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A Markov System

s1 s3

s2

Has N states, called s1, s2 .. sN

There are discrete timesteps,
t=0, t=1, …

N = 3

t=0
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A Markov System

s1 s3

s2

Has N states, called s1, s2 .. sN

There are discrete timesteps,
t=0, t=1, …

On the t’th timestep the system
is in exactly one of the available
states. Call it qt

Note: qt ∈{s1, s2 .. sN }
N = 3

t=0

qt=q0=s3

Current State
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A Markov System

s1 s3

s2

Has N states, called s1, s2 .. sN

There are discrete timesteps,
t=0, t=1, …

On the t’th timestep the system
is in exactly one of the available
states. Call it qt

Note: qt ∈{s1, s2 .. sN }

Between each timestep, the next
state is chosen randomly.

N = 3

t=1

qt=q1=s2

Current State
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A Markov System

s1 s3

s2

Has N states, called s1, s2 .. sN

There are discrete timesteps,
t=0, t=1, …

On the t’th timestep the system
is in exactly one of the available
states. Call it qt

Note: qt ∈{s1, s2 .. sN }

Between each timestep, the next
state is chosen randomly.

The current state determines the
probability distribution for the
next state.

N = 3

t=1

qt=q1=s2

P(qt+1=s1|qt=s3) = 1/3

P(qt+1=s2|qt=s3) = 2/3

P(qt+1=s3|qt=s3) = 0

P(qt+1=s1|qt=s1) = 0

P(qt+1=s2|qt=s1) = 0

P(qt+1=s3|qt=s1) = 1

P(qt+1=s1|qt=s2) = 1/2

P(qt+1=s2|qt=s2) = 1/2

P(qt+1=s3|qt=s2) = 0
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A Markov System

s1 s3

s2

Has N states, called s1, s2 .. sN

There are discrete timesteps,
t=0, t=1, …

On the t’th timestep the system
is in exactly one of the available
states. Call it qt

Note: qt ∈{s1, s2 .. sN }

Between each timestep, the next
state is chosen randomly.

The current state determines the
probability distribution for the
next state.

N = 3

t=1

qt=q1=s2

P(qt+1=s1|qt=s3) = 1/3

P(qt+1=s2|qt=s3) = 2/3

P(qt+1=s3|qt=s3) = 0

P(qt+1=s1|qt=s1) = 0

P(qt+1=s2|qt=s1) = 0

P(qt+1=s3|qt=s1) = 1

P(qt+1=s1|qt=s2) = 1/2

P(qt+1=s2|qt=s2) = 1/2

P(qt+1=s3|qt=s2) = 0

1/2

1/2

1/3

2/3

1

Often notated with arcs
between states
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Markov Property

s1 s3

s2

qt+1 is conditionally independent
of { qt-1, qt-2, … q1, q0 } given qt.

In other words:

P(qt+1 = sj |qt = si ) =

P(qt+1 = sj |qt = si ,any earlier history)

Question: what would be the
best Bayes Net structure to
represent the Joint Distribution
of ( q0, q1, … q3,q4 )?

N = 3

t=1

qt=q1=s2

P(qt+1=s1|qt=s3) = 1/3

P(qt+1=s2|qt=s3) = 2/3

P(qt+1=s3|qt=s3) = 0

P(qt+1=s1|qt=s1) = 0

P(qt+1=s2|qt=s1) = 0

P(qt+1=s3|qt=s1) = 1

P(qt+1=s1|qt=s2) = 1/2

P(qt+1=s2|qt=s2) = 1/2

P(qt+1=s3|qt=s2) = 0

1/2

1/2

1/3

2/3

1
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Markov Property

s1 s3

s2

qt+1 is conditionally independent
of { qt-1, qt-2, … q1, q0 } given qt.

In other words:

P(qt+1 = sj |qt = si ) =

P(qt+1 = sj |qt = si ,any earlier history)

Question: what would be the
best Bayes Net structure to
represent the Joint Distribution
of ( q0, q1, q2,q3,q4 )?

