
Generalized Loopy 2U: A New Algorithm for

Approximate Inference in Credal Networks

Alessandro Antonucci∗,a, Yi Suna, Cassio P. de Camposa, Marco Zaffalona

aIDSIA, Istituto Dalle Molle di Studi sull’Intelligenza Artificiale,
Galleria 2, CH-6928 Manno (Lugano), Switzerland

Abstract

Credal networks generalize Bayesian networks by relaxing the requirement
of precision of probabilities. Credal networks are considerably more expres-
sive than Bayesian networks, but this makes belief updating NP-hard even
on polytrees. We develop a new efficient algorithm for approximate belief
updating in credal networks. The algorithm is based on an important repre-
sentation result we prove for general credal networks: that any credal network
can be equivalently reformulated as a credal network with binary variables;
moreover, the transformation, which is considerably more complex than in
the Bayesian case, can be implemented in polynomial time. The equivalent
binary credal network is then updated by L2U, a loopy approximate algo-
rithm for binary credal networks. Overall, we generalize L2U to non-binary
credal networks, obtaining a scalable algorithm for the general case, which is
approximate only because of its loopy nature. The accuracy of the inferences
with respect to other state-of-the-art algorithms is evaluated by extensive
numerical tests.

Key words: credal networks, credal sets, inference algorithms, 2U,
imprecise probability, Bayesian networks, loopy belief propagation

1. Introduction

Bayesian networks (Section 2.1) are probabilistic graphical models based
on precise assessments for the conditional probability mass functions of the
network variables given the values of their parents. As a relaxation of such

∗Corresponding author

Preprint submitted to Elsevier



precise assessments, credal networks (Section 2.2) only require the condi-
tional probability mass functions to belong to convex sets of mass functions,
i.e., credal sets. Credal networks (CNs) are considerably more expressive
than Bayesian networks (BNs),1 and the price is an increased complexity of
inference: belief updating in CNs is NP-hard even on polytrees [1]. The only
known exception to this situation is the 2U algorithm [2], which computes
exact posterior beliefs on binary (i.e., with binary variables) polytree-shaped
CNs in time linear in the size of the network. A loopy version of 2U (L2U) has
been proposed for multiply connected binary CNs by [3]. Inferences based
on L2U are approximate, but a good accuracy is typically observed after few
iterations (Section 3).

In this paper we develop an efficient algorithm for approximate belief up-
dating of general CNs (any topology and number of states per variable). The
algorithm, which invokes L2U in its final step, is called generalized loopy 2U
(GL2U). The GL2U algorithm is based on an important representation result
that we prove in Appendix A: that any CN can be equivalently reformulated
as one with binary variables. The corresponding transformation, which is
considerably more complex than in the Bayesian case, is based on two dis-
tinct transformations: a decision-theoretic specification [4], which augments
the CN with control variables enumerating the multiple mass functions owned
by the nodes of the network (Section 4.2); a binarization procedure [5] that
transforms each variable into a cluster of binary variables (Section 4.1).

We prove that the sequential application of these two transformations,
originally developed for independent reasons, returns an equivalent binary
representation of the initial CN (Section 5.1). Such equivalent binary CN
can be finally updated by L2U. Overall, this is the generalization of the
loopy version of 2U that we propose for the updating in general CNs, whose
only source of approximation is the loopy propagation (Section 5.2). The
algorithm, which is proved to take only polynomial time (Section 6), has been
implemented in a free software. Experimental tests (Section 7) show that
GL2U is comparable to that of state-of-the-art approximate methods for large
CNs in terms of accuracy, being considerably faster from a computational

1Greater expressiveness is a consequence of the fact that Bayesian networks are a
subset of credal networks. Expressiveness should not be confused with informativeness: for
example, it is thanks to the greater expressiveness that credal networks can model much
less informative states of knowledge (including lack of knowledge) than those Bayesian
networks can model.

2



point of view.

2. Bayesian and Credal Networks

In this section we review the basics of Bayesian networks (BNs) and their
extension to convex sets of probabilities, i.e., credal networks (CNs). Both
the models are based on a collection of random variables, structured as a
vector X := (X1, . . . , Xn),

2 and a directed acyclic graph (DAG) G, whose
nodes are associated with the variables of X. In our assumptions the vari-
ables in X take values in finite sets. For both models, we assume the Markov
condition to make G represent probabilistic independence relations between
the variables in X: every variable is independent of its non-descendant con-
ditional on its parents. What makes BNs and CNs different is a different
notion of independence and a different characterization of the conditional
mass functions for each variable given the values of the parents, which will
be detailed later.

Regarding notation, for each Xi∈X, ΩXi
= {xi0, xi1, . . . , xi(di−1)} denotes

the possibility space of Xi, P (Xi) is a mass function for Xi and P (xi) the
probability that Xi = xi, where xi is a generic element of ΩXi

. A similar
notation with uppercase subscripts (e.g., XE) denotes vectors (and sets) of
variables in X. Regarding the parents and the children of Xi with respect to
the topology of G, they are denoted respectively by Πi and Γi. Finally, for
each πi ∈ ΩΠi

, P (Xi|πi) is the probability mass function for Xi conditional
on Πi = πi.

2.1. Bayesian Networks

For BNs, a conditional mass function P (Xi|πi) for each Xi∈X and πi ∈
ΩΠi

must be defined; and the standard notion of probabilistic independence is
assumed in the Markov condition. A BN can therefore be regarded as a joint
probability mass function over X that, according to the Markov condition,
factorizes as follows:

P (x) =
n
∏

i=1

P (xi|πi), (1)

for all the possible values x ∈ ΩX, with the values of xi and πi consistent
with x. In the following, we represent a BN as a pair 〈G, P (X)〉. Posterior

2The symbol “:=” is used for definitions.

