented by the credal network.
The 2U algorithm performs marginal inference in polynomial time in credal polytrees with binary variables.

A limid can be interpreted as a concise description of the set of Bayesian networks that represent the joint
distributions P(S,.A|0) induced by strategies 6. Additionaly, as noted by Cooper [25], the expected utility
of any strategy § in a limid with a single value variable V' can be reduced to the computation of the marginal
probability P(V’/=1) in the Bayesian network that represents P(V', S, A|§) = P(V'|Pa(V))P(S, A|d), where
V' is a binary state variable with the same parent set of V, and P(V'=1|Pa(V)) < V(Pa(V)). De Campos
and Ji’s reduction makes use of these two facts to reduce the computation of the maximum expected utility
in limids with single value nodes into a marginal inference in a credal network. The reduction leaves state
nodes unchanged, converts the value variable V into a state variable V', and turns each action node into a
state node associated with the set of policies of the corresponding action variable. The maximum expected
utility of a limid is equal to the upper marginal probability of V’ according to the corresponding credal
network. Hence, we can transform any polytree-shaped limid with binary variables and a single value node
into a credal polytree over binary variables, and solve the optimal strategy problem by running 2U in such
a credal network.

Instead of performing this two-step procedure, we can adapt 2U to work directly on the limid formalism.
The pseudo-code in Algorithm 1 implements 2U in the language of limids. The function b(y,r) in the
algorithm is defined for binary y and real r as b(0,7) = 1 —r and b(1,r) = r. Given a polytree-shaped
limid with binary variables and a single value node, the algorithm returns the maximum expected utility of
a strategy. An optimal strategy can be obtained by a small modification to the algorithm that retrieves the
arguments of each optimization performed. The algorithm operates only on ancestors of the value variable,
as the non-ancestor nodes are barren. The numbers px and gx for state and value nodes can be computed
each by enumerating the 2P2(X) combinations of values of 7y, ¥ € Pa(X), followed by |Pa(X)[2/Pa(X)!
arithmetic operations, taking a total time of O(|Pa(X)|22P2(X)) per state or value node. Since the limid
in the input contains the specification of P(X|Pa(X)), which requires at least 2/°2(¥)| numbers, computing
each px and qx takes time polynomial in the input size. The total running time of algorithm for a limid
with n variables and treewidth w is O(nw2?¥), which is polynomial in the input size.

3We use the definition of nonrequisiteness given in Ref. [21] for the single value node case and extended to multiply value
nodes in Ref. [1]. Similar (but not completely equivalent) definitions of nonrequisiteness appeared in Refs. [22, 23, 24].



Algorithm 1 Pseudo-code of the 2U algorithm adapted for solving limids.

Remove non-ancestors of the value variable
for each variable X in topological order do
if X is a state variable then
DX min{ZPa(X) P(X =1[Pa(X)) HYEPa(X) b(Y,ry):ry =py,av}
ax < max{} ,, x) P(X=1Pa(X)) [Iy cpaix) (Y, 7v) : 7y = pv,av}
else
if X is an action variable then
pPx < 0, gx < 1
else
return max{} , x) X (Pa(X)) [Iy epacx) (Y, 7v) : 7y =py, av }
end if
end if
end for

4. Strategy Selection in Polytree-Shaped Limids with Binary Variables is NP-Hard

In this section we show that the optimal strategy selection problem is NP-hard in polytree-shaped limids
with binary variables (and multiple value nodes) by a many-one reduction from the partition problem, which
can be stated as follows.

Given positive even integer numbers z1, ..., z,, is it possible to partition them into two sets of
equal sum?

The problem is well-known to be NP-complete [26].* As usual, we assume that the instances of the partition
problem are “reasonably” and “concisely” encoded as bit-strings of length b = 2(2?21 [logy z;]| +n—1).> Any
partition of the numbers into two sets can be represented as an n-dimensional binary vector (d1,...,0,) €

{0,1}™. Let 2 def % i 1 ;. The partition problem is equivalent to deciding whether there is a binary vector
(61,...,0,) such that 37" | 20, = >, z;(1 — &;) = z. A binary vector satisfying that equality is said to
be a yes-solution of the problem, otherwise it is called a mo-solution. In either case, the vector is called a
solution and the quantity > ; z;; is called its value. Since the input numbers are even, also the value of

a solution is an even number. Moreover, since only yes-solutions have value z, and z is an integer number,

the value of any no-solution (dy,...,4d,) satisfies |z — > 1| z;6;| > 1.
To show that the optimal strategy selection problem is NP-hard, we shall design a family of polytree-
shaped limids over binary variables such that for each instance z1,...,z, of the partition problem there

is a limid in the family whose size is polynomial in b (the size of the partition problem) and satisfies
maxs E[U]6] > 0 if and only if Y, 2;6;/z = 1 for some solution 4.

Given an instance of the partition problem we build a limid whose graph structure is shown in Figure 2.
For i =1,...,n, the action variable D, is binary and denotes in which of two sets the number z; is inserted.
Thus, a strategy § = (01,...,9,) € {0,1}" represents a partition of the input numbers into two sets. The
value variables Vi,...,V,, are set so that V; def —z;D;/z. Hence, Y, E[V;|6] = — Y"1, 2;6;/z, which equals
minus one if and only if the strategy ¢ is a yes-solution to the partition problem. The state variables are
binary and take values in {0,1}. For i = 1,...,n, the conditional probabilities of S; given its parent D, are

4The standard definition of the problem does not require numbers to be even. This constraint however does not alter the
complexity of the problem, as an instance of the partition problem with odd numbers admits a yes-solution if and only if the
problem instance obtained by doubling each number admits a yes-solution.

5The usual encoding of an instance of the partition problem is a binary string 51015201 - - - 01s,,, where each substring s; is
the binary representation of the number z; with every digit duplicated. For example, the encoding of the problem z; = 2 and
zo = 3 is 1100011111.
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Figure 2: Influence diagram used to solve the partition problem.

specified such that P(S;=1|D; —0) "1 and

126
P(S;=1|D;=1) def Inin{l, Z(l)k%"z]k} .

k=0

The second argument in the minimization above is, by Lemma 4 in the appendix, always positive, and can
be computed by O(12b) arithmetic operations (used to obtain the terms [z;/z]*), plus O(12b) operations
that compute the factorials k!, k = 0,...,12b. Hence, the right-hand side of the identity above is a number
between zero and one computed in time polynomial in b. The variables S7,..., S/ are deterministic, and
satisfy S1 = 51 and S/ def S 1S, i =2,...,n. A simple inductive argument on ¢ = 1,...,n shows that
Sl =515+ S, so that for any strategy 5 we have that

E[S,|6]= > P(S,=1[81,...,5,)P(S1,...,50)

S1,..,5n
= > S8 Sy [[ PSiDi=6;) = [[ P(Si=1|D;=1)". (3)
51,050 i=1 i=1
Finally, we specify the value variable R as
12b
R 9% 4945 where Z ik

An argument similar to that of the numbers P(S;=1|D;=1) shows that R is computed in time polynomial
in b. The expected utility of any strategy 0 is

U1 = ZRIS) + Y BVl

=2%+2-q[[P(Si=1|Di=1)° —szl . (4)

i=1

To understand the rationale of the reduction, consider the asymptotic expected utility of a strategy as
the size of the partition problem goes to infinity:

n 1 n
. T —9b _ - 1) _ 5
Jim E[U6] = lim (2 +2—q][P(Si=1|Di=1) . Zw)

=1 =1
12b1 n 126 [Z
_ . . = . o k Z =
“ (a3 0 I (BB 1S
k=0 i=1 k=0



Figure 3: Asymptotic expected utility of strategies as b — oco.

which, since limp_, oo Z}f:bo(—l)k[zi/z]k/k! = e %/% and limy_, o 21162:1;0 1/kl = e,

n n

=1 i=1

The last expression can be regarded as a function of s4 def Z?:l 2;0;/z, which is a variable that takes values
in [0,2] and equals the value of strategy d up to the factor z. The graph of that expression as a function
of a continuous variable s in the range [0,2] is depicted in Figure 3. As we can see from its graph (and
more rigorously by analyzing its derivatives), the function is concave, and achieves a maximum value of zero
uniquely at s = 1. Since ss = 1 if and only if the partition problem admits a yes-solution, we can decide a
hypothetical instance of the partition problem of infinite size by verifying the sign of the maximum expected
utility of a strategy in the corresponding limid. For any finite b, the expected utility of a strategy (given
by (4)) differs from (5), and the value of the expected utility of yes-solution depends on the numbers in the
partition problem in the input. We shall show that this difference is bounded by a sufficiently small function
of the size b of the partition problem, so that yes- and no-solutions can be distinguished in the finite case
(i.e., b < 00) by the sign of their corresponding expected utility.

The next lemma shows that for any partition problem the expected utility of a strategy differs from (5)
by at most 279,

Lemma 1. Consider the continuous function
f(s)=2""% 42 —exp(l —s)—s. (6)
It follows for any strategy & that 0 < f(3 1 2:6;/z) — E[U[8] < 279

PROOF. It follows immediately from (4) and (6) that f(}_7 ,2;/z) — E[U|6] = qE[S}|é] — exp(1 —
> 1 20;/2). According to Lemma 4 in the appendix (with 2=2z;/z and M =12b), we have fori =1,...,n
that P(S; = 1|D; = 1) = e %/% + ¢, where 0 < ¢ < 27'2 < 272719 Tt follows that E[S)|6] =
[T (e7*/% + €)% > [, (e7*/%)% = exp(— Y. 20;/z). By an argument similar to Lemma 4, we
have that e < ¢ < e + 27279 from which it follows that ¢E[S}|6] > eE[S,|6] > exp(1 — > i 2:6;/z), and
therefore ¢E[S}, 8] — exp(1 — Y i, 26;/z) > 0.

It remains to show that the upper bound holds. According to the Multivariate Binomial Theorem, we
have that

n

E[S]|6] = H(e_z'i/z + )0 = Z ﬁe‘zik"/ze?i_k" = exp (— E”: 2152/,2) + Z ﬁ e_z"ki/zef"_k" ,
i=1

i=1 keCi=1 keC,k#6i=1



where C = {(k1,...,k,) € {0,1}" : k; < d;,i =1,...,n}. Each term inside the sum on the right-hand side
of the equation above contains at least one factor equal to €; for some ¢ = 1...,n. Since the sum contains
at most 2" terms, n < b, 0 < e #*i/# <1 and ¢ < 2727190 < 1 it follows that

E[S] |6 exp< 2215 /z) < Z maxe; < 2727,

ke{0,1}"
Consequently, we have that
<2 2—9b
n /—/\-\
E[S]]6] — exp(l — Zzﬁﬁz) = ¢EI[S] 9] —qexp( Zzﬁ/z) [q—e exp( Zzﬁ/z)
i=1
<q2—2—9b <1
which, since ¢ < 3, is strictly smaller than 279, O

According to the lemma above, the absolute difference between the expected utility of a strategy § and
the value of the function f evaluated at the point ., 2;0;/z is less than 27%. Moreover, f(}, 2;6;/2) is an
upper bound on the expected value of any strategy . The next result builds on these two facts to show
that yes- and no-solutions can be distinguished by the sign of their expected utilities.

Proposition 2. The partition problem admits a yes-solution if and only if the mazimum expected utility of
a strategy is nonnegative.

PROOF. According to Lemma 1, for any strategy § we have that E[U[6] > f(3_1_, 2:6;/2) — 27%. Thus, if
a yes-solution exists then maxs E[U|d] > f(1) — 27% = 0. To show that any no-solution has non-positive
expected utility, consider the function f in Equation (6), whose graph is the curve in Figure 3 up to the
small additive constant 27, Its first and second derivatives are, respectively, f’(s) = exp(l —s) — 1 and
f"(s) = —exp(1 — s). Thus, the function is strictly concave, increases for s < 1, decreases for s > 1, and has
a maximum at s = 1. This implies that f is maximized by a strategy whose scaled value ss=3 ., 2;;/z is
the closest to one (over all values ss induced by strategies). If a yes-solution § exists, then its scaled value
Ss maximizes f.

Recall that if the partition problem has no yes-solution then any strategy d satisfies |z —> ", 2;6;| > 1, from
which it follows that either ss=), 2;0;/2 > 1 +1/z or 5=, 2;0;/2z <1 —1/z. Thus, the maximum value
of f over scaled values of no-solutions is either at 1 —1/z (the scaled value closest to and smaller than one) or
at 1+1/z (the closest to and bigger than one). Since, by Lemma 1, f(ss) is an upper bound on the expected
utility of any strategy d, if a yes-solution does not exist then maxs E[U|d] < max{f(1+ 1/2), f(1 —1/z)}.
Consider the difference f(14+1/2z) — f(1 —1/z) = —exp(—1/z) + exp(1/z) — 2/z. By analyzing its first and
second derivatives, one can show that the difference is a strictly convex function of z whose infimum is zero.
Hence, the difference is positive (i.e., f(1 +1/z) > f(1 —1/z)), and it suffices for the result to show that
f(1 4+ 1/z) is negative for any positive integer z. For any instance of the partition problem, we have that
2z < 2% from which it follows that 27 < 273/8. By definition, f(1+1/2) =1 —e /% — 271 4 27% <

1 —e /% — 2=1 — »73/8, which according to Lemma 5 in the appendix is negative for any instance. O

We finally get to the desired hardness result.

Theorem 3. Given a polytree-shaped limid of bounded treewidth over binary variables, deciding whether
there is a strategy whose expected utility exceeds a given rational number is NP-complete.

PRrROOF. Since the diagram is polytree-shaped, we can compute the expected utility of any strategy in
polynomial time by e.g. variable elimination, which shows membership in NP. According to Proposition 2,
for any instance of the partition problem we can build in polynomial time a polytree-shaped influence
diagram of bounded treewidth with only binary variables and such that the partition problem has a yes-
solution if and only the optimum strategy has non-negative expected utility. Hence, deciding whether the
maximum expected utility of a strategy exceeds any given threshold solves the partition problem, and is
thus NP-hard. O



5. Conclusion

Finding an optimal strategy for limited memory influence diagrams is known to be NP-hard even for
polytree-shaped diagrams with ternary variables and a single value node [7]. When the diagram has a single
value node, the problem can be mapped into one of computing marginal probability bounds in a properly
designed credal polytree [12]. We showed here that this correspondence between influence diagrams and
credal networks allows us to solve polytree-shaped diagrams with binary variables and a single value node
in polynomial time, as this is the case for computing marginal probability bounds in credal polytrees [17].
The mapping however does not work on diagrams that contain multiple value nodes (even if variables are
binary), and the theoretical complexity of the strategy selection problem in polytree-shaped diagrams with
binary variables and multiple value nodes was until now unknown.

In this paper, we showed by a reduction of the partition problem that selecting optimal strategies in
polytree-shaped influence diagrams with binary variables and multiple value nodes is NP-hard. This result
closes the fixed-parameter complexity analysis of planning with limited memory influence diagrams in what
concerns the topology of the underlying graph and the cardinality of the variables. In summary, selecting
optimal strategies in polytree-shaped limids with binary variables and a single value node is polynomial-time
solvable, and relaxing any of these conditions leads to NP-hard problems.
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Appendix A. Supplementary Results
The following lemma is used to prove Lemma 1.

Lemma 4. Let 0 < © < 2 be a real number, M > 12 be an even integer, and r = ZkM:O(—l)kxk/k!. It
follows that e™® < r < e ® 427M

x

PROOF. According to Taylor’s theorem, the number e~
pansion of the exponential function around zero, that is,

can be approximated by M-th order Taylor ex-

M

k

—x T

e :E (—1)kH+RM($)7
k=0

where the term Rjs(x) denotes the approximation error and is called the residual. Note that the first term
on the right is by definition the number r. The residual R (x) is well-known to satisfy

M+
Ry (z) = (_1)M+1675m ;
for some 0 < ¢ < z. Since M is even, the factor (—=1)M*! = —1 and Ry/(z) < 0, whence r > exp(—=z).
Using the inequality e=¢ < 1 (valid for any & > 0), we find that
M1
|Rp ()| < EE

Since # < 2, and (k/3)* < k! (for any positive integer k), the right-hand side of the inequality above satisfies
M+ oM+1 oM+1gM+1

AT+ 1!~ (M 1/3)M+ — (M )M+

and because M > 12 = 22 . 3, we have that

2M+13M+1 2M+13M+1 _ 1 1
(M +1)M+1 < 92(M+1)gM+1 ~— 9M+1 < oM *
The result follows from r = e™* — Rps(x). 0

The following result is used to prove Proposition 2.
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Lemma 5. For any positive integer z and real r < 1/3, it follows that
1
1-e s D<o,
z oz
def

PRrOOF. Consider the second-order Taylor expansion of e~ around zero given by Th(z) = 1 — x + 2?%/2,

whose residual satisfies ot , ,
Ry(z) E e — Ty(x) = —23e75/6 > —23/6,

for some number ¢ between 0 and z. Hence, —e~® < 23/6 — Ty (z), from which it follows that

1 r 1 1 r
l—e V5 p — <14 | — —To(1/2)| — -+ —
‘ ctastt {623 2( /Z)} st

which equals /2% — 1/(22%) +1/(62%) = (2r — 2 +1/3)/(223) < 0. O
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