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IDSIA, Switzerland

denis@idsia.ch

Abstract
Predictions made by imprecise-probability models are often
indeterminate (that is, set-valued). Measuring the quality
of an indeterminate prediction by a single number is im-
portant to fairly compare different models, but a principled
approach to this problem is currently missing. In this paper
we derive a measure to evaluate the predictions of credal
classifiers from a set of assumptions. The measure turns out
to be made of an objective component, and another that is
related to the decision-maker’s degree of risk-aversion. We
discuss when the measure can be rendered independent of
such a degree, and provide insights as to how the compari-
son of classifiers based on the new measure change with the
number of predictions to be made. Finally, we empirically
study the behavior of the proposed measure.

Keywords. Credal classification, indeterminacy, empirical
evaluations, discounted accuracy, utility, risk-aversion.

1 Introduction

When we use an imprecise-probability model to make pre-
dictions, we meet one of the most striking differences of
imprecise probability in comparison to precise probability:
the imprecise-probability model can issue indeterminate
predictions. That is, among the set of possible options, the
model may drop some of them as sub-optimal, while keep-
ing the entire remaining set as its prediction. The prediction
is generally indeterminate as such a set is not necessarily
a singleton. Indeterminate predictions are a crucially im-
portant feature of imprecise-probability models: they allow
credible, and reliable, predictions to be obtained no matter
how scarce is the information available to build a model.

Yet, we should have a way to measure how good is an in-
determinate prediction. A major reason is that we need to
compare imprecise- with precise-probability models: we
should have a clear, simple, and possibly shared, way to
say which one is better, in a given application. The same
consideration applies, of course, when we compare two
imprecise-probability models. Ideally, we would like to be

able to reward each, determinate or indeterminate, predic-
tion by a single number. Much probably this would speed
up progress in the field, as it would enable comparisons to
be automatized over a large number of test applications.

In the case of precise-probability models, there are well-
consolidated measures to do so. Let us consider the field
of pattern classification [4], which is the focus of this pa-
per (Section 2 gives a brief introduction to classification
problems). In this case, the predictive models are called
(precise) classifiers. A classifier predicts one out of a finite
set C of so-called classes. In this case, correct predictions
may be rewarded with 1 and incorrect ones with 0, thus
giving rise to the measure of performance called the predic-
tive accuracy of a classifier: i.e., the proportion of correct
predictions it makes.

The situation is very different with credal classifiers, that
is, classifiers that issue set-valued predictions. One of the
very few proposals to evaluate an indeterminate prediction
by a single number can be found in [2]: a prediction made
of a set K of k classes is rewarded with 1/k if it contains
the actual class, and with 0 otherwise. This gives rise to
the measure called discounted accuracy, which was bor-
rowed from the field of multi-label classification [11]. The
problem here is that no justification is given for discounted
accuracy, as the work in [2] somewhat points out. In [7], it is
proposed to evaluate classifiers which return indeterminate
classifications through the F-metric, originally designed
for information retrieval problems; but also here the mea-
sure is not justified. Other than these, the proposals are
either explicitly non-numerical, as the rank test in [2], or
require a vector of parameters to evaluate the performance,
as in [1]. The latter approach is actually meaningful, but
was conceived to compare credal with precise classifiers,
and cannot be easily generalized to the more general case;
moreover, it is a method that needs supervision so that it
does not easily lend itself to be run automatically on many
test cases.

On our view, the scarcity of principled numerical evaluation
methods for credal classifiers is not accidental: in fact, it
is not easy to assign a single number to an indeterminate



prediction. Consider the following case: there is a vacuous
classifier, which every time predicts the set of all classes C ,
and a random one, which picks up a class from C through
the uniform distribution. If C is made of two classes (we
say that the classification problem is binary), and we use the
predictive accuracy, the random classifier has an expected
reward equal to 1/2. What should be the expected reward
of the vacuous classifier? Both classifiers do not know how
to predict the class, but only the vacuous classifier declares
it. From this, one might argue that the latter should be
rewarded with more than 1/2. On the other hand, it is clear
also that the vacuous classifier cannot predict the class
better than the random one, so that one might argue that it
should be rewarded with 1/2 too.

In the attempt to address these kinds of problems in the
most objective way, we found it useful to regard classifiers
as bettors. In the betting framework introduced in Section 3,
we assume we only know how to value determinate predic-
tions, in particular by 0-1 rewards. In Section 4, we extend
the framework, in a kind of least-committal way, to credal
classifiers, in the attempt to see what are the implications of
determinate rewards alone on indeterminate ones: we show
that, under certain assumptions, indeterminate predictions
should be valued according to discounted accuracy.

Note that, in the previous example, discounted accuracy
would value the vacuous and the random classifiers the
same. This kind of (questionable) effect can be traced
back to having deliberately avoided introducing subjective
considerations in the evaluation. Still, subjective prefer-
ences should be accounted for: we introduce in Section 5 a
decision-maker in charge of selecting the ‘best’ classifier
in the next bet, and show that preferences can enter the pic-
ture through his utility, as a function of discounted accuracy.
This defines the utility-based accuracy measure we propose
to evaluate credal classifiers. More generally, this shows
in a very definite sense how the reliability of a classifier is
tightly related to the variability of its predictions, and that
the aversion to this variability is what makes some people
prefer credal classifier to precise ones.

