# Hidden Markov Models 

Following a lecture by Andrew W. Moore
Carnegie Mellon University

www.cs.cmu.edu/~awm/tutorials

## A Markov System

Has $N$ states, called $s_{1}, s_{2} . . s_{N}$
There are discrete timesteps, $t=0, t=1, \ldots$

$N=3$

## A Markov System

Has $N$ states, called $s_{1}, s_{2} . . s_{N}$
There are discrete timesteps, $t=0, t=1, \ldots$

On the t'th timestep the system is in exactly one of the available states. Call it $q_{t}$

Note: $q_{t} \in\left\{s_{1}, s_{2} . . s_{N}\right\}$

## A Markov System

Has $N$ states, called $s_{1}, s_{2} . . s_{N}$
There are discrete timesteps, $t=0, t=1, \ldots$

On the t'th timestep the system is in exactly one of the available states. Call it $q_{t}$
Note: $q_{t} \in\left\{s_{1}, s_{2} . . s_{N}\right\}$
Between each timestep, the next state is chosen randomly.
$q_{t}=q_{1}=s_{2}$






## A Blind Robot



Dynamics of System


Typical Questions:

- "What's the expected time until the human is crushed like a bug?"
- "What's the probability that the robot will hit the left wall before it hits the human?"
- "What's the probability Robot crushes human on next time step?"


## Example Question

"It's currently time $t$, and human remains uncrushed. What's the probability of crushing occurring at time t+1?"
If robot is blind:
We can compute this in advance.
If robot is omnipotent:
(I.E. If robot knows state at time t), We'll do this first can compute directly.

If robot has some sensors, but incomplete state information ...


Hidden Markov Models are applicable!

## What is $P\left(q_{t}=s\right)$ ? slow, stupid answer

Step 1: Work out how to compute $P(Q)$ for any path $Q$

$$
=q_{1} q_{2} q_{3} . . q_{t}
$$

Given we know the start state $q_{1}$ (i.e. $P\left(q_{1}\right)=1$ )

$$
\begin{aligned}
P\left(q_{1} q_{2} . . q_{t}\right) & =P\left(q_{1} q_{2} . . q_{t-1}\right) P\left(q_{t} \mid q_{1} q_{2} . . q_{t-1}\right) \\
& =P\left(q_{1} q_{2} . . q_{t-1}\right) P\left(q_{t} \mid q_{t-1}\right) \quad \text { wHY? } \\
& =P\left(q_{2} \mid q_{1}\right) P\left(q_{3} \mid q_{2}\right) \ldots P\left(q_{t} \mid q_{t-1}\right)
\end{aligned}
$$

Step 2: Use this knowledge to get $\mathrm{P}\left(\mathrm{q}_{\mathrm{t}}=\mathrm{s}\right)$

$$
\begin{aligned}
& \text { e this knowledge to get } \mathrm{P}\left(\mathrm{q}_{\mathrm{t}}=\mathrm{s}\right) \\
& P\left(q_{t}=s\right)=\sum_{Q \in \text { Paths of length } t \text { that end in } s} P(Q) \sum_{\frac{\text { is emputation }}{\text { in } t}}^{\text {intial }}
\end{aligned}
$$

Hidden Markov Models: Slide 13

## What is $P\left(q_{t}=s\right)$ ? Clever answer

- For each state $s_{i}$, define

$$
\begin{aligned}
p_{t}(i) & =\text { Prob. state is } s_{i} \text { at time } t \\
& =P\left(q_{t}=s_{i}\right)
\end{aligned}
$$

- Easy to do inductive definition
$\forall i \quad p_{0}(i)=$
$\forall j \quad p_{t+1}(j)=P\left(q_{t+1}=s_{j}\right)=$


## What is $P\left(q_{t}=s\right)$ ? Clever answer

- For each state $s_{i}$, define

$$
\begin{aligned}
p_{t}(i) & =\text { Prob. state is } s_{i} \text { at time } t \\
& =P\left(q_{t}=s_{i}\right)
\end{aligned}
$$

- Easy to do inductive definition
$\forall i \quad p_{0}(i)=\left\{\begin{array}{lc}1 & \text { if } s_{i} \text { is the start state } \\ 0 & \text { otherwise }\end{array}\right.$
$\forall j \quad p_{t+1}(j)=P\left(q_{t+1}=s_{j}\right)=$


## What is $P\left(q_{t}=s\right)$ ? Clever answer

- For each state $s_{i}$, define

$$
\begin{aligned}
p_{t}(i) & =\text { Prob. state is } s_{i} \text { at time } t \\
& =P\left(q_{t}=s_{i}\right)
\end{aligned}
$$

- Easy to do inductive definition
$\forall i \quad p_{0}(i)=\left\{\begin{array}{lc}1 & \text { if } s_{i} \text { is the start state } \\ 0 & \text { otherwise }\end{array}\right.$
$\forall j \quad p_{t+1}(j)=P\left(q_{t+1}=s_{j}\right)=$

$$
\sum_{i=1}^{N} P\left(q_{t+1}=s_{j} \wedge q_{t}=s_{i}\right)=
$$

## What is $P\left(q_{t}=s\right)$ ? Clever answer

- For each state $s_{i}$, define

$$
\begin{aligned}
p_{t}(i) & =\text { Prob. state is } s_{i} \text { at time } t \\
& =P\left(q_{t}=s_{i}\right)
\end{aligned}
$$

