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Abstract. At the foundations of probability theory lies a question that has
been open since de Finetti framed it in 1930: whether or not an uncertainty
model should be required to be conglomerable. Conglomerability is related to

accepting infinitely many conditional bets. Walley is one of the authors who
have argued in favor of conglomerability, while de Finetti rejected the idea. In
this paper we study the extension of the conglomerability condition to two

types of uncertainty models that are more general than the ones envisaged by
de Finetti: sets of desirable gambles and coherent lower previsions. We focus in
particular on the weakest (i.e., the least-committal) of those extensions, which

we call the conglomerable natural extension. The weakest extension that does
not take conglomerability into account is simply called the natural extension.
We show that taking the natural extension of assessments after imposing
conglomerability—the procedure adopted in Walley’s theory—does not yield,
in general, the conglomerable natural extension (but it does so in the case of
the marginal extension). Iterating this process of imposing conglomerability

and taking the natural extension produces a sequence of models that approach
the conglomerable natural extension, although it is not known, at this point,
whether this sequence converges to it. We give sufficient conditions for this to

happen in some special cases, and study the differences between working with
coherent sets of desirable gambles and coherent lower previsions. Our results
indicate that it is necessary to rethink the foundations of Walley’s theory of

coherent lower previsions for infinite partitions of conditioning events.

1. Introduction

Consider an experiment whose non-empty set of possible outcomes is the so-called
possibility space Ω. Suppose you are offered a gamble f : a bounded real-valued
function on Ω. It represents an uncertain reward as it depends on the outcome of
the experiment. You find out that, whatever you might observe, as expressed by an
event B in a certain partition B of Ω, you would accept f conditional on B. Does
this imply that you should unconditionally accept f?

This question can be conveniently addressed using the notion of desirability,
which leads to a very general way of dealing with uncertainty. Common rationality
axioms for desirability—these are also called coherence axioms—, such as those in
[21, Section 3.7] or [23], imply that f should indeed be accepted, if B is finite. When
B is infinite, some authors have proposed to impose the above requirement through
an additional axiom of so-called conglomerability. In fact, conglomerability (suitably
reformulated in a more recognisably probabilistic manner) is a foundational axiom
for Walley’s theory of coherent lower previsions when the conditioning partition is
infinite. We recall here that a coherent lower prevision is a lower envelope of linear
previsions, each of which is the expectation functional associated with an additive
probability.

The notion of conglomerability was originally introduced by de Finetti [4, 6] as
a property that a finitely additive—but not countably additive—probability may
or may not satisfy. In fact, de Finetti was also the first to reject the idea that
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conglomerability should be imposed. The concept was studied later by Dubins [9],
who established a connection with the notion of disintegrability. Conglomerability
has also been studied by Seidenfeld, Schervisch and Kadane in a number of papers
[16, 17, 18], and by Doria [8]. In particular, in [16] it is shown that countable
additivity is necessary, but for a few pathological cases, for full conglomerability,
that is, for conglomerability with respect to all possible partitions of Ω.1

Imposing conglomerability, even with respect to only a single partition B, comes
at the expense of mathematical properties that might be considered undesirable: for
example, a conglomerable coherent lower prevision may not be the lower envelope of
conglomerable linear previsions. Perhaps also because of this, the idea of conglomer-
ability was rejected in some extensions of de Finetti’s work, like Williams’s [23] (see
also [15]).

In this paper, we do not wish to take any philosophical position on whether it
is reasonable to require conglomerability with respect to a partition we envisage
conditioning on.2 But we do think that requiring full conglomerability, rather than
requiring conglomerability only for the partitions that are actually used for updating
beliefs, is rather more questionable: in specifying beliefs, it seems to be useful, and
sometimes even essential, to envisage beforehand which partitions we will want to
condition on. Automatic conditioning can indeed lead to problems: see [19] for a
clear exposition of this point of view. This is also the approach taken by De Cooman
and Hermans with their ‘cut conglomerability’ in [2]. Our aim here is to perform a
mathematical study of the impact of conglomerability on the possible extensions of
an initial set of desirability, or probabilistic, assessments. The focus is, in particular,
on what we call the conglomerable natural extension: loosely speaking, this is the
weakest (i.e., least-committal) conglomerable and coherent model that extends given
assessments. A related concept is the natural extension, which is defined as the
weakest coherent extension, and where conglomerability is not imposed.

We start in Section 2 by introducing some basic notions: desirability, along with its
characterising axioms; coherent lower previsions induced by a set of desirable gambles,
and the set of desirable gambles induced by some coherent lower previsions. Moreover,
we introduce conglomerability in a few different forms: for desirable gambles, in
the traditional form and in a weaker variant; for coherent lower previsions, in the
traditional way and in a strengthened form. We show how these notions are related,
which allows us to transform problems written for one type of model into the other.

In Section 3 we focus on desirability. We show that the conglomerable natural
extension F , provided that it exists, of a set R of desirable gambles with respect to
to a partition B, is the intersection of all conglomerable sets of desirable gambles
including R. Moreover, we relate F to the natural extension: we start from R, close
it with respect to conglomerability, and take its natural extension, obtaining E1; we
iterate this process, yielding E2, . . . , En, . . . . We show that En ⊆ F for all n, and
that the sequence stabilises (becomes constant) if and only if one if its elements
coincides with F . We provide sufficient conditions for this to happen, as well as
a few examples to illustrate the situation. One of them, in particular, shows that
taking the closure with respect to conglomerability may extend a non-conglomerable
set of desirable gambles beyond its topological border.

In Section 4 we study the conglomerable natural extension F of a coherent lower
prevision P with respect to a partition B. Here, too, we consider a sequence: we

1See also [10, Section 6 and Theorem A1] and [20, Example 3] for some interesting examples
showing that countable additivity is not always sufficient for full conglomerability, and [21,
Section 6.9] for a discussion of this matter within Walley’s theory.

2This is also called partial conglomerability. In this paper by conglomerability we just mean
partial conglomerability.
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start from P , compute its conditional natural extension E(·|B), and then the natural
extension of the two of them together, E1; we iterate the process, yielding E2, . . . ,
En, . . . . We show that En ≤ F for all n, and again that the sequence stabilises if
and only if one of its elements coincides with F . Then we provide what is arguably
the most important result of this paper: we show in Example 5 that E1 may not
equal F . The importance of this example stems from the fact that, when it comes
to the natural extension (as well as to coherence), Walley’s theory is implicitly
based on stopping at the first element of the sequence: E1. We show that this is not
enough to fully capture the implications of conglomerability. This raises the need
to rethink the foundations of Walley’s theory when a model is based on an infinite
conditioning partition. We also give sufficient conditions for E1 = F .

In Section 5 we relate the results obtained for sets of desirable gambles and
coherent lower previsions: we start from a set of desirable gambles R and deduce
from this a coherent lower prevision P ; we create the sequences of sets of desirable
gambles, on the one hand, and coherent lower previsions, on the other. We explore
the relationship between the elements of the sequences. This allows us, in Example 7,
to exploit Example 5 and show that also E1 need not coincide with F : this means
that one-step conglomerability is not enough for sets of desirable gambles either. We
give sufficient conditions for E1 = F , as well as for the two sequences to be made
out of equivalent models.

Section 6 deepens the connection between conglomerability and coherence. Co-
herence is arguably the most important notion both for desirable gambles and lower
previsions. Loosely speaking, a coherent model is one that is self-consistent. We
investigate to what extent the conglomerability of a set of gambles implies that it is
coherent with the conditional set of gambles it induces; moreover we show that any
coherent pair of conditional and unconditional lower previsions can be derived from
a single conglomerable set of desirable gambles.

Finally, in Section 7 we focus on the problem where more than one partition
is considered. We focus in particular on the important case where information is
represented in a hierarchical way through the marginal extension (see [21, The-
orem 6.7.2], [12]), which is a generalisation of the law of iterated expectation to sets
of desirable gambles. We show that in this case E1 = F : one-step conglomerability
yields the conglomerable natural extension. We provide our concluding views and
some remarks in Section 8.

2. Introduction to imprecise probabilities

2.1. Coherent lower previsions. Let us introduce the basics of the theory of
coherent lower previsions that we use in this paper. We refer to [21] for an in-depth
study, and to [11] for a survey.

Consider a possibility space Ω. A gamble is a bounded map f : Ω→ R. The set
of all gambles is denoted by L(Ω), or simply by L when there is no ambiguity about
the possibility space we are working with. In particular, we use f � 0 to denote a
gamble f ≤ 0, f 6= 0 (and we will refer to this as a negative gamble), and f  0 to
denote a gamble f ≥ 0, f 6= 0 (this will be called a positive gamble). We use the
notation L+(Ω), or simply L+, to refer to the set of positive gambles.

A lower prevision P is a real-valued functional defined on some set of gambles
K ⊆ L. When the domain K of P is a linear space—closed under point-wise addition
and multiplication by real numbers—P is called coherent when it satisfies the
following conditions:

C1. P (f) ≥ inf f for all gambles f ∈ K;
C2. P (λf) = λP (f) for all gambles f ∈ K and all positive real λ;
C3. P (f + g) ≥ P (f) + P (g) for all gambles f, g ∈ K.
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Given a partition B of Ω, a conditional lower prevision on L is a functional
P (·|B) :=

∑
B∈B BP (·|B) such that for every set B ∈ B, P (·|B) is a lower prevision

on L. Note the use, in this case, of B to denote the indicator function of event
B ∈ B; we shall use this notation repeatedly in the paper. P (·|B) is called separately
coherent when P (·|B) is coherent and P (B|B) = 1 for every B ∈ B. For every
gamble f , P (f |B) is a gamble on Ω that is constant on the elements of B; such
gambles are called B-measurable.

For every lower prevision P and every conditional lower prevision P (·|B), we use
the notations:

GP (f) := f − P (f), GP (f |B) := B(f − P (f |B)),

GP (f |B) := f − P (f |B) =
∑
B∈B

GP (f |B).

If we consider a coherent lower prevision P on L and a separately coherent conditional
lower prevision P (·|B) on L, they are called coherent3 if and only if for every gamble
f and every B ∈ B, P (GP (f |B)) ≥ 0 and

P (GP (f |B)) = 0. (GBR)

This second condition is called the Generalised Bayes Rule, and if P (B) > 0 it can
be used to uniquely determine the value P (f |B): in that case there is only one value
satisfying (GBR) with respect to P . If P and P (·|B) satisfy (GBR), we also say
that they are Williams coherent [23].4

One particular case of coherent P , P (·|B) are the vacuous unconditional and
conditional lower previsions, given by

P (f) = inf
ω∈Ω

f(ω) and P (f |B) = inf
ω∈B

f(ω) for all f ∈ L and all B ∈ B.

A particular case of coherent lower previsions is that of linear previsions. A linear
prevision is a functional P : L → R satisfying conditions C1 and C2, and

P (f + g) = P (f) + P (g) for all f, g ∈ L.
Its restriction to events is a finitely additive probability, and P the corresponding
expectation operator.5 The set of all linear previsions is denoted by P. Given a
coherent lower prevision P on K, we define its associated credal set as

M(P ) := {P ∈ P : (∀f ∈ K)P (f) ≥ P (f)} .
Using this set, we can define the natural extension of a coherent lower prevision P
from its domain K to L: it is simply the lower envelope ofM(P ), and it corresponds
to the smallest coherent lower prevision on L that dominates P on K.

Similarly, a conditional linear prevision is a functional P (·|B) on L such that
P (B|B) = 1 and P (·|B) is a linear prevision for every B ∈ B.

2.2. Sets of desirable gambles. The above theory can be generalised using sets
of desirable gambles. We consider a set of gambles Q whose desirability we have
evaluated, resulting in a subset R ⊆ Q of desirable gambles. For now, we are going
to focus on the simplest case where Q coincides with L.

Let R be a set of gambles. We consider the following rationality axioms for
desirability:

D1. L+ ⊆ R.
D2. 0 /∈ R.

3See [21, Section 6.3.2] for a definition of coherence on more general domains.
4Williams coherence is not constrained to gambles whose conditioning events form a partition

of the sure event; this is one of the reasons why it does not necessarily satisfy conglomerability, as
we shall see later on.

5The expectation is obtained by taking the Dunford integral [1].
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D3. f ∈ R, λ > 0⇒ λf ∈ R.
D4. f, g ∈ R ⇒ f + g ∈ R.

A set of desirable gambles satisfying these four axioms is called coherent relative to
L, or simply coherent.

Given a set of desirable gambles R, we define

posi(R) :=

{
n∑
k=1

λkfk : fk ∈ R, λk > 0, n ≥ 1

}
.

We call R a convex cone if it is closed under positive linear combinations, meaning
that posi(R) = R. This is equivalent to R satisfying conditions D3 and D4. The set
posi(R∪ L+) is called the natural extension of R, and corresponds to its smallest
coherent superset—provided R is included in some coherent set.

Moreover, given a partition B of Ω, R is called B-conglomerable when it also
satisfies the following axiom:

D5. ((f ∈ L)(∀B ∈ B)(Bf ∈ R ∪ {0}))⇒ f ∈ R ∪ {0}.
This axiom D5 is a consequence of D4 when B is finite.

Similarly, we can define a notion of B-conglomerability for coherent lower previ-
sions:

Definition 1. Let P be a coherent lower prevision on L, and B a partition of Ω. P
is called B-conglomerable when the following condition holds:

wBC. if f ∈ L and Bn, n ∈ N , are distinct sets in B such that P (Bn) > 0 and
P (Bnf) ≥ 0 for all n ∈ N , then P (

∑
n∈N Bnf) ≥ 0.6

Again, wBC holds trivially when N is finite, and in particular when the partition B
is finite, because of the super-additivity C3 of coherent lower previsions.

Let us establish the relation between the different concepts for lower previsions
and for sets of desirable gambles. In order to do this, we introduce two additional
concepts for sets of desirable gambles. A set R is called a coherent set of strictly
desirable gambles when it is coherent and moreover

(∀f ∈ R \ L+)(∃ε > 0) such that f − ε ∈ R,

and it is called a coherent set of almost-desirable gambles when it satisfies axioms D1,
D3 and D4, as well as

D2’. sup f < 0⇒ f /∈ R;

and

D6. ((∀ε > 0)(f + ε ∈ R))⇒ f ∈ R.

A coherent set of almost-desirable gambles is not a coherent set of desirable gambles:
axioms D1 and D6 imply that any set of almost-desirable gambles includes the zero
gamble, and as a consequence it violates D2.