3



beliefs about a queried variable Xq, given evidence XE =xE , are defined by
the expression

P (xq|xE) =

∑

xM

∏n

i=1 P (xi|πi)
∑

xM ,xq

∏n

i=1 P (xi|πi)
, (2)

where XM := X \ ({Xq} ∪ XE), the domains of the arguments of the sums
are left implicit and the values of xi and πi are those consistent with x =
(xq, xM , xE). Evaluating Equation (2) is an NP-hard task, but for polytrees,
Pearl’s belief propagation allows for efficient updating [6].

2.2. Credal Sets and Credal Networks

CNs relax BNs by allowing for imprecise probability statements: in our
assumptions, the conditional mass functions of a CN are required to belong
to a finitely generated credal set, i.e., the convex hull of a finite number
of mass functions for a certain variable. Geometrically, a credal set is a
polytope. A credal set contains an infinite number of mass functions, but
only a finite number of extreme mass functions corresponding to the vertices
of the polytope. Updating based on a credal set is equivalent to that based
only on its vertices [7]. A credal set over X will be denoted as K(X) and the
set of its vertices as ext[K(X)]. Given a non-empty Ω∗

X ⊆ ΩX , an important
credal set for our purposes is the vacuous credal set relative to Ω∗

X , i.e., the set
of all the mass functions for X assigning probability one to Ω∗

X . We denote
this set by KΩ∗

X
(X). In the following we will use the well-known fact that

the vertices of KΩ∗

X
(X) are the3 |Ω∗

X | degenerate mass functions assigning
probability one to the single elements of Ω∗

X . Marginalization generalizes
to credal sets as follows: the marginalization K(X) of a joint credal set
K(X, Y ) to X is the convex hull of the mass functions P (X) obtained from
the marginalization of P (X, Y ) to X for each P (X, Y ) ∈ K(X, Y ).

In order to specify a CN over the variables in X based on G, a collection of
conditional credal sets K(Xi|πi), one for each πi ∈ ΩΠi

, should be provided
separately for each Xi ∈ X; regarding the Markov condition, we assume
strong independence [8], i.e., standard stochastic independence to be satisfied
by every vertex. A CN associated with these local specifications is said to be
with separately specified credal sets.

Figure 1 reports a CN, whose specification requires the (separate) assess-
ment of an unconditional credal set for X1, and respectively two and eight

3The cardinality of a set Ω is denoted as |Ω|.

4



conditional credal sets for X2 and X3.

X1

X2 X3

Figure 1: A separately specified CN over (X1, X2, X3), with |ΩX1
|=2, |ΩX2

|= |ΩX3
|=4.

The specification becomes global considering the strong extension K(X)
of the CN, i.e., the convex hull of the following collection of joint mass func-
tions:

{

P (X) :
P (x) =

∏n

i=1 P (xi|πi) ∀x ∈ ΩX,

P (Xi|πi) ∈ K(Xi|πi) ∀πi ∈ ΩΠi

}

. (3)

We represent a CN as a pair 〈G,P(X)〉, with P(X) := {Pk(X)}nv

k=1 :=
ext[K(X)]. Clearly, for each k = 1, . . . , nv, 〈G, Pk(X)〉 is a BN. For this
reason a CN can be regarded as a finite set of BNs. For CNs updating is
intended as the computation of tight bounds of the posterior probabilities of
a queried variable given some evidence, i.e., Equation (2) generalizes as: 4

P (xq|xE) = min
k=1,...,nv

∑

xM

∏n

i=1 Pk(xi|πi)
∑

xM ,xq

∏n

i=1 Pk(xi|πi)
, (4)

and similarly for the upper probabilities P (xq|xE). Exact updating in CNs
displays high complexity. Updating in polytree-shaped CNs is NP-hard, and
NPPP-hard in general CNs [1]. The only known exact linear-time algorithm
for updating a specific class of CNs is the 2U algorithm, which is reviewed
in the next section.

3. 2U and Its Loopy Extension

Pearl’s belief propagation scheme for updating polytree-shaped BNs has
been extended to polytree-shaped binary CNs in [2]. The resulting algorithm,
called 2-Updating (2U), is the only known exact procedure for efficient CNs
updating.

4Some authors call the computation in Equation (2) basic updating in order to empha-
size that more general expected values can be also considered in that formula.

5



Here we briefly review some features of this algorithm by assuming the
reader familiar with the main ideas of belief propagation. Let us therefore
consider a polytree-shaped binary CN 〈G,P(X)〉. To each Xi ∈ X associate
the lower messages µ(Xi) and Λi, which are received respectively from the
parents Πi and the children Γi of Xi. Given an evidence XE = xE , 2U
performs a distributed calculation of these messages, from which any updated
probability as in Equation (4) can be computed as follows:5

P (xq|xE) =

(

1 +

(

1

µ(xq)
− 1

)

1

Λq

)−1

. (5)

In order to implement the distributed computation, also the arcs of G
should be equipped with lower and upper messages. Thus, for each pair of
nodes (Xj, Xi) such that G has an arc from Xj to Xi, the lower messages
µ

i
(Xj) and Λi

j are also provided. The messages associated to the incoming
and outgoing arcs of Xi are used to compute those associated to Xi, according
to the following equations:

µ(xi) = min
j:Xj∈Πi

µi(xj)∈{µi
(xj),µi(xj)}

∑

πi∈ΩΠi

P (xi|πi) ·
∏

j:Xj∈Πi

µi(xj), (6)

Λi =
∏

k:Xk∈Γi

Λk
i , (7)

where xj is the state of Xj consistent with πi. The messages associated to
the arcs are indeed computed as follows:

µ
i
(xj) =

(

1 +

(

1

µ(xj)
− 1

)

1
∏

l:Xl∈Γj ,l 6=iΛ
l
j

)−1

, (8)

Λk
i = min

l:Xl∈Πi,l 6=k
µi(xl)∈{µi

(xl),µi(xl)}

(

min
Λi∈{Λi,Λi}

ck
i (Λi)

)

, (9)

5An analogous relation is provided for the upper probability P (xq |xE) by simply re-
placing the lower with the corresponding upper messages µ(Xq) and Λq. Similarly, any
equation involving lower messages and probabilities has a corresponding upper formulation
[2].