- Easy to do inductive definition
$\forall i \quad p_{0}(i)=\left\{\begin{array}{lc}1 & \text { if } s_{i} \text { is the start state } \\ 0 & \text { otherwise }\end{array}\right.$
$\forall j \quad p_{t+1}(j)=P\left(q_{t+1}=s_{j}\right)=$

$$
\begin{array}{ll}
\sum_{i=1}^{N} P\left(q_{t+1}=s_{j} \wedge q_{t}=s_{i}\right)= & \begin{array}{l}
\text { Remem } \\
a_{i j}=P\left(q_{t+1}=\right.
\end{array} \\
\sum_{i=1}^{N} P\left(q_{t+1}=s_{j} \mid q_{t}=s_{i}\right) P\left(q_{t}=s_{i}\right)=\sum_{i=1}^{N} a_{i j} p_{t}(i)
\end{array}
$$

## What is $P\left(q_{t}=s\right)$ ? Clever answer

- For each state $s_{i}$, define

$$
\begin{aligned}
p_{t}(i) & =\text { Prob. state is } s_{i} \text { at time } t \\
& =P\left(q_{t}=s_{i}\right)
\end{aligned}
$$

- Easy to do inductive definition
$\forall i \quad p_{0}(i)=\left\{\begin{array}{lc}1 & \text { if } s_{i} \text { is the start state } \\ 0 & \text { otherwise }\end{array}\right.$
$\forall j \quad p_{t+1}(j)=P\left(q_{t+1}=s_{j}\right)=$

$$
\begin{aligned}
& \sum_{i=1}^{N} P\left(q_{t+1}=s_{j} \wedge q_{t}=s_{i}\right)= \\
& \quad \sum_{i=1}^{N} P\left(q_{t+1}=s_{j} \mid q_{t}=s_{i}\right) P\left(q_{t}=s_{i}\right)=\sum_{i=1}^{N} a_{i j} p_{t}(i)
\end{aligned}
$$

## What is $P\left(q_{t}=s\right)$ ? Clever answer

- For each state $s_{i}$, define

$$
\begin{aligned}
p_{t}(i) & =\text { Prob. state is } s_{i} \text { at time } t \\
& =P\left(q_{t}=s_{i}\right)
\end{aligned}
$$

- Easy to do inductive definition
$\forall i \quad p_{0}(i)=\left\{\begin{array}{lc}1 & \text { if } s_{i} \text { is the start state } \\ 0 & \text { otherwise }\end{array}\right.$
$\forall j \quad p_{t+1}(j)=P\left(q_{t+1}=s_{j}\right)=$

$$
\sum_{i=1}^{N} P\left(q_{t+1}=s_{j} \wedge q_{t}=s_{i}\right)=
$$

$$
\sum_{i=1}^{N} P\left(q_{t+1}=s_{j} \mid q_{t}=s_{i}\right) P\left(q_{t}=s_{i}\right)=\sum_{i=1}^{N} a_{i j} p_{t}(i)
$$

## Hidden State

"It's currently time t, and human remains uncrushed. What's the probability of crushing occurring at time t + 1 ?" If robot is blind:

We can compute this in advance.
If robot is omnipotent:
(I.E. If robot knows state at time t),

can compute directlv ${ }_{\sim}$
If robot has some sensors, but incomplete state information ...

Hidden Markov Models are applicable!

## Hidden State

- The previous example tried to estimate $P\left(q_{t}=s_{i}\right)$ unconditionally (using no observed evidence).
- Suppose we can observe something that's affected by the true state.
- Example: Proximity sensors. (tell us the contents of the 8 adjacent squares)


True state $q_{t}$


Hidden Markov Models: Slide 21

## Noisy Hidden State

- Example: Noisy Proximity sensors. (unreliably tell us the contents of the 8 adjacent squares)


True state $q_{t}$

| $W$ | $W$ | $W$ |
| :--- | :--- | :--- |
|  | $\circledR$ |  |
| $H$ |  |  |

Uncorrupted Observation
\&

| $W$ |  | $W$ |
| :---: | :---: | :---: |
|  | $®$ | $W$ |
| $H$ | $H$ |  |

What the robot
sees: Observation $O_{t}$

## Noisy Hidden State

- Example: Noisy Proximity sensors. (unreliably tell us the contents of the 8 adjacent squares)


True state $q_{t}$
$O_{t}$ is noisily determined depending on the current state.

Assume that $\mathrm{O}_{\mathrm{t}}$ is conditionally independent of $\left\{q_{t-1}, q_{t-2}, \ldots q_{1}, q_{0}, O_{t-1}\right.$, $\left.\mathrm{O}_{\mathrm{t}-2}, \ldots \mathrm{O}_{1}, \mathrm{O}_{0}\right\}$ given $\mathrm{q}_{\mathrm{t}}$.

