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Abstract – We present a new procedure for tracking
manoeuvring objects by hidden Markov chains. It leads
to more reliable modelling of the transitions between
hidden states compared to similar approaches proposed
within the Bayesian framework: we adopt convex sets
of probability mass functions rather than single ‘precise
probability’ specifications, in order to provide a more re-
alistic and cautious model of the manoeuvre dynamics.
In general, the downside of such increased freedom in
the modelling phase is a higher inferential complexity.
However, the simple topology of hidden Markov chains
allows for efficient tracking of the object through a re-
cently developed belief propagation algorithm. Further-
more, the imprecise specification of the transitions can
produce so-called indecision, meaning that more than
one model may be suggested by our method as a possi-
ble explanation of the target kinematics. In summary,
our approach leads to a multiple-model estimator whose
performance, investigated through extensive numerical
tests, turns out to be more accurate and robust than
that of Bayesian ones.

Keywords: tracking, Kalman filtering, imprecise
Markov tree, hidden Markov chain, imprecise proba-
bility.

1 Introduction
An effective and robust tracking of highly ma-

noeuvrable objects, especially if no accurate ob-
ject/background representations are available, repre-
sents a challenging problem for a variety of important
applications.

The most common approach to this problem con-
sists in defining generative manoeuvring object models
based on explicit on-line estimation of the manoeuvring
kinematics. Formally, this corresponds to considering
a hidden Markov model (HMM), whose hidden vari-
ables describe the model switching. The likelihoods
of the models are usually estimated by some filtering
process (e.g., Kalman filter) based on measurements

recorded by sensors, while a domain expert usually as-
sesses the probabilities for the transitions between the
hidden variables. Yet, it might seem questionable to
enforce a very precise quantification of the transition
probabilities between two hidden, and hence not di-
rectly observable, variables.

The present paper should be regarded as a first step
towards a more robust, or more cautious, approach to
modelling this generative process. In fact, the tracker
we propose is based on an imprecise-probability HMM,
whose hidden layer is quantified by convex sets of tran-
sition probability mass functions. This provides a per-
haps more realistic, and certainly more cautious, model
of the knowledge of the expert, who is for instance al-
lowed to only give lower and upper bounds for the tran-
sition probabilities.

Such higher expressive power has computational
drawbacks: inferences based on so-called imprecise-
probability models are generally speaking more time-
consuming than in their precise-probability counter-
parts.1 Nevertheless, for the case of HMMs with their
particularly simple topology, a linear-time algorithm for
exact updating has been proposed recently [7]. This im-
plies that we can estimate the right kinematic model of
an object efficiently also under an imprecise probability
quantification of the transitions probabilities between
hidden variables.

For such imprecise probability models, the results of
the inferences may be partially indeterminate, meaning
that for a particular set of measurements the estimator
may output more than a single model as a possible ex-
planation of the object manoeuvre. We will show that
our approach leads to a fast multiple-model estimator,
which ensures higher accuracy and greater robustness
than the ones proposed in the Bayesian framework (see
[2] for a survey of multiple-model techniques in that
framework).

1As an example, inferences on polytree-shaped Bayesian nets
can be efficiently computed [9], while the same problem for
the corresponding imprecise-probability models, which are called
credal nets, has been proved to be NP-hard [6].



The paper is organised as follows. In Section 2, we
review the basics of the problem and the basic nota-
tion. Section 3 outlines general ideas underlying impre-
cise probability models, as well as particular features of
a belief propagation algorithm, that will be employed
for inferences, and was originally presented in [7]. A
detailed description of our tracker is reported in Sec-
tion 4. Results of simulations and a comparison with
Bayesian approaches can be found in Section 5. Sec-
tion 6 presents conclusions and an outlook on further
research.

