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Abstract. We deal with the arbitrariness in the choice of the prior
over the models in Bayesian model averaging (BMA), by modelling prior
knowledge by a set of priors (i.e., a prior credal set). We consider Dash
and Cooper’s BMA applied to naive Bayesian networks, replacing the
single prior over the naive models by a credal set; this models a con-
dition close to prior ignorance about the models, which leads to credal
model averaging (CMA). CMA returns an indeterminate classification,
i.e., multiple classes, on the instances for which the learning set is not
informative enough to smooth the effect of the choice of the prior. We
give an algorithm to compute exact credal model averaging for naive
networks. Extensive experiments show that indeterminate classifications
preserve the reliability of CMA on the instances which are classified in
a prior-dependent way by BMA.
Keywords: Credal model averaging, Bayesian model averaging, impre-
cise probabilities, naive Bayes, classification, naive Bayesian networks.

1 Introduction

In the last ten years, data mining and statistical research has been paying in-
creasing attention to the question of model uncertainty. Loosely speaking, model
uncertainty refers to a situation where more than one model is consistent with
the available data. Many researchers have argued, both theoretically and empir-
ically, that taking such an uncertainty into account leads to improved inference
(see [1] for a recent overview). In this context, Bayesian model averaging (BMA)
[2] has proven to be an effective way to deal with model uncertainty.

BMA is based on a very simple observation: that the posterior probability
for an event of interest given the data, say P (X = x|d), can be re-written (in
the case of finitely many models) as

P (X = x|d) =
l∑

j=1

P (X = x|Mj ,d)P (Mj |d), (1)



thus making explicit its dependency on the possible model Mj ; in particular,
P (Mj |d) = P (d|Mj)P (Mj)/P (d) formalizes how much one should trust each
model after having observed the data if the prior beliefs were P (Mj).1

Despite BMA being a sound approach to deal with model uncertainty, it
gives rise to challenges, such as the fact that the exhaustive sum in Eq. (1) can
become intractable because of the number of models, thus requiring to adopt
approximate solutions which are in general computationally expensive.

Another important issue concerns the arbitrariness inherent in the choice of
the prior over the models; in fact, the results produced by BMA can be sensitive
to such a choice. Traditionally, a very common choice is to adopt a uniform prior
over the models; this, however, can be criticized from different standpoints (see
for instance the discussions in the rejoinder of [2]). Alternatively, in [3] a prior
is adopted which favors simple models over complex ones. Although all these
choices are reasonable in some situation, it is more difficult to justify their use
in general. The problem is that the specification of any single prior implies some
arbitrariness, which entails the risk of drawing prior-dependent conclusions that
may be fragile. In fact, the way the prior over the models should be specified is
a serious open problem of BMA.

In this paper we focus in particular on pattern classification, where BMA is
often related to feature selection. In fact, given a set of N feature variables, one
can design 2N different subsets of feature variables; feature selection is indeed
concerned with selecting the supposedly best subset of the feature variables,
which corresponds to a supposedly best classifier. An appealing alternative to
the selection of a single classifier is to use BMA to average over all the 2N

classifiers.
This avenue has been taken by Dash and Cooper, who focused in particular

on Bayesian networks [4]. In case of naive networks, in particular, their approach
allows one to compute BMA exactly and efficiently, as their algorithm does not
introduce any approximation and has complexity O(N). Moreover, Dash and
Cooper show that exact BMA over the 2N naive networks can be implemented
by a single summary naive network. Yet, they do not discuss the problem of
the sensitivity to the prior, nor does so a subsequent approach that implements
another form of averaging for naive nets [3].

Our standpoint is that solving the problem of the prior in BMA may re-
quire to drop the idea of specifying a unique, precise prior, and to model instead
prior knowledge by a set of priors; such a set is referred to as the credal set. In
Section 2.3 we extend Dash and Cooper’s BMA to imprecise probability [5], sub-
stituting the single prior by a credal set. We call the resulting approach credal
model averaging (CMA). While traditional non-informative priors model a con-
dition of indifference between the different models, the prior that we define for
CMA models a condition close to prior ignorance by expressing very weak beliefs
a priori about the relative credibility of the 2N naive nets. Then we use Dash
and Cooper’s algorithm to efficiently turn each precise prior in the credal set

1 The more traditional approach to inference that considers only one model Mj̄ as
possible is indeed recovered when P (Mj̄) = 1.



