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Discrete Random Variables
• A is a Boolean-valued random variable if A

denotes an event, and there is some
degree of uncertainty as to whether A
occurs.

• Examples
• A = The US president in 2023 will be male
• A = You wake up tomorrow with a headache
• A = You have Ebola
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Probabilities
• We write P(A) as “the fraction of possible

worlds in which A is true”
• We could at this point spend 2 hours on the

philosophy of this.
• But we won’t.
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Visualizing A

Event space of
all possible
worlds

Its area is 1
Worlds in which A is False

Worlds in which
A is true

P(A) = Area of
reddish oval
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The Axioms of Probability
• 0 <= P(A) <= 1
• P(True) = 1
• P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)

Where do these axioms come from? Were they “discovered”?
Answers coming up later.
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Interpreting the axioms
• 0 <= P(A) <= 1
• P(True) = 1
• P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)

The area of A can’t get
any smaller than 0

And a zero area would
mean no world could
ever have A true



Probabilistic Analytics: Slide 7

Interpreting the axioms
• 0 <= P(A) <= 1
• P(True) = 1
• P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)

The area of A can’t get
any bigger than 1

And an area of 1 would
mean all worlds will
have A true
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Interpreting the axioms
• 0 <= P(A) <= 1
• P(True) = 1
• P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)

A

B



Probabilistic Analytics: Slide 9

Interpreting the axioms
• 0 <= P(A) <= 1
• P(True) = 1
• P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)

A

B

P(A or B)

BP(A and B)

Simple addition and subtraction
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These Axioms are Not to be
Trifled With

• There have been attempts to do different
methodologies for uncertainty

• Fuzzy Logic
• Three-valued logic
• Dempster-Shafer
• Non-monotonic reasoning

• But the axioms of probability are the only
system with this property:

    If you gamble using them you can’t be unfairly exploited
by an opponent using some other system [di Finetti 1931]
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Theorems from the Axioms
• 0 <= P(A) <= 1, P(True) = 1, P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)

From these we can prove:
P(not A) = P(~A) = 1-P(A)

• How?
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Another important theorem
• 0 <= P(A) <= 1, P(True) = 1, P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)

From these we can prove:
P(A) = P(A ^ B) + P(A ^ ~B)

• How?
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Multivalued Random Variables
• Suppose A can take on more than 2 values
• A is a random variable with arity k if it can

take on exactly one value out of {v1,v2, ..
vk}

• Thus…

jivAvAP ji !=="=  if 0)(

1)( 21 ==!=!=
k
vAvAvAP
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An easy fact about Multivalued
Random Variables:

• Using the axioms of probability…
0 <= P(A) <= 1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)

• And assuming that A obeys…

• It’s easy to prove that

jivAvAP ji !=="=  if 0)(

1)( 21 ==!=!=
k
vAvAvAP

)()(
1

21 !
=

==="="=
i

j

ji vAPvAvAvAP
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An easy fact about Multivalued
Random Variables:

• Using the axioms of probability…
0 <= P(A) <= 1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)

• And assuming that A obeys…

• It’s easy to prove that

jivAvAP ji !=="=  if 0)(

1)( 21 ==!=!=
k
vAvAvAP
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1
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=

==="="=
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• And thus we can prove
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Another fact about Multivalued
Random Variables:

• Using the axioms of probability…
0 <= P(A) <= 1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)

• And assuming that A obeys…

• It’s easy to prove that

jivAvAP ji !=="=  if 0)(

1)( 21 ==!=!=
k
vAvAvAP
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Another fact about Multivalued
Random Variables:

• Using the axioms of probability…
0 <= P(A) <= 1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)

• And assuming that A obeys…

• It’s easy to prove that

jivAvAP ji !=="=  if 0)(

1)( 21 ==!=!=
k
vAvAvAP
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• And thus we can prove
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Elementary Probability in Pictures
• P(~A) + P(A) = 1
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Elementary Probability in Pictures
• P(B) = P(B ^ A) + P(B ^ ~A)
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Elementary Probability in Pictures
1)(

1

==!
=

k

j

jvAP
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Elementary Probability in Pictures
)()(

1

!
=

="=
k
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jvABPBP
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Definition of Conditional Probability
                     P(A ^ B) 
P(A|B)  =  -----------
                    P(B) 

