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A Markov System

Has N states, called s, s, .. Sy

There are discrete timesteps,
t=0, t=1, ...

N =3
t=0
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A Markov System

Has N states, called s, s, .. Sy

There are discrete timesteps,
t=0, t=1, ...

On the t'th timestep the system
Current State is in exactly one of the available

\ : states. Call it g,
' N |

Note: g, €{s,, S, .. Sy }

q:=40=S3

Hidden Markov Models: Slide 3



Current State

(&
(&

q:=4:=S,

A Markov System

Has N states, called s, s, .. Sy

There are discrete timesteps,
t=0, t=1, ...

On the t'th timestep the system
IS in exactly one of the available
states. Call it g,

Note: g, €{s,, S, .. Sy }

Between each timestep, the next
state is chosen randomly.
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P(q..1=s,19,=s,) = 1/2
P(qi.1=S,l|0,=s,) = 1/2
P(9+1=8519=S,) = 0
=s,)=0
=s,) =1

N=3
t=1
q:=4:=S,

A Markov System

Has N states, called s, s, .. Sy

There are discrete timesteps,
t=0, t=1, ...

On the t'th timestep the system
IS in exactly one of the available
states. Call it g,

Note: g, €{s,, S, .. Sy }

Between each timestep, the next

P(q..,=s4l0=Ss3) = 1/3
P(q..1=S,|q=s3) = 2/3
P(qt+1=33|qt=33) =0

state is chosen randomly.

The current state determines the
probability distribution for the

next state.
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P(q..1=s,19,=s,) = 1/2
P(qi.1=S,l|0,=s,) = 1/2

P(q..1=55|09;=s,) =0

P(q.1=54]0;=8,)
P(q;.1=5,/0,=8,)
P(q;.1=55/0,=8,)

=0

N=3 1~

q:=4:=S,

A Markov System

Has N states, called s, s, .. Sy

There are discrete timesteps,
t=0, t=1, ...

On the t'th timestep the system
IS in exactly one of the available
states. Call it g,

Note: g, €{s,, S, .. Sy }

Between each timestep, the next

P(q..,=s4l0=Ss3) = 1/3
P(q..1=S,|q=s3) = 2/3
P(qt+1=33|qt=33) =0

state is chosen randomly.

The current state determines the
probability distribution for the

Often notated with arcs ext state.
between states
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P(q..1=s,19,=s,) = 1/2
P(qi.1=S,l|0,=s,) = 1/2

P(q..1=55|09;=s,) =0

Markov Property

Ji+1 IS conditionally independent
of { Q.15 Q.05 --- Q4, g } GiVEN Q.

In other words:
P(Qiuq1 = 510:=8;) =
P(Qy.1 = S;10 = S; ;any earlier history)

Question: what would be the
best Bayes Net structure to
represent the Joint Distribution

P(q..,=s4l0=Ss3) = 1/3
P(q..1=S,|q=s3) = 2/3
P(qt+1=33|qt=33) =0

Of ( qO’ q’li q3aq4 )?
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P(q..1=s,19,=s,) = 1/2
P(qi.1=S,l|0,=s,) = 1/2

P(q..1=55|09;=s,) =0

Markov Property

Ji+1 IS conditionally independent
of { Q.15 Q.05 --- Q4, g } GiVEN Q.

In other words:
P(Qiuq1 = 510:=8;) =
P(Qy.1 = S;10 = S; ;any earlier history)

Question: what would be the
best Bayes Net structure to
represent the Joint Distribution

P(q..,=s4l0=Ss3) = 1/3
P(q..1=S,|q=s3) = 2/3
P(qt+1=33|qt=33) =0

of ( 4o, A4, 92,93,d4 )7
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P(q..1=s,19,=s,) = 1/2
P(qi.1=S,l|0,=s,) = 1/2
P(qt+1=33|qt=32) =0

S+

Each of these
probability
tables is
identical

N—

P(qﬁ/(s,s) =1/3
(9. s,la=s;) = 2/3

q:=4:=S,

P(q,.1=55|0;=s5) =0

Markov Property

Ji+1 IS conditionally independent
of { Q.15 Q.05 --- Q4, g } GiVEN Q.

