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Abstract – We extend Hidden Markov Models for

continuous variables taking into account imprecision in

our knowledge about the probabilistic relationships in-

volved. To achieve that, we consider sets of probabili-

ties, also called coherent lower previsions. In addition

to the general formulation, we study in detail a par-

ticular case of interest: linear-vacuous mixtures. We

also show, in a practical case, that our extension out-

performs the Kalman filter when modelling errors are

present in the system.
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1 Introduction
State estimation problems arise in many fields such as

signal processing, communications, tracking and auto-
matic control. In all these problems there is a model for
which we observe some function of a parameter set of
interest, and where the observations may be corrupted
by noise. If the random process to be estimated is mod-
elled by a state variable approach, the estimation prob-
lem is referred to as Bayesian state estimation. In this
case, often a Markov process representation is used to
model the random process and, thus, the estimation
problem reduces to the estimate of the state of a con-
tinuous Hidden Markov Model (HMM).

The major criticism of Bayesian estimation is its
“sensitivity” to the choice of the model assumptions, in
the sense that the estimate can depend strongly on the
choice of the prior, the likelihood and the loss/utility
functions. One possible solution for this problem is the
so-called Bayesian sensitivity analysis or Bayesian ro-
bustness approach [1]. Its basic idea is to check the
robustness of the estimate by defining a wide class of
prior distributions and likelihood functions, to combine
each pair by Bayes’s rule to form a class of posterior dis-
tributions and to check whether these posteriors lead to
the same conclusions. Depending on the answer we de-
clare that the model is robust or that the conclusions

from any particular Bayesian model are unreliable. An-
other possibility to deal with the imprecise knowledge
of the elements of the model is to consider alternative
models of uncertainty, such as Choquet capacities, be-
lief functions and possibility measures. All these models
represent uncertainty through lower and upper proba-
bilities, and can be all regarded as special cases of Wal-
ley’s coherent lower previsions [7]. Walley’s theory of
coherent lower previsions, which is usually referred to
as Imprecise Probability (IP), provides a very general
model of uncertain knowledge. In addition, IP mod-
els have a clear interpretation in terms of a subject’s
behaviour. The theory of coherent lower previsions in-
cludes as a particular case the approach considered in
Bayesian sensitivity analysis: if we specify a number
of precise models, they determine coherent lower pre-
visions by taking their lower envelopes. It is also more
general [7]. For instance, a difference comes when mod-
eling the notion of independence: with a Bayesian sen-
sitivity analysis we must require that all the admissible
models carry the notion of independence; with coherent
lower previsions there are a number of less restrictive
possibilities. Among these, we shall consider the no-
tion of epistemic irrelevance. In this paper, we study
the problem of estimating the state of a Hidden Markov
Model when we do not have enough information to de-
scribe the prior, the state transition and the likelihood
models with precise probabilities. Instead, we shall
model our uncertainty about the variables of interest
by means of coherent lower previsions. To this end, we
derive a solution of the state estimation problem for
HMM for the general case of coherent lower previsions
in infinite spaces (see [2] for inference for HMM in fi-
nite spaces). This rule is then specialised for a special
class of coherent lower previsions, called linear-vacuous

mixtures. For this particular class, we empirically com-
pare the proposed estimator with the Kalman filter and
show that our solution is more robust to modelling er-
rors and that, hence, it outperforms the Kalman filter
in such a case. We also discuss the self-consistency of



the proposed solution with the initial assessments.

2 Bayesian estimation for HMM
The aim is the estimation of the state variables of a

discrete-time nonlinear system which is “excited” by a
sequence of random vectors. It is assumed that non-
linear combinations of the state variables corrupted by
noise are observed. We have thus

{

x(t + 1) = f(t,x(t)) + w(t)
y(t) = h(t,x(t)) + v(t),

(1)

where t is the time, x(t) ∈ R
n is the state vector,

w(t) ∈ R
n is the process-noise, y(t) ∈ R

m is the mea-
surement vector, v(t) ∈ R

m is the measurement noise
and f(·) and h(·) are known nonlinear functions. Hav-
ing observed a finite sequence ỹt = {ỹ(1), . . . , ỹ(t)}1 of
measurements, one may, in general, seek an estimate of
an entire sequence of states xt = {x(0), . . . ,x(t)}.

In the Bayesian framework, all relevant information
on xt = {x(0), . . . ,x(t)} at time t is included in the
posterior distribution p(xt|ỹt). A Markov assumption
is made to model the system and, thus, the estimation
problem reduces to the estimate of the state of a HMM.
A consequence of this assumption is that the following
independence conditions hold:

p(x(t)|xt−1) = p(x(t)|x(t − 1)),

p(yt|xt) =

t
∏

k=1

p(y(k)|x(k)).

Using these assumptions the probability density func-
tion (PDF) over all states of the HMM can be written
simply as:

p(xt|ỹt) =
p(xt−1|ỹt−1)p(x(t)|x(t − 1))p(ỹ(t)|x(t))

p(ỹ(t)|ỹt−1)
.