Corollary: The Chain Rule
P(A ^ B) = P(A|B) P(B) 
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Probabilistic Inference

F

H

H = “Have a headache”
F = “Coming down with
Flu”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

One day you wake up with a headache. You think: “Drat!
50% of flus are associated with headaches so I must have a
50-50 chance of coming down with flu”

Is this reasoning good?
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Bayes Rule
              P(A ^ B)     P(A|B) P(B)
P(B|A) = ----------- = ---------------
                 P(A)             P(A)

This is Bayes Rule

Bayes, Thomas (1763) An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions of the Royal Society of
London, 53:370-418
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More General Forms of Bayes Rule
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More General Forms of Bayes Rule
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Useful Easy-to-prove facts
1)|()|( =¬+ BAPBAP
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The Joint Distribution

Recipe for making a joint distribution
of M variables:

Example: Boolean
variables A, B, C
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The Joint Distribution

Recipe for making a joint distribution
of M variables:

1. Make a truth table listing all
combinations of values of your
variables (if there are M Boolean
variables then the table will have
2M rows).

Example: Boolean
variables A, B, C

111

011

101

001

110

010

100

000

CBA
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The Joint Distribution

Recipe for making a joint distribution
of M variables:

1. Make a truth table listing all
combinations of values of your
variables (if there are M Boolean
variables then the table will have
2M rows).

2. For each combination of values,
say how probable it is.

Example: Boolean
variables A, B, C

0.10111

0.25011

0.10101

0.05001

0.05110

0.10010

0.05100

0.30000

ProbCBA
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The Joint Distribution

Recipe for making a joint distribution
of M variables:

1. Make a truth table listing all
combinations of values of your
variables (if there are M Boolean
variables then the table will have
2M rows).

2. For each combination of values,
say how probable it is.

3. If you subscribe to the axioms of
probability, those numbers must
sum to 1.

Example: Boolean
variables A, B, C

0.10111

0.25011

0.10101

0.05001

0.05110

0.10010

0.05100

0.30000

ProbCBA

A

B

C0.05
0.25

0.10 0.050.05

0.10

0.10
0.30
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Using the
Joint

One you have the JD you
can ask for the probability of
any logical expression
involving your attribute

!=
E

PEP

 matching rows

)row()(
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Using the
Joint

P(Poor Male) = 0.4654 !=
E

PEP

 matching rows

)row()(
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Using the
Joint

P(Poor) = 0.7604 !=
E

PEP

 matching rows

)row()(
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Inference
with the

Joint

!

!
=

"
=
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 2 1

 matching rows

 and matching rows

2

21
21

)row(

)row(
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Inference
with the

Joint

!

!
=

"
=

2

 2 1

 matching rows

 and matching rows

2

21
21

)row(

)row(

)(

)(
)|(

E

EE

P

P
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EEP
EEP

P(Male | Poor) = 0.4654 / 0.7604 = 0.612  
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Inference is a big deal
• I’ve got this evidence. What’s the chance

that this conclusion is true?
• I’ve got a sore neck: how likely am I to have meningitis?
• I see my lights are out and it’s 9pm. What’s the chance

my spouse is already asleep?
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Inference is a big deal
• I’ve got this evidence. What’s the chance

that this conclusion is true?
• I’ve got a sore neck: how likely am I to have meningitis?
• I see my lights are out and it’s 9pm. What’s the chance

my spouse is already asleep?
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Inference is a big deal
• I’ve got this evidence. What’s the chance

that this conclusion is true?
• I’ve got a sore neck: how likely am I to have meningitis?
• I see my lights are out and it’s 9pm. What’s the chance

my spouse is already asleep?

• There’s a thriving set of industries growing based
around Bayesian Inference. Highlights are:
Medicine, Pharma, Help Desk Support, Engine
Fault Diagnosis
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Where do Joint Distributions
come from?

• Idea One: Expert Humans
• Idea Two: Simpler probabilistic facts and

some algebra
Example: Suppose you knew

P(A) = 0.7

P(B|A) = 0.2
P(B|~A) = 0.1

P(C|A^B) = 0.1
P(C|A^~B) = 0.8
P(C|~A^B) = 0.3
P(C|~A^~B) = 0.1

Then you can
automatically compute the
JD using the chain rule

P(A=x ^ B=y ^ C=z) =
P(C=z|A=x^ B=y) P(B=y|A=x) P(A=x)

In another
lecture: Bayes
Nets, a
systematic way to
do this.
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Where do Joint Distributions
come from?