In Section 6 we discuss an important case where the eval-
uation can still be made in quite an objective way despite
the decision-maker’s preferences, and we relate this to the
amount of indeterminacy produced by a credal classifier.

In Section 7 we analyze how the picture changes if we focus
on evaluating classifiers in the next m≥ 1 bets. We show
that the difference between precise and credal classifiers
decreases with growing m, so that the relative benefits of
credal classification are less important with large m.

Finally, in Sections 8 and 9 we make some empirical analy-
sis of our utility-based measure, by comparing naive Bayes
[3] with naive credal classifier [1] on binary classification
problems. We show that the decision-maker’s utility can be
defined very easily in this case, and that the credal classifier

becomes superior to the precise one even with relatively
small preferences of the decision-maker towards reliable
predictions.

2 Classification Problems

A classification problem is made of objects described by
attribute (or feature) variables, which we group into the
single variable A, and a class variable C. The class variable
represents the object’s category. There are finitely many
possible categories, which we identify with their indexes
to simplify notation: {1, . . . ,n}=: C . We denote by c the
generic element of C . The attribute variable represents
some characteristics of the object that are related to the
class. Variable A takes values in the set A ; we denote by
a its generic element. As an example, objects might be pa-
tients; A would represent information about a patient, such
as personal information as well as outcomes of medical
tests; C would index the patient’s possible diseases.

Usually, some values of (A,C) are sampled in an indepen-
dent and identically distributed way according to a law that
is not known a priori. The so-called learning set L records
those values, which are also called instances of (A,C). The
goal of classification is to learn from the learning set a func-
tion that maps attributes into classes. We call this function
a (precise) classifier.

A classifier is applied to predict the class of new objects
based on their attributes. Predictions are rewarded through
a reward matrix R. This is an n×n matrix whose generic
element ri j is a number representing the reward obtained
by predicting class i when the actual class is j. Equiva-
lently, we can regard the reward matrix as a set of gambles
(i.e., bounded random variables) Ri, i = 1, . . . ,n, each one
corresponding to a row of R: gamble Ri represents the un-
certain reward obtained by predicting class i and is defined
by Ri( j) := ri j, with j ∈ C . The reward matrix is an input
of the classification problem, in the sense that it is given.

In classification, at least with respect to the machine learn-
ing practice, rewards are usually measured in a linear utility
scale: although this point is often left implicit, we can
deduce it from the observation that the performance of a
classifier is usually identified with its expected reward.

The most frequent practice consists also in using just a
0-1 valued reward matrix, which we denote by I. In this
case, the gamble corresponding to the i-th row of the ma-
trix coincides with the indicator function of set {i}, which
yields Ii(i) = 1, and Ii( j) = 0 for i 6= j. Accordingly, the
performance of a classifier corresponds to the probability of
predicting the actual class. Such a probability is called the
predictive accuracy (or simply the accuracy) of a classifier.

The term ‘accuracy’ is used also for the sample estimate of
such a probability. In fact, a classification problem usually
comes with a test set T . This set contains a number of



sampled instances of (A,C) that are used to evaluate the
classifier’s predictive performance by measuring its accu-
racy on them. And in fact the predictive accuracy is by
far the most frequently used empirical index to compare
classifiers, despite a careful elicitation of rewards would ar-
guably lead in many cases to a reward matrix more general
than I. Such a widespread use has probably been favored
by the simple interpretation of predictive accuracy; a more
substantial reason could be that the predictive accuracy is
particularly convenient to make extensive comparisons of
classifiers over many data sets, which is a key component
of the machine learning practice. Accordingly, in this paper
we focus on the 0-1 valued reward matrix I.

So far we have introduced the traditional view of classifica-
tion, where the predictions issued by (precise) classifiers
are made of single classes. This view has been general-
ized through the introduction of credal classifiers [13, 14].
A credal classifier is also a function learned from set L ,
but it maps the attributes of an instance into a set K ⊆ C
of k := |K | classes in general. We call this a set-valued
classification. We also say that the classification is deter-
minate when k = 1, and indeterminate otherwise. When a
classification is fully indeterminate, that is, when K = C ,
we call it vacuous. Similarly, the vacuous classifier is the
one that always issues vacuous predictions. To each credal
classifier it is possible to associate a determinate classifier
that outputs predictions by choosing every time a class uni-
formly at random1 from the output set K of the credal
classifier. We call this the K -random classifier; when the
related credal classifier is the vacuous one, we just call it
the random classifier.

3 Introducing the Betting Framework

In order to make the comparison of credal classifiers as
objective as possible, we introduce the idea of a betting
framework. We define the framework for a traditional prob-
lem of classification, where classifiers issue determinate
predictions. In Section 4 we will extend the framework to
credal classification.

In the framework under consideration, we have two classi-
fiers, which we would like to compare, that have already
been inferred from data (so that there is no further learning,
only an evaluation stage). These classifiers are regarded
as bettors. Bets correspond to instances of the problem of
classification: a bet is set up by sampling an instance of
the problem. Classifiers are required to bet by predicting
the actual class of the instance, and are rewarded accord-
ing to matrix I. The process is repeated for ever, and the
performance of classifiers is taken to be their predictive
accuracy.