In other words:
$P\left(O_{t}=X \mid q_{t}=s_{i}\right)=$
$P\left(O_{t}=X \mid q_{t}=s_{i}\right.$, any earlier history $)$

| $W$ | $W$ | $W$ |
| :--- | :--- | :--- |
|  | $\circledR$ |  |
| $H$ |  |  |

Uncorrupted Observation
Ł

| $W$ |  | $W$ |
| :---: | :---: | :---: |
|  | $®$ | $W$ |
| $H$ | $H$ |  |

What the robot
sees: Observation $O_{t}$

## Noisy Hidden State

- Example: Noisy Proximity sensors. (unreliably tell us the contents of the 8 adjacent squares)


True state $q_{t}$
$O_{t}$ is noisily determined depending on the current state.

Assume that $\mathrm{O}_{\mathrm{t}}$ is conditionally independent of $\left\{q_{t-1}, q_{t-2}, \ldots q_{1}, q_{0}, O_{t-1}\right.$, $\left.\mathrm{O}_{\mathrm{t}-2}, \ldots \mathrm{O}_{1}, \mathrm{O}_{0}\right\}$ given $\mathrm{q}_{\mathrm{t}}$.

In other words:
$P\left(O_{t}=X \mid q_{t}=s_{i}\right)=$
$P\left(O_{t}=X \mid q_{t}=s_{i}\right.$, any earlier history $)$

| $W$ | $W$ | $W$ |
| :--- | :--- | :--- |
|  | $\circledR$ |  |
| $H$ |  |  |

Uncorrupted Observation
Ł

| $W$ |  | $W$ |
| :---: | :---: | :---: |
|  | $®$ | $W$ |
| $H$ | $H$ |  |

What the robot
sees: Observation $O_{t}$

## Hidden Markov Models

Our robot with noisy sensors is a good example of an HMM

- Question 1: State Estimation

What is $P\left(q_{T}=S_{i} \mid O_{1} O_{2} \ldots O_{T}\right)$
It will turn out that a new cute D.P. trick will get this for us.

- Question 2: Most Probable Path

Given $\mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{O}_{\mathrm{T}}$, what is the most probable path that I took?
And what is that probability?
Yet another famous D.P. trick, the VITERBI algorithm, gets this.

- Question 3: Learning HMMs:

Given $\mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{O}_{\mathrm{T}}$, what is the maximum likelihood HMM that could have produced this string of observations?
Very very useful. Uses the E.M. Algorithm

## Are H.M.M.s Useful?

You bet !!

- Robot planning + sensing when there's uncertainty
- Speech Recognition/Understanding

Phones $\rightarrow$ Words, Signal $\rightarrow$ phones

- Human Genome Project

Complicated stuff your lecturer knows nothing about.

- Consumer decision modeling
- Economics \& Finance.

Plus at least 5 other things I haven't thought of.

## HMM Notation

(from Rabiner's Survey)
The states are labeled $\mathrm{S}_{1} \mathrm{~S}_{2} . . \mathrm{S}_{\mathrm{N}}$

*L. R. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition," Proc. of the IEEE, Vol.77, No.2, pp.257--286, 1989.

For a particular trial....
Let $T$ be the number of observations
T is also the number of states passed through
$\mathrm{O}=\mathrm{O}_{1} \mathrm{O}_{2} . . \mathrm{O}_{\mathrm{T}}$ is the sequence of observations
$Q=q_{1} q_{2} . . q_{T}$ is the notation for a path of states
$\lambda=\left\langle N, M,\left\{\pi_{i}\right\},\left\{a_{i j}\right\},\left\{b_{i}(j)\right\}\right\rangle \quad$ is the specification of an HMM

## HMM Formal Definition

An HMM, $\lambda$, is a 5 -tuple consisting of

- N the number of states
- $M$ the number of possible observations
- $\left\{\pi_{1}, \pi_{2}, . . \pi_{N}\right\}$ The starting state probabilities

$$
\mathrm{P}\left(\mathrm{q}_{0}=\mathrm{S}_{\mathrm{i}}\right)=\pi_{\mathrm{i}}
$$

This is new. In our previous example, start state was deterministic

- $a_{11}$
$a_{21}$
$:$
$a_{N 1}$
- $b_{1}(1)$
$b_{2}(1)$
$:$
$b_{N}(1)$

| $a_{22}$ | $\cdots$ |
| :---: | :---: |
| $a_{22}$ | $\cdots$ |
| $\vdots$ |  |
| $a_{N 2}$ | $\cdots$ |



The state transition probabilities

$$
P\left(q_{t+1}=S_{j} \mid q_{t}=S_{i}\right)=a_{i j}
$$

The observation probabilities

$$
\mathrm{P}\left(\mathrm{O}_{\mathrm{t}}=\mathrm{k} \mid \mathrm{q}_{\mathrm{t}}=\mathrm{S}_{\mathrm{i}}\right)=\mathrm{b}_{\mathrm{i}}(\mathrm{k})
$$

## Here's an HMM

Start randomly in state 1 or 2


Choose one of the output symbols in each state at random.