into a posterior. The set of posteriors obtained in this way is referred to as the
posterior credal set.
Having multiple posteriors instead of one leads to a generalized form of classi-
fication that we have called credal classification in some previous work [6,7]. In
particular, CMA returns a determinate classification, i.e, a single class, only if
the probability of such a class is larger than that of any other for all the precise
posteriors in the posterior credal set. Otherwise, if different classes are found to
be the most probable, depending on the specific posterior considered from the
posterior credal set, CMA returns an indeterminate classification, i.e., multiple
classes. We call ‘hard to classify’ the instances in the test set that give rise to
indeterminate classifications, meaning that the learning set is not informative
enough about them (in order to smooth the effect of all the priors in the credal
set in favor of a single class). We expect Dash and Cooper’s BMA to behave
unreliably on the instances recognized as hard by CMA, as their classification is
prior-dependent indeed.
In Section 3 we investigate this point empirically using 31 data sets from the UCI
repository. We split the test instances according to whether they are deemed to
be hard or not by CMA. Then we evaluate the predictive performance of BMA
separately on the two types of instances. What we observe is indeed a striking
drop in the predictive accuracy of BMA moving from the instances that are not
hard to the others. The drop is observed on every data set we consider, with no
exception. Moreover, we show indeterminate classification to be valuable, as they
are informative (they return on average only a minority of the classes, not all of
them) and reliable (they do contain the actual class with very high frequency).
Summing up, extensive experiments show that CMA is a more robust approach
than BMA.
Moreover, CMA implements an idea of model averaging that overcomes the ar-
bitrariness in the choice of the prior in a novel way, which could be used more
generally than what we do here. In fact, CMA leads very naturally to classifi-
cation robustness. This is achieved, in particular, by relying on the paradigm
of credal classification, which has already proven to be suitable for data mining
purposes: in a recent work [7], we have extended naive Bayes to imprecise prob-
abilities, in order to deal robustly with the specification of the prior density over
the parameters of the model and with the treatment of missing data, achieving
a remarkable reliability improvement compared to naive Bayes. Hence, in our
view, allowing classifiers to give weaker answers than the determinate ones we
are used to in classification may enhance the overall classification reliability.

2 Credal model averaging

In the following section we show how we extend the BMA framework of Dash
and Cooper [4] to manage a set of priors over the models. Our setting is in fact
characterized by the same assumptions of Dash and Cooper and by a similar
notation.



2.1 Setup

We consider a supervised classification problem; there is a vector of N feature
variables F := (F1, F2, . . . , FN ) and a set of Nc classes C := {c1, c2, . . . , cNc

}. The
i-th instance of the data set d is the pair (fi, ci), where fi := (f1i, f2i, . . . , fNi)
is the instance of the feature variables in the instance under consideration. The
data set contains n instances, generated by an independently and identically
distributed mechanism.

We consider a Bayesian network with N+1 nodes, i.e., a single class node and
N feature nodes; we assume the network to be naive, i.e., a feature node is either
linked to the class or it is isolated. We denote by X the collection of nodes of
the network; they are indexed by i so that X0 := C, while, for i 6= 0, Xi := Fi.
Moreover, the class node has no parent. A certain layout of the network, in
which certain feature nodes are linked to the network and the remaining ones
are isolated, is referred to as a graph. Given the N feature variables, we can
hence design 2N different graphs.

All feature variables are assumed to be categorical ; i.e., each node Xi rep-
resents a categorical random variable with ri possible states. In practice, this
requires to discretize the numerical features before inducing the classifier.

We denote by θijk the physical probability (or chance), about which we are
uncertain, of Xi to be in state k when the parent node is in state j. The vector
θij (made of ri elements) contains hence the chances of the states of node i
conditional on the j-th state of the parent; finally, θ collects all the vectors θij ,
i.e., it contains all the parameters of the network.

We take a Dirichlet density Dir(αij1, αij2, . . . , αijri
) as prior over each vector

θij , with α(·) > 0. We adopt the following setting: for the i-th feature node, we
set αijk = 1/(Nc · ri). For the class node, we set2 α = 1/Nc.

As usual with Bayesian networks, we assume moreover parameter indepen-
dence and moreover we assume the data set to be complete, i.e., without missing
data.