N = 3

t=1

qt=q1=s2

P(qt+1=s1|qt=s3) = 1/3

P(qt+1=s2|qt=s3) = 2/3

P(qt+1=s3|qt=s3) = 0

P(qt+1=s1|qt=s1) = 0

P(qt+1=s2|qt=s1) = 0

P(qt+1=s3|qt=s1) = 1

P(qt+1=s1|qt=s2) = 1/2

P(qt+1=s2|qt=s2) = 1/2

P(qt+1=s3|qt=s2) = 0

1/2

1/2

1/3

2/3

1
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Markov Property

s1 s3

s2

qt+1 is conditionally independent
of { qt-1, qt-2, … q1, q0 } given qt.

In other words:

P(qt+1 = sj |qt = si ) =

P(qt+1 = sj |qt = si ,any earlier history)

Question: what would be the
best Bayes Net structure to
represent the Joint Distribution
of ( q0, q1, q2,q3,q4 )?

N = 3

t=1

qt=q1=s2

P(qt+1=s1|qt=s3) = 1/3

P(qt+1=s2|qt=s3) = 2/3

P(qt+1=s3|qt=s3) = 0

P(qt+1=s1|qt=s1) = 0

P(qt+1=s2|qt=s1) = 0

P(qt+1=s3|qt=s1) = 1

P(qt+1=s1|qt=s2) = 1/2

P(qt+1=s2|qt=s2) = 1/2

P(qt+1=s3|qt=s2) = 0

1/2

1/2

1/3

2/3

1
Each of these
probability
tables is
identical

Notation:
)|( 1 itjtij sqsqPa === +
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A Blind Robot

H

R

STATE q = Location of Robot,
Location of Human

A human and a
robot wander
around randomly
on a grid…

Note: N (num.

states) = 18 *

18 = 324
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Dynamics of System

H

R
q0 =

Typical Questions:
• “What’s the expected time until the human is
crushed like a bug?”

• “What’s the probability that the robot will hit the
left wall before it hits the human?”

• “What’s the probability Robot crushes human
on next time step?”

Each timestep the
human moves
randomly to an
adjacent cell.  And
Robot also moves
randomly to an
adjacent cell.



Hidden Markov Models: Slide 12

Example Question
“It’s currently time t, and human remains uncrushed.  What’s
the probability of crushing occurring at time t + 1 ?”

If robot is blind:

We can compute this in advance.

If robot is omnipotent:

(I.E. If robot knows state at time t),
can compute directly.

If robot has some sensors, but
incomplete state information …

Hidden Markov Models are
applicable!

We’ll do this first

Too Easy. We 
won’t do this

Main Body
of Lecture
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What is P(qt =s)? slow, stupid answer

Step 1: Work out how to compute P(Q) for any path Q
= q1 q2 q3 .. qt

Given we know the start state q1 (i.e. P(q1)=1)
P(q1 q2 .. qt) = P(q1 q2 .. qt-1) P(qt|q1 q2 .. qt-1)
                    = P(q1 q2 .. qt-1) P(qt|qt-1)
                    = P(q2|q1)P(q3|q2)…P(qt|qt-1)

Step 2: Use this knowledge to get P(qt =s)

WHY?

!
"

==
st Q

t QPsqP
in  endthat length  of Paths

)()( Computation

is exponential

in t



Hidden Markov Models: Slide 14

What is P(qt =s) ? Clever answer
• For each state si, define

pt(i) = Prob. state is si at time t
        = P(qt = si)

• Easy to do inductive definition

=! )(0 ipi

===! ++ )()( 11 jtt sqPjpj
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What is P(qt =s) ? Clever answer
• For each state si, define

pt(i) = Prob. state is si at time t
        = P(qt = si)

• Easy to do inductive definition

!
"
#

=$
otherwise0

statestart   theis if1
)(0

 s
ipi

i

===! ++ )()( 11 jtt sqPjpj
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What is P(qt =s) ? Clever answer
• For each state si, define

pt(i) = Prob. state is si at time t
        = P(qt = si)

• Easy to do inductive definition

!
"
#

=$
otherwise0

statestart   theis if1
)(0

 s
ipi

i

===! ++ )()( 11 jtt sqPjpj

==!="
=

+

N

i

itjt sqsqP
1

1 )(
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What is P(qt =s) ? Clever answer
• For each state si, define

pt(i) = Prob. state is si at time t
        = P(qt = si)

