Improved Addressing in the
Differentiable Neural Computer

Rébert Csordas Jiirgen Schmidhuber
The Swiss Al Lab, IDSTIA / USI/ SUPSI The Swiss Al Lab, IDSIA / USI/ SUPSI
robert@idsia.ch NNAISENSE

juergen@idsia.ch

Abstract

The Differentiable Neural Computer (DNC) can learn algorithmic and question
answering tasks. It also excels in learning relational data. An analysis reveals
three problems: (1) The lack of key-value separation makes the DNC unable to
ignore memory content which is not present in the key and needs to be retrieved
from memory. (2) DNC’s de-allocation of memory results in aliasing. (3) Chaining
memory reads with the temporal linkage matrix exponentially degrades the quality
of the address distribution. Our proposed solutions perform better on arithmetic
tasks and on the bAbI question answering dataset, where the relative improvement
is 43%.

1 Introduction

The Differentiable Neural Computer (DNC; [5]) has shown great promise on a variety of algorithmic
tasks [5,[8]. It combines a controller (usually an LSTM [6]), differentiable external memory, and
advanced addressing mechanisms such as content-based look-up and temporal linking of memory
cells. Unlike related approaches that perform well at a single task, e.g., MemNN [10] or Key-
Value Networks [7] for the bAbI dataset [12]], the DNC consistently achieves near state of the art
performance on all of them. The explicit memory and routing provided by read and write heads
introduces an architectural bias aiding systematic generalization. Content-based lookup is very useful
for storing relational data (see graph experiments [S]]). This generality makes the DNC worth of
further study.

Three problems with the DNC revolve around the content-based look-up mechanism, which is the
main memory addressing system, and the temporal linking used to read memory cells in the same
order in which they were written: 1) the lack of key-value separation negatively affects the accuracy
with which content may be retrieved, 2) the de-allocation mechanism fails to remove obsolete data,
which inadvertently exposes deleted data to the controller, and 3) with each write the noise from the
write address distribution accumulates in the temporal linking matrix.

Here we propose solutions to each of these problems. We introduce masking of both look-up key
and memory data to allow for dynamic key-value separation. We propose to wipe the content of a
memory cell in addition to a decrease of its usage counters. Finally we propose exponentiation and
re-normalization of the temporal links, resulting in improved sharpness of the address distribution.
These improvements are orthogonal to other previously proposed DNC modifications [} 8} 2] which
might help to further improve the results reported in this paper.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

2 Improving the Differentible Neural Computer

We first provide a brief overview of the Differentiable Neural Computer (DNC; [3]), followed by
an overview of three innovations proposed in this paper. For the exact details of our model, see

Appendix

Differentiable Neural Computer The DNC is a memory augmented recurrent neural network
(RNN). Two of its central components are the controller and the 2D memory organized in cells
(M; € RV*W)_ The controller is responsible for controlling the memory transactions. It receives
external inputs as well as the data retrieved from the memory in the previous step. The memory
is accessed through multiple read heads and a single write head. Cells are addressed through a
distribution over the whole address space. Three memory addressing methods are used. The content-
based look-up compares every cell to a key (k;) produced by the controller, resulting in an address
distribution. A temporal linking mechanism reveals which cells have been written after and before the
one read in the previous time step. Finally, by maintaining usage counters for every cell, the allocation
mechanism can be used to write data to the least used position. Usage counters are incremented on
memory writes and optionally decremented on memory reads (de-allocation).

The memory is first written to. A write address is generated as a weighted average of the write
content-based look-up and the allocation distribution. The temporal linkage matrix is also updated.
Finally the memory is read from. The read address is generated as the weighted average of the read
content-based look-up distribution and forward and backward temporal links. Memory cells are
averaged based on this address, resulting in a single vector, which is the result of the read operation.
It is combined with the controller’s output to produce the model’s final output, which is also fed into
the controller at the next time step.