Given a coherent lower prevision P , we define its associated set of strictly desirable
gambles by

R := L+ ∪ {f ∈ L : P (f) > 0} , (1)

and its associated coherent set of almost-desirable gambles by

R := {f ∈ L : P (f) ≥ 0} . (2)

6Here N is any index set, but because of the condition that P (Bn) > 0 for all n ∈ N , we can
effectively restrict ourselves to countable N ; however, this is not the case with the notion of strong
conglomerability to be introduced later on, and more generally the partition B is not necessarily
countable.
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It is not difficult to show that R satisfies the axioms D1–D4 considered above, and
that R is a cone that includes all non-negative gambles. Moreover, R ⊆ R, and R
contains all non-negative gambles and is closed under dominance.

Conversely, given a coherent set of gambles R, we can define a lower prevision by

P (f) := sup {µ : f − µ ∈ R} for all f ∈ L. (3)

It follows from [14, Theorem 6] that P is a coherent lower prevision.7 Moreover,
if we consider the sets R and R given by Eqs. (1) and (2), it follows from [21,
Theorem 3.8.1] that

sup {µ : f − µ ∈ R} = P (f) = sup
{
µ : f − µ ∈ R

}
. (4)

Hence, there is a one-to-one correspondence between coherent sets of strictly
desirable gambles and coherent lower previsions, and as a consequence also with
closed and convex sets of linear previsions.8

Any set R such that R ⊆ R ⊆ R induces the same lower prevision P by means
of (3) [21, Theorem 3.8.1]. If in particular R is a maximal coherent set of desirable
gambles, meaning that it satisfies D1–D4 and moreover

f /∈ R and f 6= 0⇒ −f ∈ R,
then the coherent lower prevision it induces via Eq. (3) is a linear prevision.

The set R is the closure of R (and as a consequence also of any R ⊆ R ⊆ R) in
the topology of uniform convergence [14, Proposition 4]:

R = {f ∈ L : (∀ε > 0)(f + ε ∈ R)} ,
and on the other hand:

R = L+ ∪ {f ∈ R : f − ε ∈ R for some ε > 0} ,
for any R ⊆ R ⊆ R.

Hence, any coherent lower prevision is in correspondence with an infinite class of
coherent sets of desirable gambles: they are all the coherent R such that R ⊆ R ⊆ R.
Similarly to Eq. (3), given a coherent set of gambles R and a partition B of Ω, we
can induce a separately coherent conditional lower prevision P (·|B) on L by

P (f |B) := sup {µ : B(f − µ) ∈ R} for all f ∈ L, B ∈ B. (5)

2.3. The behavioural interpretation. The above concepts can be given a beha-
vioural interpretation, in terms of buying and selling prices [7, 21]. Given a gamble
f , its lower prevision P (f) can be seen as a supremum desirable buying price for f ,
in the sense that for every µ < P (f) the transaction f − µ is desirable.

When this supremum acceptable buying price coincides with the infimum accept-
able selling price for f , which is inf {µ : µ− f ∈ R} = −P (−f), this common value
can be seen as a fair price for f , and if we can establish fair prices for all gambles,
we determine a linear prevision. A similar interpretation can be provided for the
conditional lower previsions: P (f |B) is the supremum price we would (currently)
give for f , if we observed the event B.

The rationality of our buying and selling prices can be verified by means of
axioms D1–D4: condition D1, for instance, means that a transaction that can never
make us lose utiles, and possibly make us gain some, should be desirable; D3 means
that a change in the linear utility scale should not affect the set of gambles we
consider desirable. All these axioms together imply that by combining a finite

7This follows under general assumptions from [22, Proposition 1], where some slightly weaker
desirability axioms are considered.

8But the correspondence does not hold for open sets of previsions, in the sense that a gamble
may be strictly desirable for all P in the interior of M(P ) but not for P ; interestingly, we do have
a correspondence like this when we work with almost-desirable gambles.
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number of acceptable transactions a Dutch book cannot be built against us, and
moreover that our supremum buying prices are the result of some thorough reflection,
in the sense that one cannot force a change in our prices by taking into account the
implications of any finite number of our desirable gambles.

Now, the reason why conglomerability is controversial is because, unlike coherence,
it involves the combination of an infinite number of transactions:9 it means that the
infinite sum of desirable gambles that depend on different elements of a partition
should be desirable. This is called the conglomerative principle in [21] and implies,
for instance, that the gamble GP (f |B) + ε should be desirable for all ε > 0. This
is rejected by authors such as Williams, for whom the gamble GP (f |B) is only
almost-desirable when f has a finite support in B, i.e., when there is only a finite
number of elements of B on which f is non-zero.

Walley’s position is to support conglomerability, and for this reason his definition
of coherence for conditional and unconditional lower previsions is based on the
conglomerative principle. On the other hand, for linear previsions, conglomerability
with respect to all partitions is very strongly related to countable additivity, and de
Finetti and others have argued [4] that in some cases countable additivity can give
rise to unreasonable conclusions.

We also mention here a property of conglomerability that might be undesirable to
at least some people: it is not compatible with the sensitivity analysis interpretation,
in the sense that a conglomerable set of gambles is not necessarily the intersection
of conglomerable maximal supersets (see Example 1 later on), and related to this,
that coherent conditional and unconditional lower previsions are not necessarily the
lower envelope of a set of coherent conditional and unconditional linear previsions
(see [21, Examples 6.6.9,6.6.10] for examples).

2.4. Connection between the conglomerability conditions. We establish a
conglomerability condition for sets of desirable gambles that is equivalent to the
conglomerability of the associated lower prevision.

Definition 2. A set of desirable gambles R is called weakly B-conglomerable if and
only if R is B-conglomerable.

For a set of strictly desirable gambles, conglomerability and weak conglomerability
coincide. Let us now show that this weak B-conglomerability is indeed weaker than
B-conglomerability. In order to do so, we first establish the following lemma:

Lemma 1. Let P be a coherent lower prevision on L, and consider B ⊆ Ω. Then
P (B) = 0⇒ (∀f ∈ L)P (Bf) ≤ 0.

Proof. If sup f ≤ 0, then the coherence of P implies that P (Bf) ≤ 0. On the other
hand, if sup f > 0 then the monotonicity of coherent lower previsions implies that
P (Bf) ≤ P (B sup f) = P (B) sup f = 0. �

Theorem 2. Let R be a coherent set of desirable gambles. Then R is weakly
B-conglomerable if and only if

wD5. ((f ∈ L)(∀B ∈ B)(Bf ∈ R ∪ {0}))⇒ f ∈ R.

Proof. Since it is clear that condition D5 implies wD5 when applied to R, it suffices
to prove the converse. Assume that wD5 holds, and consider a non-zero gamble f
such that Bf ∈ R ∪ {0} for every B ∈ B. We need to show that f ∈ R.

Let P be the coherent lower prevision induced by R. If f ∈ L+ then it follows
immediately that f ∈ R; if f /∈ L+, then there is some B ∈ B such that Bf � 0.
Since Bf ∈ R, it follows that P (Bf) > 0, so there is some ε > 0 such that

P (B(f − ε)) ≥ P (Bf − ε) > 0.

9But see also [24] for a recent finitary interpretation.
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Let g := f−Bε. Then for every B′ ∈ B it follows that B′g ∈ R∪{0}. Applying wD5,
we deduce that g ∈ R, and therefore P (g) ≥ 0. As a consequence,

P (f) = P (g +Bε) ≥ P (g) + P (Bε) ≥ εP (B) > 0,

taking into account that P (B) > 0 because of Lemma 1. Hence P (f) > 0 and
therefore f ∈ R. We conclude that this set satisfies D5. �

By comparing conditions D5 and wD5, we see that if a coherent set of gambles
R is B-conglomerable, it is in particular weakly B-conglomerable. When R is a
coherent set of strictly desirable gambles, Theorem 2 implies that it is conglomerable
if and only if

((f ∈ L)(∀B ∈ B)(Bf ∈ R ∪ {0}))⇒ f ∈ R.
Next we show that the weak B-conglomerability of a coherent set of desirable

gambles is equivalent to the B-conglomerability of the coherent lower prevision it
induces.

Theorem 3. Let R be a coherent set of desirable gambles, and let P be the coherent
lower prevision it induces by means of Eq. (3). Then P satisfies wBC if and only if
R is weakly B-conglomerable.

Proof. Let us show that P satisfies wBC if R satisfies wD5. Consider a gamble
f such that P (Bnf) ≥ 0 for some distinct sets Bn ⊆ B, with P (Bn) > 0 for all
n ∈ N . Then for any fixed ε > 0 and any n ∈ N it holds that P (Bn(f + ε)) ≥
P (Bnf) + εP (Bn) > 0, whence Bn(f + ε) ∈ R. Applying wD5, we deduce that∑
nBn(f+ε) ∈ R for every ε > 0. Since this set is closed under uniform convergence,

we deduce that
∑
nBnf ∈ R, and therefore P (

∑
nBnf) ≥ 0.

Conversely, assume that P satisfies wBC, and that for some f ∈ L, Bf ∈ R∪{0}
for all B ∈ B. This implies that P (Bf) ≥ 0 for all B ∈ B, using Eq. (2) and
the inclusion R ∪ {0} ⊆ R. If P (B) = 0, then Lemma 1 implies that P (Bf) ≤ 0,
and as a consequence P (Bf) = 0. Taking into account Eq. (1), we deduce that if
Bf ∈ R ∪ {0} then also Bf ≥ 0.

Let B′ := {B ∈ B : P (B) > 0}. If B′ is empty, then Bf ≥ 0 for all B ∈ B and
hence f ∈ L+ ⊆ R. Let us consider the case that B′ is not empty. By wBC,
P (
∑
B∈B′ Bf) ≥ 0. Thus

P (f) = P

( ∑
B∈B′

Bf +
∑

B∈B\B′
Bf

)
≥ P

( ∑
B∈B′

Bf

)
+ P

( ∑
B∈B\B′

Bf

)
≥ 0,

where the first inequality follows from C3 and the second from C1. As a consequence
P (f) ≥ 0 and then Eq. (2) implies that f ∈ R. �

This result, together with Theorem 2, implies that a coherent lower prevision P
is B-conglomerable if and only if its associated set of strictly desirable gambles is
B-conglomerable.

On the other hand, when we consider a coherent set of almost-desirable gambles
R, condition D5 is equivalent to

D5’. ((f ∈ L)(∀B ∈ B)(Bf ∈ R))⇒ f ∈ R.

We next show that condition D5 can also be related to a notion of conglomerability
for coherent lower previsions:

Definition 3. Let P be a coherent lower prevision on L, and B a partition of Ω. P
is called strongly B-conglomerable when the following condition holds:

BC. ((∀B ∈ B)(P (Bf) ≥ 0))⇒ P (f) ≥ 0.
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Theorem 4. Let P be a coherent lower prevision, and let R be its associated set of
almost-desirable gambles, given by Eq. (2). Then P is strongly B-conglomerable if
and only if R satisfies D5. Conversely, a coherent set of almost-desirable gambles
satisfies D5 if and only if the coherent lower prevision P it induces satisfies BC.

Proof. Since there is a one-to-one correspondence between coherent lower previsions
and coherent sets of almost-desirable gambles, it suffices to prove the first of the
two equivalences. But this is immediate once we remark that a gamble g belongs to
R if and only if P (g) ≥ 0, and that in particular this holds for the gambles Bf , for
all f ∈ L and B ∈ B. �

By comparing conditions BC and wBC, we see that if a coherent lower prevision
is strongly B-conglomerable, then it is also B-conglomerable.

Theorems 3 and 4 lead to one of the most important points we make in this paper:
that the usual correspondence between sets of desirable gambles and coherent lower
previsions does not extend to conglomerability: the usual notion of conglomerability
for sets of desirable gambles, given by D5, is stronger (more restrictive) than the one
for coherent lower previsions, given in Definition 1. Nevertheless, we still maintain
the one-to-one correspondence between coherent lower previsions and sets of strictly
desirable gambles when we add conglomerability, because for the latter the notions
of weak and strong conglomerability are equivalent.

3. Conglomerability for sets of desirable gambles

Let us consider a set of gambles R, and look for the smallest superset F (if it
exists) that satisfies D1–D5 with respect to a fixed partition B. We call this set the
conglomerable natural extension of R. A first characterisation of this set is given in
the following proposition. We use the notation DC(B) for the set of all conglomerable
coherent sets of desirable gambles—satisfying D1–D5—, and DwC(B) for the set
of all weakly conglomerable coherent sets of desirable gambles—satisfying D1–D4
and wD5—, on Ω.

Proposition 5. If there is some coherent set of gambles that includes R and
satisfies D5 (respectively wD5) then the conglomerable (respectively weakly con-
glomerable) natural extension of R is given by:

F :=
⋂
{D ∈ DC(B) : R ⊆ D} respectively F :=

⋂
{D ∈ DwC(B) : R ⊆ D} .

Proof. It suffices to show that the sets DC(B) and DwC(B) are closed under arbitrary
non-empty intersections. It was shown elsewhere [3] that D1–D4 are preserved under
taking such intersections. We now show that this also holds for D5 and wD5.

Consider an arbitrary non-empty family Ri, i ∈ I of sets of desirable gambles that
satisfy D5. We show that R :=

⋂
i∈I Ri satisfies D5 too. Suppose that Bf ∈ R∪{0}

for all B ∈ B, then also Bf ∈ Ri ∪ {0} for all B ∈ B and all i ∈ I, and therefore
f ∈ Ri ∪ {0} for all i ∈ I. Hence indeed f ∈ R ∪ {0}.

Next, consider an arbitrary non-empty family Ri, i ∈ I of sets of desirable
gambles that satisfy wD5. We show that R :=

⋂
i∈I Ri satisfies wD5 too. Suppose

that Bf ∈ R ∪ {0} for all B ∈ B; then for any B ∈ B either Bf ∈ L+ ∪ {0}
(whence Bf ∈ Ri ∪ {0} for all i ∈ I) or there is some ε > 0 such that Bf − ε ∈ R
(whence Bf − ε ∈ Ri for all i ∈ I, and therefore Bf ∈ Ri for all i ∈ I). Hence, also

Bf ∈ Ri ∪ {0} for all B ∈ B and all i ∈ I, and therefore f ∈ Ri for all i ∈ I. This
implies that f + ε ∈ Ri for all i ∈ I and all ε > 0, and therefore f + ε ∈ R for all
ε > 0. Hence indeed f ∈ R. �

From now on, we will assume that R satisfies conditions D1–D4, we denote this
by writing R ∈ D. Condition D2 is necessary for the existence of a conglomerable
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natural extension, and properties D1, D3 and D4 can be satisfied by considering
the natural extension posi(R∪ L+).

