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Abstract. We detail the relationship between sets of desirable gambles and

conditional lower previsions. The former is one the most general models of
uncertainty. The latter corresponds to Walley’s celebrated theory of imprecise

probability. We consider two avenues: when a collection of conditional lower

previsions is derived from a set of desirable gambles, and its converse. In
either case, we relate the properties of the derived model with those of the

originating one. Our results constitute basic tools to move from one formalism

to the other, and thus to take advantage of work done in the two fronts.

1. Introduction

Background and motivation. Uncertainty is at the very heart of much of arti-
ficial intelligence (AI), and so are the many theories and models proposed to deal
with it. Among these, a central role is played by probabilistic theories, and in par-
ticular by Bayesian theory. On the other hand, the very general kind of uncertainty
handling needed by AI has favored the emergence of theories able to deal with un-
certainty more flexibly than traditional probability. In fact, recent years have seen
more and more work being devoted to theories of so-called imprecise probability.1

The common ground among them is the attempt to represent and deal with proba-
bilities that can be imprecisely specified, for example by using sets of probabilities.
Introducing imprecision has enabled probability to cope effectively with qualitative
uncertainty statements, with incomplete (or missing) information, and to naturally
embed robustness in its inferences.

A prominent theory of imprecise probability is Walley’s behavioral theory of co-
herent lower previsions [19]. The distinguishing feature of this theory is its being
founded on a rationality axiom: coherence. Coherence ensures that probabilistic
inferences made under such a theory are self-consistent. Walley’s theory shares
this property with the Bayesian theory, of which it can actually be regarded as a
generalisation: in fact, a coherent lower prevision is a lower expectation functional,
which is in one-to-one correspondence with a closed convex set of probability dis-
tributions (that is, a so-called credal set). The approach by Walley includes also
as particular cases most of the other imprecise probability models appearing in the
literature (when these are interpreted as sets of probabilities and used coherently),
such as possibility measures, belief functions, Choquet capacities and coherent lower
and upper probabilities and expectations. Coherence is also at the basis of the in-
ferential procedure called the natural extension, which allows one to derive, in a
very general sense, probabilistic conclusions from probabilistic premises. A few

1See http://www.sipta.org.
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special cases of the natural extension are logical deduction, de Finetti’s fundamen-
tal theorem of probability, Lebesgue integration of a probability measure, Choquet
integration of 2-monotone lower probabilities, Bayes’ rule for probability measures
and robust Bayesian analysis.

As Walley himself has repeatedly remarked (see [19, Appendix F], [21]), there
is another theory which is even more general than coherent lower previsions: the
theory of (coherent) sets of desirable gambles. In the theory of desirable gambles, a
subject expresses his uncertainty about the outcome of an experiment through a set
of gambles that he would accept. As with coherent lower previsions, a rationality
axiom of coherence is imposed on a set of desirable gambles, and a related procedure
of natural extension is defined as well.

Despite the unusual form as models of uncertainty, sets of desirable gambles have
a number of remarkable properties. One of the most appealing is their inherent
conceptual simplicity: for example, the founding notion of coherence, which in
the case of coherent lower previsions is quite technical, becomes very clear and
intuitive; updating a set of desirable gambles in the light of new evidence simply
corresponds to focus on a subset of the original gambles. Also, we can derive
coherent lower previsions easily from sets of desirable gambles, and moreover these
are indeed more expressive than coherent lower previsions. This is obvious when
we come to updating: coherent lower previsions, as well as traditional probability
models, are not suited to update beliefs conditional on an event of probability
zero.2 The reason is that by its very definition Bayes’ rule cannot be applied (or,
stated alternatively, it leads to uninformative conclusions). On the other hand, the
extra expressivity of desirable gambles permits to obtain meaningful conclusions
also when the conditioning event has lower, and even upper, probability equal to
zero.

The idea of using desirable gambles as models for uncertainty dates back to the
early sixties from Smith’s work [17], but it was elaborated and formalised with all
the main modern ideas only in 1975 in the important work of Williams [24]. Then
it was reconsidered by Walley, who used desirable gambles as a building block of
his theory of coherent lower previsions. Walley also explored to a large extent
(see [19, Section 3.7]) the relationship between desirability and unconditional lower
previsions, showing in particular that a special type of desirable gambles, called
almost-desirable, are models equivalent to unconditional lower previsions. He also
introduced the related notions of real and strict desirability. More recent work has
been done by Moral [15], who studied notions of irrelevance for desirable gambles;
by de Cooman and Miranda [4], who made a general study of transformational
symmetry assessments for desirable gambles; by Couso and Moral [1], who discussed
the relationship with credal sets, computer representation, and maximal sets of
desirable gambles; and finally by de Cooman and Quaeghebeur [5], who studied
exchangeability in the framework of desirable gambles, and who also introduced
the new notion of weak desirability.

Problems and contributions. Although the theory of desirable gambles has
recently experienced a boost in research, some of its basic features are still relatively
unexplored. This is the case of the relationship between sets of desirable gambles
and conditional lower previsions, which is particularly important to relate, and take

2Some reasons why it is important to allow for conditioning on such events, in particular with

imprecise probability models, are discussed in the Introduction of another paper [14].
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advantage of, work done in the two fronts. This paper is a technical set of notes
that detail such a relationship.

Consider a space of possibilities Ω that lists all the possible outcomes ω of an ex-
periment. Consider a further experiment whose possible outcomes are the elements
of a partition B of Ω. By yielding a set B ∈ B, the latter experiment tells us some-
thing about where the outcome of the first experiment is going to be in Ω. Let L(Ω)
be the set of all gambles (bounded random variables) f : Ω → R. A conditional
coherent lower prevision P (·|B), defined on a subset K of L(Ω), is a conditional
lower expectation functional equivalent to a (closed and convex) set of distributions
conditional on some B ∈ B. We summarise the conditional information through
the gamble P (·|B) which takes the value P (·|B) on the elements of B; and we call
P (·|B), too, a conditional coherent lower prevision. The above reasoning can be
repeated for different partitions B1, . . . ,Bm of Ω, therefore it is common to take
a collection of conditional coherent lower previsions P 1(·|B1), . . . , Pm(·|Bm) as the
basic modelling unit in Walley’s theory.

We can consider two situations at this point:

(1) In the first, we start from a set of desirable gambles R, and given parti-
tions B1, . . . ,Bm of Ω, we derive from R a collection of conditional lower
previsions P 1(·|B1), . . . , Pm(·|Bm).

(2) In the second, starting from a collection of conditional lower previsions
P 1(·|B1), . . . , Pm(·|Bm) we derive a set of desirable gambles R.

In this paper we study, in both cases (1) and (2), the relation between the properties
of the derived model and those of the originating one.

As we have said, a thorough study of this type has already been done by Walley
in the unconditional case [19, Section 3.7], which corresponds to focusing on the
single trivial partition B = {Ω}. In the much more involved case where we focus
on multiple partitions B1, . . . ,Bm, the contributions so far are basically confined
within the work of Williams [24]. Williams has, in particular, focused mostly on
case (1) above. Case (2) is nearly unexplored to date (although part of Walley’s
work is somewhat implicitly relying on it).

We start our work in Section 2, where we give background notions on conditional
coherent lower previsions. We define a number of consistency conditions, already
introduced by Walley: separate coherence, avoiding uniform sure loss, avoiding
partial loss, weak coherence, and finally (joint or strong) coherence. We define
also the natural extension of a collection of conditional coherent lower previsions,
and prove some of its properties. Then we introduce the special case of coherent
lower previsions called linear previsions, which are expectation functionals, that is,
precise-probability models. Moreover, we discuss the updating of an unconditional
coherent lower prevision in the form of a generalised Bayes’ rule.

In doing all this, we take a very general stance: we do not place any restriction
of the cardinality of the set Ω nor on the domain of the conditional coherent lower
previsions. This is in contradistinction with Walley’s (and Williams’) work, which in
the conditional case is restricted to domains being linear spaces, and is instead in the
same spirit of more recent work [13, 16]. On the other hand, throughout the paper
we do place the restriction that each conditioning partition of Ω be finite. We do this
to avoid entering the controversy concerning how to deal with infinite partitions:
in fact, Walley’s approach relies on an axiom of so-called conglomerability [19,
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Section 6.8 and Appendix F], which is an important point of disagreement with
Williams’ and de Finetti’s work (see also [24] and [16]).

In Section 3 we introduce sets of really desirable gambles, which is our main model
through the paper, and define for this model the conditions of avoiding partial loss,
coherence, and the procedure of natural extension. We provide some basic results,
and introduce the related notions of almost and strictly desirability.

The main corpus of our work starts in Section 4, where we address case (1)
above. We detail the conditions of the set R that enable the derived conditional
lower previsions to be, in turn, well-defined (i.e., bounded), separately coherent,
avoiding partial loss, and (jointly) coherent. We also highlight here the natural
connections of these results with almost-desirability. Moreover, we discuss which
properties of R can affect the domain of the derived lower previsions, and show
under which conditions R yields linear previsions. This part of the paper is the
closest to Williams’ work, which is partly generalised here.

The work continues in Section 5, where we address point (2). There we define
the set R of really desirable gambles that is derived from a collection of sepa-
rately coherent conditional lower previsions P 1(·|B1), . . . , Pm(·|Bm), and provide
two equivalent formulations for its natural extension. On this basis, we show that
P 1(·|B1), . . . , Pm(·|Bm) avoid partial (or uniform sure) loss if and only if R does.
Moreover, we show in Theorem 11 a somewhat unexpected result: that while a
coherent collection P 1(·|B1), . . . , Pm(·|Bm) yields a coherent set R, the coherence
of R alone does not imply that the originating collection is coherent. Further re-
sults detail the link between the natural extension of the collection and that of the
derived set R.

These results are used in Section 6. We first discuss commutativity, which is
something that Williams had already explored in his framework: what happens if we
start from a collection P 1(·|B1), . . . , Pm(·|Bm), derive a set of desirable gambles R,
and from this we derive a new collection P ′1(·|B1), . . . , P ′m(·|Bm)? What happens if
we go the other way around? We show that in the first case we re-obtain the original
collection, and moreover that the logical implications of set R coincide with those
of the collection (so that it is possible to always work entirely in the framework of
desirable gambles), while in the second case there is a loss of information. We then
move on to deepen the properties of sets of desirable gambles that make them more
expressive than collections of conditional coherent lower previsions: in this case, we
describe the special sets of desirable gambles that are as expressive as collections of
conditional lower previsions. When Ω is finite, this result is particularly revealing:
it shows that there is a kind of information carried by sets of desirable gambles that
cannot be disclosed through any conditional probabilistic statement. As we shall
see, such a kind of information has to do with modelling preferences.

After drawing some conclusions in Section 7 on the problems studied and dis-
cussing open problems, we give some additional results in Appendix A. These
results are related to the main discussion in the paper but are also somewhat less
central to it. Thus, we have preferred to collect them separately in order to allow
the reader to follow more easily the main discussion. The first result, relating to
some recent work [1], shows which properties of R lead to conditional lower previ-
sions that coincide with those obtained through the regular extension, which is a
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special updating procedure for lower previsions; the second investigates some prop-
erties of the concept of weak desirability, which has recently been introduced in [5],
and its relationship with the results in this paper.

Finally, and again for clarity, in Appendix B we have collected all the proofs of
the results in the paper.

2. Coherent lower previsions

Let us give a short introduction to the concepts and results from the behavioural
theory of imprecise probabilities that we shall use in the rest of the paper. We refer
to [19] for an in-depth study of these and other properties, and to [11] for a brief
survey.

2.1. The behavioural interpretation. Given a possibility space Ω, a gamble f
is a bounded real-valued function on Ω. This function represents a random reward
f(ω), which depends on the a priori unknown value ω of Ω. We shall denote by L(Ω)
the set of all gambles on Ω, or by L when there is no confusion about the possibility
space we are dealing with, and by L+ := {f ∈ L : f  0} the set of non-negative
gambles different from zero.3 A lower prevision P is a real functional defined on
some set of gambles K ⊆ L(Ω). It is used to represent a subject’s supremum
acceptable buying prices for these gambles, in the sense that for all ε > 0 and all f
in K the subject is disposed to accept the uncertain reward f − P (f) + ε.

From any lower prevision P we can define an upper prevision P using conjugacy:
P (f) := −P (−f) for any gamble f in −K := {f : −f ∈ K}. P (f) can be inter-
preted as the infimum acceptable selling price for the gamble f . Because of this
relationship, it will suffice for the purposes of this paper to concentrate on lower
previsions for the most part.

We can also consider the supremum buying prices for a gamble, conditional on
a non-empty subset of Ω. Given such a set B and a gamble f on Ω, the lower
prevision P (f |B) represents the subject’s supremum acceptable buying price for
the gamble f , provided he later comes to know that the unknown value ω belongs
to B, and nothing else. Equivalently, it can also be seen as the supremum value of
δ for which our subject is disposed to accept the transaction given by the gamble
B(f − δ),4 where to simplify the notation we use B to denote also the indicator
function IB of the set B. If we consider a partition B of Ω (for instance a set
of categories), then we shall represent by P (f |B) the gamble on Ω that takes the
value P (f |B) if and only if ω belongs to the element B of the partition B. The
functional P (·|B) that maps any gamble f on its domain into the gamble P (f |B)
is called a conditional lower prevision. To any conditional lower prevision P (·|B)
we can associate a conditional upper prevision P (·|B) by P (f |B) := −P (−f |B). It
will represent the infimum acceptable selling price for the gamble f , contingent on
the element of the partition B that we observe.

A gamble f on Ω is called B-measurable when it is constant over the elements
of B. This is for instance the case of the conditional lower prevision P (f |B).

3In this paper we shall use f < g to denote that f(ω) < g(ω) for all ω ∈ Ω, and f ≤ g when

f(ω) ≤ g(ω) for all ω ∈ Ω. The notation f � g (often adopted when either f = 0 or g = 0) is used
in the case f ≤ g, f 6= g, and similarly f  g means that f ≥ g, f 6= g.

4These are called the updated and contingent interpretations of the conditional prevision, and
represent our subject’s beliefs at the present time, even if they take into account future scenarios.

See [19, Section 6.1] or [11, Section 3.1] for more details.
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We shall also use the notations

G(f |B) := B(f − P (f |B)), G(f |B) :=
∑
B∈B

G(f |B) = f − P (f |B)

for all f in the domain of P (·|B) and all B ∈ B. By G(f |B) we represent the
transaction where the gamble f is bought at the price P (f |B) contingent on B,
and which is called off otherwise. In the case of an unconditional lower prevision P ,
we shall let G(f) := f − P (f) for any gamble f in its domain. In our notation this
is equivalent to have a conditional lower prevision P (·|B) with B = {Ω}. Moreover,
in this case G(f |Ω) = G(f).

These assessments modelled by a conditional lower prevision P (·|B) can be made
for many different partitions of Ω, and therefore it is not uncommon to model a
subject’s beliefs using a finite number of different conditional lower previsions. We
should verify then that all the assessments modelled by these conditional lower
previsions are coherent with one another. In this section we review the different
consistency criteria. We give the particular definitions of these notions for finite
partitions, which will be the ones considered in this paper, and refer to [13, 19] for
more general definitions of these notions.

2.2. Separate coherence. The first requirement we make is that for any partition
B, the conditional lower prevision P (·|B) defined on a subset H of L should be
separately coherent.

Definition 1 (Separate coherence). A conditional lower prevision P (·|B) with
domain H is separately coherent if for every B ∈ B, the gamble B belongs to H
and P (B|B) = 1, and moreover

sup
ω∈B

 n∑
j=1

λjG(fj |B)−G(f0|B)

 (ω) ≥ 0

for every n ≥ 0, j = 1, . . . , n, fj ∈ H, λj ≥ 0, f0 ∈ H.

Separate coherence means that contingent on B the supremum acceptable buying
price for a gamble f0 cannot be raised by taking into account other acceptable
transactions, and also that we should be prepared to bet on B at all odds after
having observed it.

When the domain H is a linear set of gambles (i.e., closed under addition and un-
der multiplication by real numbers), there is a simpler characterisation of separate
coherence:

Theorem 1. [19, Theorem 6.2.7] If the domain H of P (·|B) is a linear set of
gambles that contains all gambles B ∈ B, then P (·|B) is separately coherent if and
only if the following conditions are satisfied for all B ∈ B, f, g ∈ H, and λ > 0:

P (f |B) ≥ inf
ω∈B

f(ω), (SC1)

P (λf |B) = λP (f |B), (SC2)

P (f + g|B) ≥ P (f |B) + P (g|B). (SC3)

It is also useful for this paper to explicitly consider the particular case where
B = {Ω}, that is, when we have unconditional information. We have then a(n
unconditional) lower prevision P on a subset K of the set L of all gambles. Separate
coherence is simply called then coherence:
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Definition 2 (Coherence). An unconditional lower prevision P with domain K is
coherent when

sup
ω∈Ω

 n∑
j=1

λjG(fj)−G(f0)

 (ω) ≥ 0 (1)

for every n ≥ 0, j = 1, . . . , n, fj ∈ K, λj ≥ 0, f0 ∈ K.

Its interpretation is similar to that of separate coherence, now with B = Ω.
Again, we can give a simpler characterisation in the case of linear domains:

Theorem 2. [19, Section 2.3.3] Let P be a lower prevision defined on a linear
set of gambles K. It is coherent if and only if the following conditions hold for all
f, g ∈ K, and λ > 0:

P (f) ≥ inf f, (C1)

P (λf) = λP (f), (C2)

P (f + g) ≥ P (f) + P (g). (C3)

Remark 1. It is possible to deduce from Definition 1 that given a separately coherent
conditional lower prevision P (·|B) with domain H, we may assume without loss of
generality that H contains all the gambles λf − µ, where f ∈ H, λ ≥ 0 and µ ∈ R,
and moreover that for each fB ∈ H, B ∈ B, also the gamble

∑
B∈B BfB belongs

to H (see [19, Lemma 6.2.4 and Section 6.2.6]). The above assumptions imply that
the B-measurable gambles are in H. Two other useful consequences that we shall
use repeatedly in the rest of the paper are the following:

• for all f ∈ H, both G(f |B) and G(f |B) belong to H;
• for all f ∈ H, λ ≥ 0, λG(f |B) = G(λf |B) and λG(f |B) = G(λf |B) (note

that the gamble λf belongs to H).
The second point, in particular, will allow us to simplify the notation by removing
the λ-coefficients from many formulae. �

2.3. Avoiding partial and uniform sure loss. Let B1, . . . ,Bm be finite parti-
tions of Ω and let P 1(·|B1), . . . , Pm(·|Bm) be separately coherent conditional lower
previsions whose respective domains are subsets H1, . . . ,Hm of L.

Definition 3 (Avoiding uniform sure loss). The conditional lower previsions
P 1(·|B1), . . . , Pm(·|Bm) avoid uniform sure loss if for every j = 1, . . . ,m, nj ≥
1, k = 1, . . . , nj , gkj ∈ Hj ,

sup
ω∈Ω

 m∑
j=1

nj∑
k=1

Gj(gkj |Bj)

 (ω) ≥ 0.

The intuition behind this notion is that there at least should exist a possibility
for the subject to not lose any utiles from the transactions that the subject has
accepted, so a combination of transactions which are acceptable to our subject
should not make him lose utiles for all the outcomes of the experiment. It is based
on the rationality requirement that a gamble f < 0 should not be desirable.

A related stronger notion that restricts the set where we take the supremum in
the definition above is called avoiding partial loss. In order to introduce it, we need
to give first the notion of support.
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Definition 4 (B-support). Define the B-support S(f) of a gamble f in L as

S(f) := {B ∈ B : Bf 6= 0}, (2)

i.e., it is the set of conditioning events for which the restriction of f is not identically
equal to the zero gamble.

Definition 5 (Avoiding partial loss). We say that a number of conditional lower
previsions P 1(·|B1), . . . , Pm(·|Bm) avoid partial loss if for every j = 1, . . . ,m, nj ≥
1, k = 1, . . . , nj , gkj ∈ Hj , such that not all the gkj are zero gambles,

sup
ω∈S(gkj )

 m∑
j=1

nj∑
k=1

Gj(gkj |Bj)

 (ω) ≥ 0,

where by S(gkj ) :=
⋃
∪mj=1 ∪

nj
k=1 Sj(g

k
j ) we mean the set of elements that belong to

some set in Sj(gkj ) for some j ∈ {1, . . . ,m}, k ∈ {1, . . . , nj}.