2.2 Overview of Dash and Cooper’s BMA

In this section we briefly recall Dash and Cooper’s approach to BMA. Let us
denote by G the set of the 2N graphs which can be designed given the N feature
variables, and by g a generic graph in G. BMA computes a weighted average of
the probabilities produced by all the graphs as follows:

P (X = x|d) =
∑
g∈G

P (X = x|g,d)P (g|d) ∝
∑
g∈G

P (X = x|g,d)P (d|g)P (g), (2)

where P (X = x|g,d) is the posterior probability of the instance to classify
assuming that the underlying graph is g (in which some feature variables are
2 To be more precise, the parameter referring to the class node should be denoted as
α00k.



linked to the class and some others are isolated), P (d|g) represents the (so-
called marginal) likelihood of graph g and P (g) represents the prior probability
of graph g. The last relation in Eq. (2) is due to Bayes’ rule.

Let us give the explicit form for the first term in the sum:

P (X = x|g,d) =
N∏

i=0

θ̂iJK :=
N∏

i=0

αiJK + niJK

αiJ + niJ
. (3)

Here the coefficients nijk are counts collected from the data set that report how
many times feature variable i is in state k when its parent is in state j; coefficients
αijk refer instead to the Dirichlet densities introduced in Section 2.1. Moreover,
nij :=

∑
k nijk and αij :=

∑
k αijk. The uppercase letters J and K denote the

specific states of nodes and parents which have been read off from vector x.
In practice, the coefficients nijk are computed differently depending on whether

they refer to the class, to a feature node linked to the class or to an isolated fea-
ture node. In particular:

– for the class node, n0jk has the meaning of class frequency, i.e., it indicates
how many times class k occurs in the training set; at the denominator, n0j

corresponds to the data set size n. Note that the value of θ̂0jk is the same
for all graphs;

– for feature nodes linked to the class, nijk represents a conditional frequency,
i.e., it indicates how many times in the training set feature variable i assumes
value k while the class has value j; at the denominator, nij represents the
total occurrences of class j in the training set. Given a feature Xi (i 6= 0),
θ̂ijk has the same value for all graphs in which Xi is linked to the class node;
let us denote this quantity by θ̂C

ijk;
– for isolated feature nodes, nijk represents an unconditional frequency, i.e., it

indicates how many times feature variable i assumes value k in the training
set; at the denominator, nij corresponds to the data set size n. Given a
feature Xi (i 6= 0), θ̂ijk has the same value for all graphs in which node Xi

is isolated; let us denote this quantity by θ̂∅ijk.

The coefficients α(·) can be interpreted in the same way of coefficients n(·),
provided that they are regarded as referring to the so-called hypothetical sample
rather than to the actual data set.

Let us now consider the marginal likelihood. We have:

P (d|g) =
N∏

i=0

Mi :=
N∏

i=0

 qi∏
j=1

Γ (αij)
Γ (αij + nij)

ri∏
k=1

Γ (αijk + nijk)
Γ (αijk)

 , (4)

where the coefficients α(·) and n(·) have the meaning already discussed. Hence,
M0 is a fixed value for all the graphs, while Mi (i 6= 0) is a fixed value MC

i for
all the graphs in which Xi is linked to the class, and another fixed value M∅i for
all the graphs in which Xi is isolated. Let iC and as i∅ denote the set of indexes



to feature variables which in graph g are respectively linked to the class node
and isolated. We can eventually express Eqs. (3) and (4) in a more compact way
as

P (X = x|g,d) = θ̂0
∏
i∈iC

θ̂C
iJK

∏
i∈i∅

θ̂∅iJK , (5)

P (d|g) = M0

∏
i∈iC

MC
i

∏
i∈i∅

M∅i . (6)

(7)

Concerning the prior over the graphs, corresponding to the term p(g) in
Eq. (2), Dash and Cooper require it to be a modular prior, which means it
should also factorize into a product of N +1 terms, each one corresponding to a
node. Then they do not detail the prior any further, much probably because they
use a flat prior that cancels out of the calculations. Since this will not be our
case, we give here a few more details about the prior. Call pi the probability that
node i is connected to a parent.We design a modular prior by simply requiring
that

P (g) =
∏
i∈iC

pi

∏
i∈i∅

(1− pi), (8)

and in addition that p0 = 0, because we know that the class variable has always
no parents. Note that to recover the flat prior over the graphs, it would be
sufficient to set pi := 0.5 for all i = 1, . . . , N .