In other words:
P(Qiuq1 = 510:=8;) =
P(Qy.1 = S;10 = S; ;any earlier history)

Question: what would be the
best Bayes Net structure to
represent the Joint Distribution

of (o, 91, G/ G4 )?

Notation:
a; =P(Qt+1 =3 |Qt =Si)
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A Blind Robot

A human and a
robot wander

around randomly
on agrid...
R
H
STATE q = Location of Robot,

Location of Human
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Dynamlcs of System Each timestep the

Qo = human moves

R randomly to an
adjacent cell. And
Robot also moves
H randomly to an
adjacent cell.

Typical Questions:

*“What's the expected time until the human is
crushed like a bug?”

*“What's the probability that the robot will hit the
left wall before it hits the human?”

*“What's the probability Robot crushes human
on next time step?”
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Example Question

“It's currently time t, and human remains uncrushed. What's
the probability of crushing occurring at time t + 1 ?”

If robot is blind:
< We’'ll do this first

We can compute this in advance.

If robot is omnipotent:

(l.E. If robot knows state at time t), <:

Too Easy. We
won't do this

can compute directly.

j Main Body
of Lecture
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What is P(q, =s)? slow, stupid answer

Step 1: Work out how to compute P(Q) for any path Q
= ({4 (243 Q;
Given we know the start state q, (i.e. P(q,)=1)
P(q1 ;.- 9;) = P(q Q3 - 9i.1) P(Qay G5 - Gtq)
=P(a; 9, - Gwq) P(Qdlaq)  WHY?
= P(0,]q4)P(a3|qy)- .. P(q:la4)
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What is P(q, =s) ? Clever answer

» For each state s;, define
p.(i) = Prob. state is s; at time t

= P(qt = S/)
« Easy to do inductive definition

Vi p,(i)=

VJ pt+1(j)=P(Qt+1 =Sj)=
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What is P(q, =s) ? Clever answer

» For each state s;, define
p.(i) = Prob. state is s; at time t

= P(qt = S/)
« Easy to do inductive definition

Vi p,(i)= {

1 1f s, 1s the start state

0 otherwise

VJ pt+1(j)=P(Qt+1 =Sj)=
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What is P(q, =s) ? Clever answer

» For each state s;, define
p.(i) = Prob. state is s; at time t

= P(qt = S/)
« Easy to do inductive definition

Vi p,(i)= {

1 1f s, 1s the start state

0 otherwise

VJ pt+1(j)=P(Qt+1 =Sj)=

N
N PG =5;1q,=5,) =
=1
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What is P(q, =s) ? Clever answer

» For each state s;, define
p.(i) = Prob. state is s; at time t

= P(qt = S/)
« Easy to do inductive definition
i (0 1 1f s, 1s the start state
i [) =
Po 0 otherwise
VJ pt+1(j)=P(Qt+1 =Sj)=
N Remember,
EP(%H:S]‘A%:S;'): a,-j=P(qf+1=Sj|%=Si)
i=1
N W
N P(q. =5;1q,=5)P(q,=s)= " a,p,(0)
i=l i=1
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What is P(q, =s) ? Clever answer

« For each state s, define Computation is simple.
Just fill in this table in

p.(i) = Prob. state is s; at time t ' order- )

= P(qt = S/) ‘
« Easy to do inductive definition t 1p1) [ pd2) | ... | PN)
Vi 0 1 if s, is the start state 0 |01 0
] i) =
Po 0 otherwise 1
VJ pt+1(j) = P(qt+1 = Sj) = te

N
N PG =5;1q,=5,) =
=1

N N
N P(q. =5;1q,=5)P(q,=s5)= ) a,p,(0)
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What is P(q, =s) ? Clever answer

» For each state s;, define
p.(i) = Prob. state is s; at time t
= P(qt = SI) *
« Easy to do inductive definition
. . 1 1if s, 1s the start state
Vi p,@i)= { l

0 otherwise

VJ pt+1(j)=P(ql‘+1 =Sj)=

Cost of computing P(i) for all
states S, is now O(t N?)

The stupid way was O(N?!)
This was a simple example
It was meant to warm you up
to this trick, called Dynamic
Programming, because

HMMs do many tricks like
this.

N
N PG =5;1q,=5,) =
=1

N

N
N P(q. =5;1q,=5)P(q,=s5)= ) a,p,(0)
=1

i=1
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Hidden State

Main Body
of Lecture
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Hidden State

* The previous example tried to estimate P(q, = s))
unconditionally (using no observed evidence).