With this stronger notion, we also reject the possibility that a combination of
acceptable transactions make our subject lose utiles except in the set where all the
transactions are equal to zero.

Remark 2. One might wonder whether the support of a gamble f could rather be
defined as S(f) := {B ∈ B : Bf not constant}, because it is in these conditioning
events where G(f |B) is non-zero. Actually, it can be checked that the resulting
condition of avoiding partial loss, which at first sight might seem stronger than the
one in Definition 5, is equivalent to it provided that the domains are rich enough, in
the sense that the domain of P (·|B) contains all B-measurable gambles (and this is
something we have assumed in Section 2.2, see Remark 1). Similar considerations
can be made for the notion of coherence we shall introduce in Definition 7. �

In order to explore the connection between avoiding partial loss and the desir-
ability of a set of gambles, we are going to use a number of properties. The first
one is an adaptation of a result we established somewhere else [14, Proposition 4]
for lower previsions conditional on variables:

Proposition 1. Let P 1(·|B1), . . . , Pm(·|Bm) be conditional lower previsions with
respective domains H1, . . . ,Hm. The following are equivalent:

1. P 1(·|B1), . . . , Pm(·|Bm) avoid partial loss.
2. For every ε > 0, gkj ∈ Hj , j = 1, . . . ,m, nj ≥ 1, k = 1, . . . , nj, such that not

all the gkj are zero gambles, it holds that

sup
ω∈Ω

 m∑
j=1

nj∑
k=1

Gj(gkj |Bj) + εSj(gkj )

 (ω) > 0. (3)

3. For every ε > 0, gkj ∈ Hj , j = 1, . . . ,m, nj ≥ 1, k = 1, . . . , nj, such that not
all the gkj are zero gambles, it holds that

sup
ω∈S(gkj )

 m∑
j=1

nj∑
k=1

Gj(gkj |Bj) + εSj(gkj )

 (ω) ≥ 0. (4)
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Remark 3. In the particular case where the domains of the conditional lower pre-
visions P 1(·|B1), . . . , Pm(·|Bm) are linear spaces, we can assume without loss of
generality that nj = 1 for j = 1, . . . ,m in Definitions 3, 5, and in Eq. (3): it
suffices to take into account that, because of the super-additivity (SC3) of the con-
ditional lower previsions,

∑nj
k=1Gj(g

k
j |Bj) ≥ Gj(

∑nj
k=1 g

k
j |Bj), and this for every

j = 1, . . . ,m. Similar considerations hold for the conditions of weak and strong
coherence we shall introduce next, and for the natural extension we shall define in
Eq. (7). We shall use this to simplify some of the proofs in Appendix B. �

2.4. Weak and strong coherence. We next give two notions that generalise the
concept of coherence in Eq. (1) from the unconditional to the conditional case:

Definition 6 (Weak coherence). Let P 1(·|B1), . . . , Pm(·|Bm) be separately coher-
ent conditional lower previsions with respective domains H1, . . . ,Hm. We say that
they are weakly coherent if for every j = 1, . . . ,m, nj ≥ 1, k = 1, . . . , nj , gkj ∈ Hj ,
and for every j0 ∈ {1, . . . ,m}, g0 ∈ Hj0 , B0 ∈ Bj0 , it holds that

sup
ω∈Ω

 m∑
j=1

nj∑
k=1

Gj(gkj |Bj)−Gj0(g0|B0)

 (ω) ≥ 0. (5)

With this condition we require that our subject should not be able to raise his
supremum acceptable buying price P j0(g0|B0) for a gamble g0 contingent on B0

by taking into account the implications of other conditional assessments: if Eq. (5)
does not hold and the supremum is strictly negative then we can deduce that there
is some ε > 0 such that Gj0(g0|B0)−ε is also a desirable gamble, which means that
P j0(g0|B0) + ε is an acceptable buying price.

However, under the behavioural interpretation, a number of weakly coherent
conditional lower previsions can still present some forms of inconsistency with one
another. See [19, Chapter 7], [12] and [22] for some discussion. On the other hand,
weak coherence neither implies nor is implied by the notion of avoiding partial loss.
Because of these two facts, we consider another notion which is stronger than both,
and which is called (joint or strong) coherence:5

Definition 7 (Strong coherence). Let P 1(·|B1), . . . , Pm(·|Bm) be separately co-
herent conditional lower previsions with respective domains H1, . . . ,Hm. We say
that they are coherent if for every j = 1, . . . ,m, nj ≥ 1, k = 1, . . . , nj , gkj ∈ Hj , and
for every j0 ∈ {1, . . . ,m}, g0 ∈ Hj0 , B0 ∈ Bj0 , it holds that

sup
ω∈S(gkj )∪B0

 m∑
j=1

nj∑
k=1

Gj(gkj |Bj)−Gj0(g0|B0)

 (ω) ≥ 0. (6)

Remark 4. There is another approach to the notion of coherence for imprecise
previsions which is earlier than Walley’s, and that was developed by Peter Williams
in [24]. It is based on the idea of deriving conditional previsions from sets of
desirable gambles that satisfy a number of consistency axioms, as we shall do in
Section 4.

Although there are some differences between the two approaches, in the context
of this paper, where all the partitions are finite, the two of them are equivalent. This

5The distinction between this and the unconditional notion of coherence mentioned above will
always be clear from the context.
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means that we could have formulated the subsequent results concerning coherent
conditional lower previsions using Williams’ terminology. We have opted to use
Walley’s instead because his is the theory most widespread, and also because we
shall use a number of concepts, such as weak coherence, which were established
by him. Nevertheless, some of the results we shall prove in Sections 4 and 6.1 are
already present in a similar form in Williams’ work, and we shall remark it when
it is the case. See [11, Section 5.2], [19, Appendix K] and [18] for a comparison
between both approaches. �

The coherence of a collection of conditional lower previsions implies their weak
coherence; although the converse does not hold in general, it does in the partic-
ular case when we only have a conditional and an unconditional lower prevision
P 1(·|B), P 2 with respective domains H,K. To see this, note that the union of the
supports in Eq. (6) is Ω unless all the gambles from K considered in the equation
are equal to the zero gamble, and then Eq. (6) would follow from the separate
coherence of P 1(·|B).

Similarly, when we have only one conditional and one unconditional lower pre-
vision, the notions of avoiding partial loss and avoiding uniform sure loss become
equivalent. In that case, they are referred to as avoiding sure loss in [19, Chapter 6].

2.5. Linear previsions and envelope theorems. Given a conditional lower pre-
vision P (·|B) with domain H, we define its conjugate conditional upper prevision
by P (f |B) := −P (−f |B) for every f ∈ −H := {−f : f ∈ H}. As we said at
the beginning of the section, the value P (f |B) can be interpreted as the infimum
acceptable selling price for the gamble f contingent on B. When the supremum
acceptable buying price for a gamble coincides with the infimum acceptable selling
price, we obtain the so-called conditional linear previsions.

Definition 8 (Linear conditional previsions). We say that a conditional lower
prevision P (·|B) with domain6 L is linear if and only if it is separately coherent
and moreover P (f + g|B) = P (f |B) + P (g|B) for all B ∈ B and f, g ∈ L.

Conditional linear previsions correspond to the case where a subject’s supremum
acceptable buying price (lower prevision) coincides with his infimum acceptable
selling price (or upper prevision) for any gamble on the domain. When a separately
coherent conditional lower prevision P (·|B) is linear we shall denote it by P (·|B);
in the unconditional case, we shall use the notation P . A number of conditional
linear previsions are coherent if and only if they avoid partial loss; and they are
weakly coherent if and only if they avoid uniform sure loss.

Conditional linear previsions correspond to conditional expectations with respect
to a probability. In particular, an unconditional linear prevision P is the expectation
with respect to the probability which is the restriction of P to events. They can be
used to give a Bayesian sensitivity analysis interpretation of the notion of coherence:

Theorem 3. [19, Section 3.3.3] Given an unconditional lower prevision P with
domain K, we shall denote the set of dominating linear previsions by

M(P ) := {P : P (f) ≥ P (f) ∀f ∈ K}.
Then P is coherent if and only if it is the lower envelope of M(P ).

6We shall always assume in this paper that the domain of a conditional linear prevision is the
whole set L.
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The conjugate unconditional upper prevision P on −K is then the upper envelope
of M(P ), so P (f) = sup{P (f) : P ∈M(P )}.

Following [10], we shall call any closed7 and convex8 set of linear previsions a
credal set ; an instance is the setM(P ). Similarly, for a conditional lower prevision
P (·|B) with domain H, we define

M(P (·|B)) := {P (·|B) : P (f |B) ≥ P (f |B) ∀f ∈ H, B ∈ B}.

Then a conditional lower prevision P (·|B) is separately coherent if and only if it is
the lower envelope of M(P (·|B)), meaning that

P (f |B) = min{P (f |B) : P (·|B) ≥ P (·|B)} ∀f ∈ H, B ∈ B.

Its conjugate conditional upper prevision P (·|B) will be then the upper envelope of
M(P (·|B)).

The situation is more complicated when we have more than one conditional lower
prevision. In [19, Section 8.1] Walley proved that when the partitions are finite
and the domains are linear spaces, coherent P 1(·|B1), . . . , Pm(·|Bm) are always
the envelope of a set {Pγ(·|B1), . . . , Pγ(·|Bm) : γ ∈ Γ} of dominating coherent
conditional linear previsions. Here, Γ denotes simply a (possibly infinite) set of
indexes, which serves to identify the conditional linear previsions from which we
are taking the lower envelope. In [12], a similar property was established for weak
coherence.

Another interesting particular case is the following:

Theorem 4. [19, Theorem 6.5.4] Consider an unconditional lower prevision P on a
linear set of gambles K and a separately coherent conditional lower prevision P (·|B)
on a linear set of gambles H satisfying the properties mentioned in Remark 1, at
the end of Section 2.2, where B is a finite partition of Ω. If K ⊇ H then P , P (·|B)
are coherent if and only if, for all f ∈ H and all B ∈ B,

P (G(f |B)) = 0. (GBR)

Condition (GBR) is called the Generalised Bayes Rule. When P (B) > 0, GBR
can be used to determine the value P (f |B): it is then the unique value µ ∈ R for
which P (B(f − µ)) = 0 holds.

If P (B) = 0 and P (B) > 0, then any value of µ in the interval[
inf
ω∈B

f(ω), inf
P≥P,P (B)>0

P (Bf)
P (B)

]
satisfies that P (B(f−µ)) = 0, and can therefore be used to define P (f |B); the upper
limit of the above interval is what we shall call in Appendix A.1 the regular extension
of P . To see this, denote µ1 := infω∈B f(ω) and µ2 := infP≥P,P (B)>0

P (Bf)
P (B) , and

observe that for any linear prevision P ≥ P , P (B(f − µ2)) = 0 if P (B) = 0, and
P (B(f − µ2)) ≥ P

(
B(f − P (Bf)

P (B) )
)

= 0 if P (B) > 0. As a consequence,

0 ≤ P (B(f − µ2)) ≤ P (B(f − µ1)) ≤ (sup
ω∈B

f(ω)− inf
ω∈B

f(ω))P (B) = 0.

7In the weak* topology, which is the smallest topology for which all the evaluation functionals

given by f(P ) := P (f), where f ∈ L, are continuous.
8That is, for all linear previsions P1, P2 in the set and all α ∈ (0, 1), the linear prevision

αP1 + (1− α)P2 also belongs to this set.
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Hence, both µ1 and µ2, and as a consequence also any value between them, are
possible values for P (f |B), since the resulting conditional prevision satisfies (GBR).

Finally, if P (B) = 0 then following a similar reasoning we see that any real
number µ satisfies P (B(f − µ)) = 0, and therefore we can take any value in
[infω∈B f(ω), supω∈B f(ω)] to define P (f |B) with a separately coherent P (·|B).

If P and P (·|B) are linear previsions, they are coherent if and only if for all f ,
P (f) = P (P (f |B)). This is equivalent to requiring that P (f |B) = P (fB)

P (B) for all f
and all B ∈ B with P (B) > 0 (see [19, Section 6.5.7]).

2.6. Extension of conditional lower previsions. We next show how to deter-
mine the behavioural consequences of the assessments modelled by some conditional
lower previsions.

Definition 9 (Natural extension). Let P 1(·|B1), . . . , Pm(·|Bm) be separately co-
herent conditional lower previsions with domains Hi for i = 1, . . . ,m. Their nat-
ural extensions to L are defined, for every gamble f and every B0 ∈ Bj0 , with
j0 ∈ {1, . . . ,m} by

Ej0(f |B0) := sup
{
α : ∃nj ≥ 1, k = 1, . . . , nj , gkj ∈ Hj for j = 1, . . . ,m s.t.

sup
ω∈S(gkj )∪B0

[ m∑
j=1

nj∑
k=1

Gj(gkj |Bj)−B0(f − α)
]
(ω) < 0

}
. (7)

Although the previous definition only requires that P 1(·|B1), . . . , Pm(·|Bm) are
separately coherent, in practice the procedure of natural extension is useful when
these conditional lower previsions avoid partial loss. This is the reason why the
assumption of avoiding partial loss is made in [19, Definition 8.1.1] and [13, Defini-
tion 6]. In that case, and in the context of this paper, where all the partitions are
finite, the natural extensions are the smallest conditional lower previsions which are
coherent and dominate P 1(·|B1), . . . , Pm(·|Bm). Moreover, they coincide with the
initial assessments if and only if P 1(·|B1), . . . , Pm(·|Bm) are themselves coherent.
Otherwise, they ‘correct’ the initial assessments taking into account the implica-
tions of the notions of coherence. This is made precise in Lemma 1 below.

Remark 5. The natural extension can actually be computed for any non-empty
B0 ⊆ Ω, not only for the elements of the pre-existing partitions B1, . . . ,Bm. In
other words, Eq. (7) can be employed to compute the logical implications of the
assessments P 1(·|B1), . . . , Pm(·|Bm) on the beliefs about a gamble f conditional
on any B0 ⊆ Ω, B0 6= ∅. To see this, consider that, irrespective of whether or
not B0 is an element of one of the pre-existing partitions, one can (i) consider
any partition B0 that includes B0, and (ii) define a new conditional lower pre-
vision P 0(·|B0), whose domain is a trivial one, such as the set of B0-measurable
gambles. In this way, by the new conditional lower prevision, we are not adding
any assessment that is not already implied by the former ones. In fact, it can
be checked that P 0(·|B0), P 1(·|B1), . . . , Pm(·|Bm) avoid partial loss if and only if
P 1(·|B1), . . . , Pm(·|Bm) do. Then Eq. (7) can be readily used to compute E0(f |B0).
Moreover, E0(f |B0) does not depend on the specific partition B0 considered, pro-
vided that it contains B0. For this reason, in the following we shall sometimes adopt
such an extended view of the natural extension referring directly to E0(f |B0) irre-
spective of whether B0 is in a pre-existing partition or not. �
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Some useful properties of the natural extension are the following:9

Lemma 1. Let P 1(·|B1), . . . , Pm(·|Bm) be separately coherent conditional lower
previsions.

1. Ej(fj |Bj) ≥ P j(fj |Bj), for every j = 1, . . . ,m, fj ∈ Hj , Bj ∈ Bj.
2. P 1(·|B1), . . . , Pm(·|Bm) avoid partial loss if and only if for all f ∈ L, and

all non-empty B0 ⊆ Ω, it holds that E0(f |B0) < +∞.
3. If P 1(·|B1), . . . , Pm(·|Bm) avoid partial loss, then E1(·|B1), . . . , Em(·|Bm)

are coherent.
4. If P ′1(·|B1), . . . , P ′m(·|Bm) are coherent lower previsions on L that dominate
P 1(·|B1), . . . , Pm(·|Bm) on their domains, then Ej(·|Bj) ≤ P ′j(·|Bj) for
j = 1, . . . ,m.

5. P 1(·|B1), . . . , Pm(·|Bm) are coherent if and only if Ej(fj |Bj) = P j(fj |Bj),
for every j = 1, . . . ,m, fj ∈ Hj , Bj ∈ Bj.

A consequence of the proof of the second point of this lemma is the following:

Corollary 1. Let P 1(·|B1), . . . , Pm(·|Bm) be separately coherent conditional lower
previsions. If Ej(fj |Bj) < +∞ for all j ∈ {1, . . . ,m}, Bj ∈ Bj, and some fj ∈ Hj,
then P 1(·|B1), . . . , Pm(·|Bm) avoid partial loss.

We can also use the notion of natural extension to define an unconditional lower
prevision. If we apply Eq. (7) with B := {Ω}, we obtain the functional E given by

E(f) := sup
{
α : ∃j = 1, . . . ,m, nj ≥ 1, k = 1, . . . , nj , gkj ∈ Hj s.t.

(f − α) >
m∑
j=1

nj∑
k=1

Gj(gkj |Bj)
}

(8)

for every gamble f ∈ L. It follows that

E(f) = sup
{
α : ∃j = 1, . . . ,m, nj ≥ 1, k = 1, . . . , nj , gkj ∈ Hj s.t.

(f − α) ≥
m∑
j=1

nj∑
k=1

Gj(gkj |Bj)
}

(9)

for every gamble f ∈ L: any α satisfying Eq. (8) satisfies Eq. (9), and conversely if
α satisfies Eq. (9) then α− ε satisfies Eq. (8) for every ε > 0.

It has been established in [13, Proposition 14] that when the conditional lower
previsions P 1(·|B1), . . . , Pm(·|Bm) are coherent, E is the smallest coherent lower
prevision that is coherent with them, and it is called their (unconditional) natural
extension.

Another particular case of interest is when we make the natural extension of a
separately coherent conditional lower prevision P (·|B) from its domain H to the
set of all gambles L; then E(·|B) is the smallest coherent extension of P (·|B),
and it is the lower envelope of the credal set M(P (·|B)); similarly, if we have an
(unconditional) coherent lower prevision P with domain K, its natural extension E
to L is its smallest coherent extension, and it is the lower envelope of the credal set
M(P ). Hence, in those cases we can keep the sensitivity analysis interpretation we
mentioned in Section 2.5. See [19, Sections 3.4 and 6.7] for more details.

9Some related, but less general versions of points 1, 3, 4 and 5 can also be found in [13,

Proposition 11 and Theorem 15].
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3. Sets of desirable gambles

As we have seen in Section 2, lower previsions can be given a behavioural interpre-
tation in terms of acceptable buying and selling prices, and the different consistency
notions we have introduced can be better understood in terms of the desirability
of a number of gambles. In this section, we summarise the formal structure of the
sets of desirable gambles that we shall use later in the paper.

There are a number of different consistency notions for sets of gambles, which
give rise to the notions of sets almost desirable, really desirable, strictly desirable
or weakly desirable gambles. The difference between all these notions is in the
inclusion of the gambles which are in the topological boundary of the set. Here,
and for reasons that will become clearer in Section 4, we shall work mostly with
sets of really desirable gambles.

Suppose R ⊆ Q ⊆ L, where Q is a set of gambles whose desirability has been
evaluated and R the subset of gambles that have been deemed desirable. Hence,
Q could be interpreted as the domain of a function which tells us if a gamble is
considered desirable or not. The notion of natural extension allows us to extend
this domain to the set of all gambles.

Definition 10 (Natural extension for gambles). The natural extension of R is
the set

E := L+ ∪
{
g ∈ L : g ≥

r∑
j=1

λjgj for some r ≥ 1, gj ∈ R, λj > 0
}
. (10)

Note that R ⊆ Q∩ E and that we can express E equivalently as

E =
{
g ∈ L : g =

r∑
j=1

λjgj for some r ≥ 1, gj ∈ R ∪ L+, λj > 0
}
,

and it follows also that E is closed under dominance. The natural extension models
the consequences of the behavioural assessments expressed by R, and does so in a
least-committal way, in the sense that it produces the minimal set of gambles that
we should judge desirable taking into account the set R.

We next introduce two consistency conditions for a set of acceptable transactions.
The first, less restrictive one, is called avoiding partial loss:10

Definition 11 (Avoiding partial loss for gambles). We say thatR avoids partial
loss if 0 /∈ E .

Taking into account the previous interpretation of the natural extension, the
intuition behind Definition 11 is that it is not rational to judge R desirable if
it logically implies that we should judge as desirable the zero gamble (see also
Corollary 2 below for further implications of avoiding partial loss).

The second consistency condition is called coherence; it means that the gambles
in R are the only ones from Q that we should judge desirable, taking into account
the consequences modelled by E .