1Throughout the paper we use the word ‘random’ to mean uniformly
random.

Let us make the betting framework more precise by describ-
ing the two types of actors that play a role there:

Bettors: each of the two classifier we aim at comparing is
regarded as a bettor.

House: rewards are delivered to bettors by an artificial en-
tity that we call House. House only accepts determinate
bets, which are rewarded according to matrix I.

These actors are characterized by clarifying their relation-
ship with the rewards, that is, with the utility scale involved.
To start with, based on the discussion made in Section 2,
we can readily state our first assumption concerning the
betting framework:

(A1) Utility of bettors is linear in the rewards.

This assumption simply states explicitly what is current
practice in classification.

The second assumption concerns House. We want to model
House as an agent whose only aim is to reward correct
predictions. In other words, House should not introduce
any subjective bias in the process of rewarding bettors
because of a risk-averse or risk-seeking attitude; it should
just be risk-neutral:

(A2) Utility of House is linear in the rewards.

4 Betting with Credal Classifiers

Now we would like to extend the betting framework to
credal classifiers. The crucial point here is that House only
accepts determinate bets, while a credal classifier outputs
set-valued classifications in general. Therefore, if we want
to allow a credal classifier to play, we should find a way to
extend the reward matrix to set-valued classifications in a
way that both House and bettor find acceptable.

The first step in this direction is to recognize that any ne-
gotiation between the credal classifier and House can be
made only on the basis of determinate bets, which are the
only language that House understands. In order to enable
the credal classifier play as a determinate bettor, we state
the following assumption:

(A3) The credal bettor accepts betting on any single class
from its set-valued prediction, if forced to make a
determinate bet, and on no class outside that set.

This assumption is satisfied whenever the classes in the
output set of the credal classifier are incomparable, and the
other ones represent dominated options. This is the case
when credal classifiers are obtained using sets of probabili-
ties and decision criteria like maximality or e-admissibility



(see, e.g., [12, Section 3.9]). We state the assumption ex-
plicitly in order to allow the framework to be used also by
credal classifiers created in a different way.

The next assumption formalizes the idea that the framework
is run for ever:

(A4) Every possible bet is repeated infinitely many times
in the betting framework by sampling the problem
instances.

This assumption, together with the previous one, enable
the credal classifier to actually adopt a randomized strat-
egy over the k classes in its output set K . A randomized
strategy is a mass function σ = (σi)i∈K that represents the
(determinate) betting behavior of the credal classifier in the
limit.

At this point House knows that the credal classifier has the
freedom to implement any randomized betting strategy: this
means that the credal classifier can actually force House to
undergo any expected loss that can follow from the choice
of the strategy.

Let us call a prediction K ‘successful’ if the actual class
belongs to K . We restrict the attention to successful pre-
dictions as they determine House’s expected loss: in fact,
an unsuccessful prediction always yields a zero loss, by def-
inition of I, irrespective of the randomized strategy adopted.
Let θ = (θ j) j∈C be the vector of chances, that is, the pop-
ulation proportions, for the classes conditional on the pre-
diction being successful (this means that θ j = 0 if j /∈K ).
House’s expected loss conditional on a successful predic-
tions equals

∑
i∈K

∑
j∈C

Ii( j)σiθ j = ∑
i∈K

σiθi,

where we are assuming that the strategy is chosen indepen-
dently of the chances.

The loss depends on σ , which is chosen by bettor, and on θ .
The latter models the specific problem under consideration.
But House knows that the betting system will be applied,
in principle, to every possible problem. House should then
be enabled to consider every possible scenario:

(A5) In the determination of the expected loss, House has
the freedom to choose any value for θ .

At this point we are ready to derive the extended reward
matrix:
Theorem 1. Let K ⊆ C be a set-valued prediction made
of k classes, IK be the indicator function of set K , and j
the actual class. The corresponding value in the extended
reward matrix that is uniquely consistent with (A1)–(A5) is
the discounted accuracy:

IK ( j)
k

. (1)

Proof. If K is unsuccessful, then any randomized strategy will
yield a zero loss. Let us focus on successful predictions. Let ∆ be
the n−1 probability simplex. We formulate the problem in a game-
theoretic setting. The two players are just bettor and House. Bettor
can choose σ ∈ ∆, while House can choose θ ∈ ∆. What we get
is a zero-sum game with a gain for bettor defined by ∑i∈K σiθi.
This is a continuous linear function in σ for all θ ∈ ∆, as well as
in θ for all σ ∈ ∆, and moreover ∆ is a compact convex set. The
minimax theorem (see, e.g., [10, Theorem 6.7.3]) allows us to
deduce that there is an optimal solution to the game with expected
reward equal to maxσ∈∆ minθ∈∆ ∑i∈K σiθi. It is easy to see that
that is equal to 1/k: once a strategy σ is fixed, the minimum is
achieved by setting θi∗ := 1 on any i∗ = argmini∈K σi; then the
problem becomes maxσ∈∆ mini∈K σi = 1/k. The related optimal
strategy σ∗ is uniform, σ∗i := 1/k for all i ∈K ; this means that
bettor and House agree that credal bettor should act like the K -
random classifier.