(2)
In many applications, we are interested in estimating
p(x(t)|ỹt), one of the marginals of the above PDF. This
is the so-called Bayesian filtering problem. We have

p(x(t)|ỹt) =
p(x(t)|ỹt−1)

p(ỹ(t)|ỹt−1)
p(ỹ(t)|x(t)). (3)

From (2) and (3), we see that both p(xt|ỹt) and
p(x(t)|ỹt) can be obtained recursively. Once p(x(t)|ỹt)
has been computed, it is possible to compute the ex-
pected value E[g(x(t))|yt] w.r.t. p(x(t)|yt) for any
function of interest g(x(t)). A particular case of (1)
is

{

x(t + 1) = A(t)x(t) + w(t)
y(t) = C(t)x(t) + v(t),

(4)

with w(t) ∼ N (0,Q(t)), v(t) ∼ N (0,R(t)),
x(0) ∼ N (x̂(0),P(0)), and where the matrices

1The tilde superscript is used in order to distinguish a generic

realization y of the measurement vector and the observed one ỹ.

A(t), C(t), Q(t), R(t) are assumed to be known.
Then the conditional PDF p(x(t)|ỹt) is also Gaussian
N (x̂(t),P(t)) where














x̂(t) = A(t)x̂(t − 1) + L(t)[y(t) − C(t)A(t)x̂(t − 1)]
P(t) = A(t)P(t)A′(t) + Q(t) − L(t)S(t)L′(t)
S(t) = C(t)[A(t)P(t)A′(t) + Q(t)]C′(t) + R(t)
L(t) = [A(t)P(t)A′(t) + Q(t)]C′(t)S−1(t).

These are the equations of Kalman filter (KF).

3 Coherent lower previsions
Let us briefly introduce the formalism of coherent

lower previsions we shall use later in the paper. We
refer to [7] for a detailed account of the theory.

Given a possibility space Ω, a gamble is a bounded
real-valued function on Ω. The set of all gambles on Ω is
usually denoted by L(Ω). A Coherent Lower Prevision

(CLP) on a linear subset K of L(Ω) is a functional
satisfying the following three conditions:

(C1) E(f) ≥ inf
ω

f(ω) ∀f ∈ K.

(C2) E(λf) = λE(f) ∀λ ≥ 0, f ∈ K.

(C3) E(f + g) ≥ E(f) + E(g) for all f, g ∈ K.

From a lower prevision E on K we can always derive
a so-called upper prevision E on −K, by means of the
equation E(·) = −E(−·). Because of this relationship,
we shall focus on lower previsions only. When the do-
main K is a linear space of gambles and (C3) holds with
equality for every pair f, g ∈ K, the coherent lower pre-
vision E is called a linear prevision, and is usually de-
noted by E. A linear prevision is the expectation with
respect to its restriction to events, which is a finitely
additive probability. Hence, for discrete variables:

E(f) =
∑

x

f(x)p(x).

We can equivalently define CLP in terms of linear previ-
sions. Let P(Ω) be the set of linear previsions on L(Ω);
then E is a CLP if and only if

E(f) = min{E(f) : E ∈ P(Ω), E(g) ≥ E(g) ∀g ∈ K}

for every f in the domain K of E. Hence, CLPs can be
regarded as modelling the imprecise knowledge about
a linear prevision: we can simply consider a set M of
possible candidate linear previsions and summarise it
with its lower envelope, which is a CLP.

Consider now variables Z1, . . . , Zm taking values
in respective spaces Z1, . . . ,Zm. For every J ⊆
{1, . . . , m}, let ZJ = (Zj)j∈J and ZJ = ×j∈JZj . In
particular, we denote by Zm := Z{1,...,m}, our possibil-
ity space in the remainder of the paper. Given disjoint
subsets U, O, with O 6= ∅, of {1, . . . , m}, we denote
EZO

(·|ZU ) the conditional lower prevision that, for ev-
ery gamble f on ZO∪U and every z ∈ ZU , yields the



value EZO
(f |z), which is the lower prevision for the

gamble f , if we knew that the variable ZU took the
value z. We can equivalently define EZO

(·|ZU ) on the
set of gambles f on Zm which only depend on the val-
ues in ZO∪U , in the sense that f(z1) = f(z2) when the
projections πO∪U (z1), πO∪U (z2) coincide. These gam-
bles are called ZO∪U -measurable. A conditional lower
prevision EZO

(·|ZU ) defined on the linear space KO∪U

of ZO∪U -measurable gambles is called separately coher-

ent when the following three conditions hold for every
z ∈ ZU :

(SC1) EZO
(f |z) ≥ inf

ω∈π
−1
U

(z)
f(ω).

(SC2) EZO
(λf |z) = λEZO

(f |z) ∀f ∈ KO∪U , λ ≥ 0.

(SC3) EZO
(f + g|z) ≥ EZO

(f |z) + EZO
(g|z)

∀f, g ∈ KO∪U .

When (SC3) holds with equality for every f, g ∈ KO∪U ,
EZO

(·|ZU ) is a conditional (linear) prevision. These are
conditional expectations with respect to finitely addi-
tive probabilities. Separate coherence is equivalent to
being the lower envelope of the dominating conditional
previsions.