Definition 12 (Coherence for gambles). Say that R is coherent relative to Q if
R avoids partial loss and Q ∩ E ⊆ R (and hence Q ∩ E = R). In case Q coincides
with L then we simply say that R is coherent.

10This concept is related to the notion of ‘avoiding non-positivity’ from [5].
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We have the following axiomatic characterisation of coherence. A similar re-
sult for the notion of almost-desirability we shall use later can be found in [19,
Section 3.7].

Proposition 2. Suppose Q is a linear space containing constant gambles. Then R
is coherent if and only if the following axioms hold:
(APL) 0 /∈ R. [Avoiding Partial Loss]
(APG) If g ∈ Q ∩ L+, then g ∈ R. [Accepting Partial Gains]
(PHM) If g ∈ R and λ > 0, then λg ∈ R. [Positive Homogeneity]
(ADD) If f, g ∈ R, then f + g ∈ R. [Additivity]

A consequence of this result and Eq. (10) is that whenQ satisfies the assumptions
of Proposition 2, the natural extension of a coherent set of desirable gamblesR with
respect to Q is given by

E = L+ ∪ {g ∈ L : g ≥ f for some f ∈ R}. (11)

In particular, when Q = L, a coherent set of desirable gambles R satisfies R = E .
Some basic properties of the natural extension are collected in the following:

Proposition 3. Suppose R ⊆ Q is a set of desirable gambles, and let E denote its
natural extension. The following properties hold:

(a) The natural extension of E is E itself.
(b) If R is contained in a coherent set E ′, then E ⊆ E ′.
(c) R avoids partial loss if and only if E avoids partial loss.
(d) R avoids partial loss if and only if E is coherent.
(e) R avoids partial loss if and only if there is a coherent set E ′ that includes
R.

(f) R is coherent relative to Q if and only if there is a coherent set E ′ such
that Q∩ E ′ = R.

(g) R is included in a coherent set E ′ if and only if E is coherent.
(h) If E is coherent, then it is the intersection of all the coherent sets that

include R.

We deduce a corollary that clarifies the meaning of avoiding partial loss:

Corollary 2. Suppose R ⊆ Q is a set of desirable gambles, and let E denote its
natural extension. If R avoids partial loss, then

g � 0⇒ g /∈ E . (APL’)

A consequence of this is that whenever R avoids partial loss, then it does not
include any gamble g � 0, because R ⊆ E .

To every set of desirable gambles R ⊆ Q we associate a set of linear previsions:

M(R) := {P : P (g) ≥ 0 for all g ∈ R}.
In order to characterise this set, we next introduce the notion of almost-desirable
gambles:

Definition 13 (Almost-desirability). We say that D is a coherent set of almost-
desirable gambles (relative to L) when it satisfies axioms (PHM), (ADD) and:
(ASL) If f ∈ D, then sup f ≥ 0. [Avoiding Sure Loss]
(ASG) If inf f > 0, then f ∈ D. [Accepting Sure Gains]
(CLS) If f + δ ∈ D for all δ > 0, then f ∈ D. [Closure]
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From axioms (ASG) and (CLS), we deduce that the gamble f = 0 belongs to
D, and as a consequence any gamble f ≥ 0 also belongs to D. As a consequence,
if D is a coherent set of almost-desirable gambles, it also satisfies axiom (APG).
However, it does not satisfy condition (APL), although it may satisfy (APL’). An
example is given by D := {f ≥ 0}.

Conversely, let R be a coherent set of desirable gambles with respect to L, which
as a consequence coincides with its natural extension E . It follows that (APL’)
implies (ASL) and (APG) implies (ASG). However, a coherent set of desirable
gambles does not satisfy condition (CLS), because it includes the constant gamble
on δ for every δ > 0, but it does not include the zero gamble.

Coherent sets of almost-desirable gambles are related to coherent lower previ-
sions, as discussed in [19, Section 3.8]: if P is a coherent lower prevision on L,
the set D := {f : P (f) ≥ 0} is a coherent set of almost-desirable gambles; and
conversely, if D is a coherent set of almost-desirable gambles with respect to L, the
lower prevision PD given by

PD(f) := max{α : f − α ∈ D} (12)

is coherent, and moreover D = {f : PD(f) ≥ 0}. This equivalence allows us to
characterise the set M(R) defined above (this is an adaptation from [14, Proposi-
tion 7]):

Proposition 4. Let R be a set of desirable gambles that avoids partial loss. Then
{g ∈ L : P (g) ≥ 0 ∀P ∈ M(R)} = {g ∈ L : g + δ ∈ E ∀δ > 0} = E, where E is the
natural extension of R and E denotes the closure of E in the topology of uniform
convergence.

In the unconditional case, there is a one-to-one correspondence between coher-
ent sets of almost-desirable gambles and coherent lower previsions: every coherent
lower prevision uniquely determines a coherent set of almost-desirable gambles,
and viceversa; however, there are many different coherent sets of (really) desirable
gambles that may correspond to the same set of almost-desirable gambles, and as
a consequence coherent sets of desirable gambles are more informative (i.e, model
more behavioural assessments) than coherent lower previsions.

It is also interesting to remark that with any coherent set D of almost-desirable
gambles, as well as of really desirable gambles, we can associate a set D of strictly
desirable gambles, which is given by

D := L+ ∪ {f : PD(f) > 0},
where PD is the coherent lower prevision associated to D by means of Eq. (12).
Using Proposition 2, it is easy to see that D is a set of really desirable gambles.
Moreover, if R is a coherent set of really desirable gambles, R is its associated set
of almost-desirable gambles, and R its related set of strictly desirable gambles, we
have R ⊆ R ⊆ R [19, Appendix F].

4. Conditional lower previsions derived from sets of desirable
gambles

In this section, we are going to define a number of conditional lower previsions
from a set of gambles that we judge desirable and we are going to investigate under
which assumptions the different consistency notions from Section 2 are satisfied.
We assume that we give a judgement about the desirability of all the gambles in



NOTES ON DESIRABILITY AND CONDITIONAL LOWER PREVISIONS 17

some set Q, turning out that we consider the gambles in some domain R ⊆ Q to
be desirable.

For the time being, we are not imposing any conditions on the set of gambles
R: hence, we are allowing for contradictory statements, such as considering that a
constant reward on 1 is desirable for us, but a constant reward on 3 is not. What
we shall show in this section is that if we derive conditional lower previsions from
the assessments represented by R and we want these conditional lower previsions
to be coherent, a number of consistency notions on R arise naturally.

The idea of deriving conditional lower previsions from sets of desirable gambles
is already present in [19, Appendix F] and [21]. One of its advantages is the
ability to deal easily with the problem of conditioning on sets of zero lower or
upper probability: in that case there is usually not a unique way of deriving the
conditional lower previsions from the unconditional ones ([19, Section 6.10]), while
we can determine the behavioural implications of our assessments by working with
sets of desirable gambles.

Let B be a partition of Ω, and let us define the conditional lower prevision P (·|B)
on L by

P (f |B) := sup{µ : B(f − µ) ∈ R} (13)
for every f ∈ L and every B ∈ B.

If in particular B = {Ω}, we obtain a lower prevision P on L given by:11

P (f) := sup{µ : (f − µ) ∈ R}. (14)

We shall discuss why L is the domain of definition of these lower previsions in
Proposition 7 later on: we shall show that we can in general assume that Q = L or
take the natural extension E of R. But before establishing this, we are first going
to determine under which conditions P (·|B) is well-defined. By this we mean what
follows:

Definition 14. (Well-definedness) P (·|B) is well-defined if for every gamble f in
L and every B ∈ B, it holds that

inf
ω∈B

f(ω) ≤ P (f |B) ≤ sup
ω∈B

f(ω).

In order to study this, we introduce an additional consistency axiom:
(SDa) If f ≤ 0, supB f < 0 for some B ∈ B, then f /∈ R.
(SDb) If f ≥ 0, infB f > 0 for some B ∈ B, then f ∈ R.

We shall refer to these two conditions together as (SD) (which stands for Strict
Dominance) with respect to B, or simply to (SD) when it is clear which partition
we are working with. They respectively follow from (APL’) and (APG) (when
in the latter we have Q = L), so any coherent set of desirable gambles satisfies
(SDa), (SDb). To see that (SDa) is actually weaker than (APL’), consider Ω :=
{1, 2, 3},B := {{1}, {2, 3}} and R := {f : f(1) ≥ 0,max(f(2), f(3)) ≥ 0}: then R
satisfies (SDa) with respect to B, but not (APL’), because it includes the gamble f =
(f(1), f(2), f(3)) := (0,−1, 0). On the other hand, (SDa) is stronger than (ASL);
to see that they are not equivalent, note that given Ω := {1, 2} and B := {{1}, {2}}
the set of gambles {f : f(1) ≥ 0} is a coherent set of almost-desirable gambles but
does not satisfy (SDa) because it includes the gamble f = (f(1), f(2)) := (0,−1).

11Conversely, we can see Eq. (13) also as a consequence of Eq. (14), once we update the set R
by B, by considering RB := {f : Bf ∈ R}; see [5, 21] for further comments on this idea.
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Hence, axiom (SD) allows us to differentiate between sets of desirable and almost-
desirable gambles.

Theorem 5. (1) If R satisfies (SDb), then P (f |B) ≥ infω∈B f(ω) for every
f ∈ L and every B ∈ B.

(2) If R satisfies (SDa), then P (f |B) ≤ supω∈B f(ω) for every f ∈ L and
every B ∈ B.

(3) If R satisfies (SDb) and (ADD), then B(f − µ) belongs to R for every
µ < P (f |B).

(4) If R is closed under dominance, i.e., such that g ≥ f ∈ R implies that
g ∈ R, then P (·|B) is well-defined if and only if R satisfies (SD).

We deduce that P (·|B) is well-defined when the set R satisfies (SD),12 and in
particular when it satisfies (APG) with respect to L and (APL’). Note that ifR does
not satisfy the dominance property, i.e., if we do not have that g ≥ f ∈ R implies
that g ∈ R, we may still end up with a bounded conditional lower prevision by
means of Eq. (13) (even if not satisfying the dominance property is rather counter-
intuitive):

Example 1. Let Ω := {ω1, ω2}, and let R := L+ ∩ {f ∈ L : f ≤ 1}. Let B :=
{{ω1}, {ω2}}. To see that R does not satisfy neither (ASG) nor (SD), it suffices
to see that the gamble f := 2 does not belong to R. However, the conditional
lower prevision we can define by means of Eq. (13) is bounded (it is even separately
coherent): for every gamble f , it is easy to see that P (f |{ω1}) = f(ω1), P (f |{ω2}) =
f(ω2). �

We see then that axiom (SD), which is one of the differences between coher-
ent sets of almost-desirable and really desirable gambles, is one of the keys for
deriving conditional lower previsions that avoid partial loss. In fact, if D is a
coherent set of almost-desirable gambles and we define the conditional lower previ-
sions P 1(·|B1), . . . , Pm(·|Bm) from D by means of Eq. (13), these conditional lower
previsions may not be well-defined:

Example 2. Let Ω := {ω1, ω2}, and let D := {f : f(ω1) ≥ 0}. Let B :=
{{ω1}, {ω2}}. It is easy to see that D satisfies all the axioms in Definition 13,
and is therefore a coherent set of almost-desirable gambles. However, it does not
satisfy (SD): the gamble f := (0,−1) belongs to D, and therefore (SDa) is not
satisfied. In fact, using Eq. (13) we obtain P (f |{ω2}) = +∞, because the gamble
fα := I{ω2}(f − α) satisfies fα(ω1) = 0 for every α ∈ R. �

This shows that when we want to derive conditional lower previsions from a
set of gambles, the notion of almost-desirability may be too weak to produce any
meaningful assessments, and this is one of the reasons why we are focusing on the
notion of real desirability in this paper. Interestingly, for almost-desirable gambles
axiom (SD) is related to the necessity of conditioning on sets of upper probability
zero, which is related also to the results we shall develop in Appendix A.1:

Proposition 5. Let D be a coherent set of almost-desirable gambles and B be a
non-empty subset of Ω. Let P be the coherent lower prevision derived from D by
means of Eq. (12), and P its conjugate upper prevision. Then

P (B) = 0 if and only if there is f ∈ D s.t. f ≤ 0, sup
B
f < 0. (15)

12This result can also be found in [25, Section 3].
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As a consequence, D satisfies (SDa) with respect to a partition B if and only if
P (B) > 0 for every B ∈ B.

We next investigate which conditions on the set of desirable gamblesR guarantee
that the lower prevision P (·|B) satisfies the consistency axioms from Section 2. We
begin with the property of separate coherence.

Theorem 6. Let R be a set of gambles, and define P (·|B) on L by Eq. (13). Then
P (·|B) is separately coherent if R satisfies axioms (SD), (PHM) and (ADD).

In the particular case where B = {Ω}, and where we define a lower prevision P
on L by Eq. (14), the notion of separate coherence becomes the coherence property
from Definition 1. In that case condition (SD) is equivalent to (ASL) together with
(ASG). As we have already remarked, the connection between sets of desirable
gambles and lower previsions in the unconditional case has been established by
Walley in [19, Chapter 3].

To see that the sufficient conditions in Theorem 6 are not necessary, note that
the set of gambles R considered in Example 1 does not satisfy any of the axioms
(SD), (PHM), (ADD), and still it produces a separately coherent conditional lower
prevision.

One particular case of interest of separately coherent conditional lower previsions
are the linear previsions considered in Section 2.5. In that case, we must require
that R satisfies some additional properties besides the ones in Theorem 6:

Proposition 6. Assume R satisfies (ADD), (PHM) and (SD) and let P (·|B), P
be given by Eqs. (13), (14) respectively.

(1) P (·|B) is a linear conditional prevision if and only if

∀B ∈ B, f ∈ L, ε > 0 either Bf ∈ R or B(ε− f) ∈ R. (LC)

(2) P is a linear prevision if and only if for every gamble f and every ε > 0,
either f or ε− f belongs to R.

The intuition of this result is clear, once we recall the behavioural interpretation
of linear conditional previsions from Section 2.5: for them the supremum acceptable
buying price coincides with the infimum acceptable selling price, which means that
for almost every real number µ and for every conditional event B either B(f − µ)
or B(µ− f) should be an acceptable transaction for our subject.

In particular, we obtain linear (conditional) previsions when the set R is maxi-
mal, in the sense that for every non-zero gamble f ∈ L either f or −f belongs to
R. Maximal sets have been studied in [1], and have the property that we cannot
add any new gamble to R without violating one of the properties of coherence.
Moreover, they can be used to express the natural extension E of a coherent set of
gambles R as an intersection of maximal coherent sets. See [1, Section 5] for more
information and [23] for some related work.

In particular, we can apply Proposition 6 when R is either a coherent set of
almost-desirable gambles that satisfies (SD) (see Definition 13) or a coherent set of
desirable gambles (Proposition 2). The reason why we are introducing the ε > 0
in the condition of the above proposition is that it may be that neither f nor −f
belong to R, even if this set of gambles is coherent, and still it may give rise to a
linear prevision:
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Example 3. Consider Ω := {ω1, ω2} and letR := {f ∈ L : f(ω1)+f(ω2) > 0}. Then
R satisfies all the axioms in Proposition 2, and as a consequence it is a coherent set
of desirable gambles with respect to L. Moreover, it gives rise to the linear prevision
P given by P (f) = f(ω1)+f(ω2)

2 for all f ∈ L. However, given f := (1,−1), neither
f nor −f belong to R. �

On the other hand, we can assume that ε = 0 when we work with a coherent set
of almost-desirable gambles:

Corollary 3. If D is a coherent set of almost-desirable gambles that satisfies (SD),
then P (·|B) is a linear conditional prevision if and only if for every set B ∈ B and
every gamble f ∈ L, either Bf or −Bf belongs to D.

If R is a coherent set of desirable gambles with respect to a linear set of gambles
Q and we want to use it to define a conditional lower prevision by means of Eq. (13),
we may wonder if the domain of this conditional lower prevision should be the set
of all gambles L or only the subset Q given by those gambles whose desirability we
have evaluated.

Indeed, the coherence of R with respect to Q is not sufficient to guarantee that
the conditional lower prevision it originates is separately coherent, because it must
also satisfy condition (SDb); this property follows from (APG) when Q = L, but
not in general:

Example 4. Let Ω := {ω1, ω2, ω3} and take Q := {f ∈ L : f(ω1) = f(ω2)},R :=
{f ∈ Q : f(ω1) + f(ω3) > 0}. Then Q is a linear set of gambles that includes
all constant gambles, and Proposition 2 shows that R is coherent with respect to
Q. If we consider the partition B := {{ω1, ω3}, {ω2}} of Ω, then for the gamble
f := (2, 2, 0) ∈ Q it follows that given B := {ω1, ω3} there is no value of µ such
that gµ := B(f − µ) belongs to R: the only µ for which gµ(ω1) = gµ(ω2) is µ = 2,
and the gamble gµ = (0, 0,−2) does not belong to R. Hence, the lower prevision
P (·|B) derived from the coherent set R by means of Eq. (13) is not well-defined. �

Our next result shows, essentially, that in order to obtain meaningful conditional
lower previsions it is helpful to work with the natural extension E of R.

Proposition 7. Let R be a coherent set of desirable gambles with respect to a
linear set Q, and let E denote its natural extension. Let B be a partition of Ω,
and let P 1(·|B), P 2(·|B), P 3(·|B), be the conditional lower previsions with respective
domains Q,L,L given by

P 1(f |B) := sup{µ : B(f − µ) ∈ R} ∀B ∈ B, f ∈ Q,
P 2(f |B) := sup{µ : B(f − µ) ∈ R} ∀B ∈ B, f ∈ L,
P 3(f |B) := sup{µ : B(f − µ) ∈ E} ∀B ∈ B, f ∈ L.

(1) P 3(·|B) is a separately coherent conditional lower prevision.
(2) If R satisfies (SD), then P 1(·|B) is separately coherent, and P 2(·|B) =

P 3(·|B) is the natural extension of P 1(·|B).

Taking this result into account, whenever we have a coherent set of desirable
gambles R with respect to Q that satisfies (SD), we can always use it to define a
conditional lower prevision P (·|B) on L.

We move next to the consistency properties of several conditional lower previ-
sions. Consider thus a number of partitions B1, . . . ,Bm of Ω, and let us define
conditional lower previsions P 1(·|B1), . . . , Pm(·|Bm) on L.
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Theorem 7. If R satisfies (SD) with respect to B1, . . . ,Bm, (PHM) and (ADD),
then the conditional lower previsions P 1(·|B1), . . . , Pm(·|Bm) avoid partial loss.

When all the conditional lower previsions P 1(·|B1), . . . , Pm(·|Bm) are linear, the
notion of avoiding partial loss is equivalent to coherence. Hence, Theorem 7 shows
that conditions (SD),(PHM),(ADD) and (LC) imply the coherence of the derived
conditional linear previsions. We next establish a similar result for conditional
lower previsions:

Theorem 8. If R includes the non-negative gambles and satisfies (SD) with respect
to B1, . . . ,Bm,(PHM) and (ADD), then P 1(·|B1), . . . , Pm(·|Bm) are coherent.

In particular we deduce the following:

Corollary 4. ([25, Proposition 1];[19, Appendix F, Theorem F3]) Let R be a
coherent set of really desirable gambles and define conditional lower previsions
P 1(·|B1), . . . , Pm(·|Bm) on L by means of Eq. (13). Then these conditional lower
previsions are coherent.

Hence, the coherence of a set of desirable gambles implies the coherence of the de-
rived conditional lower previsions, but as Theorem 8 shows this sufficient condition
is not necessary. This solves the main problem in one direction.

5. Desirable gambles derived from conditional lower previsions

In Section 4, we have started from a set of desirable gambles R and defined a
number of conditional lower previsions P 1(·|B1), . . . , Pm(·|Bm), and have studied
which conditions on R guarantee that P 1(·|B1), . . . , Pm(·|Bm) are coherent. We
turn now to the converse problem.

Let P 1(·|B1), . . . , Pm(·|Bm) be separately coherent conditional lower previsions
with respective domains H1, . . . ,Hm. Assume these domains satisfy the assump-
tions imposed in Remark 1, at the end of Section 2.2.