Now, remember that, according to (A1)–(A2), both bettor and
House are risk-neutral. This means they agree that an unsuccessful
prediction is rewarded by the certain value 0 and a successful one
by the certain value 1/k. This is achieved by setting the reward
equal to the discounted accuracy. �

It is useful to comment on this result from a few different
viewpoints.

One thing is that the the discounted accuracy implements
a kind of least-committal reward system for House, in the
sense that House gives bettor only what is certainly due
to it. In fact, if the credal bettor does implement strategy
σ∗, the expected reward that it achieves is indeed 1/k, irre-
spective of the chances. Therefore the established reward
is what House knows already that bettor can make for sure.
For the same reason, it would be implausible to expect that
credal bettor accepts any smaller reward. It is also interest-
ing to observe that playing as the K -random bettor (i.e.,
classifier) is the only way for credal bettor to have a sure
reward.

The next consideration is again based on the observation
that credal bettor is evaluated exactly as the K -random
bettor. This has important implications for the comparison
of classifiers through the discounted accuracy: the main
point is that the K -random bettor is actually taken as a
baseline to compare classifiers. Consider, for the sake of
explanation, a determinate classifier whose output class
is always contained in that of a certain credal classifier.
The determinate classifier will be evaluated better than the
credal classifier as soon as it exploits, to any (even a very
tiny) degree, the credal classifier’s set of output classes bet-
ter than the K -random one. Looking at this from another
side, it means that the credal classifier can be better than
the determinate one only if it behaves worse than the K -
random classifier! In practical applications, this will imply
that a credal classifier will almost never be superior to a de-
terminate classifier whose output is included in the credal’s
one. This discussion should make clear that the discounted
accuracy, although it is a reasonable criterion, is probably



the most unfavorable way (among the reasonable ones) to
evaluate credal classifiers, as a credal classifier cannot do
better than isolating a set of classes that is impossible to
compare.

This points to an aspect of the evaluation that the discounted
accuracy certainly fails to capture. Let us focus on the sim-
plest possible setup, using the following example. You are
trying to evaluate two physicians based on some recorded
diagnostic performance of theirs. In your records, the first
physician always issues a vacuous diagnosis, that is, the
entire set C of possible diseases. The second always issues
a determinate diagnosis. But when you measure the second
physician’s predictive accuracy, you realize that his pre-
dictions are random. In this case, the discounted accuracy
values the two physicians the same: 1/n. But it is clear
that the first physician provides you with something more
than the second, because, in a sense, he delivers what he
promises. How to precisely value this ‘something more’
appears to be quite a subjective matter. In this sense, it
should not be too surprising that discounted accuracy does
not value it at all, as it has been created trying to keep sub-
jectivity out of consideration. And yet, subjectivity matters,
and should be taken into account. The next section shows
that this can be done in a very natural way.

5 Comparing Credal Classifiers

We have two classifiers f ,g. We focus on selecting the
classifier whose expected performance in the next instance
(i.e., next bet) is greater than the other’s. To this end, we
start identifying classifiers with gambles: gambles f and
g yield the discounted-accuracy reward achieved by clas-
sifiers f and g, respectively, in the next instance. There is
uncertainty about these gambles because we assume that
the instance has yet to be sampled.

The comparison of gambles f and g needs a (rational)
decision-maker, whom we call ‘you’. By definition of the
gambles, you will compare them based on discounted-
accuracy rewards. We model your attitude towards these
rewards through the following assumption:

(A6) Your utility function2 u(·) is concave in the
discounted-accuracy rewards,

which means that you are risk-averse, or at most neutral, in
these rewards.

This appears quite a reasonable assumption, at least in the
common setup where the original rewards (the ones used
to define the 0-1 reward matrix I) are measured in a utility
scale that is linear for you. In fact, imagine that you are

2We assume that the usual regularity conditions for utility hold, and
in particular that it is strictly increasing, and that it has first and second
derivatives (see, e.g., [9]).

explicitly asked to extend the reward matrix to take into ac-
count your attitude towards set-valued classifications. Can
we say something about the values you would use to define
such an extended matrix? On the one hand, we argue that
the rewards you would put there should be greater than
or equal to the discounted-accuracy rewards. This follows
from the discussion at the end of Section 4, which shows
that it would be unreasonable to use values smaller than
the discounted accuracy. On the other hand, values strictly
greater than that would be reasonable: these allow you to
express a preference in favor of a set-valued classification
in comparison to the related K -random prediction. These
considerations imply that your utility function is in general
non-linear in the discounted-accuracy (that is, discounted
accuracy can be regarded as defining a new utility scale out
of the original one). We take your utility in particular to be
concave to express a consistent preference for set-valued
classifications in comparison to the related K -random pre-
dictions (note that this includes the extreme case of a linear
utility function, in which the two options are equally val-
ued).

Going back to the comparison of classifiers, it follows
immediately from (A6) and decision-theoretic arguments
that you will choose the one with maximum expected utility:
h∗ := argmaxh∈{ f ,g}E[u(h)].

Re-consider the example of the vacuous and the random
classifier, discussed at the end of Section 4, as they are
emblematic of the differences that arise in the evaluation
of credal and precise classifiers when using utility.