• Easy to do inductive definition

!
"
#

=$
otherwise0

statestart   theis if1
)(0

 s
ipi

i

===! ++ )()( 11 jtt sqPjpj

==!="
=

+

N

i

itjt sqsqP
1

1 )(

====!
=

+

N

i

ititjt sqPsqsqP
1

1 )()|( !
=

N

i

tij ipa
1

)(

Remember,
)|( 1 itjtij sqsqPa === +
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What is P(qt =s) ? Clever answer
• For each state si, define

pt(i) = Prob. state is si at time t
        = P(qt = si)

• Easy to do inductive definition

• Computation is simple.
• Just fill in this table in this

order:

!
"
#

=$
otherwise0

statestart   theis if1
)(0

 s
ipi

i

===! ++ )()( 11 jtt sqPjpj

==!="
=

+

N

i

itjt sqsqP
1

1 )(

====!
=

+

N

i

ititjt sqPsqsqP
1

1 )()|( !
=

N

i

tij ipa
1

)(

tfinal

:

1

0100

pt(N)…pt(2)pt(1)t
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What is P(qt =s) ? Clever answer
• For each state si, define

pt(i) = Prob. state is si at time t
        = P(qt = si)

• Easy to do inductive definition

• Cost of computing Pt(i) for all
states Si is now O(t N2)

• The stupid way was O(Nt)
• This was a simple example
• It was meant to warm you up

to this trick, called Dynamic
Programming, because
HMMs do many tricks like
this.

!
"
#

=$
otherwise0

statestart   theis if1
)(0

 s
ipi

i

===! ++ )()( 11 jtt sqPjpj
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=

+
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Hidden State
“It’s currently time t, and human remains uncrushed.  What’s
the probability of crushing occurring at time t + 1 ?”

If robot is blind:

We can compute this in advance.

If robot is omnipotent:

(I.E. If robot knows state at time t),
can compute directly.

If robot has some sensors, but
incomplete state information …

Hidden Markov Models are
applicable!

We’ll do this first

Too Easy. We 
won’t do this

Main Body
of Lecture
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Hidden State

H

R0

H

®

WWW

• The previous example tried to estimate P(qt = si)
unconditionally (using no observed evidence).

• Suppose we can observe something that’s affected
by the true state.

• Example: Proximity sensors. (tell us the contents of
the 8 adjacent squares)

W
denotes
“WALL”

True state qt What the robot sees:
Observation Ot
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Noisy Hidden State

H

R0

H

®

WWW

• Example: Noisy Proximity sensors. (unreliably tell us
the contents of the 8 adjacent squares)

W
denotes
“WALL”

True state qt Uncorrupted Observation

HH

W®

WW

What the robot
sees: Observation Ot
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Noisy Hidden State

H

2R0

H

®

WWW

• Example: Noisy Proximity sensors. (unreliably tell us
the contents of the 8 adjacent squares)

W
denotes
“WALL”

True state qt Uncorrupted Observation

HH

W®

WW

What the robot
sees: Observation Ot

Ot is noisily determined depending on
the current state.

Assume that Ot is conditionally
independent of {qt-1, qt-2, … q1, q0 ,Ot-1,
Ot-2, … O1, O0 } given qt.

In other words:

P(Ot = X |qt = si ) =

P(Ot = X |qt = si ,any earlier history)
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Noisy Hidden State

H

2R0

H

®

WWW

• Example: Noisy Proximity sensors. (unreliably tell us
the contents of the 8 adjacent squares)

W
denotes
“WALL”

True state qt Uncorrupted Observation

HH

W®

WW

What the robot
sees: Observation Ot

Ot is noisily determined depending on
the current state.

Assume that Ot is conditionally
independent of {qt-1, qt-2, … q1, q0 ,Ot-1,
Ot-2, … O1, O0 } given qt.

In other words:

P(Ot = X |qt = si ) =

P(Ot = X |qt = si ,any earlier history)
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Hidden Markov Models
Our robot with noisy sensors is a good example of an HMM
• Question 1: State Estimation

What is P(qT=Si | O1O2…OT)
It will turn out that a new cute D.P. trick will get this for us.