We are finally in the condition to write an explicit formula for P (X = x|d).
Let us introduce the following quantities (which are all positive):

ρ0K := θ0JKM0,

ρC
iJK := θC

iJKM
C
i ,

ρ∅iK := θ∅iJKM
∅
i , (9)

where we have dropped index J in the definition of ρ0K and ρ∅iK ; in fact, these
quantities refer to the class node and to the isolated feature nodes, which have
no parents. It turns out then that

P (X = x|d) ∝ ρ0K ·
N∏

i=1

[
(1− pi)ρ∅iK + piρ

C
iJK

]
. (10)

This way of expressing P (X = x|d) is an achievement from Dash and Cooper
that is particularly important for computations: in fact, it means that once
the ρ(·) coefficients have been computed, Eq. (10) is computed in O(N) time,
without the need for implementing the 2N models and without introducing any
approximation. Dash and Cooper also show that computing BMA according to
Eq. (2) is equivalent to implementing a single summary network characterized
by a new vector θ̂∗; assuming to adopt a uniform prior over the graphs, it holds
that for i = 0, θ̂∗0JK ∝ ρ0K and, for i 6= 0, θ̂∗iJK ∝ (ρC

iJK + ρ∅iK).



2.3 Extension of BMA to imprecise probabilities

We extend BMA to imprecise probabilities by considering a set P of priors over
the graphs, instead of a single prior; P is referred to as prior credal set. Before
detailing the construction of the prior credal set, let us consider the motivations
behind such a choice and some of its consequences.

A major motivation behind using a credal set rather than a single prior
is related to modeling prior ignorance. The point is that by a single prior it
is possible to model indifference; in order to model ignorance, one should use
a credal set.3 Therefore credal sets allow us to express more satisfactorily the
fact that initially we do not know about the relative credibility of the models;
this naturally makes the resulting classifier more robust than BMA. Indeed,
especially when the learning set is small, the class returned by BMA may well
vary depending on the specification of the prior over the graphs; in this case, the
classification is defined as prior-dependent and its reliability is questionable. On
the other hand, since CMA considers a set of priors as possible, it is aware by
construction that some classifications may change with the choice of the prior
in the credal set, and this enables it to keep reliability. The way this is done in
practice is related to the definition of the optimality criterion for the classes in
the imprecise setting.

Let us recall that a Bayesian classifier returns as optimal prediction the class
with the highest probability (in the case of 0-1 loss function), identified on the
basis of a uniquely computed posterior, derived from a unique prior. In the im-
precise probability setting, one specifies a set of priors that is turned into a set of
posteriors by element-wise application of Bayes’ rule. According to Section 3.9.2
of [5], the optimality criterion in this case is to return all the non-dominated
classes. The definition of dominance is as follows: class c1 dominates c2 if for all

IDENTIFICATION OF NON-DOMINATED CLASSES

1. set NonDominatedClasses := C;
2. for class c′ ∈ C

– for class c′′ ∈ C, c′′ 6= c′

• if c′′ is dominated by c′ (to be assessed via the below procedure), drop c′′

from NonDominatedClasses;
• exit;

– exit
3. return NonDominatedClasses.

Fig. 1. Identification of non-dominated classes via pairwise comparisons.

3 Yet, complete prior ignorance is not compatible with learning, see Section 7.3.7 of
[5]. This issue is re-considered later in this section when we define the credal set.



the computed posteriors, the probability of c1 is greater than that of c2; hence,
c2 is non-dominated if no class dominates c2.

A key point is that there can be several non-dominated classes; in this case,
the classifier returns an indeterminate (or set-valued) classification. Classifiers
that issue set-valued classifications are called credal classifiers in [6]. Summing
up, a credal classifier will become indeterminate on the instances whose classifi-
cation would be prior-dependent when a single prior is used; on these instances,
it will return all the non-dominated classes as a way to maintain reliability. It
is important to realize that non-dominated classes are incomparable; this means
that there is no information in the model that allows us to rank them. In other
words, credal classifiers are models that allow us to drop the dominated classes,
as sub-optimal, and to express our indecision about the optimal class by yielding
the remaining set of non-dominated classes.

Let us focus now in particular on the test of dominance; let x1 := (f , c1) and
x2 := (f , c2). We say that class c2 is dominated by c1 if and only if

P (x1|d) > P (x2|d) ∀P ∈ P,

or, equivalently,4 if and only if

P (x1|d)
P (x2|d)

=
P (x1,d)
P (x2,d)

> 1 ∀P ∈ P,

which, taking Eq. (2) into consideration, can be finally re-written as

inf
P∈P

∑
g∈G P (x1|g,d)P (d|g)P (g)∑
g∈G P (x2|g,d)P (d|g)P (g)

> 1. (11)

A procedure to determine all the non-dominated classes via pairwise comparisons
is shown in Figure 1.