« Suppose we can observe something that's affected
by the true state.

« Example: Proximity sensors. (tell us the contents of
the 8 adjacent squares)

R, W

7 W
H ® 1—

denotes
— H “WALL”

True state g, What the robot sees:

Observation O,
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Noisy Hidden State

« Example: Noisy Proximity sensors. (unreliably tell us
the contents of the 8 adjacent squares)

R, W W W W
H ® denotes
— H “WALL”
True state q, Uncorrupted Observation
N\
W W
® W
H H

What the robot
sees: Observation O,
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Noisy Hidden State

« Example: Noisy Proximity sensors. (unreliably tell us

the contents of the 8 adjacent squares)

R, 2

True state g,

O, is noisily determined depending on
the current state.

Assume that O, is conditionally

independent of {q_t_1, Q.25 --- Ay, Ao Oy,
O ... Oy, Og } given g,

In other words:

P(O,=X]qg;=s;) =

P(O,= X|q,= s;,any earlier history)

W W W W
® denotes
H “WALL”
Uncorrupted Observation
N
W W
® W
H H

What the robot
sees: Observation O,
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Noisy Hidden State

« Example: Noisy Proximity sensors. (unreliably tell us

the contents of the 8 adjacent squares)

R, 2

True state g,

O, is noisily determined depending on
the current state.

Assume that O, is conditionally

independent of {q_t_1, Q.25 --- Ay, Ao Oy,
O ... Oy, Og } given g,

In other words:

P(O,=X]qg;=s;) =

P(O,= X|q,= s;,any earlier history)

W W W W
® denotes
H “WALL”
Uncorrupted Observation
N
W W
® W
H H

What the robot
sees: Observation O,
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Hidden Markov Models

Our robot with noisy sensors is a good example of an HMM
* Question 1: State Estimation
What is P(q;=S; | 0,0,...05)
It will turn out that a new cute D.P. trick will get this for us.
* Question 2: Most Probable Path
Given O,0,...0+, what is the most probable path that | took?
And what is that probability?

Yet another famous D.P. trick, the VITERBI algorithm, gets
this.

* Question 3: Learning HMMs:

Given O,0,...0+, what is the maximum likelihood HMM that
could have produced this string of observations?

Very very useful. Uses the E.M. Algorithm
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Are H.M.M.s Useful?

You bet !

Robot planning + sensing when there’s uncertainty

Speech Recognition/Understanding
Phones — Words, Signal — phones

Human Genome Project
Complicated stuff your lecturer knows nothing
about.

Consumer decision modeling
Economics & Finance.

Plus at least 5 other things | haven't thought of.
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HMM Notation S
] ; /S | 'L R.. Rabiner, "A Tutorial
(frOm Ra bl nNer s S U rvey) on Hidden Markov Models

and Selected Applications in
Speech Recognition," Proc.

The states are labeled S; S, .. Sy | ofthe IEEE, Vol.77,No2
pp.257--286, 1989.

For a particular trial....
Let T be the number of observations

T IS also the number of states passed
through

O =0, 0, .. O;is the sequence of observations
Q=0q,09,..97 Isthe notation for a path of states

A =(N,M,{m },{a;},1b;(j)}) is the specification of an
HMM
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HMM Formal Definition

An HMM, A, is a 5-tuple consisting of
« N the number of states

« M the number of possible observations 4 This is new. In our
S

N The starting state probabilitie previous example,
s o - T} ? g start state was

P(ay=S) =m deterministic
~
* adyqy doo RN
Ay Ao an L The state transition probabilities
. . P(qt+1=Sj | qt=Si)=aij
a1 a2 ann
~
*  by(1 b,(2) ... b,(M) The ob ) il
b2(1 b2(2) bz(M) . € obServation probabnliitues
; : P(O=k | 9=S;)=b;(k)
by(1) bn(2) by(M) ~
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H ere’S aﬂ H M M Start randomly in state 1 or 2

Choose one of the output
symbols in each state at
random.