$$
\begin{aligned}
& N=3 \\
& M=3 \\
& \pi_{1}=1 / 2
\end{aligned}
$$

$$
\pi_{2}=1 / 2
$$

$$
\pi_{3}=0
$$

$$
a_{11}=0
$$

$a_{12}=1 / 3$
$a_{13}=2 / 3$

$$
a_{12}=1 / 3
$$

$\mathrm{a}_{22}=0$
$a_{13}=2 / 3$

$$
a_{13}=1 / 3
$$

$a_{32}=1 / 3$
$a_{13}=1 / 3$
$b_{1}(X)=1 / 2$
$b_{1}(Y)=1 / 2$
$b_{1}(Z)=0$
$b_{2}(X)=0$
$b_{2}(Y)=1 / 2$
$b_{2}(Z)=1 / 2$
$b_{3}(X)=1 / 2$
$b_{3}(Y)=0$
$b_{3}(Z)=1 / 2$

## Here's an HMM

Start randomly in state 1 or 2

$\mathrm{N}=3$
$\mathrm{M}=3$
$\pi_{1}=1 / 2$
$\pi_{2}=1 / 2$
$\pi_{3}=0$
Choose one of the output symbols in each state at random.

Let's generate a sequence of observations:
$a_{11}=0$
$a_{12}=1 / 3$
$a_{13}=1 / 3$
$a_{12}=1 / 3$
$a_{13}=2 / 3$
$a_{22}=0$
$a_{32}=1 / 3$
$a_{13}=2 / 3$
$a_{13}=1 / 3$
$b_{1}(X)=1 / 2$
$b_{2}(X)=0$
$b_{1}(Y)=1 / 2$
$b_{1}(Z)=0$
$b_{3}(X)=1 / 2$
$b_{2}(Y)=1 / 2$
$b_{2}(Z)=1 / 2$
$b_{3}(Y)=0$
$b_{3}(Z)=1 / 2$


Hidden Markov Models: Slide 30

## Here's an HMM

Start randomly in state 1 or 2
Choose one of the output
 random.

Let's generate a sequence of observations:

$$
\begin{aligned}
& N=3 \\
& M=3 \\
& \pi_{1}=1 / 2
\end{aligned}
$$

$$
\pi_{2}=1 / 2
$$

$$
\pi_{3}=0
$$

$$
a_{11}=0
$$

$$
a_{12}=1 / 3
$$

$$
a_{13}=1 / 3
$$

$b_{1}(X)=1 / 2$
$b_{1}(Y)=1 / 2$
$b_{1}(Z)=0$
$b_{2}(X)=0$
$b_{2}(Y)=1 / 2$
$b_{2}(Z)=1 / 2$
$b_{3}(X)=1 / 2$
$b_{3}(Y)=0$
$b_{3}(Z)=1 / 2$


Hidden Markov Models: Slide 31

## Here's an HMM

Start randomly in state 1 or 2
 random.

Let's generate a sequence of observations:

$$
\begin{aligned}
& N=3 \\
& M=3 \\
& \pi_{1}=1 / 2
\end{aligned}
$$


$a_{11}=0$
$a_{12}=1 / 3$
$a_{13}=1 / 3$
$b_{1}(X)=1 / 2$
$b_{2}(X)=0$
$b_{3}(X)=1 / 2$
$b_{1}(Y)=1 / 2$
$b_{1}(Z)=0$
$b_{2}(Y)=1 / 2$
$b_{2}(Z)=1 / 2$
$b_{3}(Y)=0$
$b_{3}(Z)=1 / 2$

## Here's an HMM

Start randomly in state 1 or 2
 random.

Let's generate a sequence of observations:

$$
\begin{aligned}
& N=3 \\
& M=3 \\
& \pi_{1}=1 / 2
\end{aligned}
$$

$$
\pi_{2}=1 / 2
$$

$$
a_{11}=0
$$

$$
a_{12}=1 / 3
$$

$$
a_{13}=2 / 3
$$

$$
a_{12}=1 / 3
$$

$$
a_{22}=0
$$

$$
a_{13}=2 / 3
$$

$$
a_{13}=1 / 3
$$

$$
a_{32}=1 / 3
$$

$$
a_{13}=1 / 3
$$

$b_{1}(X)=1 / 2$
$b_{1}(Y)=1 / 2$
$b_{1}(Z)=0$
$b_{2}(X)=0$
$b_{2}(Y)=1 / 2$
$b_{2}(Z)=1 / 2$
$b_{3}(X)=1 / 2$
$b_{3}(Y)=0$
$b_{3}(Z)=1 / 2$

| $q_{0}=$ | $S_{1}$ | $O_{0}=Q$ |  |
| :--- | :--- | :--- | :--- |
| $q_{1}=$ | $S_{3}$ | $O_{1}=$ | $o$ |
| $q_{2}=$ |  | $O_{2}=$ | - |

Hidden Markov Models: Slide 33

## Here's an HMM

$$
\begin{aligned}
& N=3 \\
& M=3 \\
& \pi_{1}=1 / 2
\end{aligned}
$$



$$
a_{11}=0
$$

$$
a_{12}=1 / 3
$$

$$
a_{13}=1 / 3
$$

$$
b_{1}(X)=1 / 2
$$

$$
\mathrm{b}_{2}(\mathrm{X})=0
$$

$$
b_{3}(X)=1 / 2
$$

Start randomly in state 1 or 2
Choose one of the output $S_{2}$ symbols in each state at random.