Masked Content-Based Addressing The goal of content-based addressing is to find memory cells
similar to a given query key. The query key contains partial information (it is a partial memory), and
the content-based memory read completes its missing (unknown) part based on previous memories.
Due to the lack of key-value separation, not only the known (key) but also the to-be-retrieved (value)
part of the memory cell is used for normalization in the cosine similarity, resulting in an unpredictable
score, a bad measure of similarity between query and memory content. Less similar cells may
have higher scores, and the resulting address distribution will be flat because the division before the
softmax increases the temperature parameter of the softmax.

The problem can be solved by explicitly masking the part that is unknown and should not be used in
the query. Compared to standard key-value memory, this provides a more general, dynamic key-value
separation. A separate mask vector m; € [0 — 1]V is produced by the controller, multiplying both
the search key and the memory content before comparing (Fig. [T):

C(M,k, B, m) = softmax(D (k om,M © lmT)ﬁ) (D
o = C(Mpy, ke, B my) o = (MK B m)) @)

Compare Graves et al [S p. 477,478]. Adaptive masking has an additional advantage: the controller
does not have to decide ahead of time how to store data to be able to recall it later. Depending on
later queries it may direct its attention to relevant memory cells.

De-allocation and Content-Based Look-up The DNC tracks allocation states of memory cells by
usage counters which are increased on memory writes and optionally decreased after reads. When
allocating memory, the cell with the lowest usage is chosen. De-allocation is done by element-
wise multiplication with the retention vector ();), which is a function of previously read address
distributions and scalar gates. It indicates how much of the current memory should be kept. The
problem is that this affects solely the usage counters and not the actual memory M;, allowing the
content based look-up to find the de-allocated data. We propose to zero out the memory contents
by multiplying every cell of the memory matrix M, by the corresponding element of the retention
vector. Then the memory update equation becomes:

M, =M, ; 17 © (E —wve]) + wiv] (3)
where © is the element-wise product, 1 € R” is a vector of ones, E € RV*W is a matrix of
ones. Compare Graves et al [S, p 477]. Note that the cosine similarity (used in comparing the key

to the memory content) is normalized by the length of the memory content vector which would
normally cancel the effect of Eq. [3] However the additional stabilization term e used for numerical
stability (D(u,v) = %) solves this problem: when the length of the vector becomes small, the

stabilizing ¢ dominates, and the output will be low, resulting in a near-zero score.

Sharpness of Temporal Link Distributions Temporal linking is used to sequentially read memory
cells in the same or reverse order as they were written. Any address distribution can be projected to
the next or the previous one through multiplying it by a so-called temporal link matrix (L;) or its
transpose. L; can be understood as a continuous adjacency matrix. On every write, all elements of
L, are updated: links related to previous writes are weakened; the new links are strengthened. If w}"
is not one-hot, links for all non-zero addresses will be reduced in L; and the noise from the current
write will be included. In case of multiple steps of temporal linking, the resulting distribution is
multiplied by L, again, which makes the problem even worse: not only the noise from L, is affecting
the result, but the previous read distribution is already not one-hot, so it averages multiple links of L;.

We propose to add an additional sharpness enhancement step .S(d, s); to the temporal link distribution
generation (Fig. [T). This significantly reduces the effect of exponential blurring behavior when
following the temporal links. By exponentiation and re-normalization of the distribution, the network
is able to adaptively control the importance of non-dominant elements of the distribution.

fi=§ (Ltwj;fl, s{’l) bi =9 (L;wj;fl, sf’l) S5y = <9y

Z j (dj) ?

Scalars s{"" € R and si”l € R are generated by the controller. This provides a way of adaptively
controlling the importance of non-dominant elements. Alternatively, a scalar parameter could also be
sufficient for some applications. Note that S(d, s); in Eq. E]may be numerically unstable and should
be stabilized (see Eq. [T4]in Appendix [A]for details).