A, = 1/3 a5 = 2/3

a;, = 1/3 Ay, = a5 = 2/3

a3 =113 ay, = 1/3 a3 =113
=1/2 b, (Y) =112 b, (Z)=0
=0 b, (Y) =12 b, (Z) =1/2
=12 b, (Y)=0 b, (Z£) =112
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H ere,S aﬂ H M M Start randomly in state 1 or 2

Choose one of the output

S, — <« S, symbols in each state at
XY 1/3 — 7Y random.
. >\\2/3, @ I(;gg : rg\:;/:zg;it_e a sequence of
s ZX s '
50-50 choice
between S, and
T, =72
CIPRRE a13=7 D)
a1, =" A2 = a3 =7 D
a3 =" 83y =75 3= 7 Q= | =2 Op= | __
q,= __ O,= |__
=15 b1(Y)=% b1(Z)=O _ -
_ _ _ 9= | O,= |__
=0 b, (Y) = % b, (Z) = %
= b, (Y)=0 b, (Z) = 5
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H ere,S aﬂ H M M Start randomly in state 1 or 2

Choose one of the output

Spmans symbols in each state at
Y random.
\ Let’'s generate a sequence of
observations:
50-50 choice
between X and
CIPRRE a13=7
a1, =" A2 = a3 =7 -
a3 =75 a3, =7 ai3= " qo= S, Oy= |=
q,= | O,= |__
=% b, (Y) = % b, (2)=0 [ n
- _ _ q2_ - 02_ _
=0 b, (Y) =% b, (Z) =
=1 b, (Y)=0 b, (Z) = ¥
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H ere,S aﬂ H M M Start randomly in state 1 or 2

Choose one of the output

SY—— 1 <« S, symbols in each state at
// :\ ;/ \\\
‘ 13 - random.
%» 42//3 Let’'s generate a sequence of
’\ /‘ observations:
1/3 \ ZX ) 1/3

Goto S; with
probability 2/3

T, =2 n, =0 or S, with prob.
CIPRRE a13=7
a1, =" A2 = a3 =7 —
a,3= "5 a5, = /5 a3= s 9= |S° |0,/ |X
— o —
9= |1 0= | _
=" b, (Y) =% b, (Z)=0 _ —
A= | O,= | __
=0 b, (Y) = ¥ b, (Z) = 5
=1 b, (Y) =0 b, (Z) = Vs
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H ere,S aﬂ H M M Start randomly in state 1 or 2

Choose one of the output
S, — mtsz symbols in each state at
XY 1/3 - ZY random.

.~ Let’'s generate a sequence of
observations:

50-50 choice
between Z and X

a, ="
a1, =" A2 =
a3 =" 83y =75
=Y b, (Y)=%
=0 b, (Y) = %
= b, (Y) =0
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H ere,S aﬂ H M M Start randomly in state 1 or 2

Choose one of the output
S, — m 182 symbols in each state at
/ \ 13 | |

random.

XY <« ZY
.~ Let’'s generate a sequence of
observations:

Each of the
three next
states is equally

CIPRRE a13=7
a1, =" A2 = a3 =7 D
a,3= "5 a5, = /5 a3= s 9= |S; Op= |X
9= |Ss 0= [X
=1 b, (Y) = b, (Z)=0 _ o O.=
_ _ Q= | 2= |
=0 b, (Y) = % b, (Z) = s
=1 b, (Y) = 0 b, (Z) = ¥
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H ere,S aﬂ H M M Start randomly in state 1 or 2

Choose one of the output
Sy " y\Sz symbols in each state at
| 1/3 | \

XY ZY random.

- Let’s generate a sequence of
observations:

50-50 choice
between Z and X

;="
a1, =7 Ay =
3= 7 3, =75 a13= 7 9= | S Op,= (X
. . _ 9,= | Ss OFV X
- D, (Y) = % @)=0 [ TS [oF |°
=0 b, (Y) = ¥ b, (Z) = ¥
=1 b, (Y) =0 b, (Z) = Vs
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H ere,S aﬂ H M M Start randomly in state 1 or 2

Choose one of the output
Sy " v« S, symbols in each state at
[ | B 7y random.

~ Let’s generate a sequence of
observations:
CIPRRE a13=7
a1, =" A2 = a3 =7
a,3= "5 a5, = /5 a3= s 9= |S; Op= |X
S bMe% @0 [
— i 1 -1 i 1 — q,= 83 OZ: Z
=0 b, (Y) = ¥ b, (Z) = ¥
=" by (Y)=0 by (£) =7
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] —
CIPRE 43 =7 N
—_ 1 _— _ 2
a,, =" dyo = di3 =73

State EStl matIOn Start randomly in state 1 or 2

Choose one of the output
S, — E 182 symbols in each state at
| 113 | |

XY <« ZY random.