• Question 2: Most Probable Path
Given O1O2…OT , what is the most probable path that I took?
And what is that probability?
Yet another famous D.P. trick, the VITERBI algorithm, gets

this.
• Question 3: Learning HMMs:

Given O1O2…OT , what is the maximum likelihood HMM that
could have produced this string of observations?

Very very useful. Uses the E.M. Algorithm
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Are H.M.M.s Useful?

You bet !!
• Robot planning + sensing when there’s uncertainty
• Speech Recognition/Understanding

Phones → Words, Signal → phones
• Human Genome Project

Complicated stuff your lecturer knows nothing
about.

• Consumer decision modeling
• Economics & Finance.
Plus at least 5 other things I haven’t thought of.
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HMM Notation
(from Rabiner’s Survey)
The states are labeled S1 S2 .. SN

For a particular trial….
Let T be the number of observations

T is also the number of states passed 
through

O = O1 O2 .. OT is the sequence of observations
Q = q1 q2 .. qT     is the notation for a path of states

λ = 〈N,M,{πi,},{aij},{bi(j)}〉    is the specification of an
HMM

*L. R. Rabiner, "A Tutorial
on Hidden Markov Models
and Selected Applications in
Speech Recognition," Proc.
of the IEEE, Vol.77, No.2,
pp.257--286, 1989.
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HMM Formal Definition
An HMM, λ, is a 5-tuple consisting of
• N   the number of states
• M   the number of possible observations
• {π1, π2, .. πN}  The starting state probabilities

P(q0 = Si) = πi

•  a11 a22 … a1N  
 a21 a22 … a2N

         :   :   :
     aN1 aN2 … aNN

•  b1(1) b1(2) … b1(M)
 b2(1) b2(2) … b2(M)
   :   :   :
 bN(1) bN(2) … bN(M)

This is new. In our
previous example,
start state was
deterministic

The state transition probabilities

   P(qt+1=Sj | qt=Si)=aij

The observation probabilities

   P(Ot=k | qt=Si)=bi(k)
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Here’s an HMM

N = 3
M = 3
π1 = 1/2 π2 = 1/2 π3 = 0

a11 = 0  a12 = 1/3  a13 = 2/3

a12 = 1/3   a22 = 0  a13 = 2/3

a13 = 1/3   a32 = 1/3   a13 = 1/3

b1 (X) = 1/2  b1 (Y) = 1/2  b1 (Z) = 0
b2 (X) = 0  b2 (Y) = 1/2  b2 (Z) = 1/2

b3 (X) = 1/2  b3 (Y) = 0  b3 (Z) = 1/2

Start randomly in state 1 or 2

Choose one of the output
symbols in each state at
random.

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Here’s an HMM

N = 3
M = 3
π1 = ½ π2 = ½ π3 = 0

a11 = 0  a12 = ⅓  a13 = ⅔
a12 = ⅓   a22 = 0  a13 = ⅔
a13 = ⅓   a32 = ⅓   a13 = ⅓

b1 (X) = ½  b1 (Y) = ½  b1 (Z) = 0
b2 (X) = 0  b2 (Y) = ½  b2 (Z) = ½
b3 (X) = ½  b3 (Y) = 0  b3 (Z) = ½

Start randomly in state 1 or 2

Choose one of the output
symbols in each state at
random.

Let’s generate a sequence of
observations:

__O2=__q2=
__O1=__q1=
__O0=__q0=

50-50 choice
between S1 and

S2

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Here’s an HMM

N = 3
M = 3
π1 = ½ π2 = ½ π3 = 0

a11 = 0  a12 = ⅓  a13 = ⅔
a12 = ⅓   a22 = 0  a13 = ⅔
a13 = ⅓   a32 = ⅓   a13 = ⅓

b1 (X) = ½  b1 (Y) = ½  b1 (Z) = 0
b2 (X) = 0  b2 (Y) = ½  b2 (Z) = ½
b3 (X) = ½  b3 (Y) = 0  b3 (Z) = ½

Start randomly in state 1 or 2

Choose one of the output
symbols in each state at
random.