Mask || Query

-

P E Backwa'rd links

d Sr:\arpness "
enhancement
CMP E 4
- »{WSUM
CMP @ :
4 Sharpness
enhancement

o
cmp Forward links

Figure 1: Block diagram of read address generation in DNC with key masking and sharpness
enhancement. Blue parts indicate new components absent in standard DNC. CMP is a cosine
similarity-based comparator. Memory and key are compared after a novel masking step. Before
combining temporal links and content-based address distribution, sharpness enhancement takes place.

Memory

Iy

554

3 Experiments

We compare various combinations of our innovations to the original DNC [3]] on a variety of tasks
(detailed task descriptions can be found in Appendix [B.I). We consider a DNC with masked
content-based addressing (DNC-M), modified de-allocation (DNC-D), added sharpness enhancement
(DNC-S), and their combinations (eg. DNC-MDS).

Masking We evaluate the effect of memory masking on the associative recall [4] and key-value
retrieval tasks (Appendix . For key-value retrieval, input sequences of vectors W = Wy ||Wy
(where || denotes concatenation) are followed by queries of different input vector parts (W5 and W3)
in an alternating way, asking the network retrieve the other part. Masking substantially improves
convergence properties (Fig. [3a). Key-value retrieval experiments show that the system learns to use
dynamic masks instead of a static weighting. It learns to change the mask when the query switches
from W to W5 (Fig. [3b). The masks almost complement each other, just like the query keys do.

De-allocation DNC limitations resulting from not erasing memory make DNC fail to solve the
repeated copy task with a high number of repeats. Our modification of the de-allocation results in a

perfect solution (Fig. [2b). Convergence speed is also improved. The reason may be that the network
can mark the beginning of every sequence with a similar key without causing look-up conflicts. Plain
DNC, however, seems to solve only short problem examples by learning to use different keys for
every repeat step, which is not a general solution.

Sharpness enhancement To analyze the problem of degradation of temporal links after successive
link matrix updates, we examine the forward and backward link distributions of DNC-D (Fig. [@
We find that link distributions are becoming increasingly blurred after each iteration, making the
controller fall back to content-based addressing (Fig. fic). We hypothesize that it is easier for the
network to perform a look-up with a learned counter as a key rather than restoring the corrupted data
from blurry reads. The forward distributions of our model, however, are much sharper, and stay sharp
until the end of the repeat block (Fig. db). The controller prefers temporal linking over content-based

look-up (Fig. [Ad).

—— DNC
0.8 —— DNC-D
DNC-DS

—— DNC-MDS

0.0 | : e
2000 4000 6000 8000 10000 12000 14000
t Number of iterations

(a) Input, ref output, net output (repeated copy) (b) Train loss on the repeated copy task

Figure 2: (a) Input (top), ground truth (middle), and network output (bottom) of DNC on big repeat
copy tasks. DNC fails to solve the task; the output is blurry. The problem is especially apparent
in blocks 4, 5, 6. (b) De-allocating and sharpening substantially improves convergence speed. The
improvement caused by the masking is marginal, probably because the task uses temporal links.

bAbI experiments bADI [12] is a complex, algorithmically generated question answering dataset.
It contains multiple tasks testing various reasoning capabilities. For details, see Appendix [B.I} Our
best performing model (DNC-MD) reduces the mean error rate by 43%, and also decreases variance.
It does not need sharpness enhancement, which penalizes mean performance by only 1.5% absolute.
This may be due to the nature of the task which rarely needs step-to-step transversal of words,
but requires many content-based look-ups. Compared to the 16.7% mean error rate of DNC [3]],
our methods perform significantly better: DNC-DS: 15.3%, DNC-DMS: 11.0%, DNC-MS: 10.5%,
DNC-MD (best): 9.5%. See Table|l|in the Appendix for details.

4 Conclusion

We identified three drawbacks of the traditional DNC model, and proposed fixes for them. Two
of them are related to content-based addressing: (1) Lack of key-value separation yields uncertain
and noisy address distributions resulting from content-based look-up. We mitigate this problem by
masking. (2) De-allocation results in memory aliasing. We fix this by erasing memory contents
in parallel to decreasing usage counters. (3) We avoid the blurring of temporal linkage address
distributions by sharpening the distributions.