A coherent set of desirable gambles is always the intersection of all its maximal
supersets [3]. However, this property does not necessary keep on holding if we add the
conglomerability requirement: the existence of a superset of R that satisfies D1–D5
does not guarantee that there is a maximal superset of R that satisfies these axioms.
Our example is just a reformulation of [21, Example 6.6.9]:

Example 1. Let Ω be the set of integers without zero, and consider the partition B :=
{Bn : n ∈ N} given by Bn := {−n, n}, where N denotes the set of natural numbers
without zero. Let P1 be a linear prevision on L satisfying P1({n}) = 1/2n+1 and
P1({−n}) = 0 for all n ∈ N and P1(I−N) = 1/2, where I denotes the indicator gamble.
Consider also a linear prevision P2 satisfying P2({−n}) = 1/3n and P2({n}) = 0 for
all n ∈ N, and P2(IN) = 1/2. Let P := min{P1, P2}.

Let R be the set of strictly-desirable gambles associated with P , given by Eq. (1).
This set satisfies axioms D1–D4. To see that it also satisfies D5, note that if a gamble
0 6= f satisfies that Bnf belongs to R∪ {0} for every n, then either P (Bnf) > 0 or
Bnf ≥ 0. But since P (Bnf) > 0 implies that both P1(Bnf) > 0 and P2(Bnf) > 0,
and this in turn means that f(−n) and f(n) are non-negative, we also deduce that
P (Bnf) > 0 implies that Bnf  0. As a consequence, if Bnf ∈ R ∪ {0} for every
Bn ∈ B, then f ≥ 0, and since it is different from the zero gamble we deduce that
f ∈ R.

Let us show now that there is no maximal superset of R satisfying wD5, and as
a consequence neither D5. Assume ex absurdo that D is such a set. Let P be its
associated linear prevision, determined by Eq. (3). Since R ⊆ D, we deduce that P
dominates P . But Walley has shown in [21, Example 6.6.9] that no dominating linear
prevision satisfies wBC. Using Theorem 3, we deduce that D does not satisfy wD5,
and as a consequence it does not satisfy D5 either. �

Remark 1. Theorem 3 allows us to deduce that the conglomerable natural extension
does not exist when R induces a linear prevision P , using Eq. (3), that is not
conglomerable: if the conglomerable natural extension F did exist, then since
R ⊆ F , the latter should induce a coherent lower prevision P that dominates P ,
and it is a consequence of C1 and C3 that this can only happen when P = P .

Now, since F is conglomerable, it is also weakly conglomerable, and applying
Theorem 3 we deduce that P is conglomerable, a contradiction.

On the other hand, if R induces a conglomerable linear prevision P , the con-
glomerable natural extension of R may exist—for instance if R is the set of strictly
desirable gambles associated to P then Theorem 3 implies that R is conglomerable—
or it may not. To see an example of the latter case, consider for instance Ω := N,
Bn := {2n, 2n− 1}, B := {Bn : n ∈ N} and a linear prevision P satisfying

P ({n}) = 0 for all n ∈ N and P ({2n : n ∈ N}) =
1

2
.

Then P (Bn) = 0 for every n ∈ N, so P is trivially B-conglomerable. On the other
hand, the set

R := {f : P (f) > 0} ∪ {f : P (f) = 0 and f(min {n : f(n) 6= 0}) > 0}

is a maximal set of gambles that lies between {f : P (f) > 0} and {f : P (f) ≥ 0}, so
it induces the linear prevision P . To see that it is not conglomerable, note that the
gamble f := I{odd} − 2I{even} does not belong to R because P (f) < 0 even if Bnf
belongs to R for all n. Since from its definition a maximal set has a conglomerable
natural extension if and only if it is itself conglomerable, we deduce that in this case
the conglomerable natural extension F does not exist. �



CONGLOMERABLE NATURAL EXTENSION 11

Our next goal is to find more practically constructive ways of expressing the
(weakly) conglomerable natural extension F . To get some intuition for how to
proceed, look at the example of the natural extension of a (not necessarily coherent)
assessment R: we first use the axiom D1 to turn R into R∪ L+, and then use the
productive coherence axioms D3 and D4 successively to add gambles to this set.
In this case, it so happens that after applying D3 and D4 only once, we arrive at
posi(R∪ L+), which satisfies D1, D3 and D4. If this set of gambles satisfies D2, it
is clearly the smallest coherent set to do so; if it does not, then R has no coherent
extension.

This suggests that, in order to find the conglomerable natural extension F , we
could use a similar procedure. We start out with the coherent, but not necessarily
conglomerable, set R, and we use the productive axiom D5 to add gambles to it,
making it conglomerable. The problem now is that, unlike D3 and D4 separately,
D3–D4 and D5 do not play well together: the result of using D5 is a set of desirable
gambles that is no longer necessarily coherent—it need not satisfy D4. So we use D3
and D4—or the posi operator—again, which now leads us to a set of desirable
gambles that is no longer conglomerable, and so on.

We are, in other words, led to define the following sequence of sets of desirable
gambles:

RB := {0 6= f ∈ L : (∀B ∈ B)Bf ∈ R ∪ {0}} (6)

E1 := posi(R∪RB)

...

EBn := {0 6= f ∈ L : (∀B ∈ B)Bf ∈ En ∪ {0}} , n ≥ 1

En+1 := posi(En ∪ EBn ), n ≥ 1. (7)

In order to make the notation more uniform, we will sometimes use E0 := R and
EB0 := RB.

Lemma 6. Let F ′ be a superset of R that satisfies D1–D5. Then En ⊆ En+1 ⊆ F ′
for all n ∈ N ∪ {0}.

Proof. We proceed by induction on n. That En ⊆ En+1 follows trivially from the
definition. If F ′ is a superset of R that satisfies D1–D5, then it must include RB—
because it satisfies D5—and therefore also E1—because it satisfies D3–D4. Now,
assume that En is included in F ′. Then condition D5 implies that also EBn ⊆ F ′,
and then D3–D4 imply that En+1 is included in F ′. �

It follows that the conglomerable natural extension of R, if it exists, must include
the limit

⋃
n En of the converging sequence En. We next investigate which desirability

axioms are satisfied by the En and EBn .

Proposition 7. Let R be a coherent set of desirable gambles, and assume that there
is some superset F ′ of R satisfying D1–D5.

(i) For every n ∈ N ∪ {0}, En satisfies D1–D4.
(ii) For every n ∈ N ∪ {0}, EBn satisfies D1–D5.

Proof. We begin with the first statement. Consider any n ∈ N∪ {0}. It follows from
the definition of En and EBn that R := E0 ⊆ E1 ⊆ E2 ⊆ . . . and that RB := EB0 ⊆
EB1 ⊆ EB2 ⊆ . . . .

Let us first prove that for every n ∈ N ∪ {0}, if En satisfies D3, respectively D4,
then so does EBn :

D3: Consider f ∈ EBn and λ > 0. Then f 6= 0 and for every B ∈ B, Bf ∈ En ∪{0},
so B(λf) = λ(Bf) ∈ En ∪ {0}, and therefore λf ∈ EBn .
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D4: Similarly, if f, g ∈ EBn , then for every B ∈ B, both Bf and Bg belong to
En ∪ {0}, whence Bf + Bg = B(f + g) ∈ En ∪ {0}, and therefore f + g ∈ EBn :
we also have that f + g 6= 0 because otherwise there would be some B ∈ B such
that 0 6= Bf ∈ En, Bg = −Bf ∈ En and this would mean that 0 ∈ En ⊆ F ′, a
contradiction.

We proceed to show that En and EBn satisfy the different desirability axioms.
D1: Since L+ is included in R ⊆ En, it belongs to En, and consequently also to

EBn , for any n ≥ 0.
D2: If there is some superset F ′ of R satisfying D1–D5, it follows from Lemma 6

that 0 /∈ En+1 = posi(En ∪EBn ) for all n ≥ 0, and consequently En and EBn satisfy D2.
On the other hand, it follows from Eq. (7) that En is a convex cone for all n ≥ 0,

and therefore it satisfies D3 and D4. Applying the first part of the proof, we deduce
that so does EBn .

Finally, to see that EBn also satisfies D5, consider a non-zero gamble f such that
Bf ∈ EBn ∪ {0} for all B ∈ B. This implies that Bf ∈ En ∪ {0} for all B ∈ B, and as
a consequence f ∈ EBn . �

It follows from this result that, when the conglomerable natural extension of R
exists, we can equivalently express En as

En =
{
µ1f1 + µ2f2 : f1 ∈ En−1, f2 ∈ EBn−1, µ1, µ2 ∈ {0, 1},max{µ1, µ2} = 1

}
and also

En =
{
f + g : f ∈ En−1 ∪ {0}, g ∈ EBn−1 ∪ {0}

}
\ {0}

for any n ≥ 1.
The intuition has been all along that when the sequence En breaks off (becomes

constant) at some point, we have reached the conglomerable natural extension F .
Using Proposition 7, we can now confirm this.

Proposition 8. The following conditions are equivalent for any n ∈ N ∪ {0}:
(i) EBn ⊆ En;
(ii) En satisfies D5;

(iii) F = En.

Proof. We give a circular proof.
If EBn is included in En, then given a non-zero gamble f such that Bf ∈ En ∪ {0}

for all B ∈ B, it follows from the definition of EBn that f ∈ EBn , and therefore f ∈ En.
This implies that En satisfies D5.

Secondly, if En satisfies D5 then it follows from Proposition 7 that it is a superset
of R that satisfies conditions D1–D5. As a consequence, it must include the smallest
such superset, and therefore F ⊆ En. The converse inclusion follows from Lemma 6.

Finally, if F = En, we deduce that EBn ⊆ En from EBn ⊆ En+1 ⊆ F . �

This simple result has a couple of interesting consequences. On the one hand, if En
is not the conglomerable natural extension of R, then there must be some gamble f
in EBn \ En, and as a consequence En is a proper subset of En+1. In other words, the
sequence En does not stabilise unless we get to the conglomerable natural extension.
On the other hand, if EBn = EBn+1 for some n then EBn+1 is included in En+1, and
Proposition 8 implies that En+1 is the conglomerable natural extension of R. This
means that the sequence EBn also stabilises when we get to the conglomerable natural
extension, and only then: it is strictly increasing before that.

We go a bit further and provide a sufficient condition for E1 to coincide with F :

Proposition 9. Let R be a coherent set of desirable gambles.

(i) RB satisfies D1–D5, even if R has no conglomerable natural extension.
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(ii) RB = F ⇔ R ⊆ RB ⇔ (∀B ∈ B)(f ∈ R ⇒ Bf ∈ R∪{0}). As a consequence,
under any of these equivalent conditions, E1 = RB = F .

(iii) If there is some superset Q of R satisfying D1–D5 and such that QB = RB,
then E1 = F .

Proof. The first statement is a consequence of [24, Proposition 1].
To prove the second statement, observe that from the definition of RB, it includes

R if and only if Bf ∈ R ∪ {0} for all f ∈ R and B ∈ B. On the other hand, if
R ⊆ RB, then we deduce that F ⊆ RB, since the first statement tells us that
RB satisfies D1–D5. Hence F = RB, and the converse implication is trivial. Since
RB ⊆ E1 ⊆ F , we deduce that if R is included in RB then E1 = F = RB.

For the last statement, note that R ⊆ Q implies that E1 ⊆ Q1 = Q, where
the last equality holds because Q satisfies D5, and is therefore equal to its own
conglomerable natural extension. As a consequence, we also have EB1 ⊆ QB = RB,
and since we always have the converse inclusion, we deduce that EB1 = RB. But
then EB1 is included in E1, and applying Proposition 8 we deduce that E1 is the
conglomerable natural extension of R. �

We present an example showing that the inclusion R ⊆ RB does not imply that
R = RB, or, equivalently, that we may have R ( E1 = F :

Example 2. Consider Ω := N, Bn := {2n− 1, 2n} and B := {Bn : n ∈ N}. Let R be
the set of gambles given by{

f : (∃n ∈ N)fI[n,∞) ∈ L+, (∀n ∈ N)(min{f(2n) + f(2n− 1), f(2n)} ≥ 0)
}
, (8)

where we use the notation ‘[n,∞)’ to denote the set {n, n+1, . . . }. Then it is easy to
see that R satisfies D1–D4. To see that R is included in RB, note that given a gamble
f ∈ R and Bn ∈ B, Bn(f(2m)+f(2m−1)) ≥ 0 and Bn(f(2m)) ≥ 0 for every natural
number m. Moreover, if Bnf = 0, then automatically Bnf ∈ R ∪ {0}. If Bnf 6= 0
then f(2n) > 0, whence Bnf ∈ R because BnfI[2n,∞) ∈ L+, or f(2n− 1) > 0 and

whence Bnf ∈ R because BnfI[2n−1,∞) ∈ L+.
However, R does not satisfy D5, and as a consequence it does not coincide

with RB: the non-zero gamble g given by

g(2n) := 1 and g(2n− 1) := −1 for all n ∈ N (9)

does not belong to R because it does not become positive eventually: there is no
natural number n such that gI[n,∞) ∈ L+. On the other hand, for every natural

number n, the non-zero gamble Bng does belong to R since BngI[2n,∞) ∈ L+, and

therefore g ∈ RB. �

This example allows us also to show that conglomerability and weak conglomer-
ability of gambles are not equivalent:

Example 3. Let the coherent set R of desirable gambles be given by Eq. (8). We have
already shown in Example 2 that it does not satisfy D5. To see that it satisfies wD5,
note that given a gamble f and Bn ∈ B, Bnf belongs to R ∪ {0} if and only if
Bnf ≥ 0, because there is no δ > 0 such that Bnf − δ ∈ R: Bnf − δ does not
become positive eventually. As a consequence, (∀Bn ∈ B)Bnf ∈ R ∪ {0} implies
that f ≥ 0 and therefore f ∈ R. �

The same example shows us something else that is quite interesting: it may
happen that every Bnf lies in the ‘boundary’ R \R (as well as every Bn) and at
the same time f =

∑
nBnf lies outside R:

Example 4. Let R by given by Eq. (8) and let g be the gamble defined in Eq. (9).
Taking into account the comments in Example 3, there is no δ > 0 such that
Bng − δ ∈ R, because this gamble does not become positive eventually. On the
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other hand, we know that Bng ∈ R. This means that Bng ∈ R \ R ⊆ R \R for all
Bn ∈ B.

Now, to show that g /∈ R, we consider any 0 < δ < 1 and show that g + δ does
not belong to R. In fact, g(2n−1) + δ < 0 for all n ≥ 1, so g cannot become positive
eventually.

Observe that g + 1 ∈ L+, so g + 1 ∈ R. This means that for the associated lower
prevision: P (g) = sup

{
µ : g − µ ∈ R

}
= sup {µ : g − µ ∈ R} = −1. �

Stated differently, this means that even if the gambles that violate D5 are only on
the border of R, taking the closure of R with respect to D5 may not ony affect the
border (or the interior) of R, but may require to enlarge the set beyond its borders.