6



where the function to be minimized is

ck
i (Λi) =

{

1+(Λi−1)ρ(xi|xk)
1+(Λi−1)ρ(xi|xk)

if Λi ≥ 1
1+(Λi−1)ρ(xi|xk)

1+(Λi−1)ρ(xi|xk)
otherwise

, (10)

with
ρ(xi|xk) =

∑

l:Xl∈Πi,l 6=k
xl∈Ωl

P (xi|πi)
∏

l:Xl∈Πi,l 6=k

µi(xl). (11)

Note that ρ(xi|xk), and hence ck
i (Λk), are also functions of {µi(xl)}l:Xl∈Πi

.
This dependence is left implicit for the sake of notation.

Overall, Equations (5)–(11) define a distributed algorithm that obeys the
same principles of Pearl’s belief updating algorithm. The global computation
is carried out in discrete steps. At each step, some nodes are sending messages
from a certain subset of active nodes, which modifies the set of active nodes
for the next step and the procedure is repeated until no node is active. This
condition is satisfied when some node has been updated about the global
state of the network. In this state, the messages associated to the nodes are
the final result of the computation.

Loopy belief propagation is a popular technique for approximate updat-
ing that applies Pearl’s algorithm to multiply connected BNs: propagation
is iterated until probabilities converge to a fixed value or for a given number
of iterations. Similarly, multiply connected binary CNs can be updated by a
loopy variant of 2U (called L2U) [3]. Initialization of variables and messages
follows the same steps used in the 2U algorithm. Then nodes are repeatedly
updated, until convergence is observed. The L2U algorithm, whose perfor-
mances have been tested in [3], seems to be very accurate and mostly returns
good results with low errors after a few iterations.

Finally, let us analyze the computational complexity of 2U (while L2U
has clearly the complexity of 2U multiplied by the number of iterations).
The computation of the messages in Xi is dominated by Equation (6) and
Equation (9). Let pi := |Πi| denote the indegree for the node Xi. These equa-
tions require an optimization over 2pi different configurations of the messages
µi(xj) (for each parent Xj , we can choose the upper or lower µi(xj)). More-
over, the functions to be minimized are sums with 2pi terms, and for each
term pi multiplications must be performed (we need to multiply the messages
of all the parents). Finally, an additional factor pi arises in Equation (9),
because it is computed for each k. Overall, this means a time complexity

7



O(p2
i 2

2pi) locally to Xi (pi2
pi is the time to compute the function for a fixed

configuration of the parent messages, 2pi is the number of combinations of
parent messages and pi is the number of times Equation (9) needs to be
evaluated). However, we have noted that instead of computing Equation (9)
separately for each k, we can reuse the computations that are performed in
Equation (11) for distinct k’s, that is, evaluations of Equation (11) altogether
(for all k) can be computed in time O(pi2

pi) given that a configuration of
the messages is fixed (just note that from a xk to another, we can reuse
the computations and spend just constant time per term of the summation
instead of O(pi) time). Hence, the final complexity of our 2U implementa-
tion is O(pi2

pi) times the number of configurations of the messages, that is,
O(pi2

2pi).6

4. Transformations of Credal Networks

In this section we review two different transformations of CNs that have
been recently proposed for independent reasons. Their sequential application
is the basis to obtain an equivalent representation of CNs based on binary
variables.

4.1. Binarization Algorithm

By definition, L2U (see Section 3) cannot be applied to a non-binary
CN like the one in the example of Figure 1. To overcome this limitation, a
binarization that transforms a CN into a binary CN has been proposed in
[5].

First, each variable is equivalently represented by a cluster of binary
variables. Assume di, which is the number of states for Xi, to be an integer
power of two, and let d̃i := log2 |ΩXi

|.7 An obvious one-to-one correspondence
between the states of Xi and the joint states of a vector of d̃i binary variables

X̃i := (X̃0
i , X̃

1
i , . . . , X̃

d̃i−1
i ) is established if the joint state (x̃0

i , . . . , x̃
d̃i−1
i ) ∈

{0, 1}d̃i is associated with xil ∈ ΩXi
, where l is the integer whose d̃i-bit

6This is a fast implementation as the belief propagation in standard BNs already takes
time O(pi2

pi) to evaluate the functions.
7This is not a limitation as a number of dummy states up to the nearest power of two

can be always added. Accordingly, from now on we assume for all the variables a number
of possible values equal to an integer power of two.

8



representation is x̃d̃i−1
i · · · x̃1

i x̃
0
i . Elements of X̃i are said bits of Xi and their

position in the vector their order.
Overall, X̃ denotes the vector of bits obtained binarizing all the elements

of X. We write P (X) = P̃ (X̃), if P (x) = P̃ (x̃) for each x ∈ ΩX, where
x̃ ∈ Ω

X̃
is the state corresponding to x.

A DAG G̃ associated to the variables X̃ can be obtained from G as fol-
lows: (i) two nodes of G̃ corresponding to bits of different variables in X are
connected by an arc if and only if there is an arc with the same direction
between the related variables in X; (ii) an arc connects two nodes of G̃ corre-
sponding to bits of the same variable of X if and only if the order of the bit
associated to the node from which the arc departs is lower than the order of
the bit associated to the remaining node. An example of this transformation
is depicted in Figure 2.