Let’s generate a sequence of
observations:

__O2=__q2=
__O1=__q1=
__O0=S1q0=

50-50 choice
between X and

Y

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Here’s an HMM

N = 3
M = 3
π1 = ½ π2 = ½ π3 = 0

a11 = 0  a12 = ⅓  a13 = ⅔
a12 = ⅓   a22 = 0  a13 = ⅔
a13 = ⅓   a32 = ⅓   a13 = ⅓

b1 (X) = ½  b1 (Y) = ½  b1 (Z) = 0
b2 (X) = 0  b2 (Y) = ½  b2 (Z) = ½
b3 (X) = ½  b3 (Y) = 0  b3 (Z) = ½

Start randomly in state 1 or 2

Choose one of the output
symbols in each state at
random.

Let’s generate a sequence of
observations:

__O2=__q2=
__O1=__q1=
XO0=S1q0=

Goto S3 with
probability 2/3

or S2 with prob.
1/3

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Here’s an HMM

N = 3
M = 3
π1 = ½ π2 = ½ π3 = 0

a11 = 0  a12 = ⅓  a13 = ⅔
a12 = ⅓   a22 = 0  a13 = ⅔
a13 = ⅓   a32 = ⅓   a13 = ⅓

b1 (X) = ½  b1 (Y) = ½  b1 (Z) = 0
b2 (X) = 0  b2 (Y) = ½  b2 (Z) = ½
b3 (X) = ½  b3 (Y) = 0  b3 (Z) = ½

Start randomly in state 1 or 2

Choose one of the output
symbols in each state at
random.

Let’s generate a sequence of
observations:

__O2=__q2=
__O1=S3q1=
XO0=S1q0=

50-50 choice
between Z and X

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Here’s an HMM

N = 3
M = 3
π1 = ½ π2 = ½ π3 = 0

a11 = 0  a12 = ⅓  a13 = ⅔
a12 = ⅓   a22 = 0  a13 = ⅔
a13 = ⅓   a32 = ⅓   a13 = ⅓

b1 (X) = ½  b1 (Y) = ½  b1 (Z) = 0
b2 (X) = 0  b2 (Y) = ½  b2 (Z) = ½
b3 (X) = ½  b3 (Y) = 0  b3 (Z) = ½

Start randomly in state 1 or 2

Choose one of the output
symbols in each state at
random.

Let’s generate a sequence of
observations:

__O2=__q2=
XO1=S3q1=
XO0=S1q0=

Each of the
three next

states is equally
likely

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Here’s an HMM

N = 3
M = 3
π1 = ½ π2 = ½ π3 = 0

a11 = 0  a12 = ⅓  a13 = ⅔
a12 = ⅓   a22 = 0  a13 = ⅔
a13 = ⅓   a32 = ⅓   a13 = ⅓

b1 (X) = ½  b1 (Y) = ½  b1 (Z) = 0
b2 (X) = 0  b2 (Y) = ½  b2 (Z) = ½
b3 (X) = ½  b3 (Y) = 0  b3 (Z) = ½

S2

Start randomly in state 1 or 2

Choose one of the output
symbols in each state at
random.

Let’s generate a sequence of
observations:

__O2=S3q2=
XO1=S3q1=
XO0=S1q0=

50-50 choice
between Z and X

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Here’s an HMM

N = 3
M = 3
π1 = ½ π2 = ½ π3 = 0

a11 = 0  a12 = ⅓  a13 = ⅔
a12 = ⅓   a22 = 0  a13 = ⅔
a13 = ⅓   a32 = ⅓   a13 = ⅓

b1 (X) = ½  b1 (Y) = ½  b1 (Z) = 0
b2 (X) = 0  b2 (Y) = ½  b2 (Z) = ½
b3 (X) = ½  b3 (Y) = 0  b3 (Z) = ½

Start randomly in state 1 or 2

Choose one of the output
symbols in each state at
random.