2 Bayesian model estimation
We consider tracking a manoeuvring object by a set

of models M. Both the set of models and the time win-
dow of the sampling process are discretised. We denote
the sampling instants by integers t ∈ {1, . . . , τ}, while
the variables Mt and Zt respectively refer to the model
of the manoeuvre and the related measurement at in-
stant t. The sequence {Mt}

τ
t=1 should be regarded as a

set of hidden variables, whose direct observation is not
possible. In contrast, the actual values of the manifest
variables {Zt}

τ
t=1, denoted by {zt}

τ
t=1, are available and

correspond to the measurements recorded by the sen-
sors. Model estimation is generally intended to mean
the identification of the model that, given the partic-
ular set of measurements (z1, . . . , zτ ) provided by the
sensors, is most likely to correspond to the true value
m∗

τ ∈ M of Mτ . Such a problem is generally achieved
by defining a probabilistic model over the whole set of
variables, and hence by solving the following inferential
task:

m∗
τ := arg max

mτ∈M
P (Mτ = mτ |z1, . . . , zτ ). (1)

The solution of (1) requires the specification of a
probabilistic model over the whole set of variables,
both hidden and manifest. This specification task can
be simplified by some structural assumptions involving
conditional independence relations between these vari-
ables. The variables {Mt}

τ
t=1 are usually regarded as a

generative sequence satisfying the Markov assumption,
i.e., the state at each time t depends only on the state
at the previous time t−1. Similarly, each manifest vari-
able Zt depends only on the hidden variable Mt that
it is supposed to measure, for each t = 1, . . . , τ . These
dependence/independence assumptions are depicted by
the topology in Figure 1.

A model of this kind is called hidden Markov
model [10], and it represents one of the most pop-
ular paradigms for modelling generative sequences.
By exploiting the conditional independence relations
captured in Figure 1, a global probabilistic model
P (M1, Z1, . . . , Mτ , Zτ ) can be specified in terms of ‘lo-
cal’ conditional probabilistic models for the single vari-
ables and their immediate predecessors. A domain ex-
pert is usually asked to provide a quantification for the

M1
. . . Mt Mt+1 . . . Mτ

Z1
. . . Zt Zt+1 . . . Zτ

measurement sequence (manifest)

model sequence (hidden)

Figure 1: Conditional dependence relations between
hidden and observed (or manifest) variables.

hidden variables, by giving the marginal probabilities
for M1 and the conditional probabilities for the transi-
tions Mt → Mt+1, which are assumed stationary, i.e.,
independent of t. For the observable layer, the proba-
bilities of the measurements P (zt|Mt) are usually quan-
tified through some sequential filtering technique. Once
the model has been quantified, algorithms based on be-
lief propagation (e.g., [12]) can solve (1) and, thus, de-
tect the model switching: when the measurements indi-
cate that a previous best explanation or model for the
trajectory must be replaced by a new one.

Most of the Bayesian algorithms proposed in the lit-
erature conform to the above setup (see [2] for a sur-
vey). Nevertheless, if the object moves according to
the same model for a sufficiently long time window, the
probability assigned to this model by Bayesian tracker
generally increases with time. This leads to good ac-
curacy for this part of the manoeuvre, but also causes
a sudden worsening of the performance when the kine-
matics changes (after model switching; such behaviour
is for instance evident in Table 3).

The most critical issue for this approach to modelling
seems to be the probability quantification for the hid-
den layer by the domain expert. A wrong assessment
of transition probabilities between hidden states might
lead to completely wrong predictions, even if the fil-
tering process (corresponding to the quantification of
the observable layer) is accurate. And this is especially
problematic because domain expertise is more often
than not qualitative: it might therefore seem unnat-
ural and perhaps unwise to force an expert to give a
very precise quantification of the transition probabili-
ties for variables that, by their very definition, are not
directly observable.

For this reason, we describe in the next section how
probabilistic graphical models like the ones described
above, can be also quantified using sets of probability
mass functions. This allows for more a reliable and ro-
bust representation of the domain expert knowledge,
without unduly compromising the computational effi-
ciency of the inferential process.



3 Imprecise-probabilistic graph-

ical models
The Bayesian tracking treatment we have just de-

scribed, rests on the assumption that all probability as-
sessments are precisely known. If such is not the case,
we need to robustify the results or at least, give ex-
perts the opportunity to quantify their knowledge in a
less precise but more realistic way.

A very general way to cast off the yoke which precise
probabilities sometimes bring along, involves calcula-
tions with closed convex sets of probability mass func-
tions, also known as credal sets. Instead of specifying
one single (precise) probability model, the expert can
give bounds on the belief model, for example he can
make statements like: “I believe that the probability
of A is bigger than that of B”. In general this will re-
sult in a set of precise probability models P which we
assume to be convex because of coherence reasons [13].