From the point of view of desirable gambles, we are evaluating the desirability
of the gambles in the set

Q := {g ∈ L : g = Gj(fj |Bj) + εBj for some

j ∈ {1, . . . ,m}, fj ∈ Hj , Bj ∈ Bj , ε 6= 0}. (16)

Note that this set is not linear in general.
The lower previsions are equivalent to statements of desirability for some of the

gambles in Q. Taking into account that P j(fj |Bj) is interpreted as the supremum
acceptable buying price for the gamble fj contingent on Bj , and that therefore
P j(fj |Bj) − ε is an acceptable buying price for every ε > 0, we obtain that the
gambles in the following set are judged as desirable:

R := {g ∈ L : g = Gj(fj |Bj) + εBj for some

j ∈ {1, . . . ,m}, fj ∈ Hj , Bj ∈ Bj , ε > 0}. (17)

We give an equivalent characterisation of R in the following proposition.

Proposition 8. Consider the sets Q,R derived from the separately coherent con-
ditional lower previsions P 1(·|B1), . . . , Pm(·|Bm) by means of Eqs. (16) and (17).
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Then R can be re-written equivalently as follows:

R = {g ∈ L : g ∈ Hj , gBcj = 0, P j(g|Bj) > 0 for some j ∈ {1, . . . ,m}, Bj ∈ Bj}.
(18)

Let us now apply considerations of avoiding partial loss and coherence to the set
R. For this, we reconsider the natural extension E of R, as given by Eq. (10).

Theorem 9. Consider the sets Q,R derived from the separately coherent condi-
tional lower previsions P 1(·|B1), . . . , Pm(·|Bm) by means of Eqs. (16) and (17). Let
E be the natural extension of R, given by Eq. (10). Then a gamble g belongs to E
if and only if any of the following equivalent conditions holds:

(1) Either g ∈ L+ or there are j = 1, . . . ,m, nj ≥ 1, k = 1, . . . , nj , gkj ∈ Hj,
not all of them zero, Bj ∈ Bj , ε > 0 such that

g ≥
m∑
j=1

nj∑
k=1

Gj(gkj |Bj) + εSj(gkj ). (19)

(2) Either g ∈ L+ or there are j = 1, . . . ,m, nj ≥ 1, k = 1, . . . , nj , gkj ∈ Hj not
all of them zero, such that

inf
S(gkj )

g − m∑
j=1

nj∑
k=1

Gj(gkj |Bj)

 > 0 and g ≥ 0 in S(gkj )c. (20)

We can use the equivalent expressions of E from this theorem to characterise the
notions of avoiding partial and uniform sure loss in terms of desirable gambles:

Theorem 10. Consider the set R derived from the separately coherent conditional
lower previsions P 1(·|B1), . . . , Pm(·|Bm) by means of Eq. (17) and let E be the
natural extension of R.

(1) P 1(·|B1), . . . , Pm(·|Bm) avoid partial loss if and only if R avoids partial
loss.

(2) P 1(·|B1), . . . , Pm(·|Bm) avoid uniform sure loss if and only if E satisfies
(ASL).

We next come to the main result of this section, where we characterise the coher-
ence of the conditional lower previsions in terms of desirable gambles. Interestingly,
we show that the coherence of the conditional lower previsions implies the coher-
ence of the set R with respect to Q, but both conditions are not equivalent: we
need an additional technical condition, which is related to the fact that the same
conditioning set can belong to two different partitions, and in that case we should
require that the conditional previsions are defined in the same way:

Theorem 11. Let Q,R be derived from the separately coherent conditional lower
previsions P 1(·|B1), . . . , Pm(·|Bm) by means of Eqs. (16) and (17). The following
statements are equivalent:

(1) R is coherent relative to Q and Gj(fj |Bj)−εBj /∈ R for any fj ∈ Hj , Bj ∈
Bj , ε > 0 and any j = 1, . . . ,m.

(2) P j(fj |Bj) = Ej(fj |Bj) for all j = 1, . . . ,m, fj ∈ Hj , Bj ∈ Bj.
(3) The conditional lower previsions P 1(·|B1), . . . , Pm(·|Bm) are coherent.
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In order to show that point (1) in this theorem cannot be simplified, in the sense
that ifR is coherent relative to Q we do not necessarily have that Gj(fj |Bj)−εBj /∈
R for any fj ∈ Hj , Bj ∈ Bj , ε > 0 and any j = 1, . . . ,m, consider the following
example:

Example 5. Consider Ω := {1, 2, 3, 4, 5, 6} and the following two partitions of Ω:
B1 := {{1, 2}, {3, 4, 5, 6}} and B2 := {{1, 2}, {3, 4}, {5, 6}}. Let P 1(·|B1) be the
vacuous lower prevision, given by

P 1(f |B1) = min
ω∈B1

f(ω)

for every gamble f and every B1 ∈ B1, and let P 2(·|B2) be vacuous when B2 =
{3, 4} or B2 = {5, 6}, and uniform when B2 = {1, 2}. Then P 1(·|B1) and P 2(·|B2)
are not coherent: if we consider the gamble f := I{1}, it holds that

G2(f |B2)−G1(f |{1, 2}) ≤ −0.5

in S2(f)∪{1, 2} = {1, 2}. Note on the other hand that P 1(·|B1) and P 2(·|B2) avoid
partial loss (it suffices to take into account that P 1(·|B1) is vacuous).

Let us derive the setR from them. According to the definition in (17), the generic
gamble in R is equal to Gj(f |Bj) + εBj for some j ∈ {1, 2}, f ∈ Hj , Bj ∈ Bj , ε > 0.
Let us consider the vacuous case first, for instance when j = 1 and B1 = {1, 2}. This
gives rises to the following subset of R: RBjj = R{1,2}1 := {B1(f −minB1 f) + εB1 :
f ∈ H1, ε > 0}, which is more conveniently written as

R{1,2}1 = {g : min
{1,2}

g > 0, gI{3,4,5,6} = 0}.

In fact, that the latter set includes R{1,2}1 is trivial; conversely, it is enough to
choose ε := min{1,2} g. We can proceed in much the same way in order to find out
the expressions for the sets R{3,4,5,6}1 ,R{3,4}2 ,R{5,6}2 , which we summarise below:

R{3,4,5,6}1 = {g : min
{3,4,5,6}

g > 0, gI{1,2} = 0},

R{3,4}2 = {g : min
{3,4}

g > 0, gI{1,2,5,6} = 0},

R{5,6}2 = {g : min
{5,6}

g > 0, gI{1,2,3,4} = 0}.

In the remaining case where j = 2 and B2 = {1, 2}, we obtain that R{1,2}2 =
{B2(f − 1

2f(1)− 1
2f(2)) + εB2 : f ∈ H2, ε > 0}. Let us show that

R{1,2}2 = {g : g(1) + g(2) > 0, gI{3,4,5,6} = 0}.

That the latter set includes R{1,2}2 is trivial. Conversely, it is enough to set f(1) :=
g(1)− g(2), f(2) := 0, and ε := g(1)+g(2)

2 .
Observing that R{1,2}1 ⊆ R{1,2}2 , we can finally write that

R = R{3,4,5,6}1 ∪R{3,4}2 ∪R{5,6}2 ∪R{1,2}2 .

Let us focus on the set Q now. With arguments analogous to those used with
R, we obtain that

Q = Q{1,2}1 ∪Q{3,4,5,6}1 ∪Q{3,4}2 ∪Q{5,6}2 ∪Q{1,2}2 ,
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with

Q{1,2}1 := {g : min
{1,2}

g 6= 0, gI{3,4,5,6} = 0},

Q{3,4,5,6}1 := {g : min
{3,4,5,6}

g 6= 0, gI{1,2} = 0},

Q{3,4}2 := {g : min
{3,4}

g 6= 0, gI{1,2,5,6} = 0},

Q{5,6}2 := {g : min
{5,6}

g 6= 0, gI{1,2,3,4} = 0},

Q{1,2}2 := {g : g(1) + g(2) 6= 0, gI{3,4,5,6} = 0}.

Let us focus now on the natural extension E of R (see Eq. (10)). We start by
considering the related set

E ′ := {g ∈ L : g =
r∑
j=1

λjgj for some r ≥ 1, gj ∈ R, λj > 0}.

Observe that for every set RBjj and gamble gj ∈ R
Bj
j , the gamble λjgj belongs to

RBjj , too, for all λj > 0. This allows λj to be dropped from the definition of E ′.
For similar reasons, it is enough to consider at most one gamble from each set RBjj
in the sum that defines E ′. In other words, it holds that

E ′ = {g = gB1
1 +

∑
B2∈B2

gB2
2 : B1 = {3, 4, 5, 6}, gBjj ∈ R

Bj
j ∪ {0}, g 6= 0}.

It can be checked that the sixteen elements making up E ′ can be recovered as
follows:

E ′ = [({g : g(1) + g(2) > 0} ∪ {g : g(1) = g(2) = 0})
∩ ({g : min{g(3), g(4)} > 0} ∪ {g : g(3) = g(4) = 0})
∩ ({g : min{g(5), g(6)} > 0} ∪ {g : g(5) = g(6) = 0})] \ {0}.

The natural extension E is related to E ′ through the relation E = L+ ∪ {f : f ≥
g for some g ∈ E ′}. It follows that

E =
[
({g : g(1) + g(2) > 0} ∪ {g : gI{1,2} = 0}) ∩ {g : gI{3,4,5,6} ≥ 0}

]
\ {0}.

Let us verify that Q∩ E ⊆ R, and hence that R is coherent. Take g ∈ Q. We have
the following possibilities:

• If g ∈ Q{1,2}1 , then gI{3,4,5,6} = 0 and min{g(1), g(2)} 6= 0; since g ∈ E , we
obtain that g(1) + g(2) > 0 and hence g ∈ R.

• If g ∈ Q{3,4,5,6}1 , then gI{1,2} = 0 and min gI{3,4,5,6} 6= 0; since g ∈ E , we
obtain that min gI{3,4,5,6} > 0 and hence g ∈ R.

• If g ∈ Q{3,4}2 , then gI{1,2,5,6} = 0 and min gI{3,4} 6= 0; since g ∈ E , we
obtain that min gI{3,4} > 0 and hence g ∈ R.

• If g ∈ Q{5,6}2 , then gI{1,2,3,4} = 0 and min gI{5,6} 6= 0; since g ∈ E , we
obtain that min gI{5,6} > 0 and hence g ∈ R.

• If g ∈ Q{1,2}2 then gI{3,4,5,6} = 0 and g(1)+g(2) 6= 0; since g ∈ E , we obtain
that g(1) + g(2) > 0 and hence g ∈ R.
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Hence, the set R is coherent but the conditional lower previsions P 1(·|B1), P 2(·|B2)
are not. Taking into account Theorem 11, we deduce that the first statement in the
theorem does not hold, and as consequence the second condition in that statement
does not follow from the coherence of R. �

We can also relate the natural extension E of the set of gambles R derived
by some conditional lower previsions P 1(·|B1), . . . , Pm(·|Bm) to their conditional
natural extensions. Let us consider a gamble f ∈ L and a non-empty set B0 ⊆ Ω;
taking into account Remark 5, we can calculate the natural extension E0(f |B0) of f
conditional on B0 as the supremum value of α for which there are j = 1, . . . ,m, nj ≥
1, k = 1, . . . , nj , gkj ∈ Hj and δ > 0, such that

−δ >
m∑
j=1

nj∑
k=1

Gj(gkj |Bj)−B0(f − α)

in S(gkj ) ∪B0.

Definition 15 (Support). For every f ∈ L, we shall denote by Bf the event
{ω ∈ Ω : f(ω) 6= 0}, and refer to it as the support of f . Similarly, given ε > 0 we
shall denote by Bεf the event {ω ∈ Ω : |f(ω)| ≥ ε}, and we shall call it the ε-support
of f .

Lemma 2. Let P 1(·|B1), . . . , Pm(·|Bm) be separately coherent conditional lower
previsions that avoid partial loss. Let R be the set they originate by means of
Eq. (17) and let E be the natural extension of R. Take f ∈ E. Then there is some
ε > 0 such that E0(f |Bεf ) > 0 for all ε ∈ (0, ε). As a consequence, when Ω is finite
E0(f |Bf ) > 0.

If we compute the natural extension for all non-empty B0 ⊆ Ω and all gambles
f ∈ L, we can determine, in the usual way, a corresponding set of desirable gambles:

EP := {g ∈ L : g = G0(f |B0) + εB0 for some f ∈ L, ∅ 6= B0 ⊆ Ω, ε > 0}, (21)

where G0 corresponds to E0. In our next theorem we give a number of properties
of the set EP and establish its relationship with E :

Theorem 12. Assume P 1(·|B1), . . . , Pm(·|Bm) avoid partial loss, and consider the
natural extension E of the set R given by Eq. (17). Let EP be the set of gambles
given by Eq. (21).

(1) EP = {f : E0(f |Bf ) > 0}.
(2) {f : E0(f) > 0} ∪ L+ ⊆ E ⊆ {f : E0(f) ≥ 0}.
(3) EP ⊆ E ⊆ EP .
(4) In the particular case where Ω is finite, E = EP .
(5) E is the natural extension of EP .

Let us show that the fourth statement of this theorem cannot be extended to
the case where Ω is infinite, and that there may be gambles in E which may not
belong to EP . This is because in that case the set EP may not be coherent:

Example 6. Let Ω := N, and let P be a linear prevision satisfying P ({n}) = 0 for all
n, and let Q,R be the sets derived from P by means of Eqs. (16) and (17). It follows
from Theorem 11 that R is coherent relative to Q, and from Proposition 3(d) that
its natural extension E is coherent. Consider the gamble h given by h(n) := 1

2n .
Then h ∈ L+ and as a consequence it belongs to E . On the other hand, the
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support of h is Bh = N, whence E0(h|Bf ) = E0(h) = P (h) = 0, taking into
account that the unconditional natural extension of P is P itself, and that P (h) ≤
P ({1, . . . , n})+ 1

2nP ({n+1, . . . }) = 1
2n for all n. Applying the first statement from

Theorem 12, we deduce that h does not belong to EP . �

Let us show also that both inclusions in the second statement can be strict:

Example 7. Consider first of all Ω := {1, 2, 3, 4},B := {{1, 2}, {3, 4}} and P, P (·|B)
determined by P ({3, 4}) := 1, P ({4}|{3, 4}) := 1 =: P ({1}|{1, 2}). It can be
checked that these previsions are coherent. Given the gamble f := I{1} − I{2},
it holds that E0(f |Bf ) = P (f |{1, 2}) > 0, because of Lemma 1(5), whence f ∈
EP ⊆ E , using the third statement of Theorem 12. On the other hand, the natural
extension E0 of P, P (·|B) is given by [19, Theorem 6.7.2] E0 = P (P (·|B)), and it
satisfies E0(f) = P ({1, 2})P (f |{1, 2}) = 0.

For the second inclusion, take Ω := {1, 2} and let P be the prevision associated
to the uniform probability distribution on Ω. Let R be the set of desirable gambles
derived from P through (17). Applying P to the expression for the natural extension
of R in (19), we obtain that E ⊆ {f : P (f) > 0}: to see this, note that for any
non-zero gamble f it holds that E(G(f) + εS(f)) = P (G(f) + ε) = ε > 0, and
since P (1) = P (2) > 0 we also have L+ ⊆ {f : P (f) > 0}. Applying the second
statement in Theorem 12, we deduce that E = {f : P (f) > 0}, and this is a strict
subset of {f : P (f) ≥ 0}, because the gamble f := (1,−1) belongs to the latter set
but not to the former. �

6. Commutativity and equal expressivity

6.1. Commutativity. So far, we have introduced two ways of relating conditional
lower previsions and sets of really desirable gambles: we can derive the conditional
lower previsions from the desirable gambles (Section 4) or we can derive a set
of desirable gambles from the conditional lower previsions (Section 5). We now
proceed to investigate whether these two procedures commute.

First of all, we should like to show that one can take conditional lower previsions
P 1(·|B1), . . . , Pm(·|Bm) that avoid partial loss, turn them into a (coherent) set of
desirable gambles R, and do inferences from it that are equal to those that can be
obtained from the natural extensions of P 1(·|B1), . . . , Pm(·|Bm). This would allow
us to always work in the domain of desirable gambles even if we start from condi-
tional lower previsions. We proceed to show that this is indeed the case. A similar
result was already established, in a slightly different context, by Peter Williams
in [25, Propositions 2 and 3]. The differences are basically in his formulation of
the coherence condition, which is nevertheless equivalent to the one we are using
in this paper when we have finite partitions, and on the use of conditional upper
previsions. Another difference is that, unlike us, he assumes the zero gamble to
be desirable. For the sake of completeness, we also establish the result within our
framework:

Theorem 13. Consider the sets Q,R derived from the jointly coherent condi-
tional lower previsions P 1(·|B1), . . . , Pm(·|Bm) by means of Eqs. (16) and (17). Let
P ′1(·|B1), . . . , P ′m(·|Bm) be the conditional lower previsions obtained from R through
Eq. (13). Then P j(fj |Bj) = P ′j(fj |Bj) for all j = 1, . . . ,m, fj ∈ Hj , Bj ∈ Bj.

Let us give an example of illustration of this theorem:
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Example 8. Consider Ω := {1, 2, 3, 4},B1 := {{1, 2}, {3, 4}},B2 := {{1, 3}, {2, 4}},
and P 1(·|B1), P 2(·|B2) given by

P 1(f |{1, 2}) := min{f(1), f(2)},

P 1(f |{3, 4}) :=
f(3) + f(4)

2
,

P 2(f |{1, 3}) := min{f(1), f(3)},

P 2(f |{2, 4}) :=
f(2) + f(4)

2
,

for every gamble f ∈ L. Then P 1(·|B1), P 2(·|B2) are coherent: this follows applying
[12, Theorem 6] to the lower prevision P given by P (f) := min{f(1), f(2)+f(3)+f(4)

3 }.
The set R of desirable gambles they originate is given by R := R{1,2}1 ∪R{3,4}1 ∪

R{1,3}2 ∪R{2,4}2 , where

R{1,2}1 := {f ∈ L : min{f(1), f(2)} > 0, f(3) = f(4) = 0},

R{3,4}1 := {f ∈ L : f(1) = f(2) = 0, f(3) + f(4) > 0},

R{1,3}2 := {f ∈ L : min{f(1), f(3)} > 0, f(2) = f(4) = 0},

R{2,4}2 := {f ∈ L : f(1) = f(3) = 0, f(2) + f(4) > 0}.

The definition of set RBi , i = 1, 2, immediately follows from the application of
Eq. (18) to the corresponding conditional P i(·|B).

Now, if we consider the conditional lower previsions P ′1(·|B1) and P ′2(·|B2) de-
rived from Eq. (13) we recover P 1(·|B1), P 2(·|B2). For instance, given f ∈ L,

P ′1(f |{1, 2}) = sup{µ : I{1,2}(f − µ) ∈ R}

= sup{µ : I{1,2}(f − µ) ∈ R{1,2}1 } = min{f(1), f(2)}.

Here, the second equality follows because if g := I{1,2}(f−µ) ∈ R{3,4}1 we contradict
that g(3)+g(4) > 0, if it belongs to R{1,3}2 we contradict g(3) > 0, and if it belongs
to R{2,4}2 we should have g(2) + g(4) = g(2) > 0 and g(1) = 0, which means that
µ = f(1) < f(2) and then again µ ≤ min{f(1), f(2)}.

The other cases can be established similarly. �

In addition, Williams also showed in [25, Theorem 1] that we can use the set
of gambles E to derive the natural extensions of the initial assessments. We next
establish this result in our context:

Theorem 14. Consider conditional lower previsions P 1(·|B1), . . . , Pm(·|Bm) that
avoid partial loss, and let E0(f |B0) be their generic natural extension to a gamble
f ∈ L, conditional on a non-empty subset B0 of Ω. Let Q,R be the sets derived from
P 1(·|B1), . . . , Pm(·|Bm) by means of Eqs. (16) and (17), and let E be the natural
extension of R. Let E′0(f |B0) be the conditional lower prevision obtained from E
through Eq. (13). Then E0(f |B0) = E′0(f |B0).

Conversely, we can also start from a coherent set of desirable gambles E with
respect to L, and define conditional lower previsions P 1(·|B1), . . . , Pm(·|Bm) by
means of Eq. (13). We can use these conditional previsions to derive another set
R′ of desirable gambles by means of Eq. (17). Let E ′ be the natural extension of
R′, defined by Eq. (10).
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Proposition 9. The set of gambles E ′ is included in E.