Let’s generate a sequence of
observations:

ZO2=S3q2=
XO1=S3q1=
XO0=S1q0=

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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State Estimation

N = 3
M = 3
π1 = ½ π2 = ½ π3 = 0

a11 = 0  a12 = ⅓  a13 = ⅔
a12 = ⅓   a22 = 0  a13 = ⅔
a13 = ⅓   a32 = ⅓   a13 = ⅓

b1 (X) = ½  b1 (Y) = ½  b1 (Z) = 0
b2 (X) = 0  b2 (Y) = ½  b2 (Z) = ½
b3 (X) = ½  b3 (Y) = 0  b3 (Z) = ½

Start randomly in state 1 or 2

Choose one of the output
symbols in each state at
random.

Let’s generate a sequence of
observations:

ZO2=?q2=
XO1=?q1=
XO0=?q0=

This is what the
observer has to

work with…

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3



Hidden Markov Models: Slide 38

Prob. of a series of observations
What is P(O) = P(O1 O2 O3) =

P(O1 = X ^ O2 = X ^ O3 = Z)?

Slow, stupid way:

How do we compute P(Q)  for
an arbitrary path Q?

How do we compute P(O|Q)
for an arbitrary path Q?

!
"

#=
3length  of Paths

)()(
Q

QOO PP

!
"

=
3length  of Paths

)()|(
Q

QQO PP

XY

ZX

Z Y
S2S1

S3
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1/3

1/3

1/3

2/3
2/3

1/3
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Prob. of a series of observations
What is P(O) = P(O1 O2 O3) =

P(O1 = X ^ O2 = X ^ O3 = Z)?

Slow, stupid way:

How do we compute P(Q)  for
an arbitrary path Q?

How do we compute P(O|Q)
for an arbitrary path Q?

!
"

#=
3length  of Paths

)()(
Q

QOO PP

P(Q)= P(q1,q2,q3)

=P(q1) P(q2,q3|q1) (chain rule)

=P(q1) P(q2|q1) P(q3| q2,q1)  (chain)

=P(q1) P(q2|q1) P(q3| q2) (why?)

Example in the case Q = S1 S3 S3:

=1/2 * 2/3 * 1/3 = 1/9

!
"

=
3length  of Paths

)()|(
Q

QQO PP

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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Prob. of a series of observations
What is P(O) = P(O1 O2 O3) =

P(O1 = X ^ O2 = X ^ O3 = Z)?

Slow, stupid way:

How do we compute P(Q)  for
an arbitrary path Q?

How do we compute P(O|Q)
for an arbitrary path Q?

!
"

#=
3length  of Paths

)()(
Q

QOO PP

P(O|Q)

= P(O1 O2 O3 |q1 q2 q3 )

= P(O1 | q1 ) P(O2 | q2 ) P(O3 | q3 ) (why?)

Example in the case Q = S1 S3 S3:

= P(X| S1) P(X| S3) P(Z| S3) =

=1/2 * 1/2 * 1/2 = 1/8

!
"

=
3length  of Paths

)()|(
Q

QQO PP

XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3
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XY

ZX

Z Y
S2S1

S3

1/3

1/3

1/3

1/3

2/3
2/3

1/3

Prob. of a series of observations
What is P(O) = P(O1 O2 O3) =

P(O1 = X ^ O2 = X ^ O3 = Z)?

Slow, stupid way:

How do we compute P(Q)  for
an arbitrary path Q?

How do we compute P(O|Q)
for an arbitrary path Q?

!
"

#=
3length  of Paths

)()(
Q

QOO PP

P(O|Q)

= P(O1 O2 O3 |q1 q2 q3 )

= P(O1 | q1 ) P(O2 | q2 ) P(O3 | q3 ) (why?)

Example in the case Q = S1 S3 S3:

= P(X| S1) P(X| S3) P(Z| S3) =

=1/2 * 1/2 * 1/2 = 1/8

!
"

=
3length  of Paths

)()|(
Q

QQO PP

P(O) would need 27 P(Q)

computations and 27 P(O|Q)

computations 

A sequence of 20 observations would need 320 = 

3.5 billion computations and 3.5 billion P(O|Q)

computations So let’s be smarter…
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The Prob. of a given series of
observations, non-exponential-cost-style

Given observations O1 O2 … OT

Define

αt(i) = P(O1 O2 … Ot  ∧ qt = Si | λ)         where 1 ≤ t ≤ T

αt(i) =   Probability that, in a random trial,

• We’d have seen the first t observations

• We’d have ended up in Si as the t’th state
visited.