Proposition 2. The random and the vacuous classifiers
have the same expected reward on the next instance, but the
expected utility of the vacuous is greater under any strictly
concave utility function.
Proof. Denote the random classifier by r, and the vacuous classi-
fier by v. As usual, we identify the classifiers with the correspond-
ing gambles, which represent uncertain discounted-accuracy re-
wards for the next bet. The vacuous classifier gets on any instance
the deterministic reward 1/n. Thus, under any utility function:

E[u(v)] = u
(

1
n

)
= u(E[v]) .

The random classifier r samples the predicted class from C ac-
cording to the uniform mass function σ∗, independently of the
actual class. Let us denote, as usual, by θ = (θ j) j∈C the vector
of chances for the actual classes. We obtain that

E[r] = ∑
i∈C

∑
j∈C

Ii( j)σ∗i θ j = ∑
i∈C

σ
∗
i θi = 1/n .

This shows that E[v] = E[r]. In addition, using Jensen’s inequality
leads to

E[u(r)] < u(E[r])) = u(1/n) = E[u(v)] ,

whenever u is a strictly concave function. �

To better analyze this point, it is useful to approximate the
expected utility by a second-order Taylor series. Let h be a



generic classifier (and hence, a gamble):

E[u(h)]' u(E[h])+

=0︷ ︸︸ ︷
u′(E[h])E(h−E[h])+

+
1
2

u′′(E[h])E
[
(E[h]−h)2

]
=

= u(E[h])+
1
2

u′′(E[h])Var[h] , (2)

where u′,u′′ are the first and second derivative of the utility
function, and Var[h] denotes the variance of h. Well-known
papers in finance [6, 8] have shown that this a very accurate
approximation.

Remember that u′′(E[h])≤ 0 for every concave utility func-
tion (moreover, u′′(·) is related to the degree of risk aversion
of the utility assessor). Therefore what Equation (2) tells
us is that the expected utility increases by increasing the
expectation of rewards and decreasing their variance. It is
clear now why the vacuous classifier, with variance equal
to zero, is preferred to the random one. In other words, the
‘something more’ that the vacuous classifier is providing
is its inherent reliability in earning rewards, which, using
discounted accuracy, has a very clear numerical counterpart
in its variance. The value that you give to this is indeed per-
sonal, and is formalized through your utility function. In the
extreme case when you are risk-neutral in the discounted-
accuracy rewards, the value is zero, and in this case there
seems to be little room for credal classifiers in your inter-
ests. Bigger values express stronger preferences for reliable
predictions.

It is also interesting to briefly consider the case where
you are risk-averse in the original rewards defining I. This
would much probably be the case if those rewards repre-
sented amounts of money. In particular, if the discounted-
accuracy rewards were the actual money payed by a betting
system, then you would be ‘natively’ risk-averse in them;
as a natural byproduct, you would prefer the more reli-
able (i.e., less variable) credal classifier to its K -random
counterpart.

All the above considerations can be turned into a remark-
ably simple procedure to empirically compare credal classi-
fiers in practice. Remember that in a classification problem
we usually have a test set T , that is, a collection of in-
stances used to evaluate the performance of a classifier. We
need to estimate E[u(h)] for a certain classifier h. Let us de-
note by U the set of values that gamble u(h) can take. Set
U has (2n−1) ·n elements, as they are in one-to-one corre-
spondence with the elements of the reward matrix extended
through discounted accuracy. If we estimate the chance of
a value uh ∈U by its sample proportion #(uh)/|T | in the
test set, we obtain:

E[u(h)]' ∑
uh∈U

uh
#(uh)
|T |

=
1
|T | ∑

(a,c)∈T
u(h(a,c)).

This is equivalent to evaluating the performance of a credal
classifier using the (2n−1)×n reward matrix obtained by
applying function u(·) point-wise to the matrix extended
through discounted accuracy.

A final consideration is that the comparison can be, per-
haps more conveniently, made also using u−1(E[u(h)]),
the so-called certainty equivalent. This brings the perfor-
mance index back to the range [0,1] so that it can still be
interpreted as a predictive accuracy, although one that is
distorted through the utility function.

6 The Case for an Objective Winner

Equation (2) is useful because it gives us a very accurate
approximation to the expected utility while releasing us
from having our considerations narrowed down by the spe-
cific form of the utility function considered. To this end, in
the following, we will repeatedly refer to (2) as if it was
our actual expected utility.

In particular, an interesting consideration suggested by
Equation (2) is that in one case the comparison of clas-
sifiers can be done minimizing subjective considerations:
when the two classifiers have equal expected reward. In this
case, the classifier with minimum variance wins under ev-
ery strictly concave utility function: that is, no matter how
tiny (but non-zero) is your degree of risk-aversion. This
can be implemented in practice by defining a range where
the difference of the expected rewards is deemed irrelevant,
and estimating their variances from the test set.

In the following, we investigate whether we can relate the
variance of a classifier with its determinacy, that is, with a
measure of the amount of imprecision in the output. Intu-
itively, we expect such a relationship to exist because both
measures are related to the reliability of a classifier, and
moreover, we expect that larger indeterminacy corresponds
to smaller variance.