Let's generate a sequence of observations:


Hidden Markov Models: Slide 34

## Here's an HMM

Start randomly in state 1 or 2
 random.

Let's generate a sequence of observations:

$$
\begin{aligned}
& N=3 \\
& M=3 \\
& \pi_{1}=1 / 2
\end{aligned}
$$

$$
\pi_{2}=1 / 2
$$

$$
a_{11}=0
$$

$$
a_{12}=1 / 3
$$

$$
a_{13}=2 / 3
$$

$$
a_{12}=1 / 3
$$

$$
a_{22}=0
$$

$$
a_{13}=2 / 3
$$

$$
a_{13}=1 / 3
$$

$$
a_{32}=1 / 3
$$

$$
a_{13}=1 / 3
$$

$b_{1}(X)=1 / 2$
$b_{2}(X)=0$
$b_{1}(Y)=1 / 2$
$b_{1}(Z)=0$
$b_{2}(Y)=1 / 2$
$b_{2}(Z)=1 / 2$
$b_{3}(X)=1 / 2$
$b_{3}(Y)=0$
$b_{3}(Z)=1 / 2$

| $q_{0}=$ | $S_{1}$ | $O_{0}=$ | $X$ |
| :--- | :--- | :--- | :--- |
| $q_{1}=$ | $S_{3}$ | $O_{1}=$ | $X$ |
| $q_{2}=$ | $S_{3}$ | $O_{2}=$ | 0 |

Hidden Markov Models: Slide 35

## Here's an HMM


$\mathrm{N}=3$
$\mathrm{M}=3$
$\pi_{1}=1 / 2$
$a_{11}=0$
$a_{12}=1 / 3$
$a_{13}=1 / 3$
$b_{1}(X)=1 / 2$
$b_{2}(X)=0$
$b_{3}(X)=1 / 2$
$a_{12}=1 / 3$
$a_{22}=0$
$a_{32}=1 / 3$
$b_{1}(Y)=1 / 2$
$b_{1}(Z)=0$
$b_{2}(Y)=1 / 2$
$b_{2}(Z)=1 / 2$
$b_{3}(Z)=1 / 2$

Start randomly in state 1 or 2
Choose one of the output $\mathrm{S}_{2}$ symbols in each state at random.

Let's generate a sequence of observations:

## State Estimation

Start randomly in state 1 or 2
Choose one of the output

$\mathrm{N}=3$
$\mathrm{M}=3$
$\pi_{1}=1 / 2$
$a_{11}=0$
$a_{12}=1 / 3$
$a_{13}=1 / 3$
$\pi_{2}=1 / 2$
$\pi_{3}=0$
$S_{2}$ symbols in each state at random.

Let's generate a sequence of observations:

## This is what the observer has to

## work with...

| $q_{0}=$ | $?$ | $O_{0}=$ | X |
| :--- | :--- | :--- | :--- |
| $q_{1}=$ | $?$ | $O_{1}=$ | X |
| $q_{2}=$ | $?$ | $O_{2}=$ | Z |

$b_{1}(X)=1 / 2$
$a_{12}=1 / 3$
$a_{13}=2 / 3$
$a_{22}=0$
$a_{32}=1 / 3$
$a_{13}=2 / 3$
$a_{13}=1 / 3$
$b_{2}(X)=0$
$b_{1}(Y)=1 / 2$
$b_{1}(Z)=0$
$b_{2}(Y)=1 / 2$
$b_{2}(Z)=1 / 2$
$b_{3}(X)=1 / 2$
$b_{3}(Y)=0$
$b_{3}(Z)=1 / 2$

## Prob. of a series of observations

What is $\mathrm{P}(\mathrm{O})=\mathrm{P}\left(\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}\right)=$

$$
\mathrm{P}\left(\mathrm{O}_{1}=\mathrm{X}^{\wedge} \mathrm{O}_{2}=\mathrm{X}^{\wedge} \mathrm{O}_{3}=\mathrm{Z}\right) ?
$$

Slow, stupid way:

$$
\begin{aligned}
P(\mathbf{O}) & =\sum_{\mathbf{Q} \in \text { Paths of length } 3} P(\mathbf{O} \wedge \mathbf{Q}) \\
& =\sum_{\mathbf{Q} \in \text { Paths of length } 3} P(\mathbf{Q} \mid \mathbf{Q}) P(\mathbf{Q})
\end{aligned}
$$



How do we compute $P(Q)$ for an arbitrary path Q ?

How do we compute $\mathrm{P}(\mathrm{O} \mid \mathrm{Q})$ for an arbitrary path Q ?