Prior credal set We are finally ready to define the prior credal set. Let us
focus on pi, that is, the probability that feature variable i is connected to the
class. Remember that we want to model a condition of prior ignorance about the
actual graph, among the 2N possible ones, giving rise to the data. Since we are
ignorant a priori, this means that for each feature variable, we ignore whether it
is linked or not to the class. In turn, this means that our probability pi for the
related arc should lie in [0, 1]. We can therefore construct the credal set P by
considering the set of all the mass functions defined as in (8) that are obtained
when each pi, i = 1, . . . , N , is subject to the constraint 0 < pi < 1 (and, as
before, p0 = 0). However, it can be checked that this choice does not allow us to
learn from data about the relative credibility of the models. Broadly speaking,
this is a relatively well-known phenomenon (e.g., something similar was noticed
in [8, Section 3] in the case of feature selection); the intuition here is that the
modeled condition is of such deep ignorance a priori that no amount of data
4 If the denominator is positive, which is always the case in this paper.



would be able to make us get out of such a state. For this reason, we need to
consider a slightly smaller credal set as defined by the following constraints:

pi = 0 if i = 0,
ε ≤ pi ≤ 1− ε if i 6= 0, (12)

where ε is a small number in (0, 0.5), which we will set to 10−5 in our experi-
ments.5 By this simple consideration, we model a condition that is still close to
ignorance but that at the same time enables us to learn.

Two final remarks are worth making. One is that when CMA is determinate,
it returns the same class as BMA. This is the consequence of two facts: that
(a) CMA returns a determinate output when a certain class dominates all the
remaining ones, under all the priors of the credal set; and that (b), the credal
set includes the flat prior adopted by BMA (remember that it is actually char-
acterized by pi = 0.5 for all the feature variables). Therefore, BMA and CMA
achieve the same accuracy on the subset of instances determinately classified by
CMA, and whose classification is prior-independent.

The second remark is that CMA will converge to BMA with increasing sizes
of the learning set. This follows because all the precise priors in the prior credal
set will converge towards a single posterior with more and more data. Therefore
in the limit, CMA will yield a traditional classifier that always issues determinate
classifications.

2.4 CMA computation

Recalling Eqs. (10) and (11), and letting p := (p1, . . . , pN ), the CMA test of
dominance for classes c1 and c2 can be written as follows:

min
P∈P

∑
g∈G P (x1|g,d)P (d|g)P (g)∑
g∈G P (x2|g,d)P (d|g)P (g)

= min
p

ρ01

ρ02

N∏
i=1

[
(1− pi) ρ∅iK + piρ

C
i1K

][
(1− pi) ρ∅iK + piρC

i2K

] . (13)

Note that the function in (13) can be globally minimized by minimizing
independently each term of the product, i.e., by minimizing independently over
each pi. The minimization problem to be solved for a single pi is

min
pi

[
(1− pi) ρ∅iK + piρ

C
i1K

][
(1− pi) ρ∅iK + piρC

i2K

] = min
pi

pim1 + a

pim2 + a
= min

pi

f(pi), (14)

where
a := ρ∅iK , m1 := ρC

i1K − ρ∅iK , m2 := ρC
i2K − ρ∅iK (15)

and subject to the constraint ε ≤ pi ≤ 1 − ε. This is an easy problem because
the derivative of the function in (14), which is

∂f

∂pi
=
a(m1 −m2)
(pim2 + a)2

,

5 We have not tried to optimize this parameter, we have chosen it very small once for
all just to create a credal set close to that modeling ignorance.



is a ratio with positive denominator, as it follows from Eqs. (9) and (12). It
follows that:

– if m1 > m2, the derivative is positive over the interval (ε, 1− ε); the function
is minimized by setting pi := ε;

– if m1 < m2, the derivative is negative over the interval (ε, 1−ε); the function
is minimized by letting pi := 1− ε;

– if m1 = m2, the function is constant.

These three rules define the graph over which CMA will concentrate the prior
probability when testing whether c1 dominates c2; hence, if P (c1|d)/P (c2|d) > 1
under this prior, the same will happen under all the remaining priors of the credal
set, and hence class c2 can be safely dropped.