The gamble h corresponding to a classifier’s performance
in the next bet can be decomposed in two other gambles
hD and hI such that h = hD + hI and hDhI = 0 (element-
wise). Intuitively, hD and hI represent the rewards for f
when it returns, respectively, a determinate and an indeter-
minate classification. The following identities follow from
the decomposition under discounted accuracy:

E[h2] = E[h2
D]+E[h2

I ],

E[h2
D] = E[hD],

E[hI ]≥ E[h2
I ]. (3)

In Equation (3) the equality is obtained only if E[hI ] =
E[h2

I ] = 0, which implies that either h is a precise classifier
or that indeterminate predictions of h contain the actual
class with probability zero.

Let f and g denote two generic classifiers with the same



expected discounted accuracy: E[ f ] = E[g]. Using the iden-
tities above, one can show that the difference of variances
is thus

∆Var := Var[g]−Var[ f ]

= E[gD]+E[g2
I ]−E[ fD]−E[ f 2

I ]. (4)

Let us start by considering the important case where we
compare a credal classifier with a precise one:

Proposition 3. Consider a credal classifier and a precise
classifier with the same expected reward. Then the credal
classifier is preferable to the precise classifier under any
strictly concave utility function.

Proof. Let us denote by f the credal classifier and by g the precise
one. We know by Equation (2) that we prefer the classifier with
smaller variance under any strictly concave utility function. Thus,
it suffices to show that ∆Var ≥ 0. Since E[ f 2

I ]≤ E[ fI ], it follows
from Equation (4) that

∆Var = E[gD]−E[ fD]−E[ f 2
I ]

≥ E[gD]−E[ fD]−E[ fI ]

= E[g]−E[ f ],

which equals zero, since f and g have equal expected reward.
Note the inequality is strict (i.e., there is strict preference) if the
credal classifier is not always determinate and its indeterminate
predictions are successful with positive probability. �

Now, let HD be the event that equals 1 when the generic
classifier h is determinate on the next instance, and 0 oth-
erwise. We define the determinacy of classifier h as the
probability that h is determinate: P(HD). This definition
allows us to settle the problem for the next case:

Proposition 4. Consider two credal classifiers that are
vacuous whenever they are indeterminate and that have
the same expected reward. Then the more indeterminate
classifier is preferable under any strictly concave utility
function.

Proof. Let us denote by f and g the two credal classifiers, as-
suming f to be more indeterminate than g: P(GD) > P(FD). It
suffices to show that ∆Var > 0. Any generic classifier h that is
vacuous whenever it is indeterminate is rewarded with 1/n for
any indeterminate prediction. Hence,

E[hI ] =
1−P(HD)

n
, E[h2

I ] =
E[hI ]

n
.

From these identities and Equation (4) we have that

∆Var = E[gD]+E[gI ]/n−E[ fD]−E[ fI ]/n

=−E[gI ]+E[gI ]/n+E[ fI ]−E[ fI ]/n

=
n−1

n
(−E[gI ]+E[ fI ])

=
n−1

n2 (P(GD)−P(FD)) ,

which is strictly positive by the initial assumptions. �

This proposition is particularly useful as it allows us to
solve the problem in the case of binary classification prob-
lems, where any indeterminate prediction is necessarily
vacuous.

One might be tempted to think that the previous result
extends to non-vacuous classifiers as well, that is, that the
more determinate a classifier the higher its variance (and
therefore the more preferable it is). Unfortunately, this is
not the case, as the following example shows.
Example 1. Consider a three-class classification problem. Let
Hk denote the event that equals 1 if the generic classifier h returns
a set of k classes that contains the actual one, and 0 otherwise.
Likewise, let Hc

k be the event that equals 1 if h outputs k incorrect
classes, and 0 otherwise. Note that ∑

3
k=1 Hk +Hc

k = 1 and Hc
3 = 0.

We can define the relevant expectations in terms of Hk,Hc
k :

P(Dh) = P(H1)+P(Hc
1), E[h] =

3

∑
k=1

1
k

P(Hk),

E[h2] =
3

∑
k=1

1
k2 P(Hi), 1 =

3

∑
k=1

P(Hi)+P(Hc
i ) .

Assume that P(F1) = P(G1)+ ε , P(Gc
1) = P(Fc

1 )+2ε , P(G2) =
P(F2)+2ε , P(Fc

2 ) = P(Gc
2)+3ε , and P(F3) = P(G3), for some

small ε > 0. Then we have from the identities above that E[ f ] =
E[g]. Similarly, we have that E[ f 2] = E[g2]+ ε

2 . Hence, ∆Var =
E[g2]−E[ f 2] < 0, and g is preferred over f even though g is
more determinate than f : P(D f ) = P(Dg)− ε .

Alternatively, we might measure the indeterminacy of a
classifier h by the expected number of classes it outputs:
∑

n
k=1 k

[
P(Hk)+P(Hc

k )
]
. Thus, in the example, we would have

n

∑
k=1

k [P(Fk)+P(Fc
k )] =

n

∑
k=1

k [P(Gk)+P(Gc
k)]+4ε,

and g is preferred over f even though the former has a smaller
expected number of output classes than the latter. �

7 Comparison Over the Next m Bets

So far, we have considered the expected reward and utilities
for the next single classification; this setting fits for instance
the case of a patient, who asks a doctor for a diagnosis and
who is concerned only about the utility generated by the
very next classification (his diagnosis). Conversely, an on-
line trader, who performs m trading operations every day,
might accept to lose some money in the very next transac-
tion, provided that the set of m transactions generated at the
end of day has high enough utility. In this case, expected
rewards and expected utilities should be computed over
the next m bets. In the following, we compare the random
classifier r and the vacuous classifier v on the next m bets;
we denote by vm and rm the rewards of the vacuous and the
random ones over the next m instances.