• Idea Three: Learn them from data!

Prepare to see one of the most impressive learning
algorithms you’ll come across in the entire course….
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Learning a joint distribution
Build a JD table for your
attributes in which the
probabilities are unspecified

The fill in each row with

records ofnumber  total

row matching records
)row(ˆ =P

?111

?011

?101

?001

?110

?010

?100

?000

ProbCBA

0.10111

0.25011

0.10101

0.05001

0.05110

0.10010

0.05100

0.30000

ProbCBA

Fraction of all records in which
A and B are True but C is False
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Example of Learning a Joint
• This Joint

was obtained
by learning
from three
attributes in
the UCI
“Adult”
Census
Database
[Kohavi 1995]
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Where are we?
• We have recalled the fundamentals of

probability
• We have become content with what JDs are

and how to use them
• And we even know how to learn JDs from

data.
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Density Estimation
• Our Joint Distribution learner is our first

example of something called Density
Estimation

• A Density Estimator learns a mapping from
a set of attributes to a Probability

Density
Estimator

ProbabilityInput
Attributes
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Density Estimation
• Compare it against the two other major

kinds of models:

Regressor Prediction of
real-valued output

Input
Attributes

Density
Estimator

ProbabilityInput
Attributes

Classifier Prediction of
categorical output

Input
Attributes
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Evaluating Density Estimation

Regressor Prediction of
real-valued output

Input
Attributes

Density
Estimator

ProbabilityInput
Attributes

Classifier Prediction of
categorical output

Input
Attributes

Test set
Accuracy

?

Test set
Accuracy

Test-set criterion for estimating performance
on future data*
* See the Decision Tree or Cross Validation lecture for more detail
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• Given a record x, a density estimator M can
tell you how likely the record is:

• Given a dataset with R records, a density
estimator can tell you how likely the
dataset is:
(Under the assumption that all records were

independently generated from the Density Estimator’s
JD)

Evaluating a density estimator

!
=

=""=
R

k

kR |MP|MP|MP
1

21 )(ˆ)(ˆ)dataset(ˆ xxxx K

)(ˆ |MP x
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A small dataset: Miles Per Gallon

From the UCI repository (thanks to Ross Quinlan)

192
Training
Set
Records

mpg modelyear maker

good 75to78 asia

bad 70to74 america

bad 75to78 europe

bad 70to74 america

bad 70to74 america

bad 70to74 asia

bad 70to74 asia

bad 75to78 america

: : :

: : :

: : :

bad 70to74 america

good 79to83 america

bad 75to78 america

good 79to83 america

bad 75to78 america

good 79to83 america

good 79to83 america

bad 70to74 america

good 75to78 europe

bad 75to78 europe
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A small dataset: Miles Per Gallon

192
Training
Set
Records

mpg modelyear maker

good 75to78 asia

bad 70to74 america

bad 75to78 europe

bad 70to74 america

bad 70to74 america

bad 70to74 asia

bad 70to74 asia

bad 75to78 america

: : :

: : :

: : :

bad 70to74 america

good 79to83 america

bad 75to78 america

good 79to83 america

bad 75to78 america

good 79to83 america

good 79to83 america

bad 70to74 america

good 75to78 europe

bad 75to78 europe
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A small dataset: Miles Per Gallon

192
Training
Set
Records

mpg modelyear maker

good 75to78 asia

bad 70to74 america

bad 75to78 europe

bad 70to74 america

bad 70to74 america

bad 70to74 asia

bad 70to74 asia

bad 75to78 america

: : :

: : :

: : :

bad 70to74 america

good 79to83 america

bad 75to78 america

good 79to83 america

bad 75to78 america

good 79to83 america

good 79to83 america

bad 70to74 america

good 75to78 europe

bad 75to78 europe

203-
1

21

10  3.4  case) (in this 

)(ˆ)(ˆ)dataset(ˆ

!==

=""= #
=

R

k

kR |MP|MP|MP xxxx K
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Log Probabilities

Since probabilities of datasets get
so small we usually use log
probabilities

!"
==

==
R

k

k

R

k

k |MP|MP|MP
11

)(ˆlog)(ˆlog)dataset(ˆlog xx
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A small dataset: Miles Per Gallon