Our experiments confirm the positive effects of our modifications. The presence of sharpness
enhancement should be treated as a binary hyperparameter, as it benefits some but not all tasks. We
plan to merge our modifications with those of related work [[1} 8]], to further improve the DNC.

Acknowledgments

The authors wish to thank Sjoerd van Steenkiste, Paulo Rauber and the anonymous reviewers for
their constructive feedback. We are also grateful to NVIDIA Corporation for donating a DGX-1 as
part of the Pioneers of Al Research Award and to IBM for donating a Minsky machine. This research
was supported by an European Research Council Advanced Grant (no: 742870).

References

[1] I Ben-Ari and A. J. Bekker. Differentiable memory allocation mechanism for neural computing.
MLSLP2017,2017.

[2] J. Franke, J. Niehues, and A. Waibel. Robust and scalable differentiable neural computer for
question answering. (arXiv:1807.02658 [cs.CL]), 2018.

[3] A. Graves. Adaptive computation time for recurrent neural networks. CoRR, abs/1603.08983,
2016.

[4] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. CoRR, abs/1410.5401, 2014.

[5] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwinska, S. G.
Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou, A. P. Badia, K. M. Hermann, Y. Zwols,
G. Ostrovski, A. Cain, H. King, C. Summerfield, P. Blunsom, K. Kavukcuoglu, and D. Has-
sabis. Hybrid computing using a neural network with dynamic external memory. Nature,
538(7626):471-476, 2016.

[6] S.Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):1735-
1780, 1997.

[7] A. H. Miller, A. Fisch, J. Dodge, A. Karimi, A. Bordes, and J. Weston. Key-value memory
networks for directly reading documents. CoRR, abs/1606.03126, 2016.

[8] J. W. Rae, J. J. Hunt, T. Harley, 1. Danihelka, A. W. Senior, G. Wayne, A. Graves, and T. P.
Lillicrap. Scaling memory-augmented neural networks with sparse reads and writes. CoRR,
abs/1610.09027, 2016.

[9] J. Schmidhuber. Self-delimiting neural networks. Technical Report IDSIA-08-12,
arXiv:1210.0118v1 [cs.NE], The Swiss Al Lab IDSIA, 2012.

[10] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus. Weakly supervised memory networks.
CoRR, abs/1503.08895, 2015.

[11] T. Tieleman and G. Hinton. Rmsprop: divide the gradient by a running average of its recent
magnitude. Coursera, pages 26-30, 2012.

[12] J. Weston, A. Bordes, S. Chopra, and T. Mikolov. Towards ai-complete question answering: A
set of prerequisite toy tasks. CoRR, abs/1502.05698, 2015.

A Implementation details

Here we present the equations for our full model (DNC-DMS). The other models are easily imple-
mented by comparing to the original equations [3].

The memory at step t is represented by matrix M; € RV*W where N is the number of cells, W

is the word length. The network receives an input x; € RX and produces output y; € RY. The
controller of the network receives input vector x; concatenated with all R (number of read heads)
read vectors r;_;,...,ri* | from the previous step, and produces output vector h;. The controller
can be an LSTM or feedforward network, and may have single or multiple layers. The contoller’s
output is mapped to the interface vector &; by matrix W, € RZW+F)+HAWHTRESS by ¢, — Wh,. An
immediate output vector v; € RY is also generated: v; = W, h,. The output interface vector is split
into many sub-vectors controlling various parts of the network:

G = X BBk B e v S B g AT

TR IV O VAR R S A S e B)
Notation: 1 < 7 < R is the read head index; k:’i are the keys used for read content-based address
generation; 8;"" = oneplus(B;°") are the read key strengths (oneplus(z) = 1 + log(l +e*)); k¥ is
the write key used for write content-based address generation; 3} = oneplus(5;") is the write key
strength; e, = o(é;) is the erase vector which acts as an in-cell gate for memory writes; v, is the
write vector which is the actual data being written; f; = o(ff) are the free gates controlling whether
to de-allocate the cells read in the previous step; gf = o(gf') is the allocation gate; g;* = o(g;")
is the write gate; 7} = softmax(7}) are the read modes (controlling whether to use temporal
links or content-based look-up distribution as read address); s{ = oneplus(8] g ") are the forward
sharpness enhancement coefficients; s?’i = oneplus(é?’j’) are the backward sharpness enhancement
coefficients.