On the other hand, when R is a set of strictly desirable gambles, the inclusion
R ⊆ RB only holds in trivial cases, as we see from the following proposition:

Proposition 10. Let P be a coherent lower prevision and let R be its associated
set of strictly desirable gambles. Then R ⊆ RB if and only if R = RB = L+.

Proof. The ‘if’ part is trivial, so we concentrate on the other implication. From
Proposition 9, the inclusion R ⊆ RB is equivalent to

f ∈ R and B ∈ B ⇒ Bf ∈ R ∪ {0}. (10)

Assume for the lower prevision P associated with R that there is some B0 ∈ B such
that 0 < P (B0) ≤ 1. Then it follows from Eq. (4) that there is some µ > 0 such
that the gamble B0 − µ belongs to R. But this gamble is equal to −µ < 0 on every
B 6= B0, a contradiction with (10).

As a consequence, P (B) = 0 for all B ∈ B. Consider any f ∈ R then Lemma 1
tells us that P (Bf) ≤ 0, so we infer from Eq. (10) that Bf ∈ L+∪{0} for all B ∈ B,
so f ∈ L+. Hence R = L+, and then we deduce from Eq. (6) that RB = L+. �

4. Conglomerability for coherent lower previsions

We investigate, for lower previsions, the relationship between the natural extension
and the conglomerable natural extension. To this end, we consider a coherent lower
prevision P on K that is not B-conglomerable, and denote by F its B-conglomerable
natural extension.

Definition 4. Let P be a coherent lower prevision on K. Its conglomerable natural
extension is the smallest coherent lower prevision F on L that dominates P and is
conglomerable.

There may not be any dominating conglomerable coherent lower prevision, and
then the conglomerable natural extension will not exist. On the other hand, if
there is a dominating conglomerable model then there is a conglomerable natural
extension, because conglomerability is preserved by taking lower envelopes.

We can assume without loss of generality that the domain of P is the set L
of all gambles: otherwise, it suffices to consider the natural extension E of P to
L. To see that the conglomerable natural extensions of P and E coincide, denote
them by F 1 and F 2, respectively. Trivially F 2 ≥ F 1. Conversely, F 1 is by definition
a (B-conglomerable) coherent lower prevision that dominates P on K, and which
as a consequence dominates also the natural extension E—which is the smallest
dominating coherent lower prevision. Hence F 1 ≥ F 2, and therefore they are equal.

Given a coherent lower prevision P , Walley defines its conditional natural exten-
sion as:

P (f |B) :=

{
sup {µ : P (B(f − µ)) ≥ 0} if P (B) > 0

infω∈B f(ω) otherwise
(11)
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for every f ∈ L and B ∈ B. When P (B) > 0, P (f |B) corresponds to the unique
value µ such that P (B(f −µ)) = 0, i.e., for which (GBR) is satisfied. A consequence
of this is that if we consider two coherent lower previsions P 1 and P 2, and their
conditional natural extensions P 1(·|B) and P 2(·|B) given by Eq. (11), then

P 1 ≥ P 2 ⇒ P 1(·|B) ≥ P 2(·|B). (12)

It turns out that this conditional natural extension can be used to characterise the
conglomerability of P .

Proposition 11 ([21, Theorem 6.8.2]). Let P be a coherent lower prevision on L.
The following statements are equivalent:

(i) P is B-conglomerable.
(ii) P is coherent with some conditional lower prevision P ′(·|B).

(iii) P is coherent with its conditional natural extension P (·|B).

In [21, Section 6.6], Walley gives a number of examples of coherent lower previsions
that are not B-conglomerable. We next give a sufficient condition for conglomerabil-
ity:

Proposition 12. If the conditional natural extension P (·|B) of P is vacuous, then
P is B-conglomerable, and so is any coherent lower prevision Q ≤ P .

Proof. From the definition of the conditional natural extension, P (GP (f |B)) = 0
for every gamble f and every set B ∈ B. On the other hand, if P (·|B) is vacuous
then it follows from the coherence of P that P (GP (f |B)) ≥ 0, because GP (f |B) is
then non-negative. Hence the discussion in Section 2.1 tells us that P and P (·|B)
are coherent, and applying Proposition 11, we deduce that P is conglomerable.

On the other hand, given Q ≤ P , it follows from Eq. (12) that the conditional
lower prevision Q(·|B) derived from Q using natural extension must be dominated by
P (·|B), and applying separate coherence we deduce that Q(·|B) = P (·|B), because
P (·|B) is vacuous. Applying the first part, we deduce that Q and Q(·|B) are coherent,
and therefore Q is also B-conglomerable. �

If P is not B-conglomerable, it is not coherent with its conditional natural exten-
sion P (·|B). We will use this fact to kickstart a procedure that generates a sequence
of coherent lower previsions En that will get closer to the conglomerable natural
extension F , similarly to what we have done in the treatment of conglomerability
for sets of desirable gambles in the previous section.

Consider, in this case, the natural extensions E and E(·|B) of P and P (·|B),
determined by [21, Theorem 8.1.5]:

E(f) := sup
{
µ : f − µ ≥ GP (g) +GP (h|B) for some g, h ∈ L

}
, (13)

and

E(f |B) :=

{
sup {µ : E(B(f − µ)) ≥ 0} if E(B) > 0

sup
{
µ : B(f − µ) ≥ GP (g|B) for some g ∈ L

}
otherwise.

The conditional lower prevision E(·|B) coincides with the conditional natural exten-
sion of E, i.e., it can be obtained using Eq. (11). To see this, note that if E(B) = 0
then also P (B) = 0. Applying Eq. (11), we deduce that GP (g|B) ≥ 0 for every
gamble g and therefore

sup
{
µ : B(f − µ) ≥ GP (g|B) for some g ∈ L

}
= sup {µ : B(f − µ) ≥ 0} = inf

ω∈B
f(ω).

Since E ≥ P , we deduce from Eq. (12) that E(·|B) ≥ P (·|B).
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Proposition 13. The natural extension E of P and P (·|B) is dominated by the
conglomerable natural extension F of P , if it exists. They coincide if and only if E
and E(·|B) are coherent. Moreover,

M(E) =
{
P ∈M(P ) : (∀f ∈ L)P (GP (f |B)) ≥ 0

}
. (14)

Proof. From [21, Theorem. 8.1.2(c)], E and E(·|B) are respective lower bounds
for any coherent pairs of lower and conditional lower previsions that dominate P
and P (·|B), respectively. Given the conglomerable natural extension F ≥ P and
the conditional lower prevision F (·|B) it defines by conditional natural extension—
coherent with it—, we see that F (·|B) ≥ P (·|B): it suffices to take into account that
F ≥ P and apply Eq. (12). As a consequence, F ≥ E and F (·|B) ≥ E(·|B). Now,
E = F if and only if E is B-conglomerable, and by Proposition 11 this is equivalent
to E and E(·|B) being coherent.

We conclude by proving Eq. (14). For the direct inclusion, consider any E ∈M(E).
It follows from the definition of E that E ≥ E ≥ P , so E ∈ M(P ). Moreover,
E(GP (f |B)) ≥ E(GP (f |B)) ≥ 0 for every gamble f , where the last inequality follows
from Eq. (13). Conversely, consider any linear prevision P belonging to the set in
the right-hand side of Eq. (14). If there were some gamble g such that P (g) < E(g),
then there would be some ε > 0 and gambles f and h such that g − P (g) − ε ≥
GP (f) + GP (h|B), whence P (g − P (g) − ε) = −ε ≥ P (GP (f) + GP (h|B)) ≥ 0, a
contradiction. �

The fact that the natural extensions E and E(·|B) need not be coherent, and that
consequently, the natural extension E need not coincide with the conglomerable
natural extension F , is an indication that, although Walley’s treatment of coherence
and natural extension is intended to adequately deal with conglomerability, it falls
somewhat short of this aim.

We next provide another interesting characterisation of E, by means of the
so-called marginal extension:

Proposition 14. Consider any coherent lower prevision P and any separately
coherent conditional lower prevision P (·|B) on L. Define the marginal extension
M := P (P (·|B)) of P and P (·|B), and let E be the natural extension of P and
P (·|B). Then

M(E) =M(P ) ∩M(M). (15)

As a consequence, if M ≥ P , then M coincides with E, and then M is the conglom-
erable natural extension of P .

Proof. We begin with the direct inclusion in Eq. (15). Consider any linear prevision
P ∈ M(E). Since E ≥ P , P ∈ M(P ). From Eq. (14), it satisfies P (GP (f |B)) ≥ 0
for every gamble f . Since P is additive, we deduce that

P (f) = P (GP (f |B)) + P (P (f |B)) ≥ P (P (f |B)) ≥ P (P (f |B)) = M(f)

for every gamble f . Hence P ∈M(M).
Conversely, consider any linear prevision in M(P ) ∩ M(M). Then for every

gamble f it holds that P (GP (f |B)) ≥M(GP (f |B)) ≥ 0, where the last inequality
holds because M is the marginal extension of P (·|B) and the restriction of P to the
set of B-measurable gambles, which by [21, Theorem 6.7.2] is coherent with P (·|B).
Using Eq. (14), we deduce that P ∈M(E).

We turn to the second statement. If M dominates P , then M(M) ⊆M(E) and
therefore M(E) = M(M) by Eq. (15). Hence E = M , or equivalently, E is the
marginal extension M of the restriction of P to the set of B-measurable gambles
with P (·|B). Since M is coherent with P (·|B), it is a B-conglomerable model by
Proposition 11, and therefore it must dominate the conglomerable natural extension
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F of P : M ≥ F . But since we also have M = E ≤ F by Proposition 13, we deduce
that M = F . �

Let us give an example showing that E does not coincide with the conglomerable
natural extension in general:

Example 5. Let us consider Ω := N ∪ −N, where as before N is the set of natural
numbers without zero, Bn := {−n, n} and B the partition of Ω given by B :=
{Bn : n ∈ N}. Let P be any finitely additive probability on P(N) that satisfies
P ({n}) = 0 for every n, and let us consider the linear previsions P1, . . . , P4, where
P1 is determined by (the expectation associated with) the σ-additive probability
measure with mass function:

P1({n}) := P1({−n}) :=
1

2n+1
, n ∈ N

and P2, . . . , P4 are given by, for any h ∈ L(Ω):

P2(h) :=
1

2

∑
n∈N

h(n)
1

2n
+

1

2
P (h2),

and

P3(h) :=
3

4
P (h1) +

1

4
P (h2), and P4(h) :=

1

2
P1(h) +

1

2
P3(h),

where the gambles h1 and h2 on N are defined by h1(n) := h(n) and h2(n) := h(−n)
for all n ∈ N.

Consider the coherent lower prevision P := min{P1, P2, P4}. For every Bn ∈ B,

P (Bn) = min

{
1

2n
,

1

2n+1
,

1

2n+1

}
> 0.

As a consequence, for every gamble h ∈ L(Ω), Theorem 6.4.2 in [21] guarantees that

P (h|Bn) = min{P1(h|Bn), P2(h|Bn), P4(h|Bn)} = min

{
h(n) + h(−n)

2
, h(n)

}
.

(16)
To see that P is not B-conglomerable, consider the gamble f given by

f(n) := 1− 1

n
and f(−n) := −f(n) =

1

n
− 1, n ∈ N.

It follows from Eq. (16) that P (f |Bn) = 0 for every n ∈ N, so GP (f |B) = f . Now

− 1 = inf f2 ≤ P (f2) ≤ P
(
I[n,∞)

(
1

n
− 1

))
=

(
1

n
− 1

)
P ([n,∞]) =

1

n
− 1 (17)

for all n ∈ N, where the last equality holds because P ({1, . . . , n}) = 0 for all n ∈ N.
Hence P (f2) = −1 and therefore

P (GP (f |B)) = P (f) ≤ P2(f) =
∑
n∈N

1

2n+1

(
1− 1

n

)
− 1

2
< 0.

This implies that P is not coherent with the conditional P (·|B), and therefore,
indeed, P is not B-conglomerable by Proposition 11.

This makes us look at the natural extension E of P and P (·|B), so we are going to
apply Eq. (14) to determineM(E). First of all, for every linear prevision Q ∈M(P ),
there are α1, α2, α4 ∈ [0, 1] such that α1 +α2 +α4 = 1 and Q = α1P1 +α2P2 +α4P4.

We need to check which of these convex combinations satisfies Q(GP (h|B)) ≥ 0
for all gambles h, and therefore belongs to M(E). It is easy to infer from Eq. (16)
that for all n ∈ N:

GP (h|B)(n) = max

{
0,
h(n)− h(−n)

2

}
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and

GP (h|B)(−n) = max

{
h(−n)− h(n),

h(−n)− h(n)

2

}
.

As a consequence, GP (h|Bn) ≥ 0 as soon as h(n) ≤ h(−n), and this implies
that GP (h|B) ≥ GP (h|B)IC , where C :=

⋃
{Bn : h(n) ≥ h(−n)}. We can therefore

concentrate on the worst-case gambles h such that h(n) ≥ h(−n) for every n ∈ N.
Let g := GP (h|B), then g1 ≥ 0 and g2 = −g1, and as a consequence,

Q(g) = α1P1(g) + α2P2(g) + α4P4(g)

= 0 + α2

(
P1(gIN) +

1

2
P (g2)

)
+ α4

(
0 +

3

8
P (g1) +

1

8
P (g2)

)
= α2P1(gIN) + P (g1)

1

4
(α4 − 2α2).

If α4 ≥ 2α2, we deduce from the non-negativity of g1, and the non-negativity of g
on N, that Q(g) ≥ 0 and therefore Q ∈M(E). On the other hand, if α4 < 2α2 (and
therefore α2 > 0) there is some natural number m such that α2/2

m < (2α2 − α4)/4.
We consider the gamble hm given by

hm(n) := I[m,∞)(n) =

{
0 if n < m

1 if n ≥ m
and hm(−n) := −hm(n) for all n ∈ N.

Then gm := GP (hm|B) = hm, P1(gmIN) = P1([m,∞)) = 1/2m and P ((gm)1) = 1,
using a course of reasoning similar to the one leading to Eq. (17). As a consequence,

Q(gm) = α2P1(gmIN) +
1

4
P ((gm)1)(α4 − 2α2) =

1

2m
α2 +

1

4
(α4 − 2α2) < 0,

and therefore Q /∈M(E).
We conclude that E is the lower envelope of the set {P1, P4, 1/3P2 + 2/3P4}, and

as a consequence its conditional natural extension E(·|B) is given by [again, see
Theorem 6.4.2 in [21]]:

E(h|Bn) = min

{
h(n) + h(−n)

2
,

2h(n) + h(−n)

3

}
for all gambles h on Ω. (18)

To see that E is not B-conglomerable, we use Proposition 11 and show that it is
not coherent with E(·|B). Consider any gamble h such that h(n) ≤ h(−n) for all
n ∈ N. Then Eq. (18) yields E(h|Bn) = (2h(n) + h(−n))/3, and consequently

GE(h|Bn)(n) =
1

3
[h(n)− h(−n)] and GE(h|Bn)(−n) = −2

3
[h(n)− h(−n)].