Let’'s generate a sequence of
observations:

This i1s what the
observer has to
work with...

a,;;="s as, = s a,;3="s Q= |7 O,= X
q.= ? 0= |X
- Z b, (Y) - Va b, (2) - 0 g~ |? 0= |z

=0 b, (Y)="% b, (Z) ="

=2 by (Y)=0 by (Z) =72
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Prob. of a series of observations

What |S P(O) - P(O1 02 03) — S B 1/3 P— S
P (01 = X A 02 = XA 03 — Z)? 1,/ " y U2
Slow, stupid way: L
P(O) = P(O A Q) /1/;
Q&EPaths of length 3
- 83
= P(O|Q)P(Q) 13

Q€&Paths of length 3

How do we compute P(Q) for
an arbitrary path Q?

How do we compute P(O|Q)
for an arbitrary path Q?
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Prob. of a series of observations

What is P(O) - P(O1 02 03) = 3 1/3 —_S
P(O,=X"0,=X"0,=2)? 1, L . o>
- XY 4/ ZY ‘
Slow, stupid way: e e
P(0O) = P(OAQ) | /1/;
Q&EPaths of length 3
. 83
- P(0|Q)P(Q) 13
Q&Paths of length 3 P(Q)= P(q1,q2,q3)
How do we compute P(Q) foz =P(a,) P(a2,95/q4) (chain rule)
an arbitrary path Q7 " =P(q,) P(a,la,) P(as] 9,,94) (chain)
How do we compute P(O|Q) =P(q,) P(q,la,) P(gs| a,) (why?)

for an arbitrary path Q7 Example in the case Q =S, S; S;:

=1/2*2/3*1/3=1/9
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Prob. of a series of observations

What is P(O) = P(O, O, O;) = < 1/3 v 8
P(O,=X"0,=X"0,=2)? 1, L . 2
Slow, stupid way: e e
P(0O) = P(OAQ) | /1/;
Q&EPaths of length 3 L 83
- P(O|Q)P(Q) 13
Q€&Paths of length 3 P (Ol Q)
How do we compute P(Q) for|=P(0,0,0;]q,9,9;)
an arbitrary path Q7 =P(O; |4y ) P(O, | 9, ) P(Oy | g3 ) (why?)
How do we compute P(O|Q) Example in the case Q = S, S; S;:
for an arbitrary path Q7? = P(X| S,) P(X| S,) P(Z| S,) =

=1/2*1/2*1/2=1/8
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Prob. of a series of observations

What is P(O) = P(O, O, O3) = o 3 S
P(O,=X"0O,=X"0;=2)? L 5 { gy S,
Slow, stupid way: s
P(O) = P(O A Q) 2
Q€&Paths of length 3 ,
= P(O]Q)P(Q)
QEPaths of length 3 - \d o ed ‘27 P(Q)O)
Wou O\
How do we compute P(Q - PO) o ean (A
i {ation>
an arbitrary path Q? compy ationS ?)
g U 0=
How do we compute P(O| O;' com? ould need <3
for an arbitrary path Q7 ‘,y g Obse\—\:a\'\oﬂs :b\\\_\onpko\ﬂ\
A sequence ) p\A\a\'\or\S and >
o o
35 \3\\\\0“_G . So let’'s be smarter...
comp“"a“on
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The Prob. of a given series of
observations, non-exponential-cost-style

Given observations O, O, ... O

Define

i) =P(O,;0,...0, Aq;=S;| AN where 1 <t<T

a,(i) = Probability that, in a random trial,
 We’d have seen the first t observations

* We'd have ended up in S, as the t'th state

visited:
In our example, what is a,(3) ?
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a,(i): easy to define recursively

Gt(i) - P(O1 02 “us OT A qt - Si | )\) (a,(i) can be defined stupidly by considering all paths length “t”. How?)

al(i)= P(Ol Ng, = Si)
= P(% = Si)P(01|Q1 =Si)
= what?
O‘t+1(j)= P(0102'“Ot0t+1 N = Sj)
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a,(1): easy to define recursively

ai(i) = P(O; O, ... Op A ;=S| A)

al(i)= P(Ol NG, = Si)