Special care must be taken of the range of lookup masks m;” and m:l It must be limited to (9, 1),
where 4 is a small real number. A § close to 0 might harm gradient propagation by blocking gradients
of masked parts of key and memory vector.

m? = () (1 - 8) + 06 m = o(il) « (1—6) +0 ©6)

A”‘Z

We suggest initializing biases for m}’ and m,” to 1 to avoid low initial gradient propagation.

Content-based look-up is used to generate an address distribution based on matching a key against
memory content:

C(M ,k, B, m) = softmax(D (k Gm,M G 1mT),B) @)
Where D is the row-wise cosine similarity with numerical stabilization:
u- M[i,]
D(u, M)[i] =)
| M[i,][+ €

The memory is first written to, then read from. To write the memory, allocation and content-based
lookup distributions are needed. Allocation is calculated based on usage vectors u;. These are
updated with the help of memory retention vector v;:

R
ve =TT (1 - fiw) ©
=1
W= (w1 + Wl — W OW) © . (10)

Operation © is the element-wise multiplication. Free list ¢, is the list of indices of sorted memory
locations in ascending order of their usage u:. So ¢;[1] is the index of the least used location. Then
allocation address distribution a4 is

ar[¢eld]] = (1 — w[g[7] H ug [[1]

The write address distribution w} € [0, 1]V is:
c/ =C(M;_1,k, 5, my’) (11)
wi =g, [g7ar + (1 = g/)cy’]
Memory is updated by (1 € R¥ is a vector of ones, E € RY*W is a matrix of ones):
M, =M; ; @17 © (E —wpe]) + wiv] (12)

To track the temporal distance of memory allocations, a temporal link matrix L; € [0, 1]V < is

maintained. It is a continuous adjacency matrix. A helper quantity called precedence weighting is

defined: pg = 0 and
p: = (1 - sz"[ﬂ) Pi1 + W
i

Lili, j] = (1 = wi[i] = wi’[j]) Liafi, j] + wi'[i]ps -1 7] (13)
Forward and backward address distributions are given by f; and bi:
(sim)
i T i i i i max (d+e)
£ =S (Lowpysl') bi=S(DIwihs)') S(ds)i= =i (4)
Zj (maxJ(d+e))
The read address distribution is given by:
o' = C (MK, " mi) (15)
wi = mi[Ub; + i [2)e;” + i3] (16)

Finally, memory is read, and the output is calculated:

_ 1. ..R i __ L
ye =ve+ W, [rt,...,rt] r; = M w,

B Experimental details

B.1 Description of tasks

Copy Task A sequence of length L of binary random vectors of length W is presented to the
network, and the network is required to repeat them. The repeat phase starts with a special input
token, after all inputs are presented. To solve this task the network has to remember the sequence,
which requires allocating and recalling from memory. However, it does not require memory de-
allocation and reuse. To force the network to demonstrate its de-allocation capabilities, N instances
of such data are generated and concatenated. Because the resulting sequences are longer than the
number of cells in memory, the network is forced to reuse its memory cells. An example is shown in

Fig. 24

Associative Recall Task In the associative recall task [4]] B blocks of W}, words of length W are
presented to the network sequentially, with special bits indicating the start of each block. After
presenting the input to the network, a special bit indicates the start of the recall phase where a
randomly chosen block is repeated. The network needs to output the next block in the sequence.