## Prob. of a series of observations

What is $\mathrm{P}(\mathrm{O})=\mathrm{P}\left(\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}\right)=$

$$
P\left(O_{1}=X^{\wedge} O_{2}=X^{\wedge} O_{3}=Z\right) ?
$$

Slow, stupid way:

$$
\begin{aligned}
P(\mathbf{O}) & =\sum_{\mathbf{Q} \in \text { Paths of length } 3} P(\mathbf{O} \wedge \mathbf{Q}) \\
& =\sum_{\mathbf{Q} \in \text { Paths of length } 3} P(\mathbf{Q} \mid \mathbf{Q}) P(\mathbf{Q})
\end{aligned}
$$

$$
P(Q)=P\left(q_{1}, q_{2}, q_{3}\right)
$$

$$
=P\left(q_{1}\right) P\left(q_{2}, q_{3} \mid q_{1}\right) \text { (chain rule) }
$$

$$
=P\left(q_{1}\right) P\left(q_{2} \mid q_{1}\right) P\left(q_{3} \mid q_{2}, q_{1}\right) \text { (chain) }
$$

$$
=P\left(q_{1}\right) P\left(q_{2} \mid q_{1}\right) P\left(q_{3} \mid q_{2}\right) \text { (why?) }
$$

Example in the case $\mathrm{Q}=\mathrm{S}_{1} \mathrm{~S}_{3} \mathrm{~S}_{3}$ :
$=1 / 2$ * $2 / 3$ * $1 / 3=1 / 9$

## Prob. of a series of observations

What is $\mathrm{P}(\mathrm{O})=\mathrm{P}\left(\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}\right)=$

$$
P\left(O_{1}=X^{\wedge} O_{2}=X^{\wedge} O_{3}=Z\right) ?
$$

Slow, stupid way:

$$
\begin{aligned}
P(\mathbf{O}) & =\sum_{\mathbf{Q} \in \text { Paths of length } 3} P(\mathbf{O} \wedge \mathbf{Q}) \\
& =\sum_{\mathbf{Q} \in \text { Paths of length } 3} P(\mathbf{O} \mid \mathbf{Q}) P(\mathbf{Q})
\end{aligned}
$$



$$
\mathrm{P}(\mathrm{O} \mid \mathrm{Q})
$$

How do we compute $P(Q)$ for $=P\left(O_{1} O_{2} O_{3} \mid q_{1} q_{2} q_{3}\right)$ an arbitrary path Q ? $\quad=\mathrm{P}\left(\mathrm{O}_{1} \mid \mathrm{q}_{1}\right) \mathrm{P}\left(\mathrm{O}_{2} \mid \mathrm{q}_{2}\right) \mathrm{P}\left(\mathrm{O}_{3} \mid \mathrm{q}_{3}\right)$ (why?)
How do we compute $P(O \mid Q)$ Example in the case $Q=S_{1} S_{3} S_{3}$ : for an arbitrary path Q ?

$$
\begin{aligned}
& =P\left(X \mid S_{1}\right) P\left(X \mid S_{3}\right) P\left(Z \mid S_{3}\right)= \\
& =1 / 2 * 1 / 2 * 1 / 2=1 / 8
\end{aligned}
$$

## Prob. of a series of observations

What is $\mathrm{P}(\mathrm{O})=\mathrm{P}\left(\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}\right)=$

$$
\mathrm{P}\left(\mathrm{O}_{1}=\mathrm{X}^{\wedge} \mathrm{O}_{2}=\mathrm{X}^{\wedge} \mathrm{O}_{3}=\mathrm{Z}\right) ?
$$

Slow, stupid way:

$$
P(\mathbf{O})=\sum_{Q \in \text { Paths of length } 3} P(\mathbf{O} \wedge \mathbf{Q})
$$

How do we compute $P(Q) \xrightarrow{\perp} P(O)$ would need $27 P(Q)$ an arbitrary path Q ?
How do we compute $\mathrm{P}(\mathrm{O}$, computations A sequence of 20 observa 3.5 billion $P(O)$ Q ${ }^{2}$ ) for an arbitrary path Q ?

## The Prob. of a given series of observations, non-exponential-cost-style

Given observations $\mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{O}_{\mathrm{T}}$
Define

$$
\alpha_{t}(\mathrm{i})=P\left(\mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{O}_{\mathrm{t}} \wedge \mathrm{q}_{\mathrm{t}}=\mathrm{S}_{\mathrm{i}} \mid \lambda\right) \quad \text { where } 1 \leq \mathrm{t} \leq \mathrm{T}
$$

$\alpha_{t}(i)=$ Probability that, in a random trial,

- We'd have seen the first t observations
- We'd have ended up in $S_{i}$ as the t'th state visited.

In our example, what is $\alpha_{2}(3)$ ?