As a side remark, let us note that (m1 − m2) = (θ∗i1K − θ∗i2K). Hence, the
architecture over which CMA concentrates the mass when testing whether c1
dominates c2 can be defined also in an alternate way, i.e., feature Xi is linked
to the class node if and only if its addition decreases the ratio P (c1|d)/P (c2|d)
computed by the BMA summary network. It also interesting to note that CMA
has the freedom to change architecture depending on the specific pair of classes
that are compared.

Software availability The software implementing CMA has been realized
in Java; we plan to release the package soon under the GNU GPL license.
Sources, binaries and documentation (both user manual and sources documen-
tation in javadoc format) will be available from the website http://www.idsia.
ch/~giorgio/jncc2.html. Meanwhile, it is possible to obtain the software by
contacting the authors by e-mail.

3 Experiments

We present the results obtained on 31 data sets from the UCI repository. The
data sets cover a wide spectrum of conditions in terms of number of instances
(min: 57, labor; max: 4601, spambase), number of feature variables (min: 3,
haberman; max: 69, audiology) and number of classes (up to 24, audiology).
On each data set, the classifiers have been evaluated via 10 runs of 10 folds
cross-validation. Numerical features have been discretized via MDL-based dis-
cretization [9]; in each training/test experiment, the discretization intervals have
been computed on the training set and then applied unchanged on the test set.

Some questions of interest are then: is CMA truly able to isolate instances
which are hard to classify for BMA? How does BMA behave on the instances
which are classified determinately and indeterminately by CMA? Are indeter-
minate classifications informative and reliable?

We start our analysis by measuring the accuracy of BMA on the instances
classified determinately and indeterminately by CMA; these two indicators are



Dataset Accuracies
BMA BMA BMA CMA
(Avg.) (Cma D) (Cma I) Determ.

anneal 97.9% 98.7% 71.2% 97.3%
audiology 73.5% 99.5% 63.7% 27.0%
autos 66.7% 81.3% 31.7% 70.8%
balance-scale 72.8% 72.8% n.a 100.0%
breast-cancer 74.9% 83.4% 68.0% 44.9%
c-14-heart-disease 83.0% 85.8% 60.9% 88.3%
cmc 50.3% 58.5% 39.4% 57.7%
credit-rating 85.5% 90.1% 51.8% 88.0%
german_credit 73.7% 87.1% 61.7% 46.9%
glass 71.1% 71.4% 60.3% 98.8%
haberman 71.8% 77.2% 50.8% 81.4%
heart-statlog 83.1% 85.1% 53.0% 93.6%
hepatitis 84.3% 95.6% 72.3% 51.4%
horse-colic 81.2% 86.2% 58.2% 82.1%
h-14-heart-disease 84.3% 85.6% 64.9% 94.2%
ionosphere 89.9% 89.9% n.a 100.0%
iris 93.7% 93.7% n.a 100.0%
kr-vs-kp 88.0% 93.7% 60.5% 82.9%
labor 86.9% 98.6% 82.3% 32.2%
liver-disorders 57.4% 60.0% 48.9% 80.1%
lymphography 81.1% 96.1% 73.5% 33.3%
pima_diabetes 75.7% 77.3% 37.2% 95.8%
segment 92.5% 92.5% 60.0% 99.9%
soybean 91.9% 95.8% 26.3% 94.2%
spambase 89.8% 89.8% n.a. 100.0%
vote 90.2% 90.2% 75.0% 99.8%
wisc-breast-cancer 97.1% 97.1% n.a 100.0%
yeast 57.2% 57.2% 29.5% 99.9%
zoo 96.4% 98.1% 65.1% 94.2%
primary-tumor 36.8% 83.4% 25.9% 19.0%
contact-lenses 87.3% 100.0% 85.7% 22.2%
average 79.6% 86.2% 54.7% 75.9%

Table 1. Comparison of BMA and CMA on 31 UCI data sets. Note that the indicator
BMA(CMA I) is not available for those data on which CMA achieves 100% determinacy.



denoted respectively by BMA(CMA D) and BMA(CMA I). If CMA is able to
recognize instances that are hard to classify, we should observe a significant drop
of BMA accuracy between the former and the latter set of instances.

These results are shown in Table 1, which also reports, to complement the
information, the average accuracy of BMA. On average, there is a drop of 32
points between BMA(CMA D) and BMA(CMA I); moreover, on every data set
we clearly observe that BMA(CMA D) is strictly larger that BMA(CMA I);
hence, we can safely state that CMA isolates instances that are hard to classify
and where, as a consequence, BMA becomes less reliable.