So, if we let g := GE(h|B), then we obtain g2 = −2g1 ≥ 0, whence

P4(g) =
1

2
P1(g) +

3

8
P (g1) +

1

8
P (g2)

=
1

2
[P1(gIN) + P1(gI−N)] +

1

8
P (g1) = −1

8
[4P1(gIN)− P (g1)].

Let h(n) = h(−n) := 0 for n = 1, 2 and h(n) = −h(−n) := −1 for n > 2.
Then P1(gIN) = −1/12 and P (g1) = −2/3, and therefore P (g1) < 4P1(gIN), so
we get P4(GE(h|B)) < 0, whence E(GE(h|B)) < 0. This shows that E is not B-
conglomerable, and as a consequence it does not coincide with the conglomerable
natural extension F of P , which exists because P1 ≥ P is B-conglomerable (because
any σ-additive model is, see Theorem 6.9.1 in [21]). �

On the other hand, we can give a number of sufficient conditions for the natural
extension to be B-conglomerable.
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Proposition 15. Consider a coherent lower prevision P that has a conglomerable
natural extension F . If there is some coherent lower prevision Q ≥ P that is coherent
with the conditional natural extension P (·|B) of P , then the natural extension E of P
and P (·|B) coincides with the conglomerable natural extension F . As a consequence,
if the conditional natural extension P (·|B) of P is linear, then the conglomerable
natural extension F coincides with the natural extension E of P and P (·|B).

Proof. Assume that there is some Q ≥ P such that Q and P (·|B) are coherent.
Then since E(·|B) ≥ P (·|B) and the pair E and E(·|B) constitute a lower bound for
any pair of coherent lower and conditional lower previsions that dominate P and
P (·|B), we deduce that P (·|B) = E(·|B) and E ≤ Q. To see that E and P (·|B) are
coherent, note on the one hand that, by Eq. (14), E(GP (f |B)) ≥ 0 for any gamble
f , and in particular E(GP (f |B)) ≥ 0. On the other hand,

0 ≤ E(GP (f |B)) ≤ Q(GP (f |B)) = 0,

where the last inequality follows from the coherence of Q and P (·|B). It follows that
E and P (·|B) are coherent, so E is B-conglomerable by Proposition 11, and as a
consequence it is the B-conglomerable natural extension F of P .

Let us prove now the second statement. From Eq. (12), F (·|B) ≥ P (·|B). Since this
second functional is linear, it follows from separate coherence that F (·|B) = P (·|B):
if otherwise F (f |B) > P (f |B) for some gamble f and some B ∈ B, then

F (0|B) = F (f − f |B) ≥ F (f |B) + F (−f |B) > P (f |B) + P (−f |B) = 0,

a contradiction. Hence F and P (·|B) are coherent. Applying the first statement, we
deduce that F coincides with the natural extension E of P and P (·|B). �

We can now continue with our procedure to generate a sequence of coherent lower
previsions En that will get closer to the conglomerable natural extension F , similarly
to what we have done in the treatment of conglomerability for sets of desirable
gambles in the previous section. When P is not B-conglomerable, we can consider
the natural extension E1 := E of P and P (·|B). If E1 is not B-conglomerable, we can
consider the natural extension E2 of E1 and its conditional natural extension E1(·|B),
and so on. Our next result shows that the resulting sequence En of coherent lower
previsions does not stabilise (become constant) unless we get to a B-conglomerable
coherent lower prevision:

Proposition 16. If a coherent lower prevision P is not B-conglomerable, then it
does not coincide with the natural extension E of P and P (·|B). On the other hand,
if E(·|B) = P (·|B) then E is B-conglomerable.

Proof. If P is not B-conglomerable, this means that it is not coherent with its
conditional natural extension P (·|B). Since P and P (·|B) satisfy (GBR), this means
that there is some gamble f such that P (GP (f |B)) < 0. On the other hand, the
natural extension E of P and P (·|B) satisfies E(GP (f |B)) ≥ 0 because of Eq. (14),
and as a consequence it cannot coincide with P .

On the other hand, if E(·|B) = P (·|B), then since E(GP (f |B)) ≥ 0 for all f
because of the definition of E, we conclude that E is coherent with E(·|B), and as a
consequence it is B-conglomerable. �

We can establish Proposition 12 as a consequence of this result: if P (·|B) is vacuous,
we deduce that P coincides with the natural extension E of P and P (·|B), and as a
consequence it must be B-conglomerable. We can also deduce the second statement
of Proposition 15: if P (·|B) is linear then it necessarily coincides with E(·|B), and
this means that E is the conglomerable natural extension.

The sequence En is non-decreasing and dominated by the supremum operator,
and it therefore converges point-wise to a coherent lower prevision E∞, which by
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construction is dominated by the conglomerable natural extension F of P : it suffices
to use induction and to take into account that at any step n, En+1 is a lower bound
of any coherent extension of En and En(·|B), and therefore it is bounded by the
conglomerable natural extension F . It is an open problem whether the two coherent
lower previsions E∞ and F coincide, or to find an example where En does not
coincide with F∞ for any n ∈ N, i.e., where we cannot get to the conglomerable
natural extension in a finite number of steps. But we can establish the following
convergence result for the conditional natural extension E∞(·|B) of E∞:

Proposition 17. For every gamble f , E∞(f |B) = limn→∞En(f |B).

Proof. Since En is an non-decreasing sequence of coherent lower previsions that
converges towards E∞, it follows from the definition of the conditional natural
extension that for every gamble f the sequence En(f |B) is a bounded and non-
decreasing sequence of gambles whose limit is dominated by E∞(f |B). To see
that there is equality, consider an arbitrary set B ∈ B. If E∞(B) = 0 then
E∞(f |B) = infω∈B f(ω) = En(f |B) for all n. If E∞(B) > 0, then there is some
natural number m such that En(B) > 0 for all n ≥ m, taking into account that
E∞(B) = limn→∞En(B). As a consequence, taking into account that due to (separ-
ate) coherence E∞(B(f − µ)) and En(B(f − µ)) are continuous and non-increasing
functions of µ:

E∞(f |B) = sup {µ : E∞(B(f − µ)) ≥ 0} = sup {µ : E∞(B(f − µ)) > 0}
= sup {µ : En(B(f − µ)) > 0 for some n ∈ N}
= sup
n∈N

sup {µ : En(B(f − µ)) > 0} = sup
n∈N

sup {µ : En(B(f − µ)) ≥ 0}

= sup
n∈N

En(f |B) = lim
n→∞

En(f |B). �

E∞ coincides with the conglomerable natural extension F if and only if E∞ is
B-conglomerable, and this is equivalent to E∞(GE∞(f |B)) ≥ 0 for every gamble f .
This holds for instance if E∞(·|B) is the uniform limit of the sequence En(·|B): it
then follows from the coherence of E∞ (e.g., see [21, Section 2.6.1(`)]) that

E∞(GE∞(f |B)) = lim
n→∞

E∞(GEn
(f |B)) ≥ lim

n→∞
En(GEn

(f |B)) ≥ 0,

using Eq. (14) for the last inequality. But we stress that this uniform convergence is
a very strong requirement: assume for instance that we have a countable partition
B = {Bn : n ∈ N}. If the following property holds

(∀n ∈ N, ε > 0)(∃fn,ε ∈ L)(sup(|fn,ε|) ≤ 1, E∞(fn,ε|Bn)− En(fn,ε|Bn) > ε),

then the convergence is not uniform: consider, for instance, for any given ε, the
gamble fε :=

∑
n∈NBnfn,ε.

5. Connection between the two approaches

In spite of the connection between sets of desirable gambles and coherent lower
previsions we have summarised in Section 2.2, the correspondence does not extend
towards the notion of conglomerable natural extension we have discussed in Sections 3
and 4. The reason is that in our definition of the conglomerable natural extension of a
set of gambles we are using condition D5, while the conglomerable natural extension
for coherent lower previsions is based on condition wBC which is equivalent to wD5,
and which is therefore weaker than D5 in general. In this section, we explore the
connection in detail.

Let R be a set of desirable gambles satisfying D1–D4, and let P be its associated
coherent lower prevision, given by Eq. (3). If R does not satisfy D5, then we can
consider the increasing sequence of sets of desirable gambles En, defined by means
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of Eqs. (7). With each of these sets of desirable gambles we can associate a coherent
lower prevision Pn, again by means of Eq. (3). At the same time, we can consider the
sequence En of coherent lower previsions derived from P in the manner discussed
in Section 4: E1 is the natural extension of P and P (·|B), where P (·|B) is the
conditional natural extension of P ; E2 is the natural extension of E1 and E1(·|B);
and so on.

Let us investigate the relationship between the sequences Pn and En:

Proposition 18. For every gamble f , En(f) ≤ Pn(f).

Proof. We use induction on n.
We begin with n = 1. Consider any gamble f ∈ L and µ < E1(f). Then there

are gambles g, h such that

f − µ ≥ GP (g) +GP (h|B).

As a consequence, given ε > 0,

f − µ+ ε ≥ GP (g) +
ε

2
+GP (h|B) +

ε

2
.

Since R is a coherent set of desirable gambles and P is derived from R using Eq. (3),
we deduce that GP (g) + ε/2 = g − (P (g) − ε/2) belongs to R. Similarly, for every
B ∈ B the gamble GP (h|B) +Bε/2 also belongs to R: if P (B) = 0 this is a positive
gamble, which belongs to R because this set satisfies D1; and if P (B) > 0 then

P (h|B) = sup {µ : P (B(h− µ)) ≥ 0}
= sup {µ : P (B(h− µ)) > 0} = sup {µ : B(h− µ) ∈ R} ,

so indeed GP (h|B)+Bε/2 ∈ R. As a consequence, GP (h|B)+ε/2 ∈ RB, and therefore
f − µ + ε ∈ E1. This implies that P 1(f) ≥ µ − ε, and since we can arrive at this
conclusion for every µ < E1(f) and every ε > 0, we conclude that P 1(f) ≥ E1(f).

Assume now that the result holds for n− 1, and let us show that it also holds
for n. From the induction hypothesis, it follows that En−1 ≤ Pn−1, and applying
Eq. (12) we find that En−1(·|B) ≤ Pn−1(·|B).

Using the same reasoning as in the case n = 1, Pn dominates the natural extension
Q
n

of Pn−1 and Pn−1(·|B). Since Pn−1 ≥ En−1 and Pn−1(·|B) ≥ En−1(·|B), we

deduce that Q
n

in turn dominates the natural extension En of En−1 and En−1(·|B).
Hence En ≤ Qn ≤ Pn. �

However, the coherent lower previsions Pn and En do not coincide in general, as
the following counterexample shows:

Example 6. Consider the set of desirable gambles R from Example 2, and let
P be its associated coherent lower prevision. We have shown in Example 3 that
R satisfies wD5, and therefore Theorem 3 implies that P is B-conglomerable,
and in particular E1(f) = P (f) for every f . On the other hand, we have seen
in Example 2 that R does not satisfy D5, and in particular that the gamble
g := I{even} − I{odd} belongs to RB \ R. Moreover, we have seen in Example 4 that
P (g) = sup {µ : g − µ ∈ R} = −1. From all this, we deduce that P 1(g) ≥ 0 > −1 =
P (f) = E1(f), showing that P 1 6= E1: the inequality can be strict. �

The reason for this can be found in the following characterisation of Pn:

Proposition 19. Pn is the natural extension of Pn−1 and P ′n−1(·|B), where the

conditional lower prevision P ′n−1(·|B) is derived from the set of desirable gambles
En−1 by Eq. (5).
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Proof. For every gamble f ,

Pn(f) = sup {µ : f − µ ∈ En}

= sup

{
µ : f − µ = µ1g + µ2h, g ∈ En−1, h ∈ EBn−1, µk ∈ {0, 1},max

k
µk = 1

}
.

Consider µ < Pn(f). Then there are µk ∈ {0, 1} such that maxk µk = 1, g ∈ En−1

and h ∈ EBn−1 such that f − µ = µ1g + µ2h. g ∈ En−1 implies Pn−1(g) ≥ 0, so

g ≥ GPn−1
(g). h ∈ EBn−1 implies that Bh ∈ En−1 ∪ {0} for every B ∈ B, whence

P ′n−1(h|B) ≥ 0. As a consequence

f − µ ≥ GPn−1
(µ1g) +GP ′n−1

(µ2h|B). (19)

This means that the natural extension E′n of Pn−1 and P ′n−1(·|B) satisfies E′n(f) ≥ µ,

and as a consequence E′n(f) ≥ Pn(f).
Conversely, let µ < E′n(f). Then there are gambles g and h, and µ1, µ2 ∈ {0, 1}

with at least one of them equal to 1 such that Eq. (19) holds. Given ε > 0 it follows
from the definition of Pn−1 P

′
n−1(·|B) that GPn−1

(µ1g) + ε
2 ∈ En−1 and similarly

B(µ2h − P ′n−1(µ2h|B) + ε
2 ) belongs to En−1 for every B ∈ B, or, equivalently,

GP ′n−1
(µ2h|B) + ε

2 belongs to EBn−1. But this means that f − µ+ ε belongs to En
for every ε > 0, and as a consequence Pn(f) ≥ µ. We conclude that Pn(f) ≥ E′n(f)
and therefore they are equal. �

On the other hand, P ′n−1(·|B) satisfies (GBR) with respect to Pn−1: given a
gamble f and a set B ∈ B, then for every ε > 0,

Pn−1(GP ′n−1
(f |B) + ε) ≥ Pn−1(B(f − P ′n−1(f |B) + ε)) ≥ 0,

so Pn−1(GP ′n−1
(f |B)) ≥ −ε for every ε > 0, whence Pn−1(GP ′n−1

(f |B)) ≥ 0.

And conversely, if there is some ε > 0 such that Pn−1(GP ′n−1
(f |B)) ≥ ε, then

the gamble GP ′n−1
(f |B) − ε

2 must belong to En−1, and therefore also the gamble

B(f − P ′n−1(f |B)− ε
2 ), which is greater, belongs to En−1. But this means that we

can increase the value P ′n−1(f |B) by ε
2 > 0, a contradiction.