In our example, what is α2(3) ?
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αt(i): easy to define recursively
αt(i) = P(O1 O2 … OT  ∧ qt = Si | λ) (αt(i) can be defined stupidly by considering all paths length “t”. How?)

( ) ( )

( ) ( )

( ) ( )
=
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+++ jtttt
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what?                                        
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αt(i): easy to define recursively
αt(i) = P(O1 O2 … OT  ∧ qt = Si | λ) (αt(i) can be defined stupidly by considering all paths length “t”. How?)
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in our example
( ) ( )
( ) ( )

( ) ( ) ( )iObaj
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SqOOOi

t

i

tjijt

ii

ittt

!!

"!

#!

$ ++ =

=

=%=

11

11

21

  

..P

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
72

1
3     

72

1
2     01

12

1
3     02     01

03     02     
4

1
1

333

222

111

===

===

===

!!!

!!!

!!!

WE SAW   O1 O2 O3 = X X Z
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ZX

Z Y
S2S1
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Easy Question

We can cheaply compute

αt(i)=P(O1O2…Ot∧qt=Si)

(How) can we cheaply compute

P(O1O2…Ot)   ?

(How) can we cheaply compute

P(qt=Si|O1O2…Ot)
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Easy Question

We can cheaply compute

αt(i)=P(O1O2…Ot∧qt=Si)

(How) can we cheaply compute

P(O1O2…Ot)   ?

(How) can we cheaply compute

P(qt=Si|O1O2…Ot)

!
=

N

i

t
i

1

)("

!
=

N

j

t

t

j

i

1

)(

)(

"

"



Hidden Markov Models: Slide 48

Most probable path given observations

( )
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:answer stupid Slow,
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Efficient MPP computation
We’re going to compute the following variables:

δt(i)=      max        P(q1 q2 .. qt-1 ∧ qt = Si ∧ O1 .. Ot)
        q1q2..qt-1

      =  The Probability of the path of Length t-1 with the
maximum chance of doing all these things:

…OCCURING
and

…ENDING UP IN STATE Si
and

…PRODUCING OUTPUT O1…Ot

DEFINE: mppt(i) =  that path

So:                 δt(i)= Prob(mppt(i))
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The Viterbi Algorithm
( ) ( )

( ) ( )
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Now, suppose we have all the δt(i)’s and mppt(i)’s for all i.

HOW TO GET  δt+1(j) and mppt+1(j)?

mppt(1) Prob=δt(1)

mppt(2) 

:

mppt(N) 

S1

S2

SN

qt

Sj

qt+1

Prob=δt(N)

Prob=δt(2)
?:
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The Viterbi Algorithm
time t time t+1

S1
 : Sj
Si
 :

The most prob path with last
two states Si  Sj

is

the most prob path to Si ,
followed by transition Si → Sj



Hidden Markov Models: Slide 52

The Viterbi Algorithm
time t time t+1

S1
 : Sj
Si
 :

The most prob path with last
two states Si  Sj

is

the most prob path to Si ,
followed by transition Si → Sj

What is the prob of that path?
δt(i) x P(Si → Sj ∧ Ot+1 | λ)

=  δt(i) aij bj (Ot+1)
SO   The most probable path to Sj has

Si* as its penultimate state
  where  i*=argmax δt(i) aij bj (Ot+1)

             i
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The Viterbi Algorithm
time t time t+1

S1
 : Sj
Si
 :

The most prob path with last
two states Si  Sj

is

the most prob path to Si ,
followed by transition Si → Sj

What is the prob of that path?
δt(i) x P(Si → Sj ∧ Ot+1 | λ)

=  δt(i) aij bj (Ot+1)
SO   The most probable path to Sj has

Si* as its penultimate state
  where  i*=argmax δt(i) aij bj (Ot+1)

             i

} with i* defined
to the left

Summary:
δt+1(j)  =  δt(i*) aij bj (Ot+1)
mppt+1(j)  =  mppt+1(i*)Si*
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What’s Viterbi used for?