As Walley has shown in his seminal work [13], speci-
fying a convex set P of probability mass functions p on
a finite dimensional variable X with probability space
X is equivalent to specifying its lower and upper previ-
sions (or expectations), defined for any2 g ∈ R

X by

P (g) := min

{

∑

x∈X

g(x)p(x) : p ∈ P

}

,

P (g) := max

{

∑

x∈X

g(x)p(x) : p ∈ P

}

.

These operators are bounded, non-negatively homoge-
neous and respectively super-and sub-additive. There
is a one-to-one relationship between any credal set and
the corresponding lower and upper prevision.

For the most part, in the case of a HMM we need to
specify conditional mass functions instead of (marginal)
mass functions. This is done in essentially the same way
as described above, but now for every possible value of
the parent variable a new conditional imprecise prob-
abilistic model (either a credal set or a lower/upper
prevision) needs to be specified. Given two variables X
and Y where X is the parent variable of Y , we need to
specify the value of P (g|x) for every g ∈ R

Y and every
possible value x ∈ X of X .

Of course, it is not determined yet what it means
to be a parent in an HMM tree: we still need to fix
and interpret the independence or irrelevance notion,
and say how it is related to the graphical model of a
tree. We adopt Walley’s epistemic irrelevance notion
which states that X is irrelevant to Y whenever our
belief model (read: lower prevision P ) about Y does
not change when we learn something about X :

(∀g ∈ R
Y)(∀x ∈ X)(P (g) = P (g|x)).

2The lower (upper) prevision does not necessarily need to be
defined on the complete space R

X of all real-valued maps on X .
Technically, it is the so-called lower and upper natural extensions
we are talking about.

It is important to realise that the notion of irrelevance
is no longer symmetric and will not imply d-separation
in trees.

The interpretation of the graphical model. Con-
sider any node Z in the tree, and its parent variable
X . Then conditional on the parent variable X, the
non-parent non-descendant variables are assumed to be
epistemically irrelevant to the variables associated with
Z and its descendants. This interpretation turns the
tree into a credal tree under epistemic irrelevance; we
also use the term imprecise Markov tree (IMT) for it.

In terms of the imprecise probabilistic models on Z
and its children, this means that

P (·|X, S) = P (·|X),

for any set of nodes S that is a subset of the non-parent
non-descendants of Z.

Until recently most of the research on algorithms for
imprecise probabilistic graphical models has focused on
models where a different notion of independence (called
strong independence, [5]) was assumed. However, a
computationally efficient exact algorithm for updating
beliefs on the IMTs under epistemic irrelevance has very
recently been developed [7]. The algorithm is in partic-
ular able to compute the lower (upper) prevision for a
function of a variable in the tree, given some observed
variables. Like the algorithms developed for precise
graphical models, our algorithm works in a distributed
fashion by passing messages along the tree. This leads
to computing lower and upper conditional previsions
(expectations) with a complexity that is essentially lin-
ear in the number of nodes in the tree.

4 Imprecise-probability based

tracking
Following the ideas introduced in the previous sec-

tion, we can easily generalise the Bayesian trackers de-
scribed in Section 2 to allow for imprecise-probabilistic
quantification. In particular, the domain expert is al-
lowed to assess his beliefs about the kinematics by spec-
ifying lower and upper estimates for the transition prob-
abilities. Let us denote these lower and upper bounds as
P (Mj+1|Mj) and P (Mj+1|Mj). Similarly, the marginal
probability mass function for M1 is quantified by the
expert’s lower and upper estimates P (M1) and P (M1).
We will assume there is a precise-probabilistic quantifi-
cation for the measurement probabilities.

This defines an imprecise HMM, whose topology (see
Figure 1) is a special case of the more general tree topol-
ogy for which the algorithm mentioned in the previ-
ous section has been developed. We can therefore effi-
ciently update the beliefs about Mτ after the observa-
tion of the measurements (z1, . . . , zτ ), and end up with
an imprecise-probability model P (·|z1, . . . , zτ ). We will
see that this achieves robust tracking of the target.