As a consequence, P ′n−1(·|B) can strictly dominate the conditional natural ex-
tension Pn−1(·|B) of Pn−1 only when some of the conditioning events have lower
probability zero.

Using Proposition 18, we can now establish the following:

Proposition 20. Let R be a coherent set of strictly desirable gambles, and let P
be its associated coherent lower prevision. Then P 1 = E1. As a consequence, if E1
is the conglomerable natural extension of R, then E1 is the conglomerable natural
extension of P .

Proof. By Proposition 18, it suffices to show that E1(f) ≥ P 1(f) for every gamble f .
Moreover, using the results from Section 2.2, R must be the set of strictly desirable
gambles associated to P , so R = L+ ∪ {f ∈ L : P (f) > 0}.

Since P 1 is the coherent lower prevision associated to E1, for every ε > 0, the
gamble f − P 1(f) + ε belongs to E1, and as a consequence there are gambles g and

h such that g ∈ R and h ∈ RB, and µ1, µ2 ∈ {0, 1} with max{µ1, µ2} = 1 such that
f − P 1(f) + ε = µ1g + µ2h.

From the definition of P , g ∈ R implies that P (g) ≥ 0, whence g ≥ GP (g) and

therefore µ1g ≥ GP (µ1g). On the other hand, if h ∈ RB then Bh ∈ R∪{0} for every
B ∈ B. If Bh = 0, then trivially P (h|B) ≥ 0. If Bh ∈ R, there are two possibilities:
if P (B) > 0 then Bh ∈ R implies that

0 ≤ sup {µ : B(h− µ) ∈ R} ≤ sup {µ : P (B(h− µ)) ≥ 0} = P (h|B),
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where the last equality follows from (GBR). The second possibility is that P (B) = 0.
Then Lemma 1 implies that P (Bh) ≤ 0, so Bh can only belong to R if it is a non-
negative gamble. Therefore P (h|B) = sup {µ : B(h− µ) ∈ R} = sup {µ : B(h− µ)  0} =
infω∈B h(ω).

From all this we deduce that the conditional lower prevision associated to R is
the conditional natural extension P (·|B) of P , and in this case that P (h|B) ≥ 0.
This implies that h ≥ GP (h|B), and therefore µ2h ≥ GP (µ2h|B). As a consequence,
f − P 1(f) + ε ≥ GP (µ1g) +GP (µ2h|B). Hence E1(f) ≥ P 1(f)− ε, and since this
holds for all ε > 0, we find that E1(f) ≥ P 1(f).

For the second part, if E1 is the conglomerable natural extension of R, then it
satisfies D5 and in particular wD5. We deduce from Theorem 3 that the coherent
lower prevision P 1 = E1 satisfies wBC, i.e., that it is B-conglomerable. Since En is
a lower bound of the conglomerable natural extension for every n ∈ N, we find that
in this case E1 is the conglomerable natural extension. �

We mention however that the number of steps necessary to compute the conglom-
erable natural extension can be different in the two cases, as Example 6 shows.

As a consequence of Proposition 20, if E1 is not B-conglomerable, then E1 does
not satisfy D5, provided we start from a set of strictly desirable gambles. This
observation allows us to give another example where the sequence of sets of desirable
gambles does not stabilise in the first step:

Example 7. Consider the coherent lower prevision P from Example 5 and let R be
its associated set of strictly desirable gambles. We have shown in Example 5 that the
natural extension E of P and P (·|B) is not B-conglomerable, and therefore it does
not coincide with the conglomerable natural extension of P . Applying Proposition 20,
we deduce that E1 cannot be the conglomerable natural extension of R, and therefore
the sequence En does not stabilise at the first step. �

We give another sufficient condition for the two sequences of coherent lower
previsions to coincide:

Proposition 21. If P (B) > 0 for every B ∈ B, then Pn(f) = En(f) for all f ∈ L.

Proof. We use induction on n. We first give a proof for n = 1. From Proposition 19,
P 1 is the natural extension of P , P ′(·|B), where P ′(·|B) is derived from R using
Eq. (5). Since we have proven that P ′(·|B) satisfies (GBR) with respect to P and
P (B) > 0, it follows that P ′(·|B) = P (·|B), and as a consequence P 1 coincides with
the natural extension E1 of P and P (·|B).

Similarly, if the result holds for n− 1, we know from Proposition 19 that Pn is
the natural extension of Pn−1 and P ′n−1(·|B), where P ′n−1(·|B) is derived from En−1

using Eq. (5). Since we have proved that P ′n−1(·|B) satisfies (GBR) with respect

to Pn−1 = En−1 and Pn−1(B) ≥ P (B) > 0, it follows that P ′n−1(·|B) = En−1(·|B).
As a result, Pn coincides with the natural extension En(f) of En−1, En−1(·|B). �

Corollary 22. If P (B) > 0 for all B ∈ B and En is the conglomerable natural
extension of R, then En is the conglomerable natural extension of P .

Proof. If En is the conglomerable natural extension of R then we have En = En+1,
whence Pn = Pn+1, and, taking into account Proposition 21, also En = En+1. Now,
applying Proposition 16 we deduce that En must be the conglomerable natural
extension of P . �

The condition P (B) > 0 for every B ∈ B does not imply that the sequence
stabilises at the first step, as Example 5 shows. On the other hand, the sequences
En and En need not stabilise at the same time, as we can deduce from the following:
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Example 8. Take Ω := N, Bn := {2n, 2n− 1}, and let P be the countably additive
probability defined by P ({2n}) := P ({2n− 1}) := 1

2n+1 . Consider the set of gambles

R := {f : P (f) > 0} ∪ {f : P (f) = 0, supp(f) finite, and f(min supp(f)) > 0} ,
where supp(f) := {n ∈ N : f(n) 6= 0}. Since P is countably additive on B, it is
B-conglomerable by [21, Theorem 6.9.1]. Applying Theorem 3, we deduce that R
is weakly conglomerable. However, it is not conglomerable because the gamble
I{odd} − I{even} belongs to RB \ R.

To see that the conglomerable natural extension of R exists, note that its superset

F ′ := {f : P (f) > 0} ∪ {f : P (f) = 0 and f(min supp(f)) > 0}
is coherent and conglomerable.

D1: L+ ⊆ {f : P (f) > 0} ⊆ F ′.
D2: F ′ does not include the zero gamble by construction.
D3: Given a gamble f such that P (f) > 0, it follows that P (λf) > 0 for every

λ > 0; and given f such that P (f) = 0 and f(min supp(f)) > 0, it holds that
P (λf) = 0 and λf(min supp(λf)) = λf(min supp(f)) > 0.

D4: Given f, g ∈ F ′, if either P (f) > 0 or P (g) > 0, we deduce that P (f +
g) > 0; if P (f) = P (g) = 0, then P (f + g) = 0 and, taking into account that
f(min supp(f)) > 0 and g(min supp(g)) > 0, we deduce the equality min supp(f +
g) = min{min supp(f),min supp(g)}. As a consequence, (f + g)(min supp(f + g)) >
0.

D5: Given f 6= 0 such that Bnf ∈ F ′ ∪ {0} for every Bn ∈ B, there are two
possibilities: either there is some Bn such that P (Bnf) > 0, and the countable
additivity of P implies that P (f) > 0 and f ∈ F ′; or P (Bnf) = 0 for every
B, whence P (f) = 0. If we then consider the smallest n such that Bnf is non-
zero, we must have that min supp(f) = min supp(Bnf), and f(min supp(f)) =
Bnf(min supp(Bnf)) > 0. �

6. Conglomerability and coherence

In this section, we investigate in more detail the connections between the notions
of conglomerability and coherence, first for sets of desirable gambles and later for
coherent lower previsions.

6.1. Conglomerability and coherence for sets of desirable gambles. Let R
be a coherent set of strictly desirable gambles, and let RB be the set we can associate
with it by means of D5. By Proposition 9, RB satisfies D1– D5, and moreover R
is conglomerable when RB ⊆ R. The connection between this property and the
coherence of R∪RB is given by the following theorem:

Theorem 23. Let R be a coherent set of strictly desirable gambles. Then each of
the following statements implies the next:

(i) R = RB.
(ii) R is conglomerable.

(iii) E1 is the conglomerable natural extension of R.

(iv) R∪RB is included in a coherent set.

Proof. That the first statement implies the second is trivial. The second implies the
third because if R is conglomerable then RB ⊆ R and therefore E1 = R. Finally, if
E1 is the conglomerable natural extension of R then it is in a particular a coherent
superset of R∪RB. �

Remark 2. None of the converse implications hold in general. Example 1 gives a
conglomerable set of strictly desirable gambles that is different from L+ (note for
instance that it includes the gamble 1− I{1}) and which, from Proposition 10, differs
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from RB. Example 7 gives an instance where the conglomerable natural extension
of R exists (and therefore R∪RB is included in a coherent set) but it is different
from E1. In Example 9, we exhibit a coherent set of strictly desirable gambles that
is not conglomerable but whose conglomerable natural extension is given by E1. �

Example 9. Let Ω := N ∪ −N, Bn := {−n, n} and let B be the partition of Ω given
by B := {Bn : n ∈ N}. Consider the previsions P1, P2 defined in Example 5, and let
P := min{P1, P2}. It follows from arguments similar to the ones on that example
that P (Bn) > 0 for all n ∈ N, that

P (f |Bn) = min

{
f(n),

f(n) + f(−n)

2

}
,

and that P is not B-conglomerable.
The set R of strictly desirable gambles associated with P is included in the set

{f : P1(f) > 0}, whence also RB ⊆ {f : P1(f) > 0} (because P1 is B-conglomerable)
and as a consequence E1 ⊆ {f : P1(f) > 0}. To show the converse inclusion, it suffices
to show that P1 is the natural extension of P and P (·|B): since P (Bn) > 0 for all
n ∈ N, it follows from Proposition 21 that E1 induces the linear prevision P1, and
as a consequence it includes its set of strictly desirable gambles.

To determine the natural extension E of P and P (·|B), we apply Proposition 13.
First of all, for every linear prevision Q ∈M(P ), there is some α ∈ [0, 1] such that
Q = αP1 + (1−α)P2. We are going to check that for all α 6= 1 there is some gamble
h such that Q(h) < P (P (h|B)), which will mean that Q /∈M(E). Fix δ > 0 and let
h be given by h(n) := 1− 1

n + δ and h(−n) := −1 + 1
n . Then P (h|Bn) = δ/2 > 0 for

all n ∈ N implies that P (P (h|B)) = δ/2 > 0, while

Q(h) = αP1(h) + (1− α)P2(h) = α
δ

2
+ (1− α)

1

2

[∑
n∈N

1

2n
(1 + δ − 1

n
)− 1

]
< 0

for δ small enough. Hence E = P1 and therefore E1 = {f : P1(f) > 0}, which is
conglomerable. �

Interestingly, it was proven in [24] that, given a coherent set of strictly desirable

gambles R, the set R∪RB is coherent if and only if R is conglomerable. Moreover,
the coherence ofR∪RB can be given a behavioural interpretation as the impossibility
of making a Dutch book against us by combining our current beliefs, modelled by
R, and the conditional beliefs RB, which only become effective after the observation
of some element of the partition B (this notion is called temporal coherence in [24]).
Theorem 23 shows that temporal coherence is an intermediate notion between the
equality R = RB (which, from Proposition 10 only holds when R = L+) and the
conglomerable natural extension being attained in one step. On the other hand, when
R is not a set of strictly desirable gambles, it is proven in [24] that the coherence
of R ∪RB is an intermediate notion between the conglomerability and the weak
conglomerability of R.

6.2. Conglomerability and coherence of conditional lower previsions. A
particular case where the conglomerable natural extension of a set of gambles always
exists is when we consider the set of gambles induced by a separately coherent
conditional lower prevision P (·|B). For every B ∈ B, let

RcB := {f ∈ L(B) : P (f |B) > 0 or f  0}

be the coherent set of strictly desirable gambles on B associated to P (·|B), and
denote by

R|B := {f ∈ L(Ω) : f = Bf, f |B ∈ RcB}
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its extension to Ω, where f |B represents the restriction of f to B. Finally, let
posi(L+

⋃
B∈BR|B) be the natural extension of

⋃
B∈BR|B. To see that this set is

coherent, note that by definition R|B does not include any gamble f ≤ 0, and as a
consequence neither does posi(

⋃
B∈BR|B); this implies that posi(L+ ∪

⋃
B∈BR|B)

does not include the zero gamble, and as a consequence it is coherent by [14,
Proposition 3(d)].

Since for any gamble f in this natural extension and any B ∈ B it follows that
Bf ∈ posi(L+ ∪

⋃
B∈BR|B) ∪ {0}, we can apply Proposition 9 to deduce that the

conglomerable natural extension of this set is given by

F := {0 6= f ∈ L : (∀B ∈ B)Bf ∈ R|B ∪ {0}} . (20)

Then we can establish the following result:

Proposition 24. Let P and P (·|B) be a coherent lower prevision and a separately
coherent conditional lower prevision on L, and let R and R|B (B ∈ B) be the
respective sets of strictly desirable gambles they induce, and F be given by Eq. (20).
Then

P and P (·|B) coherent⇒ R∪F coherent. (21)

Moreover, if P and P (·|B) are coherent then R is conglomerable and RB ⊆ F .

Proof. Assume ex absurdo that R ∪ F is not coherent. Then there are gambles
f ∈ R and g ∈ F such that f + g /∈ R, whence P (f + g) ≤ 0. We can assume
without loss of generality that neither of these gambles is non-negative, or we would
contradict the coherence of either R or F . Since R is a set of strictly desirable
gambles, f ∈ R implies that P (f) > 0. On the other hand, g ∈ F implies that
P (g|B) ≥ 0, so g ≥ G(g|B). As a consequence,

0 ≥ P (f + g) ≥ P (f) + P (g)⇒ 0 > −P (f) ≥ P (g) ≥ P (G(g|B)),

and this contradicts that P , P (·|B) are coherent.
For the second part, apply [21, Theorem 6.8.2(a)] to deduce that P is conglomer-

able and Theorem 3 to conclude that so is R.
On the other hand, if P and P (·|B) are coherent, then from [21, Theorem 6.8.2(a)]

we infer that P (·|B) dominates the conditional natural extension E(·|B) of P , given
by Eq. (11). For every B ∈ B, [24, Lemma 1] implies that

RB = {f ∈ L : f = Bf ∈ R}
= {f ∈ L : f = Bf and [Bf  0 or E(f |B) > 0]} ,

and since E(f |B) ≤ P (f |B) for every gamble f , we deduce that RB ⊆ R|B. As a

consequence, RB ⊆ F . �

The converse to Eq. (21) does not hold:

Example 10. Consider Ω := {1, 2, 3, 4}, B := {1, 2} and B := {B,Bc}. Let P be the
vacuous lower prevision P on L and P (·|B) the linear conditional prevision given by

P (f |B) :=
f(1) + f(2)

2
and P (f |Bc) :=

f(3) + f(4)

2
.