Given EZO1
(·|ZU1), . . . , EZOk

(·|ZUk
) with domains

KO1∪U1 , . . . , KOk∪Uk
, they are jointly coherent when

for every fj ∈ KOj∪Uj
, j = 1, . . . , k, j0 ∈

{1, . . . , k}, zo ∈ ZUj0
and fj0 ∈ KOj0∪Uj0

,

sup
k

X

j=1

(fj −EZOj
(fj |ZUj

))− I
π
−1
Uj0

(z0)
(fj0 −EZOj0

(fj0 |z0))

is non-negative on some B in
{

π−1
Uj0

(z0)
}

∪
⋃

Sj(fj),

where Sj(fj) = {π−1
Uj

(z) : fjIπ
−1
Uj

(z) 6= 0} and

Iπ
−1
Uj0

(z0)
is the indicator function2 of π−1

Uj0
(z0). Co-

herence means that the assessments implied by
EZO1

(·|ZU1), . . . , EZOk
(·|ZUk

) are consistent. It implies

(but it is also stronger than it) that there is a coherent
lower prevision E on L(Zm) which is compatible with
all the assessments, in the sense that it is coherent with
each of them. A sufficient condition for coherence is
that U1 = ∅ and Uj = ∪j−1

ℓ=1(Oℓ ∪ Uℓ) for j = 2, . . . , k.
In that case, the smallest coherent lower prevision E
which is coherent with EZO1

(·|ZU1), . . . , EZOk
(·|ZUk

) is

called their marginal extension, and is given by

E(f) = EZO1
(EZO2

(. . . (EZOk
(f |ZUk

)) . . . |ZU2)).

If in particular all the conditional lower previsions are
linear, this is the only compatible joint. On the other
hand, if we have a coherent lower prevision E on L(Xm)
and a separately coherent conditional lower prevision

2A real-valued function on a domain is called the indicator

function of a given subset of this domain if it takes the value one

in the elements of the subset and zero outside.

EZO
(·|ZU ) on KO∪U , a necessary condition for their

joint coherence is that for every gamble f in KO∪U and
every z ∈ ZU :

E(Iπ
−1
U

(z)(f − EZO
(f |z))) = 0. (GBR)

This is called the Generalised Bayes Rule, because it
becomes Bayes’ rule when we have linear previsions.
When E(z) > 0, there is only one value of EZO

(f |z)
which satisfies (GBR) with E, and therefore the condi-
tional lower prevision is uniquely determined by E and
the notion of coherence.

4 Generalisation of Bayesian

state estimation
We can rephrase Bayesian state estimation in the for-

malism we have just introduced. The aim of Bayesian
state estimation is to compute the conditional linear
prevision EX(t)[g(x(t))|ỹt], where the notation X has
been introduced to distinguish between random vectors
and their generic realisations x, while ỹ denotes the ac-
tual observations. It is assumed that the value x(t)
belongs to R

n and that y(t) belongs to R
m for every

t. However, in order to have bounded gambles, which
are the basis of Walley’s theory, hereafter we assume
x(t) ∈ Xt and y(t) ∈ Yt for each t, where Xt and Yt are
closed subsets of R

n and R
m, respectively. The solution

of the estimation problem can be obtained by applying
GBR

EX(t)[g|ỹ
t] = µ s.t. EXt,Yt [Iỹt · (g − µ)] = 0, (5)

taking into account that there is a unique µ satisfy-
ing this equation when EXt,Yt [Iỹt ] = EYt [Iỹt ] > 0.
However, since the probability that a continuous ran-
dom variable assumes a particular value is zero, in our
context EYt [Iỹt ] = Pr(Yt = ỹt) = 0 and therefore
GBR does not have a unique solution. A way to over-
come this problem in precise probability is to regard
the measurements ỹ(t) for any t ≥ 1 as idealisations
of discrete events ỹd(t) = B(ỹ(t), δ), where B(ỹ(t), δ)
are nested neighbourhoods of ỹ(t) which decrease to
the limit ỹ(t) as their radius δ > 0 decreases to zero.
This makes also sense in practice because of the fini-
tary precision of the instruments. Hence, we can now
assume that EYt

d
[Iỹt

d
] > 0 and apply (GBR), solving

thus Eq. (5). As discussed in Section 2, the gambles we
are interested in, g ∈ L(X t × Yt), are Xt-measurable.
Furthermore, to make things compatible with Section 3,
we assume that g(x(t)) is a bounded real-valued func-
tion. When this is not the case, we solve the problem
for each component of g(x(t)). Using the linearity prop-
erty of linear previsions the second equation in (5) can
be rewritten as

0 = EXt,Yt
d
[Iỹtg] − µ EXt,Yt

d
[Iỹt ]

= EXt,Yt
d
[Iỹtg] − µ EYt

d
[Iỹt ],

(6)



and the right-hand side is equal to

E
Xt−1,Y

t−1
d

[EX(t)[EYd(t)[Iỹtg|X(t),Xt−1,Yt−1
d ]

|X(t − 1),Xt−2,Yt−1
d ]] − µ EYt

d
[Iỹt ], (7)