192
Training
Set
Records

mpg modelyear maker

good 75to78 asia

bad 70to74 america

bad 75to78 europe

bad 70to74 america

bad 70to74 america

bad 70to74 asia

bad 70to74 asia

bad 75to78 america

: : :

: : :

: : :

bad 70to74 america

good 79to83 america

bad 75to78 america

good 79to83 america

bad 75to78 america

good 79to83 america

good 79to83 america

bad 70to74 america

good 75to78 europe

bad 75to78 europe

466.19  case) (in this 

)(ˆlog)(ˆlog)dataset(ˆlog
11

!==

== "#
==

R

k

k

R

k

k |MP|MP|MP xx
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Summary: The Good News
• We have a way to learn a Density Estimator

from data.
• Density estimators can do many good

things…
• Can sort the records by probability, and thus

spot weird records (anomaly detection)
• Can do inference: P(E1|E2)

Automatic Doctor / Help Desk etc

• Ingredient for Bayes Classifiers (see later)
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Summary: The Bad News
• Density estimation by directly learning the

joint is trivial, mindless and dangerous
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Using a test set

An independent test set with 196 cars has a worse log likelihood

(actually it’s a billion quintillion quintillion quintillion quintillion
times less likely)

….Density estimators can overfit. And the full joint density
estimator is the overfittiest of them all!
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Overfitting Density Estimators
If this ever happens, it means
there are certain
combinations that we learn
are impossible

0)(ˆ any for  if  

)(ˆlog)(ˆlog)testset(ˆlog
11

=!"=

== #$
==

|MPk

|MP|MP|MP

k

R

k

k

R

k

k

x

xx
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Using a test set

The only reason that our test set didn’t score -infinity is that my
code is hard-wired to always predict a probability of at least one
in 1020

We need Density Estimators that are less
prone to overfitting
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Naïve Density Estimation

The problem with the Joint Estimator is that it just
mirrors the training data.

We need something which generalizes more usefully.

The naïve model generalizes strongly:

Assume that each attribute is distributed
independently of any of the other attributes.
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Independently Distributed Data
• Let x[i] denote the i’th field of record x.
• The independently distributed assumption

says that for any i,v, u1 u2… ui-1 ui+1… uM

)][(

)][,]1[,]1[,]2[,]1[|][( 1121

vixP

uMxuixuixuxuxvixP
Mii

==

==+=!=== +! KK

• Or in other words, x[i] is independent of
{x[1],x[2],..x[i-1], x[i+1],…x[M]}

• This is often written as
]}[],1[],1[],2[],1[{][ Mxixixxxix KK +!"
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A note about independence
• Assume A and B are Boolean Random

Variables. Then
“A and B are independent”

if and only if
P(A|B) = P(A)

• “A and B are independent” is often notated
as

BA !
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Independence Theorems
• Assume P(A|B) = P(A)
• Then P(A^B) =

= P(A) P(B)

• Assume P(A|B) = P(A)
• Then P(B|A) =

= P(B)
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Independence Theorems
• Assume P(A|B) = P(A)
• Then P(~A|B) =

= P(~A)

• Assume P(A|B) = P(A)
• Then P(A|~B) =

= P(A)
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Multivalued Independence

For multivalued Random Variables A and B,

BA !
if and only if

)()|(:, uAPvBuAPvu ====!
from which you can then prove things like…

)()()(:, vBPuAPvBuAPvu ====!="

)()|(:, vBPvAvBPvu ====!
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Using the Naïve Distribution
• Once you have a Naïve Distribution you can easily

compute any row of the joint distribution.
• Suppose A, B, C and D are independently

distributed. What is P(A^~B^C^~D)?
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Using the Naïve Distribution
• Once you have a Naïve Distribution you can easily

compute any row of the joint distribution.
• Suppose A, B, C and D are independently

distributed. What is P(A^~B^C^~D)?
= P(A|~B^C^~D) P(~B^C^~D)
= P(A) P(~B^C^~D)
= P(A) P(~B|C^~D) P(C^~D)
= P(A) P(~B) P(C^~D)
= P(A) P(~B) P(C|~D) P(~D)
= P(A) P(~B) P(C) P(~D)
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Naïve Distribution General Case
• Suppose x[1], x[2], … x[M] are independently

distributed.