Let R be the set of strictly desirable gambles associated to P , and R|B,R|Bc be
the sets of gambles on Ω associated to P (·|B). Then R = L+ and

R|B = {f ∈ L(Ω): f = Bf and f(1) + f(2) > 0} ,
R|Bc = {f ∈ L(Ω): f = Bcf and f(3) + f(4) > 0} .

Let F be given by Eq. (20). R∪ F is coherent because R ⊆ F . To see that P and
P (·|B) are not coherent, consider the gamble f := (1,−1, 1,−1). Then P (f |B) = 0,
whence f − P (f |B) = f and P (G(f |B)) = P (f) = −1 < 0. �
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In Theorem 3, we have shown that the conglomerability of a set of strictly
desirable gambles R is equivalent to that of the coherent lower prevision P it
induces, which in turn is equivalent to it being coherent with its conditional natural
extension E(·|B). More generally, if we consider a conditional lower prevision P (·|B)
that is coherent with P and differs from E(·|B), we may wonder if there is some
coherent and conglomerable set of gambles from which we can induce both P and
P (·|B) by means of Eqs. (3) and (5), respectively. The following theorem answers
this question, while also distinguishing the cases related to Walley’s and Williams’s
notions of coherence for lower previsions:

Theorem 25. Let P be a coherent lower prevision on L and P (·|B) a separately
coherent conditional lower prevision on L. Let R be the set of strictly desirable
gambles induced by P , and R|B (B ∈ B) the sets of gambles associated to P (·|B);
let F be given by Eq. (20).

(i) P and P (·|B) are coherent if and only if they can be induced by a conglomerable
coherent set. In that case, one such set is R∪ F .

(ii) P and P (·|B) are Williams coherent if and only if they can be induced by a
coherent set. In that case, one such set is R∪ posi(L+ ∪

⋃
B∈BR|B).

Proof. We begin with the first statement.
First of all, if P and P (·|B) are coherent, then we know from Proposition 24 that

R ∪ F is coherent. To see that it is conglomerable, consider a non-zero gamble f
such that Bf ∈ R ∪ F ∪ {0} for all B. Then

f =
∑

B∈B : Bf∈R

Bf +
∑

B∈B : Bf /∈R

Bf =: f1 + f2.

The coherence of P and P (·|B) implies thatR is conglomerable, and as a consequence
the gamble f1 belongs to R ∪ {0}. On the other hand, f2 ∈ F ∪ {0} because this
set F is conglomerable by definition. As a consequence, f ∈ posi(R ∪ F ∪ {0}) =
posi(R∪ F) ∪ {0} = R∪ F ∪ {0}, taking into account that R∪ F is coherent, by
Proposition 24. Hence, it is also conglomerable.

Let Q be the coherent lower prevision induced by R∪F . Trivially Q ≥ P . Assume
ex absurdo that there is some gamble f such that Q(f) > P (f), then there is some
ε > 0 such that the gamble g := f − P (f) − ε belongs to R ∪ F . Since it cannot
belong to R because this is the set of strictly desirable gambles associated with
P and P (f − P (f) − ε) = −ε < 0, it must belong to F . Hence, for all B ∈ B
either Bg ≥ 0 or P (g|B) > 0. We deduce that P (g|B) ≥ 0, whence g ≥ G(g|B) and
therefore 0 > P (g) ≥ P (G(g|B)). This contradicts the coherence of P and P (·|B).
Hence Q = P .

Similarly, let Q(·|B) be the conditional lower prevision associated with R ∪ F .
Trivially Q(·|B) ≥ P (·|B). Assume ex absurdo that there is some gamble f and
some B ∈ B such that Q(f |B) > P (f |B). Then there is some ε > 0 such that
B(f − P (f |B)− ε) ∈ R, and since B(f − P (f |B)− ε) cannot be non-negative or it
would belong to F , we deduce that P (B(f − P (f |B)− ε)) > 0. As a consequence,
P (B(f − P (f |B))) ≥ P (B(f − P (f |B)− ε)) > 0, and this contradicts that P and
P (·|B) satisfy (GBR).

Conversely, let G be a coherent and conglomerable set, and let P and P (·|B)
be the respective unconditional and conditional lower previsions associated with
it. Consider any gamble f and any B ∈ B. Then for every ε > 0 the gamble
G(f |B) + εB belongs to G, whence P (G(f |B) + εB) ≥ 0 for all ε > 0 and therefore
P (G(f |B)) ≥ 0, because the set of almost-desirable gambles associated to a coherent
lower prevision is closed under uniform convergence. Now, if P (G(f |B)) > 0 then



28 ENRIQUE MIRANDA, MARCO ZAFFALON, AND GERT DE COOMAN

there is some δ > 0 such that

0 < P (G(f |B)− δ) ≤ P (G(f |B)− δB),

whence G(f |B) − δB ∈ G and therefore we can raise the value P (f |B) by δ, a
contradiction.

On the other hand, if G(f |B) + εB belongs to G for every B ∈ B, the conglomer-
ability of G implies that G(f |B) + ε ∈ G and therefore P (G(f |B) + ε) ≥ 0. Since this
holds for every ε > 0, we deduce that P (G(f |B)) ≥ 0 and therefore P and P (·|B)
are coherent.

Next, we turn to the second statement.
Assume that P and P (·|B) are Williams coherent, and let us consider the set

G := R ∪ posi(L+ ∪
⋃
B∈BR|B). We show that G is coherent. Since both R and

posi(L+ ∪
⋃
B∈BR|B) are coherent, it suffices to check that f + g ∈ G for every

f ∈ R and g ∈ posi(L+ ∪
⋃
B∈BR|B). Since P and P (·|B) are Williams coherent,

we know that for every gamble f and every B ∈ B, P (G(f |B)) = 0. Applying the
super-additivity of P , we deduce that

P (g) ≥
∑

B∈B : Bg∈R|B

P (Bg) ≥
∑

B∈B : Bg∈R|B

P (B(g − P (g|B)))

=
∑

B∈B : Bg∈R|B

P (GP (g|B)) ≥ 0

for every g ∈ posi(L+ ∪
⋃
B∈BR|B). To see that the first sum is finite, note that

by definition of the posi operator the gamble g is a finite sum of gambles in
L+ ∪

⋃
B∈BR|B, because each of the sets in this union is a convex cone.

As a consequence, given that f ∈ R and g ∈ posi(L+ ∪
⋃
B∈BR|B), there are

two possibilities: either f ∈ L+, whence f + g ∈ posi(L+∪
⋃
B∈BR|B), or P (f) > 0,

and then P (f + g) ≥ P (f) + P (g) > 0, and therefore f + g ∈ R.
Now, let Q be the unconditional lower prevision induced by G. Trivially, Q ≥ P .

Assume ex absurdo that there is some gamble f such that Q(f) > P (f), then
there is some ε > 0 such that the gamble g := f − P (f)− ε belongs to G, so there
are gambles h1 ∈ R and h2 ∈ posi(L+ ∪

⋃
B∈BR|B) such that g = h1 + h2. As a

consequence,

−ε = P (g) = P (h1 + h2) ≥ P (h1) + P (h2) ≥ P (h2) ≥ 0,

a contradiction. Hence Q = P .
Similarly, let Q(·|B) be the conditional lower prevision induced by G. Trivially,

Q(·|B) ≥ P (·|B). Assume ex absurdo there is some gamble f and some B ∈ B such
that Q(f |B) > P (f |B). Then there is some ε > 0 such that g := B(f−P (f |B)−ε) ∈
G. If it belongs to posi(L+ ∪

⋃
B∈BR|B), then there must be some gamble h and

some δ > 0 such that g ≥ G(h|B) + Bδ, whence G(h|B) − G(f |B) ≤ B(−ε − δ),
contradicting the separate coherence of P (·|B). If instead it belongs to R, then
either (i) g  0, which contradicts the definition of P (·|B); or (ii) P (g) > 0, whence
P (G(f |B)) ≥ P (g) > 0, also a contradiction, in this case with (GBR).

The converse proof follows the same lines as that of the first statement. �

7. Conglomerability for a number of partitions

To conclude the technical discussion, we turn to conglomerability with respect
to a number of partitions, rather than just one. Consider a non-empty set B of
partitions of Ω. This set need not be finite, although we will make this assumption
in much of what follows.

We call a set of desirable gambles (weakly) B-conglomerable if it is (weakly)
conglomerable with respect to all partitions B in B. We denote by DC(B) the set



CONGLOMERABLE NATURAL EXTENSION 29

of all coherent sets of desirable gambles on Ω that satisfy D5 with respect to all
partitions in B, and similarly, by DwC(B) the set of all coherent sets of desirable
gambles on Ω that satisfy wD5 with respect to all partitions in B.

Clearly, like its counterpart for a single partition, (weak) B-conglomerability is
preserved under taking arbitrary intersections. This implies that if a set of desirable
gambles is dominated by some coherent and B-conglomerable set of desirable gambles,
then there is a smallest such dominating set.

Definition 5. Consider a non-empty set B of partitions of Ω. If it exists, the (weakly)
B-conglomerable natural extension of a set R of desirable gambles on Ω, is its smallest
coherent superset that is (weakly) conglomerable with respect to all B in B.

Proposition 26. If there is some coherent superset of R that satisfies condition D5
(respectively wD5) with respect to B, then the smallest such superset is given by

F :=
⋂
{D ∈ DC(B) : R ⊆ D} respectively F :=

⋂
{D ∈ DwC(B) : R ⊆ D} .

From now on, we will concentrate on the case where B = {B1, . . . ,Bm} is a
finite set of partitions of Ω. But we first show that conglomerability with respect to
each of the partitions B1, . . . , Bm is equivalent to conglomerability with respect to
all the partitions that can be derived from them—we may refer to this notion as
cross-conglomerability. Let us define

B′ := {B partition: (∀B ∈ B)(∃j ∈ {1, . . . ,m})B ∈ Bj} . (22)

It should be remarked that, while B is finite, B′ can be infinite.

Proposition 27. Let R be a coherent set of desirable gambles.

(i) If R satisfies D5 with respect to any partition Bj in B, then it also satisfies D5
with respect to any partition B in B′: DC(B) = DC(B′).

(ii) If R satisfies wD5 with respect to any partition Bj in B, then it also satis-
fies wD5 with respect to any partition B in B′: DwC(B) = DwC(B′).

Proof. Let us begin with the first statement. Consider a partition B in B′, and let f
be any gamble such that Bf ∈ R ∪ {0} for all B ∈ B. Define the collections of sets

Aj :=

{
B ∈ B : B ∈ Bj \

j−1⋃
i=1

Ai

}
,

for which
⋃m
j=1Aj = B, and the collection

A := {Aj : j = 1, . . . ,m and Bjf 6= 0 for some Bj ∈ Aj} .
As a consequence,

f =
∑
Aj∈A

∑
Bj∈Aj

Bjf ∈ R,

taking into account that for every j the gamble
∑
Bj∈Aj

Bjf ∈ R ∪ {0} because R
satisfies D5 with respect to Bj , and applying D4.

The second statement follows by applying the first to sets of strictly desirable
gambles. �

7.1. The Marginal Extension Theorem. We now consider, for i = 1, . . . ,m,
a coherent set of desirable gambles Ri that is Bi-conglomerable, and we want to
determine the B-conglomerable natural extension F of

⋃m
i=1Ri, if it exists. Similarly

to what happened in Section 3, when the conglomerable natural extension F exists,
we can approximate it by means of a sequence of sets of desirable gambles. For the
purposes of this section, it will suffice to consider the first element of this sequence.
For every Ri, consider, as before, the set

RBi := {0 6= f ∈ L : (∀i ∈ {1, . . . ,m})Bif ∈ Ri ∪ {0}} ,
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and let

D1 := posi(

m⋃
i=1

(Ri ∪RBi )).

When this set is coherent, it can be written equivalently as

D1 = L ∩

{
m∑
i=1

(fi + gi) : fi ∈ Ri ∪ {0} and (∀Bi ∈ Bi)Bigi ∈ Ri ∪ {0}

}
\ {0}.

(23)
We will now prove that when the partitions are nested the sequence stabilises

after one step: in this case D1 coincides with F . This is a generalised version of
the marginal extension theorem, which was originally established for coherent lower
previsions and a single partition in [21, Theorem 6.7.2], and later extended to a
finite number of partitions in [12]. In a different context, using different notations, a
more general result than ours was also established (in a different manner) by De
Cooman and Hermans [2, Theorem 3].

In order to do this, we need to introduce the notion of a coherent set of desirable
gambles relative to another subset :

Definition 6. Let Q be a linear space of gambles containing constant gambles, and
let R ⊆ Q. We say that R is coherent relative to Q if it satisfies axioms D2–D4 and

D1’. Q∩ L+ ⊆ R.

Note that when Q = L, this becomes the usual coherence notion characterised by
axioms D1–D4.

We shall also have recourse to the following simple lemma:

Lemma 28. Let R be a set of gambles coherent relative to Q. Then for every
gamble f ≤ 0, f /∈ R.

Proof. That 0 /∈ R follows from D2. Assume ex absurdo that 0  f ∈ R. Then
f ∈ Q, and since this is a linear space also −f ∈ Q, whence 0 � −f ∈ R by D1’. We
deduce, applying D4 that 0 = f − f also belongs to R. This is a contradiction. �

We begin by establishing our result for the least involved special case: one partition
only. We consider a partition B, and a set R0 that only contains B-measurable
gambles, meaning that they are constant on the elements of B. We assume that the
set of desirable gambles R is coherent relative to the set of B-measurable gambles.
It is trivially conglomerable with respect to the partition B0 = {Ω}.

For each B ∈ B, we also consider a coherent set of desirable gambles RcB on
L(B). We can use these sets to construct the set of desirable gambles

R1 := L ∩

(∑
B∈B

B(RcB ∪ {0})

)
\ {0} = L ∩

{∑
B∈B

BgB : gB ∈ RcB ∪ {0}

}
\ {0}.

This coherent set of desirable gambles is the B-conglomerable natural extension of
the set of gambles

⋃
B∈B {BgB : gB ∈ RcB}. Note that the gamble BgB is a gamble

on Ω that is equal to gB on B, and zero elsewhere. This is done to ensure all the
gambles we will combine later on are defined on the same domain.

We are now looking for the smallest coherent set of desirable gambles that
includes R0 ∪R1 and that is conglomerable with respect to B0 and B. The following
proposition solves this problem in slightly reformulated wording.