= P(q1 = S.)P(O ‘ql =Si)

what?
atl(J) P(OO 0, tlAqtl_S)

21)(00 O NG =S, A0, NG,y =5,)
EP(Q 4 =S5]0,0,..0,n g, = S, P(0,0,..0, n g, = S,)
EP(OH%I—S =53,
_ EP(gt =5 0g, =5 POl =5, 0, 6)
=Y a5, 0.140)
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In our example

)\,)XY‘*

)=o) ~

a,(i)=P(0,0,.0, g, =5

1

()= S, 0,.:,6)

WE SAW 0,0,0,=XXZ
a1(1)=i a,(2)=0 a,(3)=0
a,(1)=0 a,(2)=0 a2(3)=é
w)-0  a@)->  @b)-o
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Easy Question

We can cheaply compute
a,(1)=P(0,0,...0,Aq=S))
(How) can we cheaply compute
P(0,0,...0,) ?

(How) can we cheaply compute
P(q=Si|040,...0y)

Hidden Markov Models: Slide 46



Easy Question

We can cheaply compute
a,(1)=P(0,0,...0,Aq=S))

(How) can we cheaply compute
P(0,0,...0,) ?

S

(How) can we cheaply compute o, (i)

P(g=S;/0,0,...0y) Ea (/)
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Most probable path given observations

What's most probable path given O,0,...0; ,1.¢e.

Whatis argmax P(Q\OIOZ...OT)?
Q

Slow, stupid answer :

argmax P(Q\OlOz...OT)
Q

P(0,0,..0,|0 P(©)
P(0,0,..0, )

=argmax P(00,..0,/0 P(0)
Q

= argmax
Q
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Efficient MPP computation

We’'re going to compute the following variables:

O(i)j=  max P(d1 0z . Qe A Q=S8 Of .. O
4192--G.1
= The Probability of the path of Length t-1 with the
maximum chance of doing all these things:
...OCCURING
and
...ENDING UP IN STATE S,

and
...PRODUCING OUTPUT 0O,...0

DEFINE: mpp(i) = that path
So: O,(i)= Prob(mpp(i))
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The Viterbi Algorithm

5,()=q,9,--.9,_ Plad>-q.,7q,=5,100,.0,)
argmax

mppt (i)= qIQ2-qt_1 P(QIQT"%—I A Qz = Si A 0102"0t)

max

51(i)= one choice P(c]1 =S, A 01)

= P(% = Si)P(Ol‘ql = Si)
=ﬂ7ibi (01)
Now, suppose we have all the d,(i)'s and mpp,(i)'s for all i.

HOW TO GET 9d,,4(j) and MPP.4(J)7?
mpptm)W—@
mpp(2) @ @

N

Prob=06,(2)

mpp,(N)
d; 1
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The Viterbi Algorithm

time t time t+1

J\/\/@ The most prob path with last
M @ two states S; S

; IS
J\/\/@ the most prob path to S, ,

followed by transition S, — S;
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The Viterbi Algorithm

time t time t+1

J\% The most prob path with last
M @ two states S; S

; IS
J\/\/@ the most prob path to S, ,

followed by trgnsition Si — Sj

What is the prob of that path?
Oi) X P(S;— S;A Oy | A)
= 0i) @ b (Og)
SO The most probable path to S; has
S« as its penultimate state

where |* argmax6(|) a; b; (Oy4q)
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The Viterbi Algorithm

time t time t+1

A
AN

The most prob path with last
two states S; S,

IS
the most prob path to S, ,
followed by trgnsition Si — Sj

3(i) X P(S;— S, A

= 6()au bj( t+1)
SO The most probable
S« as its penultimate s

What is the prob of that path?

[ A)

Summary:

O..1() = Oi*) a; b. (O,,4)\ Withi* defined

ij ™)
mppt+1(j) = mppt+1( *)Si* (L

where | —argmax O(i) a; b; (O4)

|4 @ | 8§ )
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What's Viterbi used for?

Classic Example
Speech recognition:
Signal — words
HMM — observable is signal

— Hidden state is part of word
formation

What is the most probable word given this signal?