On the other hand, CMA reacts to the hard instances by returning indetermi-
nate classifications. Another point of interest is hence to evaluate the informative
content of the indeterminate classification; this can be properly assessed only on
data sets with at least three classes, since, on data sets with two classes, in-
determinate classifications contain all the classes.6 Excluding hence data sets
with two classes from the analysis, we have measured on average that set-valued
classifications return 35% of the classes of the data set, dropping hence 65% of
them; therefore, they convey significant information. Moreover, set-valued clas-
sifications are very reliable; in fact, they contain the actual class in 90% of cases.
Summing up, CMA is able to detect hard instances where the accuracy of BMA
drops indeed; on these instances, indeterminate classifications preserve the relia-
bility of CMA, by conveying reliable information, without however drawing too
strong conclusions.

A further important indicator of performance is the determinacy of CMA,
i.e., the percentage of instances over which CMA returns a single class; on av-
erage, CMA achieves 77% determinacy, i.e., it yields set-valued classification
on 23% of instances. The data sets which lead to the largest indeterminacy are
characterized by a small number of instances and a relatively high number of fea-
ture variables/classes; see for instance: primary-tumor (339 instances, 17 feature
variables, 22 classes, determinacy: 19%), contact-lenses (24 instances, 4 feature
variables, 3 classes, determinacy: 22%), audiology (226 instances, 69 feature vari-
ables, 24 classes, determinacy: 27%). However, the caution of CMA on these data
sets is justified, as the drop between BMA(CMA D) and BMA(CMA I) is re-
spectively of 57.5, 14.3 and 35.9 points. On the other hand, the determinacy of
CMA quickly increases on data sets which contain more instances or less features
variables.

3.1 BMA probabilities Vs. CMA set-valued classifications

We have shown that, thanks to imprecise probabilities, CMA delivers set-valued
classifications on hard-to-classify instances, over which the accuracy of BMA
clearly drops. In the following, we analyze the association between the posterior
probabilities computed by BMA and the set-valued classifications returned by

6 Nevertheless, we deem set-valued classifications to be valuable also in the case of data
sets with two classes only, as they highlight that a certain classification is doubtful,
thus preventing an over-confident use of the output of the model.
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Fig. 2. Relationship between the posterior probabilities computed by BMA and the
output of CMA.

CMA. To this purpose, we focus on the example of the German credit data
set, which is made of 2 classes, 20 feature variables and 1000 instances. As the
data set has two classes, it is easy to spot instances that are deemed doubtful
according to BMA (they are classified with probability lower than, say, 55%)
and to CMA (indeterminate classifications).

To perform our analysis, we consider four pieces of information for each in-
stance: (i) the actual class, (ii) the class returned by BMA, (iii) its probability,
and (iv) whether the instance has been classified determinately or indetermi-
nately by CMA. The instances are then partitioned into subsets, according to
the probability estimated by BMA for the returned class, i.e., instances for which
BMA estimates a probability in the range 50–55%, 55–60%, and so on (i.e., we
use a step of 5% in probability to define the subsets). On each subset of in-
stances, we measure: (a) the determinacy of CMA; (b) BMA(CMA D) and (c)
BMA(CMA I).

The results are reported in Figure 2. There is a positive association between
higher posterior probabilities computed by BMA and higher determinacy; indeed
the choice of the prior over the graphs is less likely to change the classification
outcome when the probability computed by BMA for the most probable class
increases. The output of CMA is indeterminate for all the instances as long as
the probability estimated by BMA for the returned class is lower than 55%.
Hence, on the instances classified with probability less that 55% by BMA, BMA
and CMA convey a similar message, i.e., that of a doubtful classification: BMA
by returning a low probability for the class, CMA by becoming indeterminate.

Moving on to greater probabilities, the determinacy of CMA rises progres-
sively; however, CMA keeps returning a mix of determinate and indeterminate
classifications, even on instances classified very confidently by BMA (for instance,
with probability higher than 80%). The point is that the behavior of CMA is
justified, since at any level of posterior probability estimated by BMA there is
a clear drop of accuracy between BMA(CMA D) and BMA(CMA I).