By exploiting the independence assumptions discussed
in Section 2 and the fact that the gamble of interest
g(x(t)) is a function of x(t) only, from Eqs. (6)–(7) it
can be derived that

0 = EX(t)

[

EYd(t)

[

Iỹd(t)g
∣

∣

∣
X(t)

] ∣

∣

∣
ỹt−1

d

]

E
Y

t−1
d

[

I
ỹ

t−1
d

]

− µ EYt
d
[Iỹt ]. (8)

Since we are assuming EYt
d
[Iỹt

d
] > 0, Eq. (8) can be

solved with respect to µ, and we obtain

µ =
EX(t)

[

g EYd(t)

[

Iỹd(t)

∣

∣

∣
X(t)

] ∣

∣

∣
ỹt−1

d

]

EYd(t)

[

Iỹd(t)

∣

∣

∣
ỹt−1

d

] . (9)

Finally, assuming some regularity conditions [7] and
that the radius of neighbourhoods does not depend on
xt, for δ → 0 one gets Bayes’ rule for conditional PDF,
i.e. that EX(t)[g|ỹ

t] is equal to

∫

x(t)

g(x(t)) p(x(t)|ỹt−1)p(ỹ(t)|x(t))dx(t)

p(ỹ(t)|ỹt−1)
.

Hence, EX(t)[·|ỹ
t] is a linear functional which is com-

pletely determined by the PDFs p(x(t)|ỹt−1) and
p(ỹ(t)|x(t)). Consider now the case in which the avail-
able information does not allow us to specify a unique
probability measure describing each source of uncer-
tainty in the dynamical system. We can then use co-
herent lower previsions to model the available knowl-
edge. Consider a coherent lower prevision EX(0) and
separately coherent EX(t)(·|X(t−1)), EYd(t)(·|X(t)) for
t ≥ 1, and let us derive from them a separately coher-
ent conditional lower prevision EX(t)[g|ỹ

t
d]. As in (5),

this can be done by applying (GBR) on EXt,Yt
d
:

EX(t)[g|ỹ
t
d] = µ s.t. EXt,Yt

d
[Iỹt

d
· (g − µ)] = 0. (10)

Since the measurements have been assumed discrete,
there is a unique solution of Eq. (10) if EXt,Yt

d
[Iỹt

d
] > 0.

In the sequel, it is assumed that Xt−1 and Yt−1
d are

epistemically irrelevant to X(t) given X(t−1) and that
Xt−1 and Yt−1

d are irrelevant to Yd(t) given X(t), i.e.,
there exist EX(t)[·|x(t−1)] and EYd(t)[·|x(t)] such that:

EX(t)

[

h1

∣

∣

∣
x(t − 1)

]

= EX(t)

[

h1

∣

∣

∣
xt−1,yt−1

d

]

EYd(t)

[

h2

∣

∣

∣
x(t)

]

= EYd(t)

[

h2

∣

∣

∣
xt,yt−1

d

]

,

for each h1 ∈ L(X t × Yt−1) , h2 ∈ L(X t × Yt), xt and
yt−1

d . The joint EXt,Yt
d

in (10) can be obtained from

EX(0), EX(t)(·|X(t−1)), EYd(t)(·|X(t)), for each t ≥ 1,
by marginal extension, and can be written as

EX(0)[EX(1)[EYd(1)[. . . EX(t)[EYd(t)[·|X(t)]|X(t−1)]

. . . |X(1)]|X(0)]], (11)

taking also into account that (i) the gamble of interest g
in Iỹt

d
(g−µ) is a function of x(t) only ; and (ii) the gam-

ble Iỹt
d

= Iỹd(1) · · · Iỹd(t) depends on the values of the

measurements ỹt
d only. If we now apply conditions (C2)

and (SC2), the recursivity of the marginal extension
and introduce the notation gt(x(t), µ) = g(x(t)) − µ,
Eq. (10) can be conveniently rewritten as

0 = E
Xt−1,Y

t−1
d

[

I
ỹ

t−1
d

gt−1

]

, (12)

where

gt−1 = EX(t)

[

gt

(

I{gt≥0}EYd(t)

[

Iỹd(t)

∣

∣

∣
X(t)

]

+ I{gt<0}EYd(t)

[

Iỹd(t)

∣

∣

∣
X(t)

])∣

∣

∣
X(t − 1)

]

.
(13)

If we proceed recursively in this way, we obtain
Ex(0)[g0] = 0, where

g0 = EX(1)

[

g1

(

I{g1≥0}EYd(1)

[

Iỹd(1)

∣

∣

∣
X(1)

]

+ I{g1<0}EYd(1)

[

Iỹd(1)

∣

∣

∣
X(1)

])∣

∣

∣
X(0)

]

.
(14)

By comparing (12) with (7)–(9), we see that when
we use coherent lower previsions we cannot derive an
expression for the conditional similar to Eq. (9). This
is due to the fact that coherent lower previsions are
super-additive instead of linear.

We can also make the following observations about
the model presented in Eqs. (12)–(14):

1. As we show in the Appendix, EXt,Yt
d

is coherent
with all the initial assessments. Moreover, it is the
smallest, or least-committal, coherent lower previ-
sion which is compatible with the local models and
the additional hypothesis of epistemic irrelevance.