X̃0

1

X̃0

2
X̃0

3

X̃1

2
X̃1

3

Figure 2: The binarization of the CN in Figure 1.

Finally, regarding the quantification of the conditional credal sets, we
have:

P̃ (x̃j
i |π̃

j
i ) := min

k=1,...,nv

P̃k(x̃
j
i |π̃

j
i ), (12)

where the index k is defined like in Equation (4). Denoting by Π̃i the parents
of X̃

j
i corresponding to the binarization of Πi, i.e., those that are not in the

same cluster of X̃
j
i , the probabilities to be minimized on the right-hand side

are:
P̃k(x̃

j
i |x̃

j−1
i , . . . , x̃0

i , π̃i) ∝
∑∗

l
Pk(xil|πi), (13)

where the sum
∑∗ is restricted to the states xil ∈ ΩXi

such that l mod 2j+1

is the integer whose (j + 1)-bit representation is x̃
j
i , . . . , x̃

1
i , x̃

0
i , πi is the joint

state of the parents of Xi corresponding to the joint state π̃i for the bits of
the parents of Xi, symbol ∝ denotes proportionality, and the relations are
considered for each i = 1, . . . , n, j = 0, . . . , d̃i − 1, and πi ∈ ΩΠi

. E.g., from

9



Equation (13) we have P (X̃0
2 = 0|x̃0

1) ∝ [P (x20|x1) +P (x22|x1)] and P (X̃1
2 =

1|X̃0
2 = 0, x̃0

1) ∝ P (x22|x1) for the CN in Figure 2. If both the states of X̃
j
i

produce zero in Equation (13), the corresponding conditional mass functions
can be arbitrarily specified (we set a degenerate mass function). Note that
minimization in Equation (12) can be obtained by simply considering the
vertices of K(Xi|πi) in Equation (13).

The overall procedure returns a well-defined CN, which is called the bi-
narization of the original CN. Given an updating problem on a CN as in
Equation (4), we can consider the corresponding problem on its binariza-
tion. E.g., the computation of P (x33|x10) for the CN in Figure 1 corresponds
to P (X̃0

3 = 1, X̃1
3 = 1|X̃0

1 = 0). According to Theorem 2 in [5] this is an
outer approximation (i.e., the posterior interval includes that of the original
updating problem), which can be approximately estimated by L2U.

This approach entails a twofold approximation: (i) the approximation
introduced by the binarization and (ii) that due to the loopy propagation.
Approximation (i) can be regarded as originated by replacing each credal
set of the original network with an enclosing polytope with a fixed number
of vertices.8 The latter number cannot be controlled and could be too low
to lead to a satisfactory approximation of the original credal set, which in
turns leads approximation (i) to be quite crude. In the next section, we
recall an independently developed transformation that will be used to remove
approximation (i).

4.2. Decision-theoretic specification

In [4], a general graphical language for CNs based on the so-called decision-
theoretic specification (DTS) has been proposed. A DTS of a CN is obtained
augmenting the original CN by a number of control nodes, used to enumer-
ate the vertices of the conditional credal sets. That turns the original nodes
into precise-probability ones, while the control nodes can be formulated as
standard chance nodes with vacuous credal sets.

Let us briefly describe this transformation in the case of a CN 〈G,P(X)〉.
First, we obtain from G a second DAG G′ defined over a wider domain X′ :=
(X1, . . . , X2n). This is done by iterating, for each i = 1, . . . , n, the following
operations: (i) add a node Xi+n; (ii) draw an arc from each parent of Xi to
Xi+n; (iii) delete the arcs connecting the parents of Xi with Xi; (iv) draw an

8Remember that a credal set over a binary variable cannot have more than two vertices.

10



arc from Xi+n to Xi. An example of this transformation is shown in Figure 3.

X4 X1

X5 X2 X6 X3

Figure 3: The output of the transformation described in Section 4.2 for the CN in Figure 1.
The nodes added to the original network are in gray.

Note that, for each i = 1, . . . , n, Π′
i+n = Πi, i.e., the parents of Xi+n in G′

are the parents of Xi in G, and also Π′
i = Xi+n, i.e., Xi+n is the only parent

of Xi in G′ and is therefore called the control variable of Xi.
We assume a one-to-one correspondence between the possible states of a

control variable Xi+n and the collection of all the (distinct) extreme mass
functions of all the conditional credal sets specified over Xi, i.e., ΩXi+n

:=
⋃

πi∈ΩΠi

ext[K(Xi|πi)], for each i = 1, . . . , n. As an example, assuming the

number of vertices for the credal sets of the CN in Figure 1 equal to the
number of possible states of the relative variables, we have that X4 in Figure 3
is a binary variable, whose states correspond to the two vertices of K(X1);
X5 has eight possible states corresponding to the four vertices of K(X2|x1)
and the four of K(X2|¬x1); X6 has 32 possible states corresponding to the
vertices, four per each set, of the conditional credal sets over X3.

Finally, in order to obtain a well-defined CN over X′ associated to G′, we
quantify the conditional credal sets as follows. For each i = 1, . . . , n, we set
K ′(Xi|xi+n) := P (Xi)xi+n

, where P (Xi)xi+n
is the element of ext[K(Xi|πi)]

corresponding to xi+n. Regarding the control nodes {Xi+n}
n
i=1, we set instead

K ′(Xi+n|π
′
i+n) := KΩ

πi
Xi+n

(Xi), where Ωπi

Xi+n
:= ext[K(Xi|πi)] ⊆ ΩXi+n

.