In order to do tracking, the criterion (1) must be
extended to allow for imprecise- rather than precise-
probabilistic posterior models P (·|z1, . . . , zτ ). In situa-
tions of this kind, it cannot generally be excluded that
more than one model provides an ‘optimal’ value for
Mτ : we are thus led to multiple-model estimation, de-
riving from a condition of indecision between two or
more models.3

In practise, a model mτ ∈ M is regarded as an ‘op-
timal’, or rather undominated, value for Mτ after the
observation of the measurements (z1, . . . , zτ ), if there
are no models m′

τ ∈ M such that

P (Im′
τ
− Imτ

|z1, . . . , zτ ) > 0, (2)

where Imτ
is the indicator function of mτ ∈ M.4 If

such is the case, i.e., if (2) is satisfied for some m′
τ ,

then mτ is rejected as an ‘optimal’ or undominated
model. We adopt this optimality criterion, which is
called maximality [13, Sect. 3.9.2], in order to identify
the set M∗

τ ⊆ Mτ of those models that are not re-
jected after the iteration of the test for each possible
pair of models. In the next section, we show by nu-
merical simulations that our approach generally leads
to multiple-model robust estimates, meaning that M∗

τ

might include more than a single model, i.e., |M∗
τ | ≥ 2.

5 Performance evaluation
Models. In order to test the performance of the
tracker described in the previous section, we simulate
a planar manoeuvre based on models m(j) ∈ M corre-
sponding to the following kinematics

x(t + 1) = fj(x(t)) + wj(t), (3)

where x := [x, y, v, h]′, with x, y Cartesian coor-
dinates of the position, v speed modulus, h heading
angle, wj(t) zero-mean noise with covariance Q =
diag{0, 0, σ2

v∆t, σ2
h∆t}, with ∆t sampling period, and

the components of the nonlinear function fj(x(t)) are













x(t) + 2v(t)
ωt

sin
(

ωt∆t
2

)

cos
(

h(t) + ωt∆t
2

)

y(t) + 2v(t)
ωt

sin
(

ωt∆t
2

)

sin
(

h(t) + ωt∆t
2

)

v(t)

h(t) + ωt∆t













, (4)

where ωt := ḣ(t) is the angular speed. This is the
coordinated-turn model [2]. Accordingly, the model

3Indecision between two or more options when the available
evidence about the phenomenon of interest is not sufficiently de-
tailed is commonly experienced in human reasoning. The fact
that, unlike Bayesian approaches, imprecise probability models
may produce this kind of indecision should be regarded as a fur-
ther warrant for robustness.

4The difference between two indicators in (2) is in general not
an indicator, and therefore the posterior lower expectation does
not reduce to a lower probability. This is not a problem, as pos-
terior lower expectations for arbitrary functions can be computed
efficiently by the algorithm described in [7].

m(j) is completely specified by the value assigned to
ωt. In fact, the inclusion of the angular speed ωt in the
state vector and its estimation are not convenient for
short-duration manoeuvres since there is little time for
a reliable estimation of ωt. For ωt = 0, (3) describes
a motion with constant velocity and constant heading
(straight motion). Conversely for ωt 6= 0 it describes
a manoeuvre (turn) with constant angular speed ωt, a
left turn (ωt > 0) or a right turn (ωt < 0) depending on
the sign of ωt.

For our simulations, eleven candidate models are con-
sidered, i.e., M = {m(−5), . . . , m(0), . . . , m(+5)} and
the angular speed corresponding to m(±j) is assumed
to be ω(±j) = ±j · 0.15 rad/s, for each j = 0, . . . , 5.

As noted in the previous section, for the probabilistic
quantification of the hidden variables, we assume that
the domain expert provides only his lower and upper
bounds. More specifically, we assume that P (m1) = 1

12

and P (m1) = 1
10 , for each m1 ∈ M, as an imprecise

probability representation of indifference (equiprobabil-
ity) between the models when the manoeuvre begins.
For the transition probabilities, we consider the bounds
expressed in Table 1 corresponding to an imprecision of
about 5% in the estimates assessed by the expert.