2. Moreover, EX(t)[g|ỹ
t
d] is not only coherent with

EXt,Yt
d
, but also with all the local assessments we

have used to derive EXt,Yt
d
. This is also proven in

the Appendix.

In order to compute EX(t)[g(x(t))|ỹt
d], it is necessary

to propagate back to time the functional g(x(t)) − µ
until the initial state is reached, and then to find the
value of µ which satisfies Ex(0)[g0] = 0. Each step can
be very heavy from a computational point view. More-
over, the computational complexity increases up to time
linearly. Possible ways to overcome this computational
issue are: (i) to find classes of CLPs for which the com-
putation of (12)–(14) is feasible; (ii) to truncate the
recursion after N steps in the past by finding a CLP



which approximates EX(t−N)[g|ỹ
t−N
d ]. Concerning the

first point, one idea would be to use a particular case of
coherent lower previsions: 2-monotone lower previsions

[3], which have a number of useful properties: they are
closed under convex combinations; and their value for a
generic gamble can simply be obtained by applying the
Choquet integral w.r.t. their restriction to events. An
example of 2-monotone lower previsions, for which the
solution of (12)–(14) is affordable, is the linear-vacuous
mixture model in Section 5.

4.1 Decision making and estimation

Let us briefly discuss the decision making approach
to estimation. The Bayesian methodology provides the
estimate which minimises the expected posterior risk.
If in particular we consider a squared error loss risk,
the Bayesian estimate is the mean of the posterior dis-
tribution. This estimation is provided in general to-
gether with its credibility region: a 100(1 − α) credi-
bility region for a scalar random variable x is a region
χ such that E(I{x∈χ}) = Pr(x ∈ χ) = 1 − α, where
Pr(·) is the posterior distribution. When we consider
sets of probabilities, we deal with lower and upper ex-
pectations and, thus, with interval-valued expectations
[E(·), E(·)], leading to the problem of decision mak-
ing under imprecision [7]. A consequence of impreci-
sion is that, in general, we must abandon the idea of
choosing a unique value for the estimate. With this
in mind, the path followed in this paper is that of ex-
tending the Bayesian decision making approach to the
IP framework by calculating the lower E(x(t)) and up-
per E(x(t)) means and an IP version of the credibility
region. In particular, the IP credibility region is evalu-
ated by seeking for the minimum volume region χ such
that E(I{x∈χ}) > 1 − α. It is easy to see that, in the
precise case, the IP credibility region coincides with the
Bayesian one and that E(x(t)) = E(x(t)) = x̂(t).

5 Linear-vacuous mixture model
Assume now that the knowledge on the initial state

and state evolution process is modeled by linear-

vacuous mixtures:

Ex(0)(g) = ǫx

∫

x(0)

g(x(0)) N (x(0); x̂(0),P(0)) dx(0)

+ (1 − ǫx) inf
x(0)

g(x(0)), (15)

Ex(t)(g|x(t − 1))

= ǫw

∫

x(t)

g(x(t)) N (x(t);Ax(t − 1),Q) dx(t)

+ (1 − ǫw) inf
x(t)

g(x(t)),

(16)

where the scalars ǫw and ǫx belong to [0, 1]. Further-
more, assume that discrete measurements of the state

are available and that the uncertainty on the measure-
ment process can be represented with a linear previ-

sion3 EYd(t)(h|x(t)) given by

∑

yd(t)

h(yd(t))

∫

yd(t)

Iyd(t)(u(t))N (u(t);Cx(t),R) du(t).

(17)
This generalises the model given in Eq. (4) to the
linear-vacuous mixtures and can be used for example
to model the imprecision of the linear time-invariant
system (4) but where the process noise is wǫ(t) =
ǫww(t) + (1 − ǫw)n(t) and x(0) ∼ ǫxN (x̂(0),P(0)) +
(1 − ǫx)u(t), and the noises n(t) and u(t) are as-
sumed to have unknown distributions (not neces-
sarily constant w.r.t time). Note that the model
which characterises both wǫ(t) and x(0) is the so-
called ǫ-contamination which has been widely used
in Bayesian robustness [1]. The correspondence be-
tween this system and (15)–(17) follows from the fact
that for wǫ(t) the ǫ-contamination model implies that
EWǫ(t) = ǫw

∫

w(t)

g(w(t)) N (w(t);0,Q) dw(t) + (1 −

ǫw) inf
w(t)

g(w(t)) [7]. Hence, we can exploit a result from

[5] to prove that the knowledge of EWǫ(t) and the fact
x(t + 1) = Ax(t) + wǫ(t) together imply (16). This
holds also for x0 and extends to CLPs a well-known
result from the precise case. Assuming that the dis-
cretization step δ in yd(t) = B(y(t), δ) is small, the last
integral can be approximated as ν(δ)N (y(t);Cx(t),R)
where ν(δ) > 0 is the Lebesgue measure of B(y(t), δ),
which has been assumed independent of ỹ(t). Hence,

EYd(t)(h|x(t)) ≈ ν(δ)
∑

yd(t)

h(yd(t)) N (y(t);Cx(t),R).