UTTERLY GROSS SIMPLIFICATION

In practice: many levels of inference; not
one big jump.
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HMMs are used and useful
But how do you design an HMM?

Occasionally, (e.g. in our robot example) it is reasonable to
deduce the HMM from first principles.

But usually, especially in Speech or Genetics, it is better to
infer it from large amounts of data. O, O, .. O; with a big “T".

Observations previously
in lecture

—— — 0,0,..0¢

Observations in the
next bit

0, 0,..0T
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Inferring an HMM

Remember, we've been doing things like
P(O,;0,..0;|A)
That “A\” is the notation for our HMM parameters.

Now We have some observations and we want to
estimate A from them.

AS USUAL: We could use

() MAX LIKELIHOOD A = argmax P(O, .. O | A)
A

(i) BAYES
Work out P(A | O, .. O1)

and then take E[A\] or max P(A | O, .. O;)
A

Hidden Markov Models: Slide 56



Max likelihood HMM estimation

Define
V(i) = P(q; = S; | 040,...01, A)
g(l,)) = P(q; = S; A Qg = 51 0410,...01 A )

Yi(i) and g(i,j) can be computed efficiently Vi,j,t
(Details in Rabiner paper)

T-1
E )/t (l )= Expected number of transitions
=1 out of state i during the path

T-1
E £ (l ])= Expected number of transitions from
=1 L7 state i to state j during the path
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Vt(i)= P(qt =3, 0102“OT9)")
gt(i7j)= P(% =S8 NG = Sj‘0102"0T’)\’)

T-1

Y, (i )= expected number of transitions out of state 1 during path
t=1
T

E €, (i ,J )= expected number of transitions out of 1and into jduring path
t=1

—

r-1 expected frequency

gt (i9 j) i - j
Notice =

HMM _ -
eStlmatIOn Zyt(l.) expecte irequency

= Estimate of Prob (Next state S i This state S, )

We can re - estimate

A ),
N
We can also re - estimate
b, (Ok )e cos (See Rabiner)
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EM for HMMs

If we knew A we could estimate EXPECTATIONS of quantities
such as

Expected number of times in state i
Expected number of transitions i — |

If we knew the quantities such as

Expected number of times in state i
Expected number of transitions i — |

We could compute the MAX LIKELIHOOD estimate of
A= <{aij}’{bi(j)}’ ;)

Roll on the EM Algorithm...
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o

W o=

EM 4 HMMs

Get your observations O, ...O;
Guess your first A estimate A(0), k=0
K =k+1

Given O, ...O4, A(k) compute
vi(i), g(ij) V1stsT, V1<isN, VI1<jsN

Compute expected freq. of state i, and expected freq. i—j

Compute new estimates of a;, b(k), m; accordingly. Call
them A(k+1)

Goto 3, unless converged.

Also known (for the HMM case) as the BAUM-WELCH
algorithm.
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Bad News

* There are lots of local minima

Good News

« The local minima are usually adequate models of the
data.

Notice

 EM does not estimate the number of states. That must
be given.

« Often, HMMs are forced to have some links with zero
probability. This is done by setting a;=0 in initial
estimate A(0)

« Easy extension of everything seen today: HMMs with
real valued outputs
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_D_._AI_L_L‘_-_-_._.

Trade-off between too few states (inadequately
modeling the structure in the data) and too many

(fitting the noise).
 There are lots
Thus #states is a regularization parameter.

Blah blah blah... bias variance tradeoff...blah
| blah...cross-validation...blah blah....AlC,
* The local minin g|c. .. biah blah (same ol same o)

data.
|CE

 EM does notestimate the number of states. That must
be given.

« Often, HMMs are forced to have some links with zero
probability. This is done by setting a;=0 in initial
estimate A(0)

« Easy extension of everything seen today: HMMs with
real valued outputs
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What You Should Know

 Whatis an HMM ?
« Computing (and defining) ay(i)

* The Viterbi algorithm DON'T PANIC:
starts on p. 257.

* Qutline of the EM algorithm
* To be very happy with the kind of maths and
analysis needed for HMMs

 Fairly thorough reading of Rabiner® up to page 266*

[Up to but not including “IV. Types of HMMSs™].

*L. R. Rabiner, "A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition,” Proc. of the IEEE, Vol.77, No.2,
pPp.257--286, 1989.
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