!
=

=====
M

k

kM
ukxPuMxuxuxP

1

21 )][()][,]2[,]1[( K

• So if we have a Naïve Distribution we can
construct any row of the implied Joint Distribution
on demand.

• So we can do any inference
• But how do we learn a Naïve Density Estimator?
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Learning a Naïve Density
Estimator

records ofnumber  total

 ][in which  records#
)][(ˆ uix
uixP

=
==

Another trivial learning algorithm!
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Contrast

Given 100 records and 10,000
multivalued attributes will be fine

Given 100 records and more than
6 Boolean attributes will screw up
badly

Outside Naïve’s scopeNo problem to model “C
is a noisy copy of A”

Can model only very
boring distributions

Can model anything

Naïve DEJoint DE
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Reminder: The Good News
• We have two ways to learn a Density

Estimator from data.
• *In other lectures we’ll see vastly more

impressive Density Estimators (Mixture Models,
Bayesian Networks, Density Trees, Kernel Densities and many more)

• Density estimators can do many good
things…
• Anomaly detection
• Can do inference: P(E1|E2) Automatic Doctor / Help Desk etc

• Ingredient for Bayes Classifiers
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How to build a Bayes Classifier
• Assume you want to predict output Y which has arity nY and values

v1, v2, … vny.
• Assume there are m input attributes called X1, X2, … Xm

• Break dataset into nY smaller datasets called DS1, DS2, … DSny.
• Define DSi = Records in which Y=vi

• For each DSi  , learn Density Estimator Mi  to model the input
distribution among the Y=vi records.
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How to build a Bayes Classifier
• Assume you want to predict output Y which has arity nY and values

v1, v2, … vny.
• Assume there are m input attributes called X1, X2, … Xm

• Break dataset into nY smaller datasets called DS1, DS2, … DSny.
• Define DSi = Records in which Y=vi

• For each DSi  , learn Density Estimator Mi  to model the input
distribution among the Y=vi records.

• Mi  estimates P(X1, X2, … Xm | Y=vi )
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How to build a Bayes Classifier
• Assume you want to predict output Y which has arity nY and values

v1, v2, … vny.
• Assume there are m input attributes called X1, X2, … Xm

• Break dataset into nY smaller datasets called DS1, DS2, … DSny.
• Define DSi = Records in which Y=vi

• For each DSi  , learn Density Estimator Mi  to model the input
distribution among the Y=vi records.

• Mi  estimates P(X1, X2, … Xm | Y=vi )

• Idea: When a new set of input values (X1 = u1, X2 = u2, ….
Xm = um) come along to be evaluated predict the value of Y
that makes P(X1, X2, … Xm | Y=vi ) most likely

)|(argmax 11

predict
vYuXuXPY

mm

v

==== L

Is this a good idea?
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How to build a Bayes Classifier
• Assume you want to predict output Y which has arity nY and values

v1, v2, … vny.
• Assume there are m input attributes called X1, X2, … Xm

• Break dataset into nY smaller datasets called DS1, DS2, … DSny.
• Define DSi = Records in which Y=vi

• For each DSi  , learn Density Estimator Mi  to model the input
distribution among the Y=vi records.

• Mi  estimates P(X1, X2, … Xm | Y=vi )

• Idea: When a new set of input values (X1 = u1, X2 = u2, ….
Xm = um) come along to be evaluated predict the value of Y
that makes P(X1, X2, … Xm | Y=vi ) most likely

)|(argmax 11

predict
vYuXuXPY

mm

v

==== L

Is this a good idea?

This is a Maximum
Likelihood classifier.

It can get silly if some Ys
are very unlikely
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How to build a Bayes Classifier
• Assume you want to predict output Y which has arity nY and values

v1, v2, … vny.
• Assume there are m input attributes called X1, X2, … Xm

• Break dataset into nY smaller datasets called DS1, DS2, … DSny.
• Define DSi = Records in which Y=vi

• For each DSi  , learn Density Estimator Mi  to model the input
distribution among the Y=vi records.

• Mi  estimates P(X1, X2, … Xm | Y=vi )

• Idea: When a new set of input values (X1 = u1, X2 = u2, ….
Xm = um) come along to be evaluated predict the value of Y
that makes P(Y=vi | X1, X2, … Xm) most likely

)|(argmax 11

predict

mm

v

uXuXvYPY ==== L

Is this a good idea?