# $\alpha_{t}(i)$ : easy to define recursively <br> $\alpha_{t}(i)=P\left(O_{1} O_{2} \ldots O_{T} \wedge q_{t}=S_{i} \mid \lambda\right)$ (a, (i) can be defined stupidly by considering all paths length "4". How?) 

$$
\begin{aligned}
\alpha_{1}(i) & =\mathrm{P}\left(O_{1} \wedge q_{1}=S_{i}\right) \\
& =\mathrm{P}\left(q_{1}=S_{i}\right) \mathrm{P}\left(O_{1} \mid q_{1}=S_{i}\right) \\
& =\quad \text { what? } \\
\alpha_{t+1}(j) & =\mathrm{P}\left(O_{1} O_{2} \ldots O_{t} O_{t+1} \wedge q_{t+1}=S_{j}\right) \\
& =
\end{aligned}
$$

## $\alpha_{t}(i)$ : easy to define recursively

$\alpha_{t}(i)=P\left(O_{1} O_{2} \ldots O_{T} \wedge q_{t}=S_{i} \mid \lambda\right)$ (a,i) can be defined stupidly by considering all paths length "4". How?)

$$
\begin{aligned}
\alpha_{1}(i) & =\mathrm{P}\left(O_{1} \wedge q_{1}=S_{i}\right) \\
& =\mathrm{P}\left(q_{1}=S_{i}\right) \mathrm{P}\left(O_{1} \mid q_{1}=S_{i}\right) \\
& = \\
\alpha_{t+1}(j) & =\mathrm{P}\left(O_{1} O_{2} \ldots O_{t} O_{t+1} \wedge q_{t+1}=S_{j}\right) \\
& =\sum_{i=1}^{N} \mathrm{P}\left(O_{1} O_{2} \ldots O_{t} \wedge q_{t}=S_{i} \wedge O_{t+1} \wedge q_{t+1}=S_{j}\right) \\
& =\sum_{i=1}^{N} \mathrm{P}\left(O_{t+1}, q_{t+1}=S_{j} \mid O_{1} O_{2} \ldots O_{t} \wedge q_{t}=S_{i}\right) \mathrm{P}\left(O_{1} O_{2} \ldots O_{t} \wedge q_{t}=S_{i}\right) \\
& =\sum_{i} \mathrm{P}\left(O_{t+1}, q_{t+1}=S_{j} \mid q_{t}=S_{i}\right) k_{t}(i) \\
& =\sum_{i} \mathrm{P}\left(q_{t+1}=S_{j} \mid q_{t}=S_{i}\right) \mathrm{P}\left(O_{t+1} \mid q_{t+1}=S_{j}\right) k_{t}(i) \\
& =\sum_{i} a_{i j} b_{j}\left(O_{t+1}\right) \alpha_{t}(i)
\end{aligned}
$$

## in our example

$$
\alpha_{t}(i)=\mathrm{P}\left(O_{1} O_{2} . . O_{t} \wedge q_{t}=S_{i} \mid \lambda\right) \quad \mathrm{XY}
$$

$$
\alpha_{1}(i)=b_{i}\left(O_{1}\right) \pi_{i}
$$

$$
\alpha_{t+1}(j)=\sum_{i} a_{i j} b_{j}\left(O_{t+1}\right) \alpha_{t}(i)
$$

WE SAW $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}=\mathrm{XXZ}$

$$
\begin{array}{lll}
\alpha_{1}(1)=\frac{1}{4} & \alpha_{1}(2)=0 & \alpha_{1}(3)=0 \\
\alpha_{2}(1)=0 & \alpha_{2}(2)=0 & \alpha_{2}(3)=\frac{1}{12} \\
\alpha_{3}(1)=0 & \alpha_{3}(2)=\frac{1}{72} & \alpha_{3}(3)=\frac{1}{72}
\end{array}
$$

## Easy Question

We can cheaply compute

$$
\alpha_{t}(\mathrm{i})=\mathrm{P}\left(\mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{O}_{\mathrm{t}} \wedge \mathrm{q}_{\mathrm{t}}=\mathrm{S}_{\mathrm{i}}\right)
$$

(How) can we cheaply compute

$$
\mathrm{P}\left(\mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{O}_{\mathrm{t}}\right) \text { ? }
$$

(How) can we cheaply compute

$$
\mathrm{P}\left(\mathrm{q}_{\mathrm{t}}=\mathrm{S}_{\mathrm{i}} \mid \mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{O}_{\mathrm{t}}\right)
$$

## Easy Question

We can cheaply compute

$$
\alpha_{t}(\mathrm{i})=\mathrm{P}\left(\mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{O}_{\mathrm{t}} \wedge \mathrm{q}_{\mathrm{t}}=\mathrm{S}_{\mathrm{i}}\right)
$$

(How) can we cheaply compute

$$
\mathrm{P}\left(\mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{O}_{\mathrm{t}}\right) \quad ? \sum_{i=1}^{N} \alpha_{t}(i)
$$