Key-Value Retrieval Task The key-value retrieval task demonstrates some properties of memory
masking. L words of length 2WW are presented to the network. Words are divided in two parts of
equal length, W; and W5. All the words are presented to the network. Next the words are shuffled,
parts W7 are fed to the network, requiring it to output the missing part Ws for every W;. Next, the
words are shuffled again, W is presented and the corresponding W is requested. The network must
be able to query its memory using either part of the words to complete this task.

bAbI Dataset bADI [12] is an algorithmically generated question answering dataset containing 20
different tasks. Data is organized in sequences of sentences called stories. The network receives the
story word by word. When a question mark is encountered, the network must output a single word
representing the answer. A task is considered solved if the error rate (number of correctly predicted
answer words divided by the number of total predictions) of the network decreases below 5%, as
usual for this task.

Manually analyzing bADbI tasks let us to believe that some are difficult to solve within a single
time-step. Consider the sample from QA16: “Lily is a swan. Bernhard is a lion. Greg is a swan.
Bernhard is white. Brian is a lion. Lily is gray. Julius is a rhino. Julius is gray. Greg is gray. What
color is Brian? A: white” The network should be able to “think for a while”” about the answer: it
needs to do multiple memory searches to chain the clues together. This cannot be done in parallel
as the result of one query is needed to produce the key for the next. One solution would be to
use adaptive computation time [9} 3]. However, that would add an extra level of complexity to the
network. So we decided to insert a constant 7' = 3 blank steps before every answer of the network—a
difference to what was done previously [Sl]. We also use a word embedding layer, instead of one-hot
input representation, as is typical for NLP tasks. The embedding layer is a learnable lookup-table
that transforms word indices to a learnable vector of length E. In order to check the effect of our
modifications, we also re-trained baseline DNC network with this setup, and we consider that as
baseline in Our baseline network has very similar results than the DNC by [5]], which is also
shown.

B.2 Implementation details

Our PyTorch implementation is available at https://github.com/xdever/dnc. We provide
equations for our DNC-DMS model in Appendix [Al Following [5], we trained all networks using
RMSProp [L1]], with a learning rate of 10~%, momentum 0.9, ¢ = 1071, a = 0.99. All parameters
except the word embedding vectors and biases have a weight decay of 10~°. For task-specific

hyperparameters, check Appendix

B.3 Hyperparameters for the experiments

Copy Task. We use an LSTM controller with hidden size 32, memory of 16 words of length 16,
1 read head. W is 8, with the 9th bit indicating the start of the repeat phase. L is randomly chosen
from range [1, 8], V from range [2, 14]. Batch size is 16.

Associative Recall Task. We use a single-layer LSTM controller (size 128), memory of 64 cells of
length 32, 1 read head. W}, = 3, B € [2, 16], W}, = 8, batch size of 16.

Key-Value Retrieval Task. We use a single-layer LSTM controller of size 32, 16 memory cells of
length 32, 1 read head. W =8, L € [2,16].

bAbI. Our network has a single layer LSTM controller (hidden size of 256), 4 read heads, word
length of 64, and 256 memory cells. Embedding size is EZ = 256, batch size is 2.

https://github.com/xdever/dnc

B.4 Effects of modifications

™ ™ ™ y v
0 1000 2000 3000 4000 5000

iterations i from m{'[i)
(a) Effect of masking on convergence speed (b) A sample mask from DNC-M

Figure 3: (a) The loss of DNC and DNC-M on the associative recall task. Masking improves
convergence speed. (b) An example read mask of DNC-M in the key-value retrieval task. Yellow
values indicate parts of the key the network searches for, the blue values indicate parts that need to be
retrieved form memory. When the query switches from W to W5, the mask changes. For ¢ € [0, 17]
the input is stored (look-up is not used). For ¢ € [18, 35] W is presented in random order and W5 is
retrieved. For ¢ € [36, 53] W5 is presented in random order and W7 is retrieved.