Much Better Idea
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Terminology
• MLE (Maximum Likelihood Estimator):

• MAP (Maximum A-Posteriori Estimator):
)|(argmax 11

predict

mm

v

uXuXvYPY ==== L

)|(argmax 11

predict
vYuXuXPY

mm

v

==== L
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Getting what we need
)|(argmax 11

predict

mm

v

uXuXvYPY ==== L
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Getting a posterior probability
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Bayes Classifiers in a nutshell

)()|(argmax

)|(argmax

11

11

predict

vYPvYuXuXP

uXuXvYPY

mm

v

mm

v

=====

====

L

L

1. Learn the distribution over inputs for each value Y.

2. This gives P(X1, X2, … Xm | Y=vi ).

3. Estimate  P(Y=vi ). as fraction of records with Y=vi .

4. For a new prediction:
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Bayes Classifiers in a nutshell

)()|(argmax

)|(argmax

11

11

predict

vYPvYuXuXP

uXuXvYPY

mm

v

mm

v

=====

====

L

L

1. Learn the distribution over inputs for each value Y.

2. This gives P(X1, X2, … Xm | Y=vi ).

3. Estimate  P(Y=vi ). as fraction of records with Y=vi .

4. For a new prediction: We can use our favorite
Density Estimator here.

Right now we have two
options:

•Joint Density Estimator
•Naïve Density Estimator
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Joint Density Bayes Classifier
)()|(argmax 11

predict
vYPvYuXuXPY

mm

v

===== L

In the case of the joint Bayes Classifier this
degenerates to a very simple rule:

Ypredict = the most common value of Y among records
in which X1 = u1, X2 = u2, …. Xm = um.

Note that if no records have the exact set of inputs X1
= u1, X2 = u2, …. Xm = um, then P(X1, X2, … Xm | Y=vi
) = 0 for all values of Y.

In that case we just have to guess Y’s value
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Naïve Bayes Classifier
)()|(argmax 11

predict
vYPvYuXuXPY

mm

v

===== L

In the case of the naive Bayes Classifier this can be
simplified:
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vYuXPvYPY
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predict )|()(argmax
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Naïve Bayes Classifier
)()|(argmax 11

predict
vYPvYuXuXPY

mm

v

===== L

In the case of the naive Bayes Classifier this can be
simplified:

!
=

====
Yn

j

jj
v

vYuXPvYPY
1

predict )|()(argmax

Technical Hint:
If you have 10,000 input attributes that product will
underflow in floating point math. You should use logs:
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BC Results: “XOR”
The “XOR” dataset consists of 40,000 records and 2 Boolean inputs called a
and b, generated 50-50 randomly as 0 or 1. c (output) = a XOR b

The
Classifier

learned by
“Naive BC”

The
Classifier

learned by
“Joint BC”
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Naïve BC Results: “All Irrelevant”
The “all irrelevant” dataset consists
of 40,000 records and 15 Boolean
attributes called a,b,c,d..o where
a,b,c are generated 50-50
randomly as 0 or 1. v (output) = 1
with probability 0.75, 0 with prob
0.25

The
Classifier

learned by
“Naive BC”
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More Facts About Bayes
Classifiers

• Many other density estimators can be slotted in*.
• Density estimation can be performed with real-valued

inputs*
• Bayes Classifiers can be built with real-valued inputs*
• Rather Technical Complaint: Bayes Classifiers don’t try to

be maximally discriminative---they merely try to honestly
model what’s going on*

• Zero probabilities are painful for Joint and Naïve. A hack
(justifiable with the magic words “Dirichlet Prior”) can
help*.

• Naïve Bayes is wonderfully cheap. And survives 10,000
attributes cheerfully!

*See future Andrew Lectures
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What you should know
• Probability

• Fundamentals of Probability and Bayes Rule
• What’s a Joint Distribution
• How to do inference (i.e. P(E1|E2)) once you

have a JD

• Density Estimation
• What is DE and what is it good for
• How to learn a Joint DE
• How to learn a naïve DE
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What you should know
• Bayes Classifiers

• How to build one
• How to predict with a BC
• Contrast between naïve and joint BCs