To see that we may not have the equality in general, consider the following
example:

Example 9. Consider Ω := {ω1, ω2}, and let E := {f : f(ω1) + f(ω2) > 0}. Take
B := {{ω1}, {ω2}}. Then applying Eq. (13) given any gamble f on L, P (f |{ω1}) =
f(ω1) and P (f |{ω2}) = f(ω2). If we now consider the set R′ derived from P (·|B)
through Eq. (18), we obtain

R′ = {f : f(ω1) > 0, f(ω2) = 0} ∪ {f : f(ω1) = 0, f(ω2) > 0},

whose natural extension is (Eq. (10)) E ′ = L+, which is a strict subset of E . �

What these two results provide is further evidence that sets of desirable gambles
are more informative than coherent lower previsions: although for a number of
coherent conditional lower previsions there is always a coherent set of desirable
gambles with the same behavioural implications, not every coherent set of desirable
gambles can be recovered from a set of coherent conditional lower previsions.

6.2. Equal expressivity. Taking the previous results into account, we shall inves-
tigate next if there is some particular subclass of coherent sets of desirable gambles
which is as expressive as coherent conditional lower previsions. In the next defini-
tion we make precise the idea of equal expressivity.

Definition 16 (Equal expressivity). Let P 1(·|B1), . . . , Pm(·|Bm) be a set of co-
herent conditional lower previsions, Q,R be the sets derived from them by means
of Eqs. (16) and (17), and let E be the natural extension of R. Let E ′ be a coherent
set of desirable gambles. We say that P 1(·|B1), . . . , Pm(·|Bm) and E ′ are equally
expressive if E = E ′.

This definition is well posed as E is coherent thanks to Theorem 11 and Propo-
sition 3(d). More generally speaking, the definition hinges on the consideration
that desirability is a more primitive concept than that of lower prevision. There-
fore, when the desirability statements implied by the lower previsions coincide with
those in E ′, then all the conclusions we may draw from either of them will coincide
with those obtained from the other (see also Theorem 14).

Now, let us focus on some special sets of desirable gambles.

Definition 17 (Conditional strict desirability). Let E be a coherent set of desir-
able gambles. Consider f ∈ E , and its ε-support Bεf for all ε > 0. We say that E is
a coherent set of conditionally strictly desirable gambles if it satisfies the following
condition:

f ∈ E ⇒ ∃ε̄ > 0 : ∀ε ∈ (0, ε̄) there is δε > 0 s.t. Bεf (f − δε) ∈ E . (22)

The next proposition shows that the desirability-counterpart of sets of condi-
tional lower previsions are sets of conditionally strictly desirable gambles. This
shows in a definite sense that sets of conditional lower previsions are at most as
expressive as a special class of desirable gambles.

Proposition 10. For each finite set of coherent conditional lower previsions there
is a coherent set of conditionally strictly desirable gambles that is equally expressive.
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When Ω is finite, it is possible to provide a tighter link between sets of conditional
lower previsions and sets of conditionally strictly desirable gambles. In that case,
the condition of conditional strict desirability in (22) is equivalent to

f ∈ E ⇒ ∃δ > 0 : Bf (f − δ) ∈ E . (23)

To see that (22) implies (23), note that when Ω is finite there is some ε′ > 0 for
which Bεf = Bf for every ε ∈ (0, ε′). Then it suffices to consider the δε associated
to any ε ∈ (0,min{ε′, ε̄}) and define δ := δε. Conversely, consider again ε′ > 0 for
which Bεf = Bf for every ε ∈ (0, ε′). Define ε̄ := ε′, and let δε := δ for all ε ∈ (0, ε̄).

On this basis, we obtain the next result.

Theorem 15. Let Ω be a finite set.
(1) For each coherent set of conditionally strictly desirable gambles there is a

finite set of coherent conditional lower previsions that is equally expressive.
(2) For each finite set of coherent conditional lower previsions there is a coher-

ent set of conditionally strictly desirable gambles that is equally expressive.

What this theorem says is that in the finite case there is a correspondence be-
tween sets of conditionally strictly desirable gambles and sets of conditional lower
previsions. This result may look surprising at first. In fact, Walley motivated the
introduction of real desirability (see [19, Appendix F]), among other things, by
stressing in particular that there may be different sets of desirable gambles that
yield different conditional lower previsions while yielding the same unconditional
ones.13 This shows that really desirable gambles are more expressive than uncon-
ditional lower previsions. Our result goes a step further by showing that this holds
also when we consider sets of conditional lower previsions. And the question is
that, while in the cases discussed by Walley, the differences in the sets of desirable
gambles were possible to reveal by looking at the conditional lower previsions they
originate, in our case this is not possible: what we show, in fact, is that there is some
extra expressivity of real desirable gambles that is not revealed by any conditional
probabilistic statement.

To see what this extra expressivity is for, we have to briefly consider the notion
of preference. In fact, Walley has pointed out long ago [19, Section 3.7] that there is
one-to-one correspondence between sets of desirable gambles R and partial prefer-
ence orderings among gambles: given a set R, say that f is preferred to g (or f � g,
in symbols) whenever f−g belongs to R;14 conversely, a partial preference ordering
� originates a set of desirable gambles through the definition R := {f − g : f � g}.
The interpretation at the basis of these transformations is straightforward: f is
preferred to g if and only if it is desirable to give away g in order to have f . We
can also consider a weaker notion of preference: say that f is weakly preferred to g
(in symbols, f � g) if and only if gamble f − g+ ε is desirable for all ε > 0. In this
case f + ε is preferred to g for all ε > 0, but f itself may not. At this point we are
ready to show how the extra expressivity of desirable gambles comes about:

Example 10. Consider Ω := {ω1, ω2}, and let R1 := {f ∈ L : f(ω1) + f(ω2) >
0},R2 := R1 ∪ {f ∈ L : f(ω1) = −f(ω2) < 0}. R1 and R2 are coherent sets of
desirable gambles with respect to L (use Proposition 2). Moreover, they originate

13This is true even when the conditional event has probability zero.
14Such a relation is in fact a partial order in general, as it can be the case that neither f − g

nor g − f belong to R.
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the same conditional and unconditional lower previsions on L through (13): in
the unconditional case we obtain P (f) = f(ω1)+f(ω2)

2 , and in the conditional case
P (f |{ω1}) = f(ω1), P (f |{ω2}) = f(ω2). ThereforeR1 andR2 are indistinguishable
as far as probabilistic statements are concerned. This is not the case of preferences.
Consider f := (2,−1) and g := (1, 0): under both R1 and R2 it holds that f � g;
but under R2 we obtain the additional, and perhaps unexpected, information that
f ≺ g. �

In other words, desirable gambles give us the opportunity to distinguish pref-
erence from weak preference, which is something that probabilities (that is, lower
previsions) do not allow us to do. This point has already been made in particular
in a paper also authored by Walley [21, Example 7(f), and Section 4(f)].

7. Conclusions

The behavioural theory of imprecise probabilities can be formulated by means
of lower and upper previsions, credal sets of linear previsions, or sets of desirable
gambles. In the unconditional case, there is a well-known correspondence between
the three representations, which allows us to move from one to another. In this
paper we have investigated the more involved situation when we consider beliefs
conditional on some evidence.

We have focused on two problems: how to derive conditional lower previsions
from a set of desirable gambles, and viceversa. For the first problem, we have
established sufficient conditions for the conditional lower previsions to satisfy the
different consistency axioms in [19] (separate coherence, avoiding partial and uni-
form sure loss, weak and strong coherence). The most important result in this
section is Theorem 8, where we give sufficient conditions on the set of desirable
gambles so that the derived conditional lower previsions are coherent, thus extend-
ing some results from the literature. In this section, we also detail the connections
with the important notion of almost-desirability.

With respect to the second problem, we have derived sets of desirable gambles
from conditional lower previsions, and determined under which conditions the con-
sistency properties of the previsions hold onto the gambles. Moreover, we have
showed that these gambles can be used effectively to compute the conditional nat-
ural extensions of our assessments, which represent their behavioural implications.
Specifically, in Theorem 11 we give conditions for the equivalence between the
coherence of the conditional lower previsions and their derived sets of desirable
gambles.

These results have highlighted a well-known fact within the behavioural theory
of imprecise probabilities: that sets of really desirable gambles are more informative
than coherent lower previsions. This is made clearer in Theorem 13 and Proposi-
tion 9 in Section 6.1. However, and in parallel to the situation in the unconditional
case, we prove in Theorem 15 that when the referential space is finite we can con-
sider a subset of the class of sets of really desirable gambles which is as expressive,
in the sense that it allows us to produce the same inferences, as conditional lower
previsions: those which satisfy conditional strict desirability. These are an analog
of the sets of strictly desirable gambles from the unconditional case.

An important remark throughout is that there is an alternative definition of
coherence for sets of desirable gambles which assumes that the zero gamble is desir-
able, and as a consequence it includes it in the natural extension of a set of desirable
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gambles that avoids partial loss; see, for example, [3, 19, 25] for some papers that
follow this approach. The results we have established in this paper can be adapted
to this alternative definition, by making some minor modifications: for instance the
expression of the natural extension in Definition 10 will be different now, and this
means that the equivalent expressions in Theorem 9 should be slightly modified.

With respect to the open problems deriving from this paper, one of the most
important is the generalisation of the results in this paper to conditional lower
previsions on infinite partitions. In fact, despite the formulation of desirability
in this paper is very general (among other things, we allow for any cardinality
of the possibility space), we have restricted the attention to finite conditioning
partitions. In order to relax this requirement, one has to deal carefully with the
issue of conglomerability, which is discussed in some detail in [19, Chapter 6] (see
also [24] and [16]) and which is one of the points of disagreement between the
approaches to coherence of Walley and Williams, as well as de Finetti’s. On our
view, this would mean (i) to deepen the discussion concerning whether or not
conglomerability can be justified as a rationality requirement (which is the major
source of disagreement between the above-mentioned authors); and (ii) to verify
how severe are the technical implications of adding a conglomerability axiom to
our notion of coherence for sets of desirable gambles, as it is already quite clear
that this is going to complicate the computation of the natural extension. Another
open problem would be the extension of the results on equal expressivity to infinite
spaces.

Finally, it is useful also to point out that the results of this paper have a di-
rect bearing on a topic in artificial intelligence that is currently subject of much
attention: modelling preferences (and in particular partial preferences, see [9] for
some recent work). Preferences are increasingly important for AI sectors as diverse
as agents, machine learning, and argumentation, to say a few. The relationship
between desirability and preferences is very tight, as we have described at the end
of Section 6.2: there is actually one-to-one correspondence between sets of desir-
able gambles and partial preference orderings, so that the material in this paper
can immediately be re-phrased as a study on the relationship between preference
modelling and imprecise probability. Exploring this link further appears to be a
promising research avenue.
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Appendix A. Additional results

This appendix collects some additional results that are related to the main dis-
cussion in the paper but are not necessary to follow it. We report them here to ease
the accessibility of the paper to the reader more interested in the main development.

A.1. Regular conditioning. In this section we investigate when the conditional
lower previsions obtained from a coherent set of desirable gambles R through
Eq. (13) match those that would be obtained by applying regular extension on
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the associated unconditional lower prevision. Taking into account Proposition 7,
we shall assume Q = L here.

Definition 18 (Regular extension). Given a set M of linear previsions and a
partition B of Ω, the regular extension R(·|B) is given by

R(f |B) := inf
{
P (Bf)
P (B)

: P ∈M, P (B) > 0
}

for every B ∈ B, f ∈ L whenever there is some P ∈M such that P (B) > 0, and is
given by R(f |B) := infω∈B f(ω) otherwise. This amounts to applying Bayes’ rule
to the dominating linear previsions whenever possible (i.e., disregarding the linear
previsions that assign zero probability to the conditioning event).

If we have an unconditional coherent lower prevision P , the regular extension
R(·|B) is derived from P by applying the above definition to the credal set M(P ).
When the partition B of Ω is finite, as it is the case in this paper, it follows
from [19, Appendix (J3)] that P ,R(·|B) are coherent. The regular extension has
been proposed and used a number of times in the literature as an updating rule
[2, 6, 7, 8, 19, 20]. For the case of finite Ω, a comparison with natural extension
has been made in [12, 14].

Now, denote by P (f |B) the lower prevision of f ∈ L conditional on B ∈ B
obtained from R through (13). Let R denote the closure of R in the topology of
uniform convergence. R is a set of almost-desirable gambles according to Proposi-
tion 4. LetM be the corresponding set of linear previsions, P be its lower envelope,
and R(f |B) the associated regular extension. The following proposition gives a nec-
essary and sufficient condition for the procedure of Eq. (13) to provide us with the
regular extension.

Theorem 16. Consider B ∈ B and f ∈ L. Then P (B) > 0 and P (f |B) = R(f |B)
if and only if

µ ∈ R, B(f − µ) ∈ R ⇒ B(f − (µ− ε)) ∈ R ∀ε > 0. (24)

An immediate corollary that we establish without proof is the following:

Corollary 5. Consider B ∈ B. Then P (B) > 0 and P (f |B) = R(f |B) for all
f ∈ L if and only if

Bf ∈ R ⇒ B(f + ε) ∈ R ∀ε > 0. (25)

This corollary generalises the result given by Theorem 3 in [1]. Such a theorem
shows that the condition

f ∈ R ⇒ f + εB ∈ R ∀ε > 0 (26)

implies P (B) > 0 and P (f |B) = R(f |B). The above corollary shows that this
condition is unnecessarily strong as we do not need to take into account gambles f
such that Bf 6= f .

Remark 6. The same reference [1] makes two additional claims, which we briefly
discuss in our language. The first (in Lemma 1 from that paper) is that P (B) > 0
is sufficient for (26) to hold. An analogous claim is easy to obtain in our context: in
fact, when P (B) > 0, GBR determines uniquely the lower prevision conditional on
B, and therefore the regular extension R(f |B) coincides with P (f |B), so that (25)
follows.
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The second claim (Lemma 2 in [1]) can be reformulated in our context as follows:
if P (B) > 0, B(f − µ) ∈ R and B((µ − ε) − f) /∈ R ∀ε > 0 ⇒ B(f − (µ − ε)) ∈
R ∀ε > 0, then (24) holds. But since P (B) > 0, we know, thanks to Proposition 5,
that there cannot be ε > 0 such that B((µ − ε) − f) ∈ R, as otherwise −εB =
B((f − µ) + ((µ − ε) − f)) ∈ R, thus violating (15). In other words, under the
condition P (B) > 0, the assumption

B(f − µ) ∈ R and B((µ− ε)− f) /∈ R ∀ε > 0⇒ B(f − (µ− ε)) ∈ R ∀ε > 0

reduces to B(f − µ) ∈ R ⇒ B(f − (µ − ε)) ∈ R ∀ε > 0, which is Eq. (24), and
which is equivalent to the equality P (f |B) = R(f |B) because of Theorem 16. �

A.2. On weak desirability. In this section, we briefly discuss another approach
to sets of desirable gambles which was recently introduced by de Cooman and
Quaeghebeur in [5]: that of a set of weakly desirable gambles. This is an inter-
mediate notion between those of desirability and almost-desirability, and it was
introduced in the context of exchangeable imprecise models.

Given a coherent set of really desirable gambles R, the set of weakly desirable
gambles associated to R is defined by

DR := {f : f + g ∈ R ∀g ∈ R}. (27)

It follows immediately from this definition that R∪ {0} ⊆ DR.
We can study the properties of a set of weakly desirable gambles by means of

the following axioms:
(WD1) f � 0⇒ f /∈ DR.
(WD2) f ≥ 0⇒ f ∈ DR.
(WD3) f ∈ DR, λ > 0⇒ λf ∈ DR.
(WD4) f, g ∈ DR ⇒ f + g ∈ DR.
(WD5) If f + δ ∈ DR ∀δ > 0 and it does not hold that f � 0 then f ∈ DR.

From [5, Proposition 5], the set DR originated by a coherent set of really desirable
gambles satisfies (WD1)–(WD4). We next give a sufficient condition for a set of
gambles to be a set of weakly desirable gambles.

Proposition 11. For every set of gambles D satisfying (WD1)–(WD5) there is a
coherent set of really desirable gambles R such that DR = D.

However, not every set of weakly desirable gambles associated to a set R of
desirable gambles satisfies (WD5), as the following example shows:

Example 11. Let Ω := {ω1, ω2} and let R := {f : f(ω1)+f(ω2) > 0}∪{f : f(ω1) >
0, f(ω2) = −f(ω1)}. Then R is a coherent set of really desirable gambles. Its
associated set of weakly desirable gambles is DR = R∪{0}: given a gamble f such
that f(ω1) + f(ω2) = −ε < 0, the constant gamble equal to ε

2 belongs to R and
f + ε

2 does not belong to R; on the other hand, if f(ω1)+f(ω2) = 0 and f(ω1) < 0,
then − f2 belongs to R but f − f

2 = f
2 does not.

To see that R does not satisfy (WD5), note that the gamble f given by f(ω1) =
−1, f(ω2) = 1 satisfies that f + δ ∈ R ⊆ DR for every δ > 0, but f /∈ DR. �

On the other hand, a coherent set of really desirable gambles R lies between the
associated sets of strictly desirable R and almost-desirable R gambles. It is not
difficult to see that the associated set of weakly desirable gambles lies between the
coherent set of really desirable gambles and the coherent set of almost-desirable
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gambles: remember that R is the topological closure of set R (see Proposition 4);
then it is clear that R undergoes the same condition as in Eq. (27) but restricting
ourselves to gambles g which are constant on some ε > 0.

We next show that for the purposes of our work in this paper, really desirable
gambles and weakly desirable gambles are going to provide the same information:

Proposition 12. Let R be a coherent set of really desirable gambles, and let DR
be its associated set of weakly desirable gambles. Then for every subset B of Ω and
for every gamble f ,

sup{µ : B(f − µ) ∈ R} = sup{µ : B(f − µ) ∈ DR}. (28)

Appendix B. Proofs

This appendix gathers the proofs of all the results in the paper.

Proof of Proposition 1. We make a circular proof. Let us show that the first state-
ment implies the second. Assume Eq. (3) fails. Then there are ε > 0, gkj ∈ Hj ,
j = 1, . . . ,m, nj ≥ 1, k = 1, . . . , nj , such that for all ω ∈ Ω, m∑

j=1

nj∑
k=1

Gj(gkj |Bj) + εSj(gkj )

 (ω) ≤ 0,

and hence  m∑
j=1

nj∑
k=1

Gj(gkj |Bj)

 (ω) ≤ −ε

 m∑
j=1

nj∑
k=1

Sj(gkj )

 (ω) < 0

for every ω ∈ S(gkj ), since not all the gkj are zero gambles. This implies that the
conditional lower previsions P 1(·|B1), . . . , Pm(·|Bm) incur partial loss.

That the second statement implies the third follows by taking into account that
the sum in Eq. (4) is zero outside S(gkj ).

Finally, assume that Eq. (4) holds. If our conditional lower previsions incur
partial loss, then there are δ > 0, nj ≥ 1, gkj ∈ Hj , j = 1, . . . ,m, k = 1, . . . , nj ,
such that not all the gkj are zero gambles, which lead to

m∑
j=1

nj∑
k=1

Gj(gkj |Bj)(ω) ≤ −δ

for all ω ∈ S(gkj ). Therefore, we can define ε := δ
1+

Pm
j=1 nj

, and obtain that for all

ω ∈ S(gkj ),  m∑
j=1

nj∑
k=1

Gj(gkj |Bj) + εSj(gkj )

 (ω) =

 m∑
j=1

nj∑
k=1

Gj(gkj |Bj)

 (ω) + ε

 m∑
j=1

nj∑
k=1

Sj(gkj )

 (ω) ≤

−δ + δ ·
∑m
j=1 nj

1 +
∑m
j=1 nj

< 0.

This implies that expression (4) fails, a contradiction. �
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Proof of Lemma 1. 1. Consider j ∈ {1, . . . ,m}, fj ∈ Hj , Bj ∈ Bj , and let us
consider the gamble Bjfj ∈ Hj . Then for all α < P j(fj |Bj) it holds that

sup
S(Bjfj)∪Bj

[Gj(Bjfj |Bj)−Bj(fj − α)]

= sup
Bj

[Gj(fj |Bj)−Bj(fj − α)] = α− P j(fj |Bj) < 0,

whence Eq. (7) implies that Ej(fj |Bj) ≥ α. As a consequence, Ej(fj |Bj) ≥
P j(fj |Bj).