Filtering. For model estimation, the filtering task
has only the aim of estimating the likelihood of each
model. For this purpose, a bank of eleven extended
Kalman filters (EKF), each of which is based on a spe-
cific model tailored to a possible target behaviour (e.g.,
straight line motion, left turn, right turn etc.), has been
selected for the filtering task. Each filter estimates the
kinematic variables (e.g., positions, velocities, etc.) of
the object using measurements and a model of the ob-
ject motion. The relation between measurement and
state is described by the following measurement equa-
tion, which is the same for all the models, and turns
out to be

z(t) = h(x(t)) + u(t), (7)

where polar coordinates are considered, i.e.,

h(x(t)) =

[ √

x2(t) + y2(t)
∠ (x(t) + jy(t))

]

, (8)

and u(t) is a zero-mean measurement noise with covari-
ance R = diag{σ2

r , σ2
θ}.

The estimates returned by each filter are then com-
bined according to a multiple-model approach. In
particular, the generalised pseudo-Bayesian 1 (GPB1)
[1, 2, 4] filter has been adopted in this work for com-
bining the estimates provided by the single filters. This
choice is motivated by the fact that the GPB1 algo-
rithm can be easily adapted to the imprecise HMM we
presented in Section 4.

A full cycle of the GPB1 filtering process in both
the precise and the IMT model is summarised in Ta-
ble 2: the reader is referred to [2] for details about
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10.00 82.50 10.00 5.50 4.50 0.00 0.00 0.00 0.00 0.00 0.00
4.00 10.00 82.50 10.00 4.00 3.50 3.50 0.00 0.00 0.00 0.00
3.00 4.50 10.00 82.50 10.00 4.50 3.00 0.00 0.00 0.00 0.00
0.00 3.50 4.00 10.00 82.50 10.00 4.00 3.50 0.00 0.00 0.00
0.00 0.00 3.50 4.00 10.00 82.50 10.00 4.00 3.50 0.00 0.00
0.00 0.00 0.00 3.00 4.50 10.00 82.50 10.00 4.50 3.00 0.00
0.00 0.00 0.00 0.00 3.00 4.50 10.00 82.50 10.00 4.50 3.00
0.00 0.00 0.00 0.00 3.50 3.50 4.00 10.00 82.50 10.00 4.00
0.00 0.00 0.00 0.00 0.00 0.00 4.50 5.50 10.00 82.50 10.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.75 11.00 82.50
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7

7

7

7
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7

7

7

7

5

(6)

Table 1: Lower and upper bounds of the transition probabilities percentages.

the GPB1. The design parameters in the GPB1 fil-
ter are the prior model transition probabilities and the
model set. The transition probabilities πij correspond
to the hidden layer in the Markov model that describes
the model switching and are fixed in the Bayesian ap-
proach. Conversely, in the IMT approach, lower and
upper bounds are assumed for πij and the predicted
model probability and model probability in the GPB1
filter in Table 2 are calculated by using the algorithm
in [7]. These are the outputs of the IMT filter, while
the inputs correspond to the model likelihoods.

As a direct consequence of the imprecision in the
model, also the posterior beliefs returned by the al-
gorithm may be imprecise. Yet, a multiple-model filter
coping with sets of posterior distributions for the model
probabilities is not yet available (this is one of the direc-
tions of research we want to explore in our future work
by combining the results in [3] with the multiple-model
approach described in this paper). Thus, for the time
being, in order to employ the GPB1 filter, a single ‘rep-
resentative’ mass function for both the predicted model
probability and model probability need to be chosen. In
this paper, by analogy with the approaches in [11], we
simply choose the centre of mass of the convex set of
probability mass functions associated to the inferences
provided by the algorithm.

Simulations. As a first experimental validation, we
have tested the tracker on the trajectory depicted in
Figure 2, which corresponds to the following sequence
of models:

Mt =







m(0) 1 ≤ t ≤ 8
m(+2) 9 ≤ t ≤ 13

m(0) 14 ≤ t ≤ 20,

(9)

with sampling period ∆t = 4s (and hence a time win-
dow of 80s). Monte Carlo simulations have been per-
formed by varying the measurements’ noise realisations.
The values of the simulation parameters are σr = 50 m,
σθ = 0.0087 rad, qv = 0.01 m/s, qh = 0.001 rad, and
x(0) := [104 m, 104 m, 5 · 102 m/s, 0.1 rad]′.