Recall that our aim is to solve (10). Applying the re-
sults in (12)–(14), the target conditional CLP can be
calculated by solving w.r.t. µ the following equation:

Ex(0)(g0) ≈ ǫx

∫

x(0)

g0(x(0), µ) N (x(0); x̂(0),P(0))

+ (1 − ǫx) inf
x(0)

g0(x(0), µ) = 0, (18)

where g0(x(0), µ) can be obtained recursively by

gk−1(x(k − 1), µ)

= ν(δ)ǫw

∫

x(k)

gk(x(k), µ)N (x(k);Ax(k − 1),Q)

·N (ỹ(k);Cx(k),R) dx(k)

+ν(δ)(1 − ǫw) inf
x(k)

gk(x(k), µ)N (ỹ(k);Cx(k),R),

3The assumption of a probabilistic model for the measurement

process instead of an imprecise model, like the ones for the initial

state and the state evolution process, is used just to simplify the

derivations. However, the derivation presented in Section 4 is

general and allows also for imprecise measurements.



for k = 1, . . . , t, with the final condition gt(x(t), µ) =
g(x(t)) − µ and with ỹd(t) = B(ỹ(t), δ).

The value gk−1(x(k − 1), µ) is the sum of two terms.
The first is the expected value of gk(x(k), µ) w.r.t. a
Gaussian and the second is the infimum of gk(x(k), µ),
also weighted by a Gaussian. The first term can also
be regarded as a linear operator Ik[·] which operates
on the function gk(x(k), µ) and produces a function of
x(k−1) and µ. The second term can be seen as an oper-
ator Mk[·] on the function gk(x(k), µ), but it produces
a function of µ only. Hence, at time t, the previous
equation can be rewritten as follows:

gt−1(x(t−1), µ) = It[gt(x(t), µ)]+Mt[gt(x(t), µ)], (19)

and, thus, at the time t − 1:

gt−2(x(t − 2), µ)

= It−1[It[gt(x(t), µ)]] + It−1[1]Mt[gt(x(t), µ)]

+ Mt−1

[

It[gt(x(t), µ)] + Mt[gt(x(t), µ)]
]

,

(20)

using the linearity of I and the fact that Mt[gt(x(t), µ)]
is a function of µ only. Hence, (18) can be decomposed
as

I0[I1[. . . It[·]]] + I0[1]M1[·] + I0[I1[1]]M2[·]+

+ · · · + I0[I1[. . . It−1[1]]]Mt[·] + M0

[

I1[. . . It[·]]

+ M1[·] + I1[1]M2[·] + · · · + I1[. . . It−1[1]]Mt[·]
]

,

(21)

where, for the sake of notation, the arguments of the
operators have not been made explicit, but can be re-
covered from (19)–(20). The operators I0 and M0 are
slightly different from Ik and Mk, for k > 0, as it can
be seen from (18). Let us give some comments on (21).
The term I0[I1[. . . It[·]]] is equal to

ν(δ)tǫxǫt
w

t
∏

k=1

N (ỹ(k);CAx̂(k − 1),S(k))
∫

x(t)

gt(x(t), µ) N (x(t); x̂(t),P(t)),
(22)

where S(k) = R+CP(k|k− 1)C′, x̂(k), P(k), P(k|k−
1) = AP(k)A′ +Q, and can be calculated by using the
KF from the prior N (x(0); x̂(0),P(0)). This gives the
solution of the estimation problem in the precise case,
i.e. ǫx = ǫw = 1. The generic term Ii[Ii+1[. . . Ij−1[arg]]]
with argument [arg] equal to gt(x(t), µ), for 1 ≤ i < j =
t, or to 1, for 1 ≤ i < j < t, is

ν(δ)j−iǫj−i
w

∫

x(i)

. . .
∫

x(j−1)

[arg]

N (x(i);Ax(i − 1),Q)N (ỹ(i);Cx(i),R)
· · · N (x(j − 1);Ax(j − 2),Q)N (ỹ(j − 1);Cx(i),R).

(23)
By applying the matrix inversion lemma, Eq. (23) can

be simplified as follows:

ν(δ)j−iǫj−i
w N (ỹ(i);CAx(i − 1),W1)

·
j−1
∏

k=i+1

N (ỹ(k);CAx̂∗(k − 1),S∗(k))
∫

x(j−1)

[arg] N (x(j − 1); x̂∗(j − 1),P∗(j − 1)) dx(j − 1),

(24)
where W−1

1 = R−1+CQ−1C′ and x̂∗(k), P∗(k), S∗(k)
can be calculated by using the KF starting from the
prior N (x(i);W2Q

−1Ax(i − 1) + W2C
′R−1ỹ(i),W2)

with W−1
2 = Q−1 + C′R−1C. For [arg] = 1 the inte-

gral in (24) marginalises and is equal to 1. The terms
I0[I1[. . . Ij [1]]], with 0 < j < t, are equal to

ν(δ)jǫxǫj
w

j
∏

k=1

N (ỹ(k);CAx̂∗(k − 1),S∗(k)). (25)

Note that the constants ν(δ) can be dropped out to
solve (21). In the sequel, we refer to the algorithm pre-
sented in this section as the Linear Gaussian-Vacuous
Mixture filter (LGVM).