2. Let us consider the direct implication. Take f ∈ L and B0 ⊆ Ω, B0 6= ∅. By
definition of natural extension, we know that for all α < E0(f |B0), there
are j = 1, . . . ,m, nj ≥ 1, k = 1, . . . , nj , gkj ∈ Hj , δ > 0 such that

B0(f − α)− δ >
m∑
j=1

nj∑
k=1

Gj(gkj |Bj) (29)

in S(gkj ) ∪ B0. Let us show that any such α is smaller than supω∈B0
f(ω),

from which we deduce that E0(f |B0) ≤ supω∈B0
f(ω). In the case where

all the gkj are zero gambles, that follows immediately from (29) as α <
infω∈B0 f(ω) ≤ supω∈B0

f(ω).
Let us assume that not all the gkj are zero gambles. It follows from (29)

that (i) the gamble
∑m
j=1

∑nj
k=1Gj(g

k
j |Bj) is bounded by −δ in S(gkj ) \B0,

and (ii) that supω∈B0
[B0(f −α)](ω) > supω∈B0

[
∑m
j=1

∑nj
k=1Gj(g

k
j |Bj)](ω).

On the other hand, knowing that P 1(·|B1), . . . , Pm(·|Bm) avoid partial loss
tells us (iii) that

∑m
j=1

∑nj
k=1Gj(g

k
j |Bj) has non-negative supremum over

S(gkj ), and hence also over S(gkj )∪B0. By using (i) and (iii), we obtain that
supω∈B0

[
∑m
j=1

∑nj
k=1Gj(g

k
j |Bj)](ω) ≥ 0; this, together with (ii) allows us to

deduce that supω∈B0
[B0(f −α)](ω) > 0, and hence that α < supω∈B0

f(ω).
For the converse implication, let us assume that P 1(·|B1), . . . , Pm(·|Bm)

incur partial loss, and show that this leads to an infinite natural extension.
From Definition 5, there are j = 1, . . . ,m, nj ≥ 1, k = 1, . . . , nj , gkj ∈ Hj ,
not all the gkj equal to the zero gamble, such that

sup
ω∈S(gkj )

 m∑
j=1

nj∑
k=1

Gj(gkj |Bj)

 (ω) = −δ < 0.

Multiplying both sides of the equality by λ > 0, and taking into account
that λGj(gkj |Bj) = Gj(λgkj |Bj), Sj(gkj ) = Sj(λgkj ) when λ > 0, and that
gkj,λ := λgkj belongs to Hj , we see that for every λ > 0 there are j =
1, . . . ,m, nj ≥ 1, k = 1, . . . , nj , gkj,λ ∈ Hj , where not all the gkj,λ are equal
to the zero gamble, such that

sup
ω∈S(gkj )

 m∑
j=1

nj∑
k=1

Gj(gkj,λ|Bj)

 (ω) = −λδ < 0.

The key point here is that S(gkj ) does not depend on λ. This means, in
other words, that we can find gambles that make the double sum as small
as we wish on each element of the fixed set S(gkj ).
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Now, take any f ∈ L, and j0 ∈ {1, . . . ,m}, B0 ∈ Bj0 s.t. B0 ∈ S(gkj )
(we can do so because S(gkj ) is not empty as not all the gkj are zero
gambles). Choose also α > 0, and let µ := infS(gkj )B0(f − α). Then
it is enough to choose λ > 0 such that −λδ < µ, in order to know
that there are j = 1, . . . ,m, nj ≥ 1, k = 1, . . . , nj , gkj,λ ∈ Hj , such that∑m
j=1

∑nj
k=1Gj(g

k
j,λ|Bj) ≤ −λδ < µ ≤ B0(f − α) in S(gkj ) ∪ B0 = S(gkj ),

whence

m∑
j=1

nj∑
k=1

Gj(gkj,λ|Bj)−B0(f − α) ≤ −λδ − µ < 0

on S(gkj )∪B0 = S(gkj ), taking into account that −B0(f−α) ≤ −µ and that
−λδ − µ < µ − µ = 0. Since we can do this for any α > 0, it follows that
Ej0(f |B0) = +∞.

3. Consider fj ∈ L for j = 1, . . . ,m, j0 ∈ {1, . . . ,m}, B0 ∈ Bj0 , f0 ∈ L, and
let us show that

sup
ω∈S(fj)∪B0

[ m∑
j=1

fj − Ej(fj |Bj)−B0(f0 − Ej0(f0|B0))
]
(ω) ≥ 0. (30)

Assume ex-absurdo that the above supremum in Eq. (30) is smaller than
−δ for some δ > 0. Fix ε := δ

2m > 0. Then, since from the second statement
Ei(fi|Bi) is finite for every i = 1, . . . ,m and every Bi ∈ Si(fi), there is an
integer nj ≥ 1 and gambles gkBi,j ∈ H

j , j = 1, . . . ,m, k = 1, . . . , nj such
that

sup
ω∈S(gkBi,j

)∪Bi

[ m∑
j=1

nj∑
k=1

Gj(gkBi,j |Bj)−Bi(fi − Ei(fi|Bi) + ε)
]
(ω) < −δi,Bi < 0

for some positive real δi,Bi . By making the sum over all Bi ∈ Si(fi), we
deduce that

[ ∑
Bi∈Si(fi)

( m∑
j=1

nj∑
k=1

Gj(gkBi,j |Bj)−Bi(fi−Ei(fi|Bi)+ε)
)]

(ω) < − min
Bi∈Si(fi)

δi,Bi < 0

for all ω ∈ Si(fi)∪S(gkBi,j). If we now make the sum over all the partitions,
we deduce that

[ m∑
i=1

∑
Bi∈Si(fi)

( m∑
j=1

nj∑
k=1

Gj(gkBi,j |Bj)−Bi(fi−Ei(fi|Bi)+ε)
)]

(ω) < − min
i,Bi∈Si(fi)

δi,Bi
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on S(fi)∪S(gkBi,j). Consider now γ ∈ (0, δ4 ). Given ω ∈ (S(gkBi,j)∩S(fi))∪
B0, it follows that[ m∑
i=1

∑
Bi∈Si(fi)

m∑
j=1

nj∑
k=1

Gj(gkBi,j |Bj)−B0(f0 − Ej0(f0|B0)− γ)
]
(ω)

=
[ m∑
i=1

∑
Bi∈Si(fi)

( m∑
j=1

nj∑
k=1

Gj(gkBi,j |Bj)−Bi(fi − Ei(fi|Bi) + ε)
)]

(ω)

+
[ m∑
i=1

∑
Bi∈Si(fi)

Bi(fi − Ei(fi|Bi) + ε)−B0(f0 − Ej0(f0|B0)− γ)
]
(ω)

≤ 0− δ + γ +
δ

2
< 0.

On the other hand, if ω ∈ S(gkBi,j) \ (S(fi) ∪B0), then

[ m∑
i=1

∑
Bi∈Si(fi)

m∑
j=1

nj∑
k=1

Gj(gkBi,j |Bj)−B0(f0 − Ej0(f0|B0)− γ)
]
(ω)

=
[ m∑
i=1

∑
Bi∈Si(fi)

m∑
j=1

nj∑
k=1

Gj(gkBi,j |Bj)
]
(ω) < − min

i,Bi∈Si(fi)
δi,Bi < 0;

we conclude that we can increase Ej0(f0|B0) in γ, a contradiction with the
definition of the natural extension.

4. Let P ′1(·|B1), . . . , P ′m(·|Bm) be coherent conditional lower previsions on L
that dominate P 1(·|B1), . . . , Pm(·|Bm) on their domains. Assume there
are some j0 ∈ {1, . . . ,m}, B0 ∈ Bj0 , f0 ∈ L, such that P ′j0(f0|B0) <
Ej0(f0|B0). Then it follows from the definition of Ej0(f0|B0) that there
are gkj ∈ Hj , nj ≥ 1, j = 1, . . . ,m, k = 1, . . . , nj such that

sup
ω∈S(gkj )∪B0

[ m∑
j=1

Gj(gkj |Bj)−B0(f0 − P ′j0(f0|B0))
]
(ω) < 0,

and since P ′j(g
k
j |Bj) ≥ P j(gkj |Bj) for all j = 1, . . . ,m, k = 1, . . . , nj ,

sup
ω∈S(gkj )∪B0

[ m∑
j=1

G′j(g
k
j |Bj)−B0(f0 − P ′j0(f0|B0))

]
(ω) < 0.

This contradicts the coherence of P ′1(·|B1), . . . , P ′m(·|Bm).
5. Assume first of all that P j(·|Bj) = Ej(·|Bj) for j = 1, . . . ,m. Since
P 1(·|B1), . . . , Pm(·|Bm) are separately coherent, they are in particular fi-
nite. Applying the second statement, P 1(·|B1), . . . , Pm(·|Bm) avoid partial
loss, and using now the third statement we deduce that the natural exten-
sions E1(·|B1), . . . , Em(·|Bm), and therefore also P 1(·|B1), . . . , Pm(·|Bm),
are coherent.

Conversely, if the lower previsions P 1(·|B1), . . . , Pm(·|Bm) are coher-
ent but there is some j0 ∈ {1, . . . ,m} and g0 ∈ Hj0 , B0 ∈ Bj0 such
that P j0(g0|B0) < Ej0(g0|B0), then Eq. (7) implies that there are j =
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1, . . . ,m, nj ≥ 1, k = 1, . . . , nj , gkj ∈ Hj such that

sup
S(gkj )∪B0

 m∑
j=1

nj∑
k=1

Gj(gkj |Bj)−Gj0(g0|B0)

 < 0,

thus contradicting the coherence of P 1(·|B1), . . . , Pm(·|Bm).
�

Proof of Corollary 1. The statement is a direct consequence of the second part of
the proof of statement 2 in Lemma 1, which shows that if P 1(·|B1), . . . , Pm(·|Bm)
incur partial loss, there must be j ∈ {1, . . . ,m}, Bj ∈ Bj , such that Ej(f |Bj) = +∞
for all f ∈ L. �

Proof of Proposition 2. Let us assume that the axioms hold and prove that Q∩E ⊆
R. We use Eq. (10). Given g ∈ Q ∩ E , if g ∈ L+ then it follows from (APG) that
g ∈ R. Otherwise, if g /∈ L+ then g ≥

∑r
j=1 λjgj for some r ≥ 1, j ∈ {1, . . . , r}, gj ∈

R, λj > 0. By using (PHM) and (ADD), we obtain that
∑r
j=1 λjgj ∈ R. Since

Q is linear, it holds that g0 := g −
∑r
j=1 λjgj belongs to Q, too. If g0 = 0 then

g =
∑r
j=1 λjgj ∈ R. Otherwise, condition (APG) implies that g0 ∈ R and then

applying (ADD) we obtain that g belongs to R.
Let us show now that R avoids partial loss as in Definition 11. Assume, by

contradiction, that 0 ∈ E . Then 0 ≥
∑r
j=1 λjgj for some r ≥ 1, j ∈ {1, . . . , r}, gj ∈

R, λj > 0. Let g0 := 0 −
∑r
j=1 λjgj . The case g0 = 0 is not possible because the

previous part of the proof has shown that
∑r
j=1 λjgj ∈ R, and 0 /∈ R by (APL).

Therefore it holds that g0 ∈ L+. But g0 belongs also to Q, because Q is linear,
and by (APG) we see that g0 ∈ R. By (ADD) we obtain that 0 =

∑r
j=1 λjgj −∑r

j=1 λjgj ∈ R. This is a contradiction with (APL).
Assume conversely that R avoids partial loss and R = Q ∩ E , and let us prove

that the axioms hold. That (APL) holds follows trivially from R ⊆ E and the fact
that R avoids partial loss. Concerning (APG), if g ∈ Q is such that g ∈ L+, then
g ∈ E and hence g ∈ Q ∩ E = R. As for (PHM), if g ∈ R and λ > 0, then λg ∈ Q,
because Q is a linear set, and λg ∈ E , by definition: whence, λg ∈ Q ∩ E = R.
Finally, and analogously, if f, g ∈ R, then f + g ∈ Q, because Q is a linear set, and
f + g ∈ E , by definition: whence, f + g ∈ Q ∩ E = R, and (ADD) holds. �

Proof of Proposition 3. Regarding point (a), if a gamble g in the natural extension
of E belongs to L+, then it belongs to E too; otherwise g is such that g ≥

∑r
j=1 λjgj

for some r ≥ 1, j ∈ {1, . . . , r}, gj ∈ E , λj > 0, where we can assume without loss of
generality that gj /∈ L+ for all j ∈ {1, . . . , r}. Moreover, each gj in the sum belongs
to E and hence it is such that gj ≥

∑rj
kj=1 λkjgkj , for some rj ≥ 1, gkj ∈ R, λkj > 0.

It follows that g ≥
∑r
j=1

∑rj
kj=1 λjλkjgkj for some r ≥ 1, rj ≥ 1, gkj ∈ R, λj >

0, λkj > 0. This shows that g belongs to E , and hence that the natural extension
of E is included in E . The opposite inclusion holds trivially. Concerning point (b),
if R is included in a coherent set E ′ then E is included in the natural extension of
E ′, which from the first point is again E ′. Point (c) follows trivially from point (a).
Point (d) follows trivially from points (a) and (c). The direct implication in point (e)
is trivial, given the definition of E and point (d). For the converse implication,
consider that: E ′ must include the natural extension E , because of point (b); this
implies that E avoids partial loss, considered that its natural extension is E itself, as
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in point (a); then R avoids partial loss because of point (c). The direct implication
in point (f) is trivial. For the converse implication, consider that R avoids partial
loss since E ′ contains R and because of point (e). Now, take g ∈ Q ∩ E . Since
E ⊆ E ′, thanks to point (b), then g ∈ Q∩E ′ = R. For the direct implication in (g),
note that if R is included in a coherent set E ′, then E ′ avoids partial loss. Applying
(b), we deduce that so does E , and then points (c) and (d) imply that E is coherent.
The converse implication in (g) is trivial. Finally, (h) is a consequence of points (b)
and (g). �

Proof of Corollary 2. Consider g � 0, and assume by contradiction that g ∈ E . E
is coherent because of Proposition 3(d); hence it includes −g ∈ L+. Moreover,
by (ADD) in Proposition 2, we obtain that 0 = g − g ∈ E , a contradiction. �

Proof of Proposition 4. Remember that E is coherent given that R avoids partial
loss, because of Proposition 3(d). Let us define E ′ := {g ∈ L : g + δ ∈ E ∀δ > 0},
and let us prove that this is a coherent set of almost-desirable gambles. For this,
we are going to prove that it satisfies the axioms in Definition 13:
(PHM) Let g ∈ E ′, λ > 0. Then g+ δ belongs to E for every δ > 0, and λ(g+ δ) =

λg+λδ also belongs to E for every δ > 0, thanks to (PHM) in Proposition 2.
As a consequence, λg ∈ E ′.

(ADD) Given f, g ∈ E ′ and δ > 0, f + g + δ = (f + δ
2 ) + (g + δ

2 ) ∈ E , thanks to
(ADD) and (APG) in Proposition 2. Hence, f + g ∈ E ′.

(ASL) Let g ∈ L satisfy sup g < 0. Then there is a δ > 0 such that g + δ < 0.
Then g + δ /∈ E because of (APL’). This implies that g /∈ E ′.

(ASG) Let g ∈ L satisfy inf g > 0. Then g + δ ∈ E for all δ > 0 because E satisfies
(APG) in Proposition 2, and as a consequence g ∈ E ′.

(CLS) Finally, if g + δ ∈ E ′ for every δ > 0, we deduce that g + δ′ ∈ E for all
δ′ > 0, and as a consequence g ∈ E ′.

Applying [19, Theorem 3.8.5], E ′ is equal to

{g ∈ L : P (g) ≥ 0 ∀P ∈M(E ′)},
where

M(E ′) := {P : P (g) ≥ 0 ∀g ∈ E ′} = {P : P (g) ≥ 0 ∀g ∈ E} =:M(E) =M(R).

To see that M(E ′) = M(E), consider first that by definition g ∈ E ′ implies that
g + δ ∈ E for all δ > 0. For the inclusion M(E ′) ⊇ M(E), take P non-negative
on all the elements of E and g ∈ E ′; then P (g) + δ = P (g + δ) ≥ 0 for all δ > 0,
and this implies P (g) ≥ 0. As a consequence P is non-negative on all the elements
of E ′. The inclusion M(E ′) ⊆ M(E) is trivial. To see that M(E) = M(R), it
suffices to prove that M(E) ⊇M(R), since the inclusion M(E) ⊆M(R) is trivial
as R ⊆ E . Take P non-negative on all the elements of R. By definition g ∈ E
implies that either g ∈ L+, and then trivially P (g) ≥ 0, or g ≥

∑r
j=1 λjgj , for

some r ≥ 1, gj ∈ R, λj > 0. In this second case, the linearity of P implies that
P (
∑r
j=1 λjgj) ≥ 0 and its monotonicity that P (g) ≥ 0. Hence,

{g ∈ L : P (g) ≥ 0 ∀P ∈M(R)} = E ′ = {g ∈ L : g + δ ∈ E ∀δ > 0}.
It remains to prove that E ′ = E , where the closure is taken in the topology of

uniform convergence. To see that E ′ ⊆ E , note that for any gamble g in E ′, g is
the uniform limit of the sequence {g + 1

n : n ∈ N}, and that each element of the
sequence belongs to E ; as a consequence, g belongs to E . Conversely, to see that
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E ′ ⊇ E , let (gn)n be a sequence of elements in E that converges uniformly to g.
Then for every δ > 0, there is some nδ ∈ N such that ‖gn−g‖ < δ ∀n ≥ nδ, whence
g + δ ≥ gn ∀n ≥ nδ and therefore g + δ ∈ E , because E is closed under dominance.
This implies that g ∈ E ′. As a consequence, E ′ = E . �

Proof of Theorem 5. Let f be a gamble on Ω, B ∈ B.

(1) Given µ < infω∈B f(ω), it follows from (SDb) that the gamble B(f − µ)
belongs to R, and as a consequence P (f |B) ≥ infω∈B f(ω).

(2) Similarly, if R satisfies (SDa) then for every µ > supω∈B f(ω) the gamble
B(f − µ) does not belong to R, whence P (f |B) ≤ supω∈B f(ω).

(3) For every ε > 0, there is some µ ∈ R such that P (f |B)− ε ≤ µ < P (f |B),
and such that B(f−µ) ∈ R. Then for every µ′ < µ it holds that B(f−µ′) =
B(f−µ)+B(µ−µ′). If R satisfies (SDb), it follows that B(µ−µ′) belongs
to R, and then applying condition (ADD) we deduce that B(f − µ′) also
belongs to R.

(4) To conclude with the fourth statement, we have showed above that condi-
tion (SD) is sufficient for P (·|B) to be well-defined. To see that it is also
necessary, assume that R does not satisfy axiom (SDa), i.e., that there is
a gamble f ≤ 0 and some B ∈ B such that supω∈B f(ω) < 0 and f ∈ R.
Then it holds that the gamble Bf ≥ f also belongs to R because this set
is closed under dominance, whence P (f |B) ≥ 0 > supω∈B f(ω). Similarly,
if it does not satisfy (SDb), there is a gamble f ≥ 0 and some B ∈ B such
that infB f > 0 and f /∈ R. Since f ≥ Bf , we deduce that Bf /∈ R and
therefore P (f |B) ≤ 0 < infω∈B f(ω).

�

Proof of Proposition 5. We begin with the direct implication in (15). Assume that
P (B) = 0. Then given any gamble g and µ > supB g, it holds that

0 ≥ P (B(g − µ)) = −P (B(µ− g)) ≥ −(µ− inf
B
g)P (B) = 0

whence P (B(g − µ)) = 0. From [19, Theorem 3.8.1], we deduce that B(g − µ) =:
f ∈ D.

Conversely, assume that there is a gamble f ≤ 0 in D such that supB f < 0.
Since f ∈ D implies that P (f) ≥ 0, and since Bf ≥ f because f is non-positive, we
deduce that P (Bf) ≥ 0, whence −P (−Bf) ≥ 0, or, equivalently, P (−Bf) ≤ 0. But
since −Bf ≥ 0 implies that P (−Bf) ≥ 0, we deduce from this that 0 = P (−Bf) ≥
infB(−f)P (B) ≥ 0, whence P (B) = 0.