Gamble vm has deterministic value m/n and thus:

E[u(vm)] = u
(m

n

)
.



To compute E[u(rm)], let us consider that classifier r yields
utility u(k) when it correctly predicts ` outcomes in the
next m bets; considering that classifier r issues a correct
classification with probability 1/n (see Proposition 2), the
probability of correctly predicting ` instances out of the
next m is the binomial:

Bin(`,m,
1
n
) =

(
`

m

)
1
n

`(
1− 1

n

)m−`

.

The expected utility produced by the random classifier over
the next m bets is thus:

E[u(rm)] =
m

∑
`=1

u(`)Bin(`,m,
1
n
). (8)

It is not immediate to compare the expected utilities of the
random and vacuous classifiers using Equation (8); a clear
understanding can be obtained through the second-order
approximation given by Equation (2). In the following, we
analyze in this way the logarithmic and the exponential
utility. The second-order approximation of both the log-
arithmic and the exponential utility is very good, having
relative absolute error consistently smaller than 1%.

7.1 Logarithmic Utility

The logarithmic utility is u(x) := log(1 + x), whence
u′′(x) =− 1

(1+x)2 ; applying Equation (2), we get:

u(E[rm])+
1
2

u′′(E[rm])Var(rm) =

u(E[rm])− Var(rm)
2(E[rm]+1)2 =

u
(m

n

)
−

m 1
n

(
1− 1

n

)
2(m

n +1)2 ,

where in the last passage we introduced the analytical ex-
pression of the variance for a binomial distribution.

Thus, the (approximated) difference between the expected
utility of the random and the vacuous over the next m bets
is

d(m) = E[u(vm)]−E[u(rm)] =
m
n

(
1− 1

n

)
2(m

n +1)2 ∝
m

(m
n +1)2 , (9)

where in the last passage we removed the proportionality
constant 1

2n

(
1− 1

n

)
> 0. Function d(m) is shown in Fig. 1.

The first derivative of d(m) is:

d′(m) =
1

(m
n +1)2 −2

m
n

(m
n +1)3 ∝ 1− m

n
, (10)

where the last passage is obtained considering that (m
n +

1)3 > 0. From Equations (9) and (10), we can figure out that

0 20 40

0

4 ·10−2

8 ·10−2

m

d(
m

)

20 classes
2 classes

Figure 1: Function d(m) for logarithmic utility, under dif-
ferent number of classes.

d(m) will monotonically increase up to m < n (inversion
point), to then indefinitely decrease, so that d(m)→ 0 for
m→∞; if expectations of utilities are computed over a long
enough number of bets, the expected utility produced by the
two classifiers is the same. It also follows that increasing n
delays the convergence of the expected utilities to the same
value, as also shown in Fig. 1.

7.2 Exponential Utility

The exponential utility is u(x) := 1− exp(−ax), where
a is a coefficient of risk-aversion. Noting that u′′(x) =
−a2 exp(−ax), the second-order approximation yields:

u(E[rm])+
1
2

u′′
(m

n

)
Var(rm) =

u
(m

n

)
− 1

2
a2 exp

(
−a

m
n

)
m

1
n

(
1− 1

n

)
,

whence

d(m) =−1
2

a2 exp
(
−a

m
n

)
m

1
n

(
1− 1

n

)
∝

∝−exp
(
−a

m
n

)
m,

where the proportionality constant is a2

2
1
n

(
1− 1

n

)
> 0.

We have

d′(m) = exp
(
−a

m
n

)
·
(

a
m
n
−1
)

.

Function d(m) has qualitatively the same behavior of the
logarithmic case, but the inversion point is now located at
m = n

a . Moreover, the difference between the expected util-
ity of the two classifiers depends also on the risk-aversion
coefficient a; higher risk-aversion delays the convergence
of the expected utilities, thus emphasizing the difference in
favor of the vacuous on small m.

8 Experiments on Artificial Data Sets

In the following, we denote the naive Bayes classifier as
NBC [3] and the naive credal classifier as NCC [1]. We



compare the utility generated by NBC and NCC on the
next single bet. In a first set of experiments, we generated
artificial data sets, considering a binary class and 10 binary
features; we set the marginal chances of classes as uniform,
while we drew the conditional chances of the features under
the constraint |θi1`− θi2`| ≥ 0.1 ∀i, j, where θi j` denotes
the chance of feature Ai to be in state ` when C = j; the
constraint forced each feature to be truly dependent on the
class. We drew θ 80 times uniformly at random and we
consider the sample sizes: s ∈ {25,50,100}. We did not
consider larger sample sizes, under which NCC would have
been almost completely determinate, and thus not really
different from NBC. For each pair (θ ,s) we generated 50
training sets; we then evaluate the trained classifiers on a
test set of 10000 instances. In the following, the instances
indeterminately classified by NCC are referred to as the
area of ignorance. We denote as NBC(NCC-I) the accu-
racy of NBC on the area of ignorance. For each sample
size, we thus perform 80 θ * 50 trials = 4000 training/test
experiments.
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Figure 2: Experimental results with artificial data; each
point shows the median over 4000 experiments, performed
with the same sample size s. For NBC, accuracy and utility
coincide. For NCC, the curve of utility rises the values of
discounted accuracy.