Similar patterns have been observed on most of the data sets with two classes
included in our list; we report for instance in Figure 2 also the results obtained
on the credit approval data set.7

From Figure 2, one can also appreciate that the behavior of CMA cannot be
mimicked by a BMA with threshold, i.e., a BMA which returns two classes unless
the probability for the most probable class exceeds a fixed threshold t. In fact, a
BMA with threshold would assume all instances classified with probability less
than t to be hard; instead CMA identifies in a sensible way a mix of easy and
hard instances between both the instances classified with probability greater or
smaller than the threshold. Moreover, CMA is able to detect hard instances also
among those classified with very high probability from BMA, something which
would not be possible to accomplish with a BMA with threshold.

4 Conclusions

In this paper we have proposed an extension of Bayesian model averaging to
imprecise probabilities that we have called credal model averaging. By CMA, we
have tried to tackle one of the more serious challenges of BMA, which is related
to the choice of the prior over the models: both the difficulty in defining such a
prior, and the unavoidable arbitrariness that any choice entails. In our approach,
prior beliefs model a condition close to ignorance about the models, thus trying
to implement an objective-minded approach to model averaging. This naturally
leads to a new form of averaging whose conclusions are robust to the definition
of prior beliefs.

We have applied CMA in particular to problems of classification based on
naive Bayes nets. Our empirical experiments over many data sets have confirmed
that CMA leads to reliable inference. It leads, in particular, to create classifiers
that can suspend the judgment when the conditions do not justify strong con-
clusions, and that we have called credal classifiers. What we have seen clearly
from the experiments is that suspending judgment has been well motivated: the
attempt of BMA-based classifiers to produce a determinate classification when
CMA leads to suspend judgment, yields fragile classifications that heavily dete-
riorate the predictive performance of the former.

In summary, CMA approaches in an original way the controversial problem
of setting the prior over the models for BMA; moreover, it performs well and
reliably in classification problems.

CMA has been derived assuming to have a complete data set; it would be
however interesting to extend CMA to deal also with missing data. If one assumes
the missing data to be generated by a missing-at-random (MAR) process, realiz-
ing such an extension would be straightforward. However, the MAR assumption
is not always met; therefore, a more sophisticated treatment of missing data
7 To prevent ambiguities, we point out that German-credit and credit approval are
two distinct data sets; the former has been donated by Prof. Hofmann, and contains
20 feature variables; the latter has been donated by Prof. Quinlan, and contains 15
feature variables.



should be developed, able to deal with missing data differently, depending on
whether they are generated by a MAR or non-MAR missingness process. We
have followed a similar avenue in [7]; however, incorporating such a treatment
of missing data into CMA could be technically quite involved and therefore it
needs careful investigation.

Acknowledgments Work for this paper has been partially supported by the
Swiss NSF grants 200021-113820/1 and 200020-116674/1, and by the Hasler
Foundation (Hasler Stiftung) grant 2233.

References

1. Hoeting, J., Madigan, D., Raftery, A., Volinsky, C.: Bayesian Model Averaging: a
Tutorial. Statistical Science 14(4) (1999) 382–417

2. Clyde, M., George, E.I.: Model Uncertainty. Statistical Science 19 (2004) 81–94
3. Boullé, M.: Compression-Based Averaging of Selective Naive Bayes Classifiers. Jour-

nal of Machine Learning Research 8 (2007) 1659–1685
4. Dash, D., Cooper, G.: Exact Model Averaging with Naive Bayesian Classifiers.

Proceedings of the Nineteenth International Conference on Machine Learning (2002)
91–98

5. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall,
New York (1991)

6. Zaffalon, M.: The Naive Credal Classifier. Journal of Statistical Planning and
Inference 105(1) (2002) 5–21

7. Corani, G., Zaffalon, M.: Learning Reliable Classifiers from Small or Incomplete
Data Sets: the Naive Credal Classifier 2. Journal of Machine Learning Research 9
(2008) 581–621

8. Abellán, J., Moral, S.: A New Score for Independence Based on the Imprecise Dirich-
let model. In Cozman, F.G., Nau, R., Seidenfeld, T., eds.: ISIPTA ’05: Proceedings
of the Fourth International Symposium on Imprecise Probabilities and Their Ap-
plications, Manno, Switzerland, SIPTA (2005) 1–10

9. Fayyad, U.M., Irani, K.B.: Multi-interval Discretization of Continuous-valued At-
tributes for Classification Learning. In: Proceedings of the 13th International Joint
Conference on Artificial Intelligence, San Francisco, CA, Morgan Kaufmann (1993)
1022–1027