The proof of the remaining part of the proposition is trivial given (15). �

Proof of Theorem 6. Since the domain of P (·|B) is the linear set of gambles L,
separate coherence is equivalent to conditions (SC1)–(SC3). Let us show that these
conditions are satisfied when R satisfies the axioms (SD), (PHM) and (ADD):

(SC1) This follows from condition (SD) because of Theorem 5.
(SC2) Let f ∈ L, λ > 0. From Eq. (13), for every B ∈ B, it holds that P (λf |B) =

sup{µ|B(λf − µ) ∈ R} = sup{λµ′|B(λf − λµ′) ∈ R} = sup{λµ′|λB(f −
µ′) ∈ R} = λ sup{µ′|λB(f − µ′) ∈ R} = λ sup{µ′|B(f − µ′) ∈ R} =
λP (f |B), where the one-but-last equality holds because, from (PHM), a
gamble g belongs to R if and only if λg ∈ R for every λ > 0.
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(SC3) Consider gambles f, g ∈ R, and ε > 0. Then there are µ1 ∈ [P (f |B) −
ε
2 , P (f |B)), µ2 ∈ [P (g|B)− ε

2 , P (g|B)) such that the gambles B(f−µ1) and
B(g−µ2) belong to R. Applying (ADD), we deduce that B(f+g−µ1−µ2)
belongs to R and therefore P (f + g|B) ≥ P (f |B) + P (g|B) − ε. Since we
can do this for every ε > 0, we deduce that P (f+g|B) ≥ P (f |B)+P (g|B).

�

Proof of Proposition 6. It suffices to prove the first point, since the second follows
as a particular case. Let us define the conditional upper prevision P (·|B) by

P (f |B) := −P (−f |B) = inf{µ : B(µ− f) ∈ R}

for every f ∈ L and every B ∈ B. It follows from Theorem 6 that P (·|B) is
separately coherent, and from [19, Theorem 6.2.6] that P (f |B) ≤ P (f |B) for every
f ∈ L, B ∈ B.

Assume that P (·|B) is a linear conditional prevision, i.e., P (f |B) = −P (−f |B) =
P (f |B) for every gamble f . Given some gamble g and some ε > 0, there are two
possibilities: either P (g|B) = P (g|B) > 0, and then since B(g − µ) ∈ R for ev-
ery µ < P (g|B) because of Theorem 5(3), we deduce that Bg belongs to R; or
P (g|B) = P (g|B) ≤ 0, whence the definition of P (g|B) and the same result implies
that B(ε− g) ∈ R for every ε > 0.

Conversely, assume (LC) holds and let us show that P (f |B) = P (f |B) for every
gamble f and every B ∈ B: assume ex-absurdo there is some gamble f for which
P (f |B) < P (f |B); take 0 < δ < P (f |B)−P (f |B), and ε := P (f |B)−P (f |B)− δ.
Then the definition of P (f |B) implies that B((f − P (f |B)) − ε

2 ) does not belong
to R because ε > 0, and similarly the definition of P (f |B) implies that

B
(ε

2
− (f − P (f |B)− ε

2
)
)

= B (ε− (f − P (f |B))) = B(P (f |B)− δ − f) /∈ R.

This contradicts (LC). From the equality P (f |B) = P (f |B) for all f ∈ L and all
B ∈ B we deduce applying [19, Thm. 6.2.6(c)] that P (·|B) is a linear conditional
prevision. �

Proof of Corollary 3. IfD is a coherent set of almost-desirable gambles that satisfies
(SD), it satisfies the hypotheses of Proposition 6. As a consequence, if P (·|B)
is a linear conditional prevision, then given B ∈ B and a gamble f ∈ L either
Bf ∈ D or B(ε − f) ∈ D for every ε > 0. But in this second case conditions
(ASG) and (CLS) imply that Bcε belongs to D, and using (ADD) we deduce that
B(ε − f) + Bcε = ε − Bf belongs to D; since this holds for every ε > 0, we can
apply (CLS) and deduce that −Bf ∈ D. Conversely, it follows from axioms (APG)
and (ADD) that if D is a coherent set of almost-desirable gambles and −Bf ∈ D,
then also B(ε − f) ∈ D for every ε > 0, so condition (LC) holds and therefore D
originates a linear conditional prevision. �

Proof of Proposition 7. If R is coherent it avoids in particular partial loss, and
therefore E is coherent with respect to L thanks to Proposition 3(d). Since condi-
tions (APG) (with respect to L) and (APL’) guarantee that (SD) holds, we deduce
from Theorem 6 that P 3(·|B) is separately coherent.

For the second statement, note first of all that if R satisfies (SD), Theorem 6
guarantees that the conditional lower prevision P 2(·|B) is separately coherent, and
as a consequence so is P 1(·|B), which is its restriction to Q.
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Now, since R is a coherent set of really desirable gambles with respect to the
linear set Q, it follows that E = L+ ∪ {g ≥ h for some h ∈ R} (cf. (11)). As a
consequence,

P 3(f |B) = max{sup{α : B(f − α) ≥ h for some h ∈ R}, sup{α : B(f − α) ∈ L+}}
= max{sup{α : B(f − α) ≥ h for some h ∈ R}, inf

B
f}

= sup{α : B(f − α) ≥ h for some h ∈ R}

for every f ∈ L and every B ∈ B, where last equality follows because, using the
separate coherence of P 2(·|B),

sup{α : B(f−α) ≥ h for some h ∈ R} ≥ sup{α : B(f−α) ∈ R} = P 2(f |B) ≥ inf
B
f.

(31)
Let us prove that in fact

P 3(f |B) = sup{α : B(f − α) ∈ R} = P 2(f |B). (32)

Consider α < P 3(f |B), and take h ∈ R such that B(f −α) ≥ h. Then for every
ε > 0,

B(f − (α− ε)) = h+ εB +B(f − α)− h;

the gamble B(f − α) − h is non-negative, whence B(f − α) − h + εB is a non-
negative gamble which is strictly positive in B. Applying (SD), we deduce that
B(f −α)− h+ εB belongs to R, and since R also satisfies (ADD), also h+B(f −
α)− h+ εB = B(f − α) + εB belongs to R. As a consequence,

sup{µ : B(f − µ) ∈ R} ≥ α− ε for every α < P 3(f |B), ε > 0,

whence sup{µ : B(f −µ) ∈ R} ≥ P 3(f |B). Since the converse inequality is already
shown in (31), we deduce that Eq. (32) holds. From this we also deduce that
B(f − α) belongs to R for every α < P 3(f |B).

To complete the proof, let us show that P 3(·|B) is the natural extension of
P 1(·|B). Since from the above result we see that P 3(f |B) = P 1(f |B) for every
gamble f ∈ Q and every B ∈ B, we see that P 3(·|B) is a separately coherent
extension of P 1(·|B) to all gambles, which from the fourth statement in Lemma 1
dominates the natural extension E1(·|B) of P 1(·|B). Conversely, given B ∈ B, f ∈ L
and α < P 3(f |B), the gamble g := B(f −α) belongs to R ⊆ Q, whence P 1(g|B) ≥
0, and therefore

G1(g|B)−B(f − α) ≤ g −B(f − α) = 0.

As a consequence, given ε > 0,

G1(g|B)−B(f − α)− εB = G1(g|B)−B(f − (α− ε)) < 0

on S(g) ∪ B = B. This implies that E1(f |B) ≥ α − ε for every α < P 3(f |B) and
every ε > 0, and therefore E1(f |B) ≥ P 3(f |B). Hence, P 3(·|B) coincides with the
natural extension E1(·|B) of P 1(·|B) on all gambles. �

Proof of Theorem 7. Assume they do not. Then taking into account Proposition 1,
there are ε > 0 and gambles fj for j = 1, . . . ,m, not all of them equal to zero, such
that

sup
ω∈S(fj)

 m∑
j=1

Gj(fj |Bj) + εSj(fj)

 (ω) < 0.
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For every j = 1, . . . ,m and every Bj ∈ Bj , the gamble Gj(fj |Bj) + εBj belongs
to R. Applying (ADD), and taking into account that the partitions are finite, we
deduce that

∑m
j=1Gj(fj |Bj)+εSj(fj) also belongs to R. But this is a non-positive

gamble which is strictly negative on each Bj ∈ Sj(fj) for j = 1, . . . ,m. This is a
contradiction with (SD). �

Proof of Theorem 8. Consider fj ∈ L for j = 0, . . . ,m, j0 ∈ {1, . . . ,m} and B0 ∈
Bj0 . Let us show that

sup
ω∈S(fj)∪B0

 m∑
j=1

Gj(fj |Bj)−Gj0(f0|B0)

 (ω) ≥ 0.

If the above supremum is equal to −δ < 0 then given δ′ := δ
m+1 > 0 it holds that

m∑
j=1

(Gj(fj |Bj) + δ′Sj(fj))−Gj0(f0|B0) + δ′B0 ≤ 0,

whence

Gj0(f0|B0)− δ′B0 ≥
m∑
j=1

(Gj(fj |Bj) + δ′Sj(fj)). (33)

From the third statement in Theorem 5, we see that for every j = 1, . . . ,m and
every Bj ∈ Sj(fj), the gamble Bj(fj − P (fj |Bj) + δ′) belongs to R. Applying
(ADD), we deduce that the right-hand-side in Eq. (33) belongs to R, and taking
into account that R includes all non-negative gambles and satisfies axiom (ADD),
we deduce that Gj0(f0|B0)−δ′B0 also belongs to R. But if B0(f0−P j0(f0|B0)−δ′)
belongs to R we can increase the value of P j0(f0|B0). This is a contradiction with
Eq. (13). �

Proof of Proposition 8. Call R1 the set in the r.h.s. of the equality in the state-
ment. Take g := Gj(fj |Bj) + εBj from R. It is clear that gBcj = 0, and also
that g ∈ Hj , as it follows from the assumptions on the domains that have been
done in Remark 1, Section 2.2. Moreover, P j(g|Bj) = P j(Gj(fj |Bj) + εBj |Bj) =
P j(fj |Bj)−P j(fj |Bj) + ε > 0, where the second passage holds because of separate
coherence (see [19, Lemma 6.2.4 and Section 6.2.6]). Conversely, consider g ∈ R1.
Then there are j ∈ {1, . . . ,m}, Bj ∈ Bj , such that g ∈ Hj , gBcj = 0, P j(g|Bj) > 0.
Let ε := P j(g|Bj). Then Bj(g − (P j(g|Bj)− ε)) = gBj = g, and hence g ∈ R. �

Proof of Theorem 9. Let E1 denote the set of gambles satisfying condition (19), and
let E2 be the set of gambles satisfying condition (20). We shall make a circular proof
of the equalities E = E1 = E2.

Let us show that E ⊆ E1. Take g ∈ E . By definition, if g ∈ L+ then g ∈ E1.
Otherwise, g can be written as follows:

g ≥
m∑
j=1

nj∑
k=1

λkj (Gj(fkj |Bkj ) + εkjB
k
j ) =

m∑
j=1

nj∑
k=1

Gj(f̃kj |Bkj ) + ε̃kjB
k
j ,

for some j = 1, . . . ,m, nj ≥ 1, k = 1, . . . , nj , λkj > 0, fkj ∈ Hj , Bkj ∈ Bj , εkj > 0, and
with f̃kj := λkj f

k
j , ε̃

k
j := λkj ε

k
j , where the second passage is possible thanks to the

assumptions about the domains Hj made in Remark 1.
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For the generic termGj(f̃kj |Bkj )+ε̃kjB
k
j in the sum there are two possibilities: (i) if

Bkj ∈ Sj(f̃kj ), then we consider the gamble gkj := f̃kj B
k
j , so that Gj(f̃kj |Bkj )+ε̃kjB

k
j =

Gj(gkj |Bj) + ε̃kjSj(g
k
j ); (ii) If Bkj /∈ Sj(f̃kj ), then we consider the gamble gkj := ε̃kjB

k
j

so that, again, Gj(f̃kj |Bkj ) + ε̃kjB
k
j = ε̃kjB

k
j = Gj(gkj |Bj) + ε̃kjSj(g

k
j ).

As a consequence, if we take ε := minj,k ε̃kj > 0, we can write

g ≥
m∑
j=1

nj∑
k=1

Gj(gkj |Bj) + εSj(gkj ),

and this shows that E ⊆ E1.
We next prove that E1 ⊆ E2. Let us consider g ∈ E1. Again, we can assume that

g /∈ L+, since for that case the inclusion is trivial. Then there are j = 1, . . . ,m, nj ≥
1, k = 1, . . . , nj , gkj ∈ Hj , Bj ∈ Bj , ε > 0, such that

g ≥
m∑
j=1

nj∑
k=1

Gj(gkj |Bj) + εSj(gkj ). (34)

Let us show that the above choice of gambles gkj make g belong to E2. We reason
ex-absurdo, assuming that g /∈ E2. There are two possibilities:

(i) If g � 0 in S(gkj )c, then there is some ω ∈ S(gkj )c such that g(ω) < 0. But
then it cannot hold that g(ω) ≥ [

∑m
j=1

∑nj
k=1Gj(g

k
j |Bj) + εSj(gkj )](ω) = 0,

a contradiction with (34).
(ii) If infω∈S(gkj )[g −

∑m
j=1

∑nj
k=1Gj(g

k
j |Bj)] ≤ 0, then given the same ε > 0

there is some ω ∈ S(gkj ) such that

g(ω) ≤

 m∑
j=1

nj∑
k=1

Gj(gkj |Bj)

 (ω) <

 m∑
j=1

nj∑
k=1

Gj(gkj |Bj) + εSj(gkj )

 (ω),

again a contradiction with (34).
We finally show that E2 ⊆ E . Take g ∈ E2. We skip the trivial case g ∈ L+.

Then there are j = 1, . . . ,m, nj ≥ 1, k = 1, . . . , nj , gkj ∈ Hj , gkj 6= 0, such that
g ≥

∑m
j=1

∑nj
k=1Gj(g

k
j |Bj) + δ in S(gkj ) for some δ > 0, and g ≥ 0 in S(gkj )c. Let

ε := δ
mmaxj,k nj

. Then in S(gkj ) we have that

m∑
j=1

nj∑
k=1

Gj(gkj |Bj) + εSj(gkj ) ≤
m∑
j=1

nj∑
k=1

Gj(gkj |Bj) + εmmax
j,k

nj

=
m∑
j=1

nj∑
k=1

Gj(gkj |Bj) + δ ≤ g,

and since, whenever S(gkj )c is not empty, it holds that in S(gkj )c

g ≥ 0 =
m∑
j=1

nj∑
k=1

Gj(gkj |Bj) + εSj(gkj );

it follows that g ≥
∑m
j=1

∑nj
k=1Gj(g

k
j |Bj) + εSj(gkj ). But taking into account that

Gj(gkj |Bj) + εSj(gkj ) =
∑

Bj∈Sj(gkj )

Gj(gkj |Bj) + εBj ,
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it follows that Gj(gkj |Bj) + εSj(gkj ) belongs to E . Since E is closed under finite
addition of gambles, and under dominance, we deduce that also g belongs to E .
This completes the proof. �

Proof of Theorem 10. Let us begin with the first statement. Assume R avoids
partial loss. From Definition 11 and Corollary 2, this means that there is no g ≤ 0
in E , or, equivalently, that sup g > 0 for every g ∈ E . Consider j = 1, . . . ,m, nj ≥
1, k = 1, . . . , nj , gkj ∈ Hj not all of them zero gambles, ε > 0. Then the previous
comment implies that

sup
ω∈Ω

 m∑
j=1

nj∑
k=1

Gj(gkj |Bj) + εSj(gkj )

 (ω) > 0, (35)

because the above gamble belongs to E . Applying Proposition 1 we deduce that
P 1(·|B1), . . . , Pm(·|Bm) avoid partial loss.

Conversely, if P 1(·|B1), . . . , Pm(·|Bm) avoid partial loss then Proposition 1 im-
plies that Eq. (35) holds and as a consequence sup g > 0 for every g ∈ E . Hence, R
avoids partial loss.

Let us turn now to the second statement. We begin with the direct implication.
Assume P 1(·|B1), . . . , Pm(·|Bm) avoid uniform sure loss, and consider a gamble
g ∈ E . The case g ∈ L+ is trivial. For other g, we can apply statement (1) of
Theorem 9 to deduce that there are gkj ∈ Hj , nj ≥ 1, j = 1, . . . ,m, k = 1, . . . , nj
and ε > 0 such that g ≥

∑m
j=1

∑nj
k=1Gj(g

k
j |Bj) + εSj(gkj ). Then

sup g ≥ sup
m∑
j=1

nj∑
k=1

Gj(gkj |Bj) + εSj(gkj ) ≥ sup
m∑
j=1

nj∑
k=1

Gj(gkj |Bj) ≥ 0,

using that P 1(·|B1), . . . , Pm(·|Bm) avoid sure loss.
Conversely, assume that sup g ≥ 0 for every g ∈ E , and take gkj ∈ Hj , nj ≥

1, j = 1, . . . ,m, k = 1, . . . , nj . Then again Theorem 9, statement (1), implies that
for every ε > 0

sup
ω∈Ω

 m∑
j=1

nj∑
k=1

Gj(gkj |Bj) + εSj(gkj )

 (ω) ≥ 0,

whence

sup
ω∈Ω

 m∑
j=1

nj∑
k=1

Gj(gkj |Bj)

 (ω) ≥ −ε
m∑
j=1

nj ,

for every ε > 0. As a consequence, P 1(·|B1), . . . , Pm(·|Bm) avoid uniform sure
loss. �

Proof of Theorem 11. Let us show the equivalence between the first two conditions;
the equivalence with (3) follows from Lemma 1, statement 5.

Assume first of all that P j(fj |Bj) = Ej(fj |Bj) for all j = 1, . . . ,m, fj ∈ Hj , Bj ∈
Bj . From Corollary 1, recalling also that P 1(·|B1), . . . , Pm(·|Bm) are separately
coherent, and hence bounded, we deduce that P 1(·|B1), . . . , Pm(·|Bm) avoid partial
loss. Theorem 10 then implies that R (and therefore E , through Proposition 3(c))
avoids partial loss.

Consider now g ∈ Q ∩ E . Then there is some fj ∈ Hj , Bj ∈ Bj and ε 6= 0
such that g = Gj(fj |Bj) + εBj . If g /∈ R, it follows from Eq. (17) that ε < 0.
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On the other hand, if g ∈ E we deduce from Theorem 9 that either g ∈ L+ or
there are j = 1, . . . ,m, nj ≥ 1, k = 1, . . . , nj , gkj ∈ Hj , Bj ∈ Bj , δ > 0, such that g ≥∑m
j=1

∑nj
k=1Gj(g

k
j |Bj)+δSj(gkj ). In the first case, we deduce that infBj Gj(fj |Bj) ≥

−ε > 0, a contradiction with the separate coherence of P j(·|Bj). In the second, we
deduce that

Gj(fj |Bj) +
ε

2
Bj ≥

m∑
j=1

nj∑
k=1

Gj(gkj |Bj)−
ε

2
Bj +

m∑
j=1

nj∑
k=1

δSj(gkj ),

or, equivalently,

m∑
j=1

nj∑
k=1

Gj(gkj |Bj)−Bj
(
fj − (P j(fj |Bj)−

ε

2
)
)
≤ ε

2
Bj −

m∑
j=1

nj∑
k=1

δSj(gkj ) < 0

on S(gkj )∪Bj . Using Eq. (7) we deduce that Ej(fj |Bj) ≥ P j(fj |Bj)− ε
2 . This is a

contradiction (remember that ε < 0). As a consequence, Q ∩ E ⊆ R and therefore
R is coherent.