(How) can we cheaply compute

$$
\mathrm{P}\left(\mathrm{q}_{\mathrm{t}}=\mathrm{S}_{\mathrm{i}} \mid \mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{O}_{\mathrm{t}}\right)
$$

$$
\frac{\alpha_{t}(i)}{\sum_{j=1}^{N} \alpha_{t}(j)}
$$

## Most probable path given observations

What's most probable path given $O_{1} O_{2} \ldots O_{T}$, i.e.
What is $\underset{\mathrm{Q}}{\operatorname{argmax}} \mathrm{P}\left(Q \mid O_{1} O_{2} \ldots O_{T}\right)$ ?
Slow, stupid answer :

$$
\begin{aligned}
& \underset{\mathrm{Q}}{\operatorname{argmax}} \mathrm{P}\left(Q_{O_{1}} O_{2} \ldots O_{T}\right) \\
= & \underset{\mathrm{Q}}{\operatorname{argmax}} \frac{\mathrm{P}\left(O_{1} O_{2} \ldots O_{T} \mid Q\right) \mathrm{P}(Q)}{\mathrm{P}\left(O_{1} O_{2} \ldots O_{T}\right)} \\
= & \underset{\mathrm{Q}}{\operatorname{argmax}} \mathrm{P}\left(O_{1} O_{2} \ldots O_{T} \mid Q\right) \mathrm{P}(Q)
\end{aligned}
$$

## Efficient MPP computation

We're going to compute the following variables:
$\delta_{t}(i)=\quad \max \quad P\left(q_{1} q_{2} . . q_{t-1} \wedge q_{t}=S_{i} \wedge O_{1} . . O_{t}\right)$

$$
q_{1} q_{2} \cdot \cdot q_{t-1}
$$

$=$ The Probability of the path of Length $t-1$ with the maximum chance of doing all these things:
...OCCURING
and
...ENDING UP IN STATE $S_{i}$
and
$\ldots$...PRODUCING OUTPUT $\mathrm{O}_{1} \ldots \mathrm{O}_{\mathrm{t}}$
DEFINE: $\quad \operatorname{mpp}_{t}(i)=$ that path
So: $\quad \delta_{t}(i)=\operatorname{Prob}\left(\operatorname{mpp}_{t}(i)\right)$

## The Viterbi Algorithm

$$
\delta_{t}(i)=q_{1} q_{2}^{\max } \cdots q_{t-1} \mathrm{P}\left(q_{1} q_{2} \ldots q_{t-1} \wedge q_{t}=S_{i} \wedge O_{1} O_{2} . . O_{t}\right)
$$

$$
\begin{aligned}
\operatorname{mpp}_{t}(i) & =q_{1} q_{2}^{\operatorname{argmax}} \cdots q_{t-1} \mathrm{P}\left(q_{1} q_{2} \ldots q_{t-1} \wedge q_{t}=S_{i} \wedge O_{1} O_{2} . . O_{t}\right) \\
\delta_{1}(i) & =\text { one choice } \mathrm{P}\left(q_{1}=S_{i} \wedge O_{1}\right) \\
& =\mathrm{P}\left(q_{1}=S_{i}\right) \mathrm{P}\left(O_{1} \mid q_{1}=S_{i}\right) \\
& =\pi_{i} b_{i}\left(O_{1}\right)
\end{aligned}
$$

Now, suppose we have all the $\delta_{t}(i)$ 's and $\mathrm{mpp}_{\mathrm{t}}(\mathrm{i})$ 's for all i .


## The Viterbi Algorithm


time $\mathrm{t}+1$
The most prob path with last two states $\mathrm{S}_{\mathrm{i}} \mathrm{S}_{\mathrm{j}}$
is
the most prob path to $\mathrm{S}_{\mathrm{i}}$, followed by transition $S_{i} \rightarrow S_{j}$

## The Viterbi Algorithm



The most prob path with last two states $S_{i} S_{j}$
is
the most prob path to $\mathrm{S}_{\mathrm{i}}$, fnllnwed hy transition $\mathrm{S}_{\mathrm{i}} \rightarrow \mathrm{S}_{\mathrm{j}}$

What is the prob of that path?

$$
\delta_{t}(\mathrm{i}) \times \mathrm{P}\left(\mathrm{~S}_{\mathrm{i}} \rightarrow \mathrm{~S}_{\mathrm{j}} \wedge \mathrm{O}_{\mathrm{t}+1} \mid \lambda\right)
$$

$=\delta_{t}(i) a_{i j} b_{j}\left(O_{t+1}\right)$
SO The most probable path to $S_{j}$ has
$S_{i^{*}}$ as its penultimate state
where $i^{*}=\operatorname{argmax} \delta_{t}(i) a_{i j} b_{j}\left(O_{t+1}\right)$

## The Viterbi Algorithm



The most prob path with last two states $S_{i} S_{j}$
is
the most prob path to $\mathrm{S}_{\mathrm{i}}$, fnllnmed hy transition $S_{i} \rightarrow S_{j}$
What is the prob of that path?

$$
\begin{aligned}
& \delta_{\mathrm{t}}(\mathrm{i}) \times P\left(S_{i} \rightarrow S_{j} \wedge\right. \\
=\quad & \delta_{\mathrm{t}}(\mathrm{i}) \mathrm{a}_{\mathrm{ij}} \mathrm{~b}_{\mathrm{j}}\left(\mathrm{O}_{\mathrm{t}+1}\right)
\end{aligned}
$$

SO The most probable $S_{i^{*}}$ as its penultimate stan
where $i^{*}=\operatorname{argmax} \delta_{t}(i) a_{i j} b_{j}\left(O_{t+1}\right)$

## What's Viterbi used for?

Classic Example
Speech