The CN returned by this transformation will be denoted as 〈G′,P′(X′)〉,
and its strong extension as K ′(X′). Remarkably, 〈G′,P′(X′)〉 provides an
equivalent representation of 〈G,P(X)〉 being that K ′(X) = K(X) as stated
by Theorem 2 in [4], where K ′(X) is the marginalization of K ′(X′) to X.
Note also that, if some nodes in the original CN are quantified by precise
probabilities, the above results can be derived without introducing the control
nodes for these nodes.

Finally let us to remark that, by construction, the quantification of the

11



conditional credal sets for the nodes of 〈G′,P′(X′)〉 is either precise (for the
nodes of the original CN) or vacuous (for the control nodes). This property
will be exploited in the next section in order to obtain a binary equivalent
representation of the CN.

5. Exact Binarization & GL2U

Now we present the original contributions of this paper, consisting of a
general representation result (Section 5.1), the definition of the GL2U algo-
rithm (Section 5.2), the study of its computational complexity (Section 6),
and its empirical evaluation (Section 7).

5.1. Exact binarization

Consider the sequential application of the transformations detailed in
Section 4.2 and Section 4.1. Thus, given a CN 〈G,P(X)〉, obtain 〈G′,P′(X′)〉
by a DTS, and hence 〈G̃′, P̃′(X̃′)〉 through binarization. The latter CN is said
the exact binarization of the first, a terminology justified by the following
result.

Theorem 1. Consider a CN 〈G,P(X)〉 and its exact binarization 〈G̃′, P̃′(X̃′)〉.
Let K(X) and K̃ ′(X̃′) be their corresponding strong extensions. Then:

K(X) = K̃ ′(X̃), (14)

with K̃ ′(X̃) marginalization of K̃ ′(X̃′) to X̃.

According to Equation (14), 〈G̃′, P̃′(X̃′)〉 is an equivalent binary representa-
tion of 〈G,P(X)〉. It should be pointed out that, even if we focus on the
case of CNs with separately specified credal sets, Theorem 1 holds also for
so-called non-separately specified CNs, for which a DTS can be provided as
well. Similarly, the algorithm presented in the next section can be applied
to any CN, separately or non-separately specified.

5.2. GL2U

Theorem 1 is a basis for the solution of general inference problems, as
stated by the following straightforward corollary.

Corollary 1. Any inference problem on a CN can be equivalently computed
in its exact binarization.

12



According to Corollary 1, we can consider a so-called generalized L2U al-
gorithm (GL2U), where given an updating problem on a CN as in Equa-
tion (4), we solve by L2U the corresponding updating problem on the exact
binarization of the original CN. The overall procedure is still approximate,
but differently from the case without DTS considered in [5], the only source
of approximation is the loopy component.

It is important to observe that, if the queried node Xq in the original CN
〈G,P(X)〉 is not binary, the corresponding updating problem in the exact
binarization 〈G̃′, P̃′(X̃′)〉 requires the multiple query of the binary nodes in

the cluster (X̃0
q , X̃1

q , . . . , X̃
d̃q−1
q ). This task cannot be directly performed by

L2U, which is designed for querying single nodes only.
In [5], this task has been solved by augmenting the binarized network with

a binary dummy child, which is in the state true if and only if its parents,
i.e., the elements of the cluster corresponding to Xq, are in the joint state
corresponding to xq. This technique makes L2U less accurate because of the
problem of convergence error discussed at the end of this section.

A slightly different binarization can be considered for Xq. The node is
transformed into a cluster of dq (instead of d̃q = log2 dq) binary variables, say

(Ỹ 0
q , Ỹ 1

q , . . . , Ỹ
dq−1
q ), such that each binary variable corresponds to a different

state of Xq. The topology of the cluster is completely connected as for the
standard binarization (see Section 4.1 or the example in Figure 4). For the
quantification of the conditional probabilities for the binary variables, we
assume the following constraint:

P ′(Ỹ i
q = 1) = P (Xq = xqi), (15)

for each i = 0, 1, . . . , di − 1, where P ′(Ỹ i
q ) is obtained taking the product of

all the conditional mass functions associated to the nodes of the cluster and
then marginalizing over Ỹ i

q . Accordingly, the query Xq = xqi in the original

CN corresponds to query Ỹ i
q = 1 in the exact binarization, a task that can

be achieved by L2U.
Finally, let us explain why this approach tends to make the inferences for

the first two states of Xq, i.e., those on Ỹ 0
q and Ỹ 1

q more accurate. In fact,
according to Equation (6), 2U assumes mutual independence between the
parents of Xi. In general, this assumption is violated by L2U on multiply
connected binary CNs. This originates a convergence error [9] during the
loopy propagation. Consider this error for a queried variable Xq with four
possible states, whose special binarization is in Figure (4). L2U produces a

13



Ỹ 0

q Ỹ 1

q Ỹ 2

q Ỹ 3

q

Figure 4: The binarization of a queried variable Xq with four possible states.

convergence error in the computation of the messages associated to Ỹ 2
q by

assuming the independence of Ỹ 0
q and Ỹ 1

q , and the situation is even worst for

Ỹ 3
q , while this error is not present in the computation of the messages for the

nodes associated to the first two states of Xq.
Accordingly, we expect GL2U to be more accurate in computing the in-

ferences for the first two states of the queried variable. Clearly, if other states
of Xq are queried, a simple permutation of the elements of Ωq is required be-
fore making the inferences. A numerical analysis of this feature is reported
in Table 3.