We set the utility of a determinate and successful classifi-
cation as u(1) := 1; the utility of a non-successful classifi-
cation (determinate or indeterminate) as u(0) := 0. This is
the case, for instance, if you are risk-neutral in the scale the
original rewards are measured. It remains to set the utility
u(0.5) of an indeterminate classification (notice that for a
data set with two classes, an indeterminate classification
has necessarily discounted accuracy of 0.5). We think that
in general the value of u(0.5) could reasonably lie between
0.6 and 0.8; in our experiments, we set u(0.5) := 0.65. As
a term of comparison, determinate and indeterminate clas-
sifiers have been compared in [7] through the F1 metric,
which is widely used in information retrieval. Under the
F1 metric, on a dataset with 2 classes, the vacuous classi-
fier gets the same score of a precise classifier with 66%
accuracy; this gives further support to our choice.

As expected, NBC has higher discounted accuracy than
NCC (see Fig. 2); this means that, on the area of igno-
rance, it is doing better a than the K -random guesser. Yet,
NCC produces slightly higher utility than NBC at each
sample size. The determinacy of NCC rises steadily with
the sample size; interestingly, at the same time the value
of NBC(NCC-I) decreases; this means that NCC is getting
better at identifying instances which are really hard to clas-
sify. For instance, NBC(NCC-I) is 64% for s = 25, and
54% for s = 100; this explains why the gap of utility tends
to slightly increase with the sample size. Note however that
the restriction of the area of ignorance (20% for s = 25,
and only 4% for s = 100) works against enlarging the gap
between NCC and NBC. Results similar to those shown
here are obtained also using logarithmic utility; however
we find it clearer in this simple setting to reason about the
only point to elicit, u(0.5), rather about the whole utility
function.

9 Experiments on the kr-kp Data Set
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Figure 3: Utility and discounted accuracy generated by
NBC and NCC for downsampled versions of kr-kp.

We then performed some experiments on the kr-kp data set
(2 classes, 36 binary features, 3200 instances) from the UCI
repository. To evaluate the sensitivity of the performance
on the sample size, we worked by downsampling the kr-kp
data set. In particular, we generated training sets of size
s ∈ {5,10,15,20,30,50,100,150}; for each sample size,
we generated 100 different training sets; for each training
set, the corresponding test set is given by the instances left
in the original data set. All training and test sets are strati-
fied, namely the proportion among the two classes matches
that of the original data set. For each sample size, we report
the average results over all splits; the results are shown
in Tab. 1 and Fig. 3. The determinacy of NCC steadily
increases with the sample size, as well its discounted ac-
curacy and the accuracy of NBC. For NBC, notice that
accuracy and utility have the same value. For very small s
(e.g., s = 5), NCC is almost always indeterminate; in this
case, its utility corresponds to u(0.5) and thus is 0.65; in
the same situation, NBC is almost randomly guessing, and



s NCC: NBC:
Determ NBC(NCC-I)

(%) (%)

5 2 59
10 10 65
15 25 60
20 29 64
30 41 64
50 60 62

100 78 60
150 85 59

Table 1: Results for the kr-kp experiment; Determ. indicates
the % of instances determinately classified by NCC.

thus its utility is close to 50%. Both the utility of NBC and
NCC smoothly increases with s; the utility of NCC remains
however slightly superior. In fact, under a data set with two
classes, whether NCC or NBC produces a higher utility
can be realized by comparing NBC(NCC-I) with u(0.5); if
u(0.5) <NBC(NCC-I), then NCC produces higher utility
than NBC, and vice versa. However, the outcome of the
comparison would be slightly in favor of NBC by (con-
servatively) setting u(0.5) = 0.6, as can be deduced from
Tab. 1; in fact, once utility is introduced in the evaluation
of the classifiers, it also plays a role in the final decision
about which of the considered classifiers is better. This
also implies that to generate sensible results when using
utility-based metrics, it is fundamental to carefully elicit
the decision maker’s utility.

10 Conclusions

In this paper, we have tried to define in a principled way
a measure to empirically evaluate credal classifiers. In
our proposal, any such measure is made of two main
components: the discounted accuracy, which represents
a kind of objective performance of a classifier, and its vari-
ance, which represents the unreliability of the classifier,
and whose contribution to the overall measure has to be
weighted through subjective considerations of risk-aversion.
Our measure can be implemented very easily in practice,
and in fact is shown to empirically lead to some interest-
ing results. Future work could (i) explore generalizations
to rewards more general than 0-1 ones; (ii) exploit what
appear to be natural connections between our measure and
finance, in order to evaluate credal classifiers (some recent
work connecting utility and machine learning, that could be
useful to consider in that respect, has also recently appeared
[5]); and also (iii) deepen the empirical study in order to ver-
ify the possibility to define some kind of ‘general purpose’
utility functions for machine learning aims.
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