1. Re-initialisation (for j = 1, . . . , |M|):

Predicted model probability:

pj(t|t − 1) =
P|M|

i=1
πijpi(t − 1)

Mixing estimate:

x(t − 1|t − 1) =
P|M|

i=1
pi(t|t − 1)x̂i(t − 1|t − 1)

Mixing covariance:

P (t − 1|t − 1) =
P|M|

i=1
pi(t|t − 1)

ˆ

Pi(t − 1|t − 1)+

`

x(t − 1|t − 1) − x̂i(t − 1|t − 1)
´ `

x(t − 1|t − 1) − x̂i(t − 1|t − 1)
´′

i

2. Update of the filter bank (for j = 1, . . . , |M|):

Model linearisation:

Fj(t) =

"

∂f(·)

∂x

#

x=x(t−1|t−1)

Hj(t) =

"

∂h(·)

∂x

#

x=x̂j(t|t−1)

Predicted state:

x̂j(t|t − 1) = fj (t − 1, x(t − 1|t − 1))

Predicted covariance:

P̂j(t|t − 1) = Fj(t − 1)P (t − 1|t − 1)F ′
j (t − 1) + Qj(t − 1)

Measurement residual:

z̃j(t) = z(t) − h(t, x̂j(t|t − 1))

Residual covariance:

Sj(t) = Hj(t)Pj (t|t − 1)H′
j (t) + Rj(t)

Filter gain:

Kj(t) = Pj (t|t − 1)H′
j (t)S

−1
j

(t))

Update state:

x̂j(t|t) = x̂j(t|t − 1) + Kj(t)z̃j (t)

Update covariance:

Pj(t|t) = Pj(t|t − 1) − Kj (t)Sj (t)K′
j (t)

3. Model probability update (for j = 1, . . . , |M|):

Model likelihood:

Lj(t) = N(z̃j(t); 0, Sj(t))

Model probability:

pj(k) =
pj(t|t − 1)Lj(t)

P|M|
i=1

pi(t|t − 1)Li(t)

4. Estimate fusion:

Overall estimate:

x̂(t|t) =
P|M|

i=1
pi(t)x̂i(t|t)

Overall covariance:

P(t|t) =
P|M|

i=1
pi(t)[Pi(t|t) + (x̂(t|t) − x̂i(t|t))(x̂(t|t) − x̂i(t|t))

′ ]

Table 2: One cycle of the GPB1 filter
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Figure 2: The trajectory corresponding to the manoeu-
vre described by (9).

The aim of the simulations is to compare the
imprecise- with the precise-probabilistic approach to
the estimation of the right kinematic model. Two met-
rics are employed to evaluate the performances of the
two approaches: accuracy and average number of mod-
els. The first measures the percentage of cases in which
the right model is correctly estimated, while the second
corresponds to the average number of models returned
by the model estimator at each time instant. Clearly,
the Bayesian model estimator is based on the criterion
in (1) and always returns a single model, while the IMT
estimator is based on the criterion in (2) and can there-
fore return more than one model.

The results are summarised in Table 3. The first
thing to observe is that the imprecise-probabilistic ap-
proach always provides more accurate tracks. One
downside might be the multiple-model estimation, as
the IMT model estimator might provide indeterminate
tracks. Nonetheless, this feature has been already noted
to be a consequence of our cautious modelling of the
generative sequence, and the number of possible mod-
els is significantly reduced (from eleven to less than four
if t > 3).

We also observe (see Figure 3) a clear correlation
between the number of models detected by the IMT
estimator, and the accuracy of the Bayesian one. For
manoeuvres that are ‘difficult’ identify, the imprecise
probabilistic approach tends to maintain a good ac-
curacy by increasing the number of models, while the
Bayesian estimator simply decreases its accuracy. On
the other side, if a manoeuvre is ‘easy’ to identify (e.g.,
if the object moves according to the same model for
many instants), the IMT gradually reduces the number
of models while maintaining a high accuracy, whereas
the Bayesian estimator tends to increase its accuracy.
We also noted that, after model switching (e.g., t = 9
and t = 14) the accuracy of both estimators suddenly
decreases. Yet, the IMT rapidly returns to a high level

of accuracy, while the Bayesian estimator needs much
more time to do the same.