6. Complexity Issues

According to the discussion in the previous section, the computational
time required by GL2U to update a CN 〈G,P(X)〉 is basically that required
by L2U to update 〈G̃′, P̃′(X̃′)〉. Let us initially consider a single iteration of
the algorithm. As noted in Section 3, locally to a node X, the complexity is

O(p ·22p), where p is the indegree of X. It can be checked that X̃ d̃i−1
i has the

maximum indegree among the d̃i binary nodes in the cluster X̃i; similarly,

X̃
d̃i+n−1
i+n has the maximum indegree among the d̃i+n nodes of X̃i+n. Note also

that the number of nodes in Π̃i is
∑

j:Xj∈Πi
d̃j. Therefore, the indegrees of

X̃ d̃i−1
i and X̃

d̃i+n−1
i+n are respectively d̃i + d̃i+n − 1 and d̃i+n +

∑

j:Xj∈Πi
d̃j − 1.

Thus, considering that by definition 2d̃i = di, we conclude that, locally to
the node Xi, the complexity of the algorithm can be written as:

O

(

(di+n · di)
2 · log2(di+n · di) + (di+n ·

∏

j

dj)
2 · log2(di+n ·

∏

j

dj)

)

, (16)

14



where the product over j is intended over all the parents of Xi. Note that
di and

∏

j dj are respectively the number of rows and columns associated to
the conditional probability table P (Xi|Πi), while di+n is the overall number
of vertices associated to the conditional credal sets specified for Xi. Because
both di+n · di and di+n ·

∏

j dj are smaller than d = di · di+n ·
∏

j dj , the

complexity of GL2U locally to a node is O(d2 log2 d).
Note also that any iteration of 2U is linear in the size of the network (if

we assume that d does not grow as fast as the number of nodes, which is
the most natural behavior), and the size of the exact binarization grows of
a factor at most equal to 2 · max2n

i=1d̃i with respect to the original network.
The factor depends (i) on the decision-theoretic transformation that doubles
the number of nodes, and on (ii) the binarization that makes of each node
Xi ∈ X′ a cluster of binary nodes X̃i whose size depends on the logarithm
d̃i of its number of states di. We can approximate the global complexity by
assuming that the local sizes of the network (that is, the maximum number
of states of each variable, the maximum number of vertices of the credal
sets associated to these variables, and the maximum number of parents) are
not so large (which is in fact a normal situation), and we conclude that any
iteration of GL2U is roughly linear in the size of the network.

7. Numerical Tests

In order to test the performance of GL2U, we employ a benchmark made
of different CNs with random topology, either multiply and singly connected,
and two classical (multiply connected) models, namely the Alarm and the
Insurance networks [10, 11]. The maximum indegree for the networks with
random topology is limited to 5. The number of states for the Alarm and the
Insurance networks is the same as in their original specifications, while for
the other networks the number of states is randomly chosen between 2 and
8. All the models are quantified by randomly generated conditional credal
sets with a fixed number of vertices, whose number is ranging from 2 to 8 for
each network.

We compute both unconditional and conditional inferences on these net-
works by a Python/C++ implementation of GL2U.9 The resulting inferences
are compared with the approximate iterated local search method [12] (ILS)

9This software is freely available at www.idsia.ch/∼sun/gl2u-ii.htm.

15



Network features # of GL2U ILS
topology nodes vertices queries MSE time MSE time
Multi 6 2 167 0.114 0.11 0.016 0.11
Multi 6 4 149 0.169 0.17 0.036 0.15
Multi 10 2 402 0.118 0.14 0.047 1.02
Multi 10 4 205 0.183 0.22 0.052 0.56
Multi 20 2 526 0.123 0.27 0.164 5.93
Multi 20 4 399 0.194 0.36 0.243 12.62
Polytree 10 2 515 0.106 0.11 0.017 0.18
Polytree 10 4 449 0.181 0.11 0.037 0.16
Polytree 10 8 422 0.257 0.32 0.048 0.19
Polytree 20 2 316 0.117 0.07 0.159 0.16
Polytree 30 2 813 0.112 0.17 0.176 0.23
Polytree 30 4 693 0.178 0.31 0.260 0.41
Alarm 37 2 432 0.100 0.07 0.223 0.30
Alarm 37 4 360 0.139 0.09 0.328 0.47
Insurance 27 2 200 0.143 0.09 0.197 42.23
Insurance 27 4 199 0.238 0.20 0.366 65.91

Table 1: Random unconditional queries.

and the exact method presented in [13]. Tables 1 and 2 report these com-
parisons. The number of inferences over each type of network is shown in
the fourth column. Note that such a number varies because we only compare
inferences where the exact solution can be computed. The mean square-error
(MSE) is evaluated with respect to the exact solution and the average time
of inferences (in seconds) is also reported.

The results for the unconditional inferences are in Table 1. Remarkably,
for networks with more than 10 nodes, the inferences of GL2U are always
more accurate, while ILS is more accurate only with small networks. In fact,
it seems that the accuracy of GL2U is not so related to the network size as
that of ILS, and this makes GL2U more accurate for larger models.

A similar behavior is observed also for conditional queries (see Table 2).
In these cases, an evidence consisting in the observation of three leaf nodes is
randomly generated (for networks with 6 nodes, just one node is observed).

From our tests we also note that the approximated lower (and similarly
upper) probability returned by GL2U is equally likely to be greater or smaller
than the exact value.

16



Network features # of GL2U ILS
topology nodes vertices queries MSE time iter MSE time
Polytree 10 2 34 0.107 0.09 19.6 0.024 0.19
Polytree 20 2 51 0.112 0.11 26.1 0.218 0.14
Multi 6 2 50 0.173 0.73 26.7 0.024 0.14
Multi 6 4 32 0.170 0.09 12.7 0.050 0.13
Multi 20 2 51 0.144 0.26 28.9 0.191 4.07
Multi 20 4 36 0.204 0.79 5.7 0.271 3.40

Table 2: Random queries with evidence. The seventh column report the average number
of iterations before L2U converge.