Classic Example

Speech recognition:

Signal → words

HMM → observable is signal

         → Hidden state is part of word 
formation

What is the most probable word given this signal?

UTTERLY GROSS SIMPLIFICATION

In practice: many levels of inference; not
one big jump.
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HMMs are used and useful
But how do you design an HMM?

Occasionally, (e.g. in our robot example) it is reasonable to
deduce the HMM from first principles.

But usually, especially in Speech or Genetics, it is better to
infer it from large amounts of data.  O1 O2 .. OT with a big “T”.

O1 O2 .. OT

O1 O2 .. OT

Observations previously
in lecture

Observations in the 
next bit
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Inferring an HMM
Remember, we’ve been doing things like

P(O1 O2 .. OT | λ )

That “λ” is the notation for our HMM parameters.

Now We have some observations and we want to 
estimate λ from them.

AS USUAL: We could use

(i) MAX LIKELIHOOD   λ = argmax P(O1 .. OT | λ)
         λ

(ii) BAYES
Work out P( λ | O1 .. OT )

and then take E[λ] or max P( λ | O1 .. OT )
       λ
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Max likelihood HMM estimation
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Define
γt(i) = P(qt = Si | O1O2…OT , λ )
εt(i,j) = P(qt = Si ∧ qt+1 = Sj | O1O2…OT ,λ )

γt(i)  and εt(i,j)  can be computed efficiently   ∀i,j,t
(Details in Rabiner paper)

Expected number of transitions
out of state i during the path

Expected number of transitions from
state i to state j during the path
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HMM
estimation
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EM for HMMs
If we knew λ we could estimate EXPECTATIONS of quantities

such as
Expected number of times in state i
Expected number of transitions i → j

If we knew the quantities such as
Expected number of times in state i
Expected number of transitions i → j

We could compute the MAX LIKELIHOOD estimate of
 λ = 〈{aij},{bi(j)}, πi〉

Roll on the EM Algorithm…
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EM 4 HMMs
1. Get your observations  O1 …OT

2. Guess your first λ estimate λ(0), k=0

3. k = k+1

4. Given O1 …OT, λ(k) compute
γt(i) , εt(i,j)      ∀1 ≤ t ≤ T,      ∀1 ≤ i ≤ N,      ∀1 ≤ j ≤ N

5. Compute expected freq. of state i, and expected freq. i→j
6. Compute new estimates of aij, bj(k), πi   accordingly.  Call

them λ(k+1)

7. Goto 3, unless converged.

• Also known (for the HMM case) as the BAUM-WELCH
algorithm.
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Bad News

Good News

Notice

• There are lots of local minima

• The local minima are usually adequate models of the
data.

• EM does not estimate the number of states. That must
be given.

• Often, HMMs are forced to have some links with zero
probability. This is done by setting aij=0 in initial
estimate λ(0)

• Easy extension of everything seen today: HMMs with
real valued outputs
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Bad News

Good News

Notice

• There are lots of local minima

• The local minima are usually adequate models of the
data.

• EM does not estimate the number of states. That must
be given.

• Often, HMMs are forced to have some links with zero
probability. This is done by setting aij=0 in initial
estimate λ(0)

• Easy extension of everything seen today: HMMs with
real valued outputs

Trade-off between too few states (inadequately
modeling the structure in the data) and too many
(fitting the noise).

Thus #states is a regularization parameter.

Blah blah blah… bias variance tradeoff…blah
blah…cross-validation…blah blah….AIC,
BIC….blah blah (same ol’ same ol’)
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What You Should Know
• What is an HMM ?
• Computing (and defining) αt(i)
• The Viterbi algorithm
• Outline of the EM algorithm
• To be very happy with the kind of maths and

analysis needed for HMMs
• Fairly thorough reading of Rabiner* up to page 266*

[Up to but not including “IV. Types of HMMs”].
*L. R. Rabiner, "A Tutorial on Hidden Markov Models and Selected

Applications in Speech Recognition," Proc. of the IEEE, Vol.77, No.2,
pp.257--286, 1989.

DON’T PANIC:
starts on p. 257.