Finally, if there is some j ∈ {1, . . . ,m}, Bj ∈ Bj , fj ∈ Hj and ε > 0 s.t.
Gj(fj |Bj)− εBj ∈ R, then there must be some j′ ∈ {1, . . . ,m}, f ′j ∈ Hj

′
, B′j ∈ Bj′

and δ > 0 s.t. Gj(fj |Bj)− εBj = Gj′(fj′ |Bj′) + δBj′ , whence

Gj′(fj′ |Bj′)−Gj(fj |Bj) = −δBj′ − εBj ≤ −min{δ, ε} < 0

on Bj ∪Bj′ ; this is a contradiction with the coherence of P j(·|Bj), P j′(·|Bj′).
Conversely, let us show that the first statement implies the second. First of all,

if R is coherent relative to Q, it also avoids partial loss, which guarantees, via
Theorem 10 and Lemma 1, statement 2, that the natural extensions are bounded,
and through Proposition 3(d) that E is coherent. Furthermore Lemma 1, statement
1, establishes that Ej(fj |Bj) ≥ P j(fj |Bj), for every j = 1, . . . ,m, fj ∈ Hj , Bj ∈
Bj . Assume ex-absurdo that there are j0 ∈ {1, . . . ,m}, f0 ∈ Hj0 , B0 ∈ Bj0 , such
that P j0(f0|B0) < Ej0(f0|B0). Then given 0 < δ < Ej0(f0|B0) − P j0(f0|B0),
the definition of the conditional natural extension (Eq. (7)) implies that there are
gkj ∈ Hj , nj ≥ 1, j = 1, . . . ,m, k = 1, . . . , nj , such that

sup
S(gkj )∪B0

[ m∑
j=1

nj∑
k=1

Gj(gkj |Bj)−B0(f0 − (P j0(f0|B0) + δ))
]
< 0,

and the second statement of Theorem 9 implies then that the gamble B0(f0 −
(P j0(f0|B0) + δ)) belongs to E . Since on the other hand Eq. (17) implies that
the gamble B0(f0 − P j0(f0|B0)) + δ

2B0 belongs to R ⊆ E , we deduce from the
coherence of E (condition (ADD)) and the definition of Q that the gamble B0(f0−
P j0(f0|B0))− δ

4B0 belongs to Q∩E , and as a consequence also toR, because this set
is coherent. But the first statement implies that this gamble cannot be inR because
δ > 0. This is a contradiction, from which we deduce that P j(fj |Bj) = Ej(fj |Bj)
for all fj ∈ Hj , Bj ∈ Bj and j = 1, . . . ,m. This completes the proof. �

Proof of Lemma 2. Since, P 1(·|B1), . . . , Pm(·|Bm) avoid partial loss, Lemma 1 im-
plies that their natural extensions are coherent and using Theorem 10 and Propo-
sition 3 we also deduce that E is coherent.
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Let f ∈ E . Bf is non-empty because f 6= 0, and moreover f = Bff . If f ∈ L+

then for every ε > 0 s.t. Bεf 6= ∅ (and there is one such ε because Bf = ∪ε>0B
ε
f )

we have that E0(f |Bεf ) ≥ E0(ε|Bεf ) = ε > 0, so the result holds.
If f /∈ L+, we apply Eq. (20) to find j = 1, . . . ,m, nj ≥ 1, k = 1, . . . , nj , gkj ∈ Hj ,

δ > 0 such that

f = Bff >

m∑
j=1

nj∑
k=1

Gj(gkj |Bj) + δ

in S(gkj ), and such that Bff ≥ 0 in S(gkj )c. This second property implies that
f(ω) > 0 for every ω ∈ Bf \ S(gkj ), and f(ω) ≥ ε for every ω ∈ Bεf \ S(gkj ) and for
every ε > 0.

Fix ε ∈ [ δ2 , δ). Then Bδ−εf f ≥ Bff − (δ − ε), and consequently

Bδ−εf f−
m∑
j=1

nj∑
k=1

Gj(gkj |Bj) ≥ Bff−
m∑
j=1

nj∑
k=1

Gj(gkj |Bj)−(δ−ε) > δ−(δ−ε) = ε > 0

in S(gkj ).
Now, let α > 0 be equal to infω∈S(gkj )∪Bδ−εf

[Bδ−εf f −
∑m
j=1

∑nj
k=1Gj(g

k
j |Bj)](ω).

This infimum is positive because it dominates min{ε, δ − ε} = δ − ε, which is
positive. Then Bδ−εf f − α

2B
δ−ε
f −

∑m
j=1

∑nj
k=1Gj(g

k
j |Bj) ≥ α

2 > 0 in S(gkj ) ∪Bδ−εf .
As a consequence, E0(f |Bδ−εf ) > 0. Finally, note that we can do this for any
ε ∈ [ δ2 , δ), so E0(f |Bδ−εf ) > 0 for every δ − ε ∈ (0, δ2 ).

For the second part it suffices to note that when Ω is finite there is some ε′ > 0
such that Bεf = Bf for all positive ε < ε′, and apply the first part. �

Proof of Theorem 12. Since P 1(·|B1), . . . , Pm(·|Bm) avoid partial loss, Lemma 1
implies that all the natural extensions are bounded. We use this fact throughout
the proof.

(1) Given g ∈ EP , g = G0(f |B0) + εB0; since g = 0 in Bc0, we can assume
without loss of generality that Bf ⊆ B0; in fact, otherwise, it suffices to
take f ′ := B0f , which also satisfies G0(f ′|B0)+εB0 = g, thanks to separate
coherence. Moreover, separate coherence also implies that E0(g|B0) =
E0(G0(f |B0) + εB0|B0) ≥ 0 + ε > 0. As a consequence, for some α > 0
there are gambles gkj ∈ Hj such that

m∑
j=1

nj∑
k=1

Gj(gkj |Bj)−B0(f − α) ≤ −δ < 0

in S(gkj ) ∪ B0 for some δ > 0. Since the support Bf is included in B0, we
deduce that

m∑
j=1

nj∑
k=1

Gj(gkj |Bj)−Bf (f − α) ≤
m∑
j=1

nj∑
k=1

Gj(gkj |Bj)−B0(f − α) ≤ −δ < 0

on S(gkj ) ∪ Bf , and as a consequence E0(f |Bf ) > 0. This shows that EP
is included in {f : E0(f |Bf ) > 0}. Conversely, if a gamble f satisfies
E0(f |Bf ) = α > 0, then f = Bff = G0(f |Bf ) + αBf belongs to EP .
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(2) From the definition of the unconditional natural extension E0 (Eq. (9)),
we have that E0(f) > 0 if and only if there is some α > 0 and gambles
fkj ∈ Hj , nj ≥ 1, j = 1, . . . ,m, k = 1, . . . , nj , such that

f − α ≥
m∑
j=1

nj∑
k=1

G(fkj |Bj),

and this inequality implies that

f ≥
m∑
j=1

nj∑
k=1

G(fkj |Bj) + εSj(fkj ),

for ε := αPm
j=1 nj

> 0. Using Theorem 9 we deduce that if E0(f) > 0 then

f ∈ E . Since also L+ ⊆ E because this is a coherent set of really desirable
gambles, we deduce that {f : E0(f) > 0} ∪ L+ ⊆ E .

On the other hand, if f ∈ E , Theorem 9 implies that either f ∈ L+, and
then the coherence of E0 guarantees that E0(f) ≥ 0, or there are gambles
fkj ∈ Hj , nj ≥ 1, j = 1, . . . ,m, k = 1, . . . , nj , not all of them equal to zero,
and ε > 0, such that

f ≥
m∑
j=1

nj∑
k=1

G(fkj |Bj) + εSj(fkj ).

We deduce that f ≥
∑m
j=1

∑nj
k=1G(fkj |Bj), whence for every α > 0

m∑
j=1

nj∑
k=1

G(fkj |Bj)− (f + α) ≤ −α < 0;

as a consequence, E0(f) ≥ −α for every α > 0, and therefore E0(f) ≥ 0.
We conclude that E ⊆ {f : E0(f) ≥ 0}.

(3) Let us show that EP ⊆ E . Take g ∈ EP , that is, g = G0(f |B0) + εB0.
By definition of E0(f |B0), we know that for each ε > 0 there are j =
1, . . . ,m, nj ≥ 1, k = 1, . . . , nj , gkj ∈ Hj , such that

inf
ω∈S(gkj )∪B0

G0(f |B0) + εB0 −
m∑
j=1

nj∑
k=1

Gj(gkj |Bj)

 (ω) > 0. (36)

We distinguish two cases.
(i) If gkj = 0 for all j, k, from Eq. (36) we obtain that G0(f |B0) + εB0 > 0

in B0. Since outside B0 we have that G0(f |B0) + εB0 = 0, it follows
that G0(f0|B0) + εB0 ∈ L+ ⊆ E .

(ii) If gkj 6= 0 for some j, k, we are going to prove that g ∈ E . For this,
we are going to use the equivalent expression (20) established in Theo-
rem 9. From (36), the first requirement in (20) is satisfied, so it suffices
to establish the second. Consider ω ∈ S(gkj )c, provided S(gkj )c is not
empty. There are two possibilities: either ω /∈ B0, whence trivially
g(ω) = 0; or ω ∈ B0, whence by applying Eq. (36) we conclude that
g(ω) > 0. This shows that f ∈ E .

We establish next that E ⊆ EP . Take f ∈ E . We know by Lemma 2 that
E0(f |Bεf ) > 0 for every ε ∈ (0, ε) for some ε > 0. Setting α := E0(f |Bεf ) >
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0 for one such ε, the gamble G0(f |Bεf ) +αBεf belongs to EP , and it is equal
to G0(f |Bεf )+αBεf = Bεf (f− (E0(f |Bεf )−α)) = Bεff . Now, since f = Bff
is the uniform limit, as ε goes to zero, of the gambles Bεff , we deduce that
it belongs to EP .

(4) To see that EP = E when Ω is finite, note that in that case we can deduce
from Lemma 2 that also E0(f |Bf ) > 0 for every f ∈ E , and then the first
statement implies that E ⊆ EP .

(5) Let us show that E is the natural extension of EP : since E is a coherent
set of desirable gambles that includes EP , Proposition 3(b) implies that it
must include also its natural extension; conversely, any gamble in R is of
the type Bj(f − P j(f |Bj)) + εBj for some Bj ∈ Bj , f ∈ Hj , ε > 0; since
E0(f |Bj) ≥ P j(f |Bj) from Lemma 1(1), it follows that Bj(f−P j(f |Bj))+
εBj dominates the gamble Bj(f − E0(f |Bj)) + εBj which belongs to EP ;
as a consequence, R is included in the natural extension of EP , and from
Proposition 3(b) so is its natural extension E .

�

Proof of Theorem 13. Consider an arbitrary j ∈ {1, . . . ,m}, fj ∈ Hj and Bj ∈ Bj .
By definition R contains the gambles Gj(fj |Bj) + εBj = Bj(fj − (P j(fj |Bj)− ε))
for all ε > 0, whence P ′j(fj |Bj) ≥ P j(fj |Bj).

Now, let us assume ex-absurdo that P ′j(fj |Bj) > P j(fj |Bj), or, in other words,
that g := Gj(fj |Bj) − ε′Bj belongs to R for some ε′ > 0. Then g also belongs to
the natural extension E of R, given by Eq. (10).

If g ∈ L+, then we have that infBj Gj(fj |Bj) > 0, a contradiction with the
separate coherence of P j(·|Bj). Then, if g ∈ E \ L+, we can apply Theorem 9
to deduce that there are gkj ∈ Hj , not all of them equal to zero, for nj ≥ 1, j =
1, . . . ,m, k = 1, . . . , nj and ε > 0, such that

Gj(fj |Bj)− ε′Bj ≥
m∑
j=1

nj∑
k=1

Gj(gkj |Bj) + εSj(gkj ).

As a consequence,

−ε′Bj − ε
m∑
j=1

nj∑
k=1

Sj(gkj ) ≥
m∑
j=1

nj∑
k=1

Gj(gkj |Bj)−Gj(fj |Bj),

whence the supremum of the right-hand side in S(gkj ) ∪ Bj is smaller than zero.
This is a contradiction with the coherence of the conditional lower previsions
P 1(·|B1), . . . , Pm(·|Bm). �

Proof of Theorem 14. It follows from Theorem 9 that E′0(f |B0) is the supremum
value of α such that

B0(f − α) ≥
m∑
j=1

nj∑
k=1

Gj(gkj |Bj) + εSj(gkj ) (37)

for some j = 1, . . . ,m, nj ≥ 1, k = 1, . . . , nj , gkj ∈ Hj , Bj ∈ Bj , ε > 0: to see this,
note that we can restrict our attention to the gambles in E \L+, because with those
in L+ we only attain infB0 f , and this infimum can also be achieved in Eq. (37) by
considering constant gambles.
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On the other hand, from Eq. (7), E0(f |B0) is the supremum value of α such
that there are gkj ∈ Hj , nj ≥ 1, j = 1, . . . ,m, k = 1, . . . , nj , δ > 0 such that

B0(f − α)−
m∑
j=1

nj∑
k=1

Gj(gkj |Bj) ≥ δ > 0 (38)

in S(gkj ) ∪B0.
Hence, given α < E′0(f |B0), there are gkj ∈ Hj , Bj ∈ Bj , ε > 0 satisfying Eq. (37),

whence B0(f − α) −
∑m
j=1

∑nj
k=1Gj(g

k
j |Bj) ≥ ε in S(gkj ), and B0(f − α) ≥ 0 in

B0\S(gkj ). Given µ in (0, ε), we deduce that B0(f−α+µ)−
∑m
j=1

∑nj
k=1Gj(g

k
j |Bj) ≥

µ in S(gkj ) ∪ B0, and therefore E0(f |B0) ≥ α − µ, from which it follows that
E0(f |B0) ≥ E′0(f |B0).

Conversely, given α < E0(f |B0), there are gkj ∈ Hj , Bj ∈ Bj , δ > 0 satisfying
Eq. (38). Consider ε := δ

mmaxj,k nj
. Then

B0(f − α) ≥
m∑
j=1

nj∑
k=1

Gj(gkj |Bj) + εSj(gkj ),

and as a consequence E′0(f |B0) ≥ E0(f |B0). This completes the proof. �

Proof of Proposition 9. Consider a gamble f ∈ E ′. If f ∈ L+ then trivially f
belongs to the coherent set E . If f /∈ L+, Theorem 9 and the fact that L is a
linear space implies that there are gambles gj ∈ L, j = 1, . . . ,m and ε > 0 such
that f ≥

∑m
j=1G(gj |Bj) + εSj(gj). From the definition of P j(·|Bj) and (ADD), we

deduce that the gamble G(gj |Bj) + εSj(gj) =
∑
Bj∈Sj(gj)G(gj |Bj) + εBj belongs

to E for j = 1, . . . ,m, and applying then (ADD) and (APG) we deduce that f ∈ E .
This implies that E ′ ⊆ E . �

Proof of Proposition 10. Let P 1(·|B1), . . . , Pm(·|Bm) be coherent conditional lower
previsions, Q,R be the sets derived from them by means of Eqs. (16) and (17), and
let E be the natural extension of R. We have to show that E satisfies condition (22).

Take f ∈ E . From Lemma 2, there is some ε̄ > 0 such that for every ε ∈ (0, ε̄),
E0(f |Bεf ) > 0; this means that for every ε ∈ (0, ε̄) there is some δε > 0 such that
Bεf (f − δε) ∈ E , taking into account Theorem 14. This implies that condition (22)
holds. �

Proof of Theorem 15. The second statement follows directly from Proposition 10,
so we focus on the first. Consider a coherent set of conditionally strictly desirable
gambles E . Fix ω0 ∈ Ω, and for every ∅ 6= A ( Ω that contains ω0 define the
partition BA := {A,Ac}, and let BΩ := {Ω}. Then we deduce from E the following
set of conditional lower previsions, each one defined on all L:

{P (·|BA)}ω0∈A⊆Ω, (39)

where, as usual, P (f |B) := sup{µ : B(f − µ) ∈ E} for all f ∈ L and ∅ 6= B ⊆ Ω. It
follows from Corollary 4 that the conditional lower previsions in (39) are coherent.
Let R be the set of desirable gambles derived from those conditional lower previ-
sions, and EP the set derived from the natural extensions of the lower previsions,
as in (21). It is trivial that in the specific case of the lower previsions considered, it
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holds that R = EP , because the lower previsions {P (·|BA)}ω0∈A⊆Ω already encom-
pass all their natural extensions. Therefore, since we know by Theorem 12 that EP
is the natural extension of R, what we are left to show is that EP = E .

That EP ⊆ E follows directly from Proposition 9. Conversely, given f ∈ E , it
follows by Assumption (23) that P (f |Bf ) > 0, whence given ε := P (f |Bf ), the
gamble G(f |Bf ) + εBf = Bf (f − (P (f |Bf )− ε)) = f belongs to R = EP . �

Proof of Theorem 16. Assume first of all that Eq. (24) holds, and let us show that
then P (B) > 0.

By contradiction, say that P (B) = 0. From the correspondence between coherent
sets of almost-desirable gambles and coherent lower previsions, B(f−µ) ∈ R if and
only if P (B(f − µ)) ≥ 0 for all P ∈ M, and therefore if P (B) = 0 we get that
B(f − µ) ∈ R for all µ ∈ R. This implies, through (24), that B(f − µ) ∈ R for all
µ ∈ R, and hence that P (f |B) = +∞. This means that P (f |B) is not well-defined
according to Definition 14, and since R is closed under dominance, we deduce from
Theorem 5 that it does not satisfy (SD), a contradiction.

To see that moreover we also have the equality between R(f |B) and P (f |B), we
can start by exploiting some passages originally made with other purposes in [22,
Eq. (12) in Section 3.7]:

R(f |B) = inf{P (Bf)/P (B) : P ∈M, P (B) > 0}
= sup{µ : P (Bf)/P (B) ≥ µ ∀P ∈M, P (B) > 0}
= max{µ : P (Bf) ≥ µP (B) ∀P ∈M}
= max{µ : P (B(f − µ)) ≥ 0 ∀P ∈M}
= max{µ : B(f − µ) ∈ R},

where the last passage is due to [19, Theorem 3.8.1]. As a consequence, P (f |B) =
R(f |B) if and only if sup{µ : B(f − µ) ∈ R} ≥ max{µ : B(f − µ) ∈ R} (the
converse inequality holds in general because R ⊆ R).

Let µ∗ := max{µ : B(f−µ) ∈ R}. From Eq. (24), we have that B(f−(µ∗−ε)) ∈
R for all ε > 0. This implies that {µ : B(f −µ) ∈ R} ⊇ {µ∗−ε : ε > 0}, and hence
that sup{µ : B(f − µ) ∈ R} ≥ sup{µ∗ − ε : ε > 0} = max{µ : B(f − µ) ∈ R}. As
a consequence, R(f |B) = P (f |B).

Conversely, assume that P (B) > 0 and R(f |B) = P (f |B), or, equivalently, that
sup{µ : B(f − µ) ∈ R} ≥ max{µ : B(f − µ) ∈ R}. Take µ ∈ R such that
B(f − µ) ∈ R, and consider ε > 0. Then it follows from the assumption that
µ − ε < sup{µ′ : B(f − µ′) ∈ R}, whence B(f − (µ − ε)) ∈ R. As a consequence,
Eq. (24) holds. �

Proof of Proposition 11. Consider a set of gambles D satisfying (WD1)–(WD5),
and let us define R by

R := {f ∈ D : −f /∈ D}.
Let us show that this subset of D is a coherent set of really desirable gambles.

We apply Proposition 2:
(APL) Trivially the gamble f := 0 coincides with −f , so we cannot have f ∈

D,−f /∈ D. Hence, 0 /∈ R.
(APG) Given a gamble f ∈ L+, it belongs to D because of (WD2). Since the

gamble −f � 0 does not belong to D because of (WD1), we deduce that
f ∈ R.
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(PHM) Let f ∈ R, λ > 0; then f ∈ D, whence (WD3) implies that λf ∈ D. If
−λf ∈ D, then −f ∈ D and we contradict that f ∈ R.

(ADD) Given f, g ∈ R, it follows that f, g ∈ D, whence (WD4) implies that f+g ∈
D. If f + g /∈ R, then it must be −f − g ∈ D, and applying (WD4) we
deduce that −f − g + g = −f ∈ D, which contradicts that f ∈ R. Hence,
f + g ∈ R.

Applying Eq. (27), DR is given by DR := {f : f + g ∈ R ∀g ∈ R} ⊇ R. Given
a gamble f ∈ D \ R and g ∈ R, it holds that f + g ∈ D because of (WD4); if
f + g /∈ R, then it must be −f − g ∈ D, whence −f − g + f = −g ∈ D, and
this contradicts that g ∈ R. Hence, D ⊆ DR. To see that they coincide, consider
a gamble f ∈ DR; since for every δ > 0 the constant gamble on δ belongs to R
because of (APG), it follows from the definition of DR that f+δ ∈ R ⊆ D for every
δ > 0. Applying (WD5), it follows that either f ∈ D or f � 0; but this second
possibility contradicts (WD1), which DR satisfies because of [5, Proposition 5]. �

Proof of Proposition 12. Let us denote by µ1, µ2 the left- and right-hand sides of
Eq. (28), respectively. Since R ⊆ DR, it suffices to prove that µ2 ≤ µ1. Consider
any ε > 0. Then since DR satisfies (WD4) and (WD2) from [5, Proposition 5],
we deduce that the gamble B(f − (µ2 − ε)) ∈ DR. Since on the other hand the
gamble εB belongs to R because of (APG), it follows from the definition of DR
that B(f − (µ2 − ε)) + Bε = B(f − (µ2 − 2ε)) ∈ R, whence µ1 ≥ µ2 − 2ε. Since
we can do this for every ε > 0, we deduce that µ1 ≥ µ2, and as a consequence they
are equal. �
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