6 Numerical example
We have performed Monte Carlo simulations in order

to show the basic features of the LGVM filter presented
in the previous section. These simulations compare the
performance of the LGVM with the KF, considering
non-Gaussian situations. The one-dimensional model

{

x(t + 1) = x(t) + wǫ(t)
y(t) = x(t) + v(t)

has been considered, where wǫ(t) = ǫww(t) + (1 −
ǫw)n(t), w(t) ∼ N (0, Q), x(0) = ǫxx̂(0) + (1 − ǫx)u(t),
x̂(0) ∼ N(0, P (0)) and v(t) ∼ N(0, R). Note that, in all
simulations, both the LGVM and the KF were designed
without assuming the knowledge of the contaminating
terms n(t) and u(t). The aim is to investigate the rel-
ative sensitivity of the KF and the LGVM to (heavy
tailed) disturbances of the nominal Gaussian density.
The performance of the filters has been investigated
considering different values of the epsilons and different
distributions for the contaminating terms. A trajectory
of 15 timesteps and a Monte Carlo size of 100 runs are
considered. The following cases have been simulated

Case ǫw PDF for n Q R/Q
1 0.95 5δ(7)/(1 − ǫw) 0.1 1
2 0.95 5δ(7)/(1 − ǫw) 0.1 0.1
3 0.9999 5δ(7)/(1 − ǫw) 0.1 1
4 0.95 N (0, 125) 0.1 1

where δ(k) is 1 when the time t is equal to k and 0
otherwise and ǫx was fixed to 1. In the cases 1–3, the
trajectory undergoes a jump of 5 units at the time in-
stant t = 7. This can be interpreted as an unmodelled



manoeuvre. For these cases, the simulation results are
shown in Figures 1–3 for a fixed trajectory, i.e., Monte
Carlo runs have been performed only w.r.t the mea-
surement’s noise realisations. The figures report the
true trajectory (TS), the averaged KF’s estimate (KF)
and the relative 99% credibility interval (Cred KF), the
averaged lower (LP) and upper (UP) means and the
IP version of credibility interval (Cred IP) as defined
in Section 4.1. From Figure 1, it can be noticed that
from time 1 to time 6 the KF and the LGVM provide
more or less the same credibility interval and the upper
and lower means are almost equal and coincide with
the KF estimate. At the jump’s instant, t = 7, the
KF estimate is wrong, since the 99% credibility inter-
val does not include the true state. This shows that
the KF is not robust to large model errors. On the
other hand, the LGVM correctly detects the jump and
it is able to enlarge the credibility interval in order to
include the true state. Notice also that the difference
E(x(t))−E(x(t)) is related to the imprecision present in
the system. From the instant t = 8 to the end, the true
trajectory enters again inside the KF credibility region,
since no more jumps occur. Also the LGVM converges
towards the true state as it can be seen from the re-
duction of the size of the credibility interval. However,
the convergence rate is slower than that of the KF and
depends on the variance-ratio R/Q, as it can be seen
comparing Figures 1–2, and on the value of ǫw as it can
be seen comparing 1 and 3. Since the LGVM is able
to deal with all possible contaminating distributions,
its slow convergence is expected also for ǫw = 0.95. In
fact, the set of possible contaminating includes also den-
sities close to Dirac functions, i.e., distributions with
zero variance. These are the most difficult contamina-
tions to be filtered out, since they encode a very strong
information which needs “several” measurements to be
falsified. Conversely, contaminating distributions with
large variance are easily filtered out, since the filters
prefer the measurements to the information encoded
by these distributions. About Figure 3, the fact that
LVGM is still robust when ǫw = 0.9999 is due to the
fact that, at time t = 7, the prediction of the KF is so
far from the measurement that the value of the precise
term (22) is much smaller than the values of the other
terms in (25). These results thus show that the LGVM
filter outperforms the KF performance when a small
value of ǫw is selected. In fact, in these cases, LGVM is
still robust to unmodelled errors and preserves the fast
convergence rate of the KF. Obviously, at the increasing
of ǫw → 1 there is a value of ǫw for which LGVM and
KF almost coincide. In case 4, the contaminating term
is a Gaussian with zero mean and variance 125. Thus,
the noise wǫ is normal-distributed with zero mean and
variance Qw = ǫ2wQ + (1 − ǫw)2125 ≈ 0.4. The width
of the IP version of the 99% credibility interval has
been compared with the true 99% credibility interval
based on Qw = 0.4. The average ratio between the size

of the two intervals are listed hereafter 0.8723(t = 1),
1.008(t = 2), 1.0027(t = 3) and it converges to 1 af-
ter t > 3. Thus, although the LGVM does not know
the contaminating term is able to correctly determine
the width of the credibility interval, while the KF can
only underestimate its size. Finally, notice that the
example discussed here could be generalised to the n-
dimensional case. From the practical point of view, the
most difficult aspect would be the computation of the
operators Mk whose calculation requires the solution of
a minimisation over a vector instead of a scalar.
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Figure 1: Case 1: ǫw = 0.95, R/Q = 1.