Moreover, we observe that, if two models are in M∗
τ ,

then also every model whose angular speed is between
those of the two models belongs to M∗

τ . Accordingly,
our multiple-model estimation corresponds to the iden-
tification of a range for the angular speed of the target.

τ IMT estimator Bayesian est.
accuracy |M∗

τ | accuracy

1 94.74 9.6 3.51
2 34.50 5.2 24.56
3 91.81 4.8 46.78
4 100.00 3.7 68.42
5 100.00 3.2 87.72
6 100.00 2.6 93.57
7 100.00 2.8 95.32
8 100.00 2.2 95.91
9 28.07 2.3 0.00

10 98.25 3.7 18.71
11 100.00 3.9 61.40
12 100.00 3.3 81.87
13 100.00 3.1 83.04
14 69.59 3.5 12.28
15 100.00 3.8 57.89
16 100.00 3.6 91.23
17 100.00 2.9 97.08
18 100.00 2.1 99.42
19 100.00 1.9 98.83
20 100.00 1.2 99.41

Table 3: IMT versus Bayesian estimator. Statistics are
computed over 200 Monte Carlo runs of the simulated
manoeuvre described in (9). The second and the third
columns report respectively the percentage of runs for
which the set of models returned by the IMT includes
the true model of the manoeuvre, and the average of
the number of models in this set. The fourth column
reports the percentage of runs for which the model re-
turned by the Bayesian estimator is the true one.

It should be also pointed out that the posterior prob-
ability mass functions computed by the Bayesian esti-
mator is usually very strongly peaked around the model
m∗

τ . Even by relaxing (1) with a threshold ǫ, such that
the optimal models are the models mτ ∈ M for which

|P (m∗
τ |z1, . . . , zτ ) − P (mn|z1, . . . , zτ )| ≤ ǫ, (10)

no significant increase in the number of models is ob-
served unless a very high threshold values (e.g. ǫ >
50%) is considered.

Regarding computational times, the computation of
P (·|z1, . . . , zτ ) through the algorithm in [7] takes a time
linear in the size of the graph in Figure 1 and hence in
the time window τ , while only constant time is needed
in the Bayesian case. This means that the IMT estima-
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Figure 3: Average number of classes (circles) of the
imprecise tracker versus accuracy (triangles) of the
Bayesian tracker.

tor is k · τ times slower than its Bayesian counterpart,
with the constant k ≃ 4 in our particular problem.

In the filtering section, it has been explained that
we use the GPB1 filter only for calculating the likeli-
hoods of each model. However, since the GPB1 filter
also provides estimates of the object’s state, we can
also calculate the position and speed root mean-square
errors (RMSE). Figure 4 shows the RMSE of the fol-
lowing algorithms: the GPB1 filter and the IMT based
GPB1 (IP-GPB1). The IP-GPB1 is calculated consid-
ering the centre of mass of the set of posteriors returned
by the IMT as discussed in the filtering section. The
choice of the centre of mass, although arbitrary, is very
often used in the literature since, in general, it provides
good results. In fact, as it is shown in Figure 4, this ap-
proach provides a lower RMSE than the classical GPB1.
Peaks in the RMSE appear during the manoeuvres for
the GPB1, while the RMSE of the IP-GPB1 is almost
flat and lower than that of the classical GPB1. This
shows that a robust estimation of the kinematic model
is also beneficial for the estimation of the state of the
object.

6 Conclusions and outlooks
We have presented a new approach to tracking highly

manoeuvrable objects by hidden Markov models, with
a imprecise-probabilistic quantification of hidden vari-
ables. This leads to a computationally fast multiple-
model estimator that can possibly produce indetermi-
nate tracks, where more than one model is suggested
as a possible explanation of the object kinematics. In
comparison with similar approaches proposed in the
Bayesian framework, our approach displays good per-
formances both in terms accuracy and robustness.

This work should be regarded as a starting point
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Figure 4: Root mean square errors in the estimation of
the object speed and position.

for future research focusing on the generalisation of
the whole architecture, i.e., model and state estima-
tion, to imprecise probability. In addition, connections
with other multiple-model Bayesian estimators (e.g.,
[8]) should be considered for future work.
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