We should also remark that, in some cases, GL2U returns a vacuous
posterior interval, even if the exact inference is completely different. This
situation has occurred only for conditional queries, in 13% of the cases. A
similar behavior is also reported to happen in loopy belief propagation for
BNs in computing conditional queries [9], but there the number of loops is
usually smaller, and such situation is less often observed. A further analysis
of the performances of L2U in order to profile these instances should be
therefore considered as a future work. Clearly, algorithms which are not
based on loopy techniques like those in [12, 14] are not suffering problems of
this kind.

As a further remark, let us recall that, according to the discussion re-
ported at the end of Section 5.2, we have always permuted the states of the
queried node in order to rank the queried state in one of the first two po-
sitions. This makes the convergence error smaller; in fact in the tests with
non-binary queried variables we have inferences for the first two states 18.1%
more accurate than for the other states in the unconditional cases, while the
gain is 39.4% in the conditional case. Table 3 reports some detail about this
comparison.

Moreover, the running time and the amount of allocated memory for ILS
rapidly increases with the size of the net, that makes unfeasible a solution
for large nets, which can be instead quickly updated by GL2U (see Figure 5).

As far as we know other existing algorithms besides ILS are at least
exponential in the treewidth of the moralized graph and suffer from the
same complexity issues. In fact, comparisons have been done also with the
hill climbing (HC) algorithm in [14]. Compared to ILS, HC is slower and run
out of memory with smaller network (see again Figure 5).

17



Network features MSE
topology nodes vertices first two states other states
Multi 6 2 0.114 0.159
Multi 6 4 0.169 0.239
Multi 10 2 0.118 0.142
Multi 10 4 0.183 0.210
Multi 20 2 0.123 0.137
Multi 20 4 0.194 0.197
Polytree 10 2 0.106 0.155
Polytree 10 4 0.181 0.211
Polytree 10 8 0.257 0.254
Polytree 20 2 0.117 0.168
Polytree 30 2 0.112 0.150
Polytree 30 4 0.178 0.220

Table 3: Accuracy of GL2U for inference on the first two states and on the other states of
the queried variable.

20 40 60 80 100

50
10

0
15

0

Network Size (number of nodes)

A
ve

ra
ge

 R
un

ni
ng

 T
im

e 
(s

ec
)

Figure 5: Average running time versus network size for HC (squares), ILS (triangles) and
GL2U (circles). The HC and ILS sequences are shorter because these algorithms run out
of memory for large CNs (8GB were used).

18



8. Conclusions

This paper has proposed a new approximate algorithm for CN updat-
ing. This task is achieved augmenting the network by a number of nodes,
enumerating the vertices of the credal sets, then transforming the CN in a
corresponding network over binary variables, and updating such binary CN
by the loopy version of 2U. The procedure applies to any CN, without restric-
tions related to the topology or the number of possible states, and the only
approximation is due to the loopy propagation. Empirical analysis shows that
GL2U is a competitive procedure for approximate inference in CNs both in
terms of accuracy and scalability. The algorithm is purely distributed and
allows for simultaneous updating of all the variables in the net: these char-
acteristics are usually not shared by optimization algorithms not based on
propagation. Moreover, the computational complexity of GL2U makes it
possible to solve large nets, which cannot be updated by other algorithms,
mainly because of excessive memory consumptions.

Acknowledgments

Work partially supported by the Swiss NSF grants 200021-113820/1 and
200020-116674/1, and Hasler Foundation grant 2233. Third author thanks
also the project “Ticino in Rete”.

A. Proofs

Lemma 1. Consider a CN with a single node X and vacuous K(X) :=
KΩ∗

X
(X), where Ω∗

X ⊆ ΩX . Let K̃(X̃) denote the strong extension of its
binarization (as in Section 4.1). Then:

K̃(X̃) = K(X). (17)

Proof 1 (Proof of Lemma 1). Consider a generic P̃∗(X̃) ∈ ext[K̃(X̃)],

where X̃ := (X̃0, . . . , X̃ d̃−1) with d̃:=log2 |ΩX |. A corresponding mass func-
tion P∗(X) := P̃∗(X̃) can be therefore defined. Thus:

P̃∗(x̃) =

d̃−1
∏

j=0

P̃∗(x̃
j |x̃j−1, . . . , x̃0), (18)

for each x̃ ∈ ΩX̃ such that (x̃0, . . . , x̃d̃−1) = x̃. For each j = 0, . . . , d̃ −
1 and each possible value of their parents, the conditional mass functions

19



P̃∗(X̃
j|x̃j−1, . . . , x̃0) are vertices of their corresponding conditional credal sets

because of Proposition 1 of [4].
Thus, the values of the conditional probabilities on the right-hand side of

Equation (18) are obtained by a minimization as in Equation (12). The
values to be minimized are obtained from Equation (13), where the con-
ditional probabilities on the right-hand side are the vertices of K(X), i.e.,
the m := |Ω∗

X | degenerate extreme mass functions of the vacuous credal set
KΩ∗

X
(X). This means that there is only a non-zero term in the sum in Equa-

tion (13) and therefore each vertex of KΩ∗

X
produces a degenerate conditional

mass function for the corresponding binary variable. Consequently, also the
extreme values returned by Equation (12) will be degenerate.

We can therefore conclude that, according to Equation (18), also P̃∗(X̃)
and hence P∗(X) are degenerate mass functions. Let x∗ ∈ ΩX be the state of
X such that P∗(x∗) = 1. Considering Equation (18) for x̃∗ ∈ ΩX̃ , we conclude
that all the conditional probabilities on the right-hand side are equal to one.
Considering the highest order bit, according to Equation (13) and denoting

by Pk(X) a vertex of Ω∗(X), we have P̃∗(x̃
d̃−1
∗ |x̃d̃−2

∗ , . . . , x̃0
∗) = Pk(x∗) = 1,

that requires x∗ ∈ Ω∗
X . Thus, P∗(X) ∈ ext[K(X)], that implies ext[K̃(X̃)] ⊆

ext[K(X)], and finally K̃(X̃) ⊆ K(X). On the other side, K̃(X̃) ⊇ K(X)
because of Theorem 2 in [5], and hence the thesis.

Proof 2 (Proof of Theorem 1). Given a P̃ ′
∗(X̃

′) ∈ ext[K̃ ′(X̃′)], the fol-
lowing factorization holds:

P̃ ′

∗
(x̃′) =

2n
∏

i=1

d̃i−1
∏

j=0

P̃ ′

∗
(x̃j

i |π̃
j
i ) =

2n
∏

i=1

P̃ ′

∗
(x̃0

i , . . . , x̃
d̃i−1

i |π̃′

i), (19)

for each x̃′ ∈ Ω
X̃′, where the values of the other variables are consistent

with x̃, and the last equality follows from chain rule. Equation (19) defines

P ′
∗(Xi|π

′
i) := P̃ ′

∗(X̃
0
i , . . . , X̃ d̃i−1

i |π̃′
i).

As noted in Section (4.2), for each i = 1, . . . , n and πi ∈ ΩΠi
, K ′(Xi|π

′
i)

is a credal set made of a single point. Thus, as a corollary of Theorem 1 in
[5], we have P ′

∗(Xi|π
′
i) ∈ ext[K ′(Xi|π

′
i)], being in fact the only element of this

credal set. Similarly, for each i = 1, . . . , n, the credal set K ′(Xi+n|π
′
i+n) is

vacuous.
Let us regard this credal set as a CN made of a single node. We can

invoke Lemma 1 and obtain from P̃ ′
∗(X̃i+n|π̃

′
i+n) ∈ ext[K̃ ′(X̃i+n|π̃

′
i+n)] that

P ′
∗(Xi+n|π

′
i+n) ∈ ext[K ′(Xi+n|π

′
i+n)]. Overall, we proved that P ′

∗(X
′) is a

combination of local vertices of the credal sets of 〈G′,P′(X′)〉.

20



Thus, P ′
∗(X

′) ∈ ext[K ′(X′)], from which ext[K̃ ′(X̃′)] ⊆ ext[K ′(X′)], and
finally K̃ ′(X̃′) ⊆ K ′(X′). According to Lemma 1 in [5], K̃ ′(X̃′) ⊇ K ′(X′).
Thus, K̃ ′(X̃′) = K ′(X′). Marginalizing on both the sides we get K̃ ′(X̃) =
K ′(X). But Theorem 2 in [4] states K(X) = K ′(X), from which the thesis.

References

[1] C. P. de Campos, F. G. Cozman, The inferential complexity of Bayesian
and credal networks, in: Proceedings of the International Joint Confer-
ence on Artificial Intelligence, Edinburgh, 2005, pp. 1313–1318.

[2] E. Fagiuoli, M. Zaffalon, 2U: an exact interval propagation algorithm
for polytrees with binary variables, Artificial Intelligence 106 (1) (1998)
77–107.

[3] J. S. Ide, F. G. Cozman, IPE and L2U: Approximate algorithms for
credal networks, in: Proceedings of the Second Starting AI Researcher
Symposium, IOS Press, Amsterdam, 2004, pp. 118–127.

[4] A. Antonucci, M. Zaffalon, Decision-theoretic specification of credal
networks: A unified language for uncertain modeling with sets of
Bayesian networks., International Journal of Approximate Reasoning
49 (2) (2008) 345–361.

[5] A. Antonucci, M. Zaffalon, J. S. Ide, F. G. Cozman, Binarization algo-
rithms for approximate updating in credal nets, in: L. Penserini, P. Pep-
pas, A. Perini (Eds.), Proceedings of the third European Starting AI
Researcher Symposium, IOS Press, Amsterdam, 2006, pp. 120–131.

[6] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, Morgan Kaufmann, San Mateo, 1988.

[7] P. Walley, Statistical Reasoning with Imprecise Probabilities, Chapman
and Hall, New York, 1991.

[8] F. G. Cozman, Graphical models for imprecise probabilities, Interna-
tional Journal of Approximate Reasoning 39 (2–3) (2005) 167–184.

[9] J. Bolt, Bayesian networks: aspects of approximate inference, Ph.D.
thesis, Utrecht University, Department of Information and Computer
Science (2008).

21



[10] I. Beinlich, H. J. Suermondt, R. M. Chavez, G. F. Cooper, The ALARM
monitoring system: A case study with two probabilistic inference tech-
niques for belief networks, in: II European Conference on Artificial In-
telligence in Medicine, Springer-Verlag, Berlin, 1989, pp. 247–256.

[11] J. Binder, D. Koller, S. Russell, K. Kanazawa, Adaptive probabilistic
networks with hidden variables, Machine Learning 29(2-3) (1997) 213–
244.

[12] J. C. da Rocha, F. G. Cozman, C. P. de Campos, Inference in polytrees
with sets of probabilities, in: Conference on Uncertainty in Artificial
Intelligence, Acapulco, 2003, pp. 217–224.

[13] C. P. de Campos, F. G. Cozman, Inference in credal networks through
integer programming, in: Proceedings of the Fifth International Sym-
posium on Imprecise Probability: Theories and Applications, Action M
Agency, Prague, 2007, pp. 145–154.

[14] A. Cano, M. Gómez, S. Moral, J. Abellán, Hill-climbing and branch-
and-bound algorithms for exact and approximate inference in credal
networks, International Journal of Approximate Reasoning 44 (3) (2007)
261–280.

22