60 08
0.7 0.8

06
- “© 05 0.6

0.4
0.4

20 0.3
0.2 02

0.1

0 0.0

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

cell index cell index
(a) DNC-D (without sharpness enhancement) (b) DNC-DS (with sharpness enhancement)
0.75 075
- o 050 0.50
0.25 0.25
0 0
backward content forward backward content forward
read mode read mode
(c) DNC-D (without sharpness enhancement) (d) DNC-DS (with sharpness enhancement)

Figure 4: (a), (b) Example forward link distribution. Each row is an address distribution across
all memory cells. Blue cells are not read, yellow cells are read with a large weight. (a) DNC-D:
without sharpness enhancement the distributions are blurred, rarely having peaks near 1.0. The
problem becomes worse over time. 3 repeats are shown. Notice the more intense blocks for
t € [11,21],[33,42] and [55,65]. (b) Sharpness enhancement (DNC-DS) makes the distribution
sharp during the read, peaking near 1.0. Note that (a) and (b) have identical input data. (c), (d) The
7rt1 distribution for (a) and (b). Columns are the weighting of the backward links, the content based
look up, and the forward links, respectively. (c) The forward links are barely used without sharpness
enhancement. (d) With sharpness enhancement the forward links are used for every block.

Table 1: bADI error rates of different models after 0.5M iterations of training [%]

Task DNC DNC-MDS DNC-DS DNC-MS DNC-MD DNC [5]

1 25+44 04+1.2 0.7+ 1.6 0.0£0.1 0.0 £0.0 9.0+ 12.6
2 29.0+£194 86=£10.1 18.6 £15.1 7.8£5.9 6.9 +4.7 39.2£20.5
3 32.3+£14.7 10.8+£9.5 169+13.0 7.9+£7.8 124 +5.1 39.6 £16.4
4 0.8+1.5 0.8£1.5 6.4+100 08=%1.0 0.1 +0.2 0.4+0.7

5 1.5+0.6 1.6£1.0 1.31+0.5 1.7£1.1 1.3£0.7 1.5£1.0

6 5.21+6.8 1.1£21 24+£38 0.0 £0.1 0.1+0.1 6.9+7.5

7 8.8+£5.8 3.4+23 7.6+5.1 25+2.0 3.0x5.0 9.8+£7.0

8 11.6 9.4 46+4.5 10.9+7.9 1.841.6 25+2.1 5.0£5.9

9 45+58 0.8+£1.9 2.0+3.3 0.14+0.2 0.140.2 7.7+83
10 9.1+11.5 2.6 +3.9 41+£5.9 0.6 +0.6 0.5+0.5 9.6 +114
11 11.6 £9.4 0.1+£0.1 0.1+0.2 0.0+0.0 0.04+0.0 3.3+£5.7
12 1.1£+0.8 0.2+0.2 05+04 0.3+04 0.2 +0.2 5.0+£6.3
13 1.1£0.8 0.1+0.1 0.2+0.2 0.2+0.2 0.1+0.1 3.1+£36
14 248+£225 80+£13.1 200£194 18409 2.0+1.6 11.0+£ 7.5
15 40.8+14 26.34+20.7 42.1+£6.3 33.0+151 23.6+18.6 27.2+20.1
16 53.14+1.2 545+18 535+14 532+23 539+12 53.6 £1.9
17 37.84+25 399+32 40.1+20 41.2+30 398+1.2 32.4+8.0
18 7.0+3.0 6.3+4.1 9.4+0.9 3.3+22 2.0+2.6 42+18
19 67.6 £ 8.6 48.6 £32.8 67.6+7.9 48.1+26.7 40.7+34.9 64.6+37.4
20 0.0+ 0.0 09+£0.9 1.5£1.0 53+125 01+£0.1 0.0+0.1

mean 16.9+5.2 11.0£ 3.8 15.3£3.5 10.6£1.9 9.5+ 1.6 16.7+ 7.6

10

	Introduction
	Improving the Differentible Neural Computer
	Experiments
	Conclusion
	Implementation details
	Experimental details
	Description of tasks
	Implementation details
	Hyperparameters for the experiments
	Effects of modifications