7 Conclusions

In this paper, we have proposed an extension of Hid-
den Markov Models that allows for imprecision in our
knowledge about the elements of the model, and is ar-
guably more realistic in practical situations. We have
also shown, in a practical case, that our extension out-
performs the Kalman filter when modelling errors are
present in the system. As future prospects, we intend
to deepen the comparison with the classical results and
to investigate in detail the modelling by means of 2-
monotone lower previsions and the truncated recursions
discussed in Section 4. Furthermore, we intend to in-
vestigate the extension of LGVM to the case where the
contaminating distributions are unimodal and/or sym-
metric. Finally, we plan to generalise the example dis-
cussed in Section 6 to the n-dimensional case.
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Figure 2: Case 2: ǫw = 0.95, R/Q = 0.1.
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Figure 3: Case 3: ǫw = 0.9999, R/Q = 1.

Appendix: Coherence results
In this appendix, we prove that the joint and the con-

ditional lower previsions we consider in this paper sat-
isfy the property of coherence introduced in Section 3.
To simplify a bit the notation, let Z1 = X0 and let us
define, for every j ∈ {1, . . . , n}, Z2j+1 = Yj , Z2j = Xj .
Let Zk be the corresponding possibility space for Zk.
Then the previous assessments can be expressed as

EZ1
(·), EZ2

(·|Z1), EZ2j+1
(·|Z2j), j = 1, . . . , n,

EZ2k
(·|Z2k−2), k = 2, . . . , n. (26)

Here the domain of EZ2j+1
(·|Z2j) is the set of Z2j,2j+1-

measurable gambles, and the domain of EZ2j
(·|Z2j−2)

is the set of Z2j−2,2j -measurable gambles. We shall
also use the notation Zk = Z1 × · · · × Zk for the prod-
uct random variable that takes values in the product
space Zk = Z1 × · · · × Zk. In the language of coher-
ence graphs [6], the collection of conditional lower pre-
visions in Eq. (26) is A1+-representable: each variable
Zj , j = 1, . . . , 2n + 1, appears exactly one time on the
left hand side of the conditioning bar, and moreover
Zj is a predecessor of Zk if and only if k > j. As a
consequence, we can apply [8, Theorem 2] and deduce
that they are coherent with their strong product E on
L(Z2n+1). What we set out to prove is that this strong
product is precisely the joint lower prevision S we have
constructed in Eq. (11). For every j = 3, . . . , 2n+1, let
us define the conditional lower prevision Q

Zj
(·|Zj−1)

on the set of Zj-measurable gambles by

Q
Zj

(f |z) =

{

EZj
(f(z, ·)|πj−1(z)) if j odd

EZj
(f(z, ·)|πj−2(z)) if j even,

for every Zj-measurable gamble f and every z ∈ Zj−1.
Let πj = π1,...,j to simplify the notation. If we also let
h(j) be equal to j−1 if j is odd, and equal to j−2 if j is
even, we would have Q

Zj
(f |z) = EZj

(f(z, ·)|πh(j)(z))

for every Zj-measurable gamble f and every z ∈ Zj−1.
Let us show that Q

Zj
(·|Zj−1) is separately coherent for

every j = 1, . . . , 2n + 1. This is trivial for j = 1, 2,
so let us consider j ∈ {3, . . . , 2n + 1}. Since the do-
main of Q

Zj
(·|Zj−1) is a linear space of gambles for

all j ∈ {1, . . . , 2n + 1}, separate coherence is equiva-
lent to conditions (SC1)–(SC3) in Section 3. It is not
difficult to show that these conditions follow as a conse-
quence of the separate coherence of EZj

(·|Zπh(j)
). The

lower previsions Q
Zj

(·|Zj−1), j = 1, . . . , 2n + 1, satisfy

the hypotheses of the Generalised Marginal Extension
Theorem [4, Th. 4]. Hence, their marginal extension is
given, for any gamble f on Z2n+1, by

E(f) = Q
Z1

(Q
Z2

(. . . (Q
Z2n+1

(f |Z2n)) . . . |Z1))

and this coincides with the joint constructed in Eq. (11).
The same theorem also implies that E is the small-
est coherent lower prevision which is coherent with
Q

Zj
(·|Zj−1), j = 1, . . . , 2n+1. Let us now assume that

E(z) > 0 for every z ∈ Z3 × · · · × Z2n+1, and define
EZ2n

(·|Z3, Z5, . . . , Z2n+1) from E using regular exten-
sion. In the notation used in Section 4, this corresponds
to defining EXn

(·|Y1, . . . , Yn). From the comments af-
ter [8, Def. 2], E is not only the marginal extension
of Q

Zj
(·|Zj−1), j = 1, . . . , 2n + 1, but also their strong

product: this follows from the fact that, in the notation
of [8, Def. 2], Ak ∪Ik = Ik for all k = 1, . . . , 2n+1. Ap-
plying [8, Th. 3], we deduce that E, Q

Zj
(·|Zj−1), j =

1, . . . , 2n + 1, EZ2n
(·|Z3, Z5, . . . , Z2n+1) are coherent.
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