Proposition 29. Let R0 be a set of B-measurable desirable gambles that is coherent
relative to the set of B-measurable gambles. For each B ∈ B, let RcB be a coherent
set of desirable gambles on B. Then the B-conglomerable natural extension of the set

R0 ∪ {BgB : gB ∈ RcB and B ∈ B}
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is given by

F := L ∩

{
f +

∑
B∈B

BgB : f ∈ R0 ∪ {0} and gB ∈ RcB ∪ {0}

}
\ {0}.

Proof. Let us show that F satisfies D1–D5.
D1: Consider h ∈ L+. Write it as h =

∑
B∈B:Bh6=0Bh =

∑
B∈B:Bh6=0Bh|B , where

the gamble h|B ∈ L(B) is the restriction of h to the set B, defined by h|B(ω) := h(ω)
for all ω ∈ B. Since h|B ∈ L+(B), it belongs to the coherent set of desirable gambles
RcB. Therefore h belongs to F .

D2: We know that 0 /∈ F by definition.
D3: Consider h ∈ F and λ > 0. We know that there are f ∈ R0 and gB ∈

RcB ∪ {0} such that λf = λf +
∑
B∈B BλgB. But since the set of B-measurable

gambles is a linear space containing constant gambles, and R0 is coherent relative
to it, λf ∈ R0 ∪ {0}. Similarly, λgB ∈ RcB ∪ {0}, since RcB is coherent. It follows
that λh ∈ F , because λf 6= 0.

D4: Consider h, h′ ∈ F . Then h + h′ = f + f ′ +
∑
B∈B B(gB + g′B), where

f, f ′ ∈ R0 ∪ {0} and gB , g
′
B ∈ RcB ∪ {0}. For reasons analogous to the ones given

above, f + f ′ ∈ R0 ∪ {0} and gB + g′B ∈ RcB ∪ {0}. From this, we obtain that
h + h′ ∈ F ∪ {0}. Assume ex absurdo that h + h′ = 0; then either 0 = f + f ′ or
f + f ′ 6= 0. In the first case, the coherence of R0 implies that f = f ′ = 0, and
similarly since gB + g′B = 0 for every B we should have that gB = g′B = 0 for all B.
But then h = h′ = 0, a contradiction.

In the second case, 0 6= f + f ′ = −
∑
B∈B B(gB + g′B), and taking into account

that f + f ′ is B-measurable, there must be some B ∈ B such that B(f + f ′)  0;
otherwise it would follow that f + f ′ ≤ 0, which is impossible because of Lemma 28.
But for this B we obtain that gB + g′B � 0, which is again impossible because of
Lemma 28. This is a contradiction.

D5: Consider h ∈ L such that Bh ∈ F ∪ {0} for all B ∈ B. Fix any B such that
Bh 6= 0, then Bh = f +

∑
B∈B BgB. If f = 0, then Bh = BgB. If f 6= 0, then

we consider any B′ ∈ B \ {B}. Bh is zero on B′, and therefore B′f + B′gB′ = 0.
Recalling that f is B-measurable and therefore assumes the constant value f(B′) on
B′, this can only happen if f(B′) < 0: otherwise, RcB′ would contradict Lemma 28.
Since we can repeat this reasoning for all B′ 6= B, we deduce that f must assume
a constant value f(B) > 0 on B, since otherwise R0 would contradict Lemma 28.
Then gB+f(B) ∈ RcB, so that if we let g′B := gB+f(B), we obtain that Bh = Bg′B .
As a consequence, h =

∑
B∈B:Bh6=0Bh =

∑
B∈B:Bh6=0Bg

′
B ∈ F .

Since on the other hand F is included in the set D1 given by Eq. (23) which is
in turn included in the conglomerable natural extension, we deduce that F is the
conglomerable natural extension of R0 ∪ {BgB : gB ∈ RcB and B ∈ B}. �

Let us extend this result to a finite number of partitions. We consider m partitions
B1, . . . , Bm of Ω that are successively finer: Bi+1 is finer than Bi for i = 1, . . . ,m−1.
R0 is a set of B1-measurable desirable gambles that is coherent relative to the set of
all B1-measurable gambles. For each i = 1, . . . ,m− 1 and each Bi ∈ Bi, we consider
the partition

Bi+1cBi := {Bi+1 ∈ Bi+1 : Bi+1 ⊆ Bi}

of Bi, and a set RicBi of Bi+1cBi-measurable desirable gambles on Bi that is
coherent relative to the set of all Bi+1cBi-measurable gambles. Finally, for each
Bm ∈ Bm, we consider a coherent set RmcBm of desirable gambles on Bm.
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We can use the sets RicBi, Bi ∈ Bi to construct the set of desirable gambles

Ri := L ∩

( ∑
Bi∈Bi

Bi(RicBi ∪ {0})

)
\ {0}

= L ∩

{ ∑
Bi∈Bi

BigBi
: gBi

∈ RicBi ∪ {0}

}
\ {0}.

This coherent set of desirable gambles is the Bi-conglomerable natural extension of
the set of gambles

⋃
Bi∈Bi

{BigBi
: gBi

∈ RicBi}.
We are now looking for the smallest coherent set of desirable gambles that includes

R0 ∪
⋃m
i=1Ri and that is conglomerable with respect to B0, B1, . . . , Bm.

Proposition 30. Let B1, . . . , Bm be partitions of Ω such that Bi+1 is finer than
Bi for i = 1, . . . ,m− 1. Let R0 be a set of B1-measurable desirable gambles that is
coherent relative to the set of all B1-measurable gambles. For each i = 1, . . . ,m− 1
and each Bi ∈ Bi, let RicBi be a set of Bi+1cBi-measurable desirable gambles on
Bi that is coherent relative to the class of all Bi+1cBi-measurable gambles, For each
Bm ∈ Bm, let RmcBm be a coherent set of desirable gambles on Bm. Then the
conglomerable natural extension of

R0 ∪
m⋃
i=1

⋃
Bi∈Bi

{BigBi
: gBi

∈ RicBi}

is given by

Fm := L ∩

{
f0 +

m∑
i=1

∑
Bi∈Bi

BigBi : f0 ∈ R0 ∪ {0} and gBi ∈ RicBi ∪ {0}

}
\ {0}.

Proof. To make the notation more uniform, we introduce the trivial partition
B0 := {Ω}, and define B0 := Ω, R0cB0 := R0 and gB0

:= f0.
We use induction on the number of partitions m. For m = 1, the result has

already been established in Proposition 29. Assume therefore that the result holds
for m− 1, and let us prove that it also holds for m.

If we can prove that Fm satisfies D1–D5, then it is the conglomerable natural
extension, because any superset of R0 ∪

⋃m
i=1

⋃
Bi∈Bi

{BigBi
: gBi

∈ RicBi} that
satisfies D1–D5 necessarily includes Fm. Let us therefore show that Fm satisfies D1–
D5.

D1: Consider any h ∈ L+. Write it as

h =
∑

Bm∈Bm : Bmh6=0

Bmh =
∑

Bm∈Bm : Bmh6=0

BmgBm ,

where the gambles gBm ∈ L(Bm) are defined by gBm(ω) := h(ω) for all ω ∈ Bm
and all Bm such that Bmh 6= 0. Since then gBm ∈ L+(Bm), it belongs to RmcBm,
which is a coherent set of desirable gambles. This implies that h ∈ Fm.

D2: We know that 0 /∈ Fm by definition.
D3: Consider h ∈ Fm and λ > 0. We know that λh =

∑m
i=0

∑
Bi∈Bi

BiλgBi
.

Since for i = 0, . . . ,m− 1 the set of Bi+1cBi-measurable gambles is a linear space
containing all constant gambles, and since RicBi is coherent relative to it, we know
that λgBi

∈ RicBi ∪ {0}. Moreover, λgBm
∈ RmcBm ∪ {0}, as RmcBm is coherent.

Hence λh ∈ Fm.
D4: Consider h, h′ ∈ Fm. Then h + h′ =

∑m
i=0

∑
Bi∈Bi

Bi(gBi
+ g′Bi

), where

gBi
, g′Bi

∈ RicBi∪{0}. For reasons analogous to those mentioned above, gBi
+g′Bi

∈
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RicBi ∪ {0}. Hence h+ h′ ∈ Fm ∪ {0}. Assume ex absurdo that h+ h′ = 0, then

f :=

m−1∑
i=0

∑
Bi∈Bi

Bi(gBi
+ g′Bi

) = −
∑

Bm∈Bm

Bm(gBm
+ g′Bm

).

The gamble f belongs to the set Fm−1 we would obtain by considering the sets
R0, RjcBj for j = 1, . . . ,m − 2, and R′m−1cBm−1, where R′m−1cBm−1 is the
natural extension of Rm−1cBm−1. Applying the induction hypothesis, we deduce
that f 6= 0. Since moreover, f is Bm-measurable, there must be some Bm ∈ Bm
such that Bmf ∈ L+, otherwise f ≤ 0 and f ∈ Fm−1, which is coherent by the
induction hypothesis, would contradict Lemma 28. But for this Bm we obtain that
gBm

+ g′Bm
� 0, so RmcBm violates Lemma 28. This is a contradiction.

D5: Consider h ∈ L such that Bih ∈ Fm∪{0} for all Bi ∈ Bi and all i = 1, . . . ,m.
We fix our attention for the time being on any one Bi for which Bih 6= 0, and have
by definition that Bih =

∑m
j=0

∑
Bj∈Bj

BjgBj
. Let

f :=

i−1∑
j=0

∑
Bj∈Bj

BjgBj
and g :=

m∑
j=i

∑
Bj∈Bj

BjgBj
.

If f = 0, then we can express

Bih = Big =

m∑
j=i

∑
Bj∈Bj ,Bj⊆Bi

BjgBj .

If f 6= 0, look at any B′i ∈ Bi such that B′i 6= Bi. Bih is zero on B′i, and hence
B′if + B′ig = 0. Now, recalling that f is Bi-measurable, the constant value f(B′i)
that f assumes on B′i must be negative: f(B′i) < 0. Otherwise, we would have that
0 ≥ B′ig ∈ Fm, and this contradicts Lemma 28. Since we can repeat this reasoning
for all B′i 6= Bi, we deduce that the constant value f(Bi) that f assumes on Bi must
be positive: f(Bi) > 0. Otherwise Fm would again contradict Lemma 28. But then
gBi

+ f(Bi) ∈ RicBi, so that if we redefine gBi
:= gBi

+ f(Bi), we obtain that

Bih =

m∑
j=i

∑
Bj∈Bj ,Bj⊆Bi

BjgBj .

As a consequence,

h =
∑

Bi∈Bi : Bih6=0

Bih =
∑

Bi∈Bi : Bih 6=0

m∑
j=i

∑
Bj∈Bj ,Bj⊆Bi

BjgBj

=

m∑
j=i

∑
Bi∈Bi : Bih 6=0

∑
Bj∈Bj ,Bj⊆Bi

BjgBj

and therefore h ∈ Fm. �

7.2. Conglomerability and weak coherence. Finally, we turn to the notion of
conglomerability for coherent lower previsions, this time with respect to a finite
number of partitions. It is easy to relate this property to the notion of weak coherence:

Proposition 31. Let P be a coherent lower prevision on L, and let B1, . . . , Bm be
partitions of Ω. The following statements are equivalent:

(i) P is Bi-conglomerable for i = 1, . . . ,m.
(ii) P is B-conglomerable for any partition B in the class B′ defined by (22).

(iii) There are conditional lower previsions P 1(·|B1), . . . , Pm(·|Bm) weakly coher-
ent with P .
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Proof. First of all, P is Bi-conglomerable if and only if it is coherent with its
conditional natural extension P i(·|Bi). As a consequence, it is Bi-conglomerable
for i = 1, . . . ,m if and only if it is pairwise coherent with the conditional lower
previsions P 1(·|B1), . . . , Pm(·|Bm). Applying [13, Theorem 1], this is equivalent
to P , P 1(·|B1), . . . , Pm(·|Bm) being weakly coherent. Hence, the first and third
statements are equivalent.

To see that the first two statements are equivalent, note that, from Theorem 3,
P is Bi-conglomerable for i = 1, . . . ,m if and only if its associated set of strictly
desirable gambles R is Bi-conglomerable for i = 1, . . . ,m. Applying Proposition 27,
this holds if and only if R satisfies D5 with respect to any partition B ∈ B′, and using
Theorem 3 again, this is equivalent to P being B-conglomerable for any partition B
in the class B′. �

8. Conclusions

Some authors, amongst whom Peter Walley, have argued in favour of imposing
conglomerability on uncertainty models, such as sets of desirable gambles, coherent
lower previsions, or precise probabilities. We have studied the problem of extending
a given uncertainty model into the weakest conglomerable model that logically
follows from it: we have called this the conglomerable natural extension.

An intuitively natural approach to addressing the problem of constructing this
conglomerable natural extension consists in imposing conglomerability on the model,
and then taking the natural extension. In fact, this is the approach taken in Walley’s
theory. Unfortunately, our main finding in this paper shows that such an approach
does not yield the conglomerable natural extension in general, even though it does so
in the case of the marginal extension theorem. This has important implications for
Walley’s theory: it means that it does not fully take into account the implications of
conglomerability. We have also shown that iterating the above-mentioned intuitive
process yields models closer and closer to the conglomerable natural extension.
The question whether the conglomerable natural extension is achieved in the limit,
remains unanswered, however.

All this means that the foundations of Walley’s theory of coherent lower previsions
have to be reconsidered in the case where there are infinitely many events in the
conditioning partition of the possibility space. Our results indicate that it may
be necessary to modify his definition of natural extension of a conditional and an
unconditional model (be it a set of desirable gambles or a coherent lower prevision)
to make it truly and fully compatible with the notion of conglomerability. Related
to this, it would be important to investigate possible modifications of his definition
for the coherence of conditional and unconditional lower previsions, and whether
these modifications allow us to obtain envelope theorems, thus also allowing a
sensitivity analysis interpretation for coherence in the conditional case. In fact, on
Walley’s approach, the useful equivalence between coherent lower previsions and sets
of probabilities breaks down in the conditional case for infinite possibility spaces.
As a consequence of the results in this paper, it is no longer clear whether this is
unavoidable (as seems to have been assumed before), or if it is merely due to the
arguably inadequate treatment of conglomerability in Walley’s theory.

More work should also be done to study the general case of multiple partitions
that are not necessarily nested. Finally, in our definition of coherence for sets of
desirable gambles we are assuming that the zero gamble is not desirable. This is in
line with more recent work on desirability [3, 14]. Although we have not detailed it
here, it is possible to show that our main finding, that the conglomerable natural
extension is not attained after applying once coherence and conglomerability, still
holds in the alternative approach where the zero gamble is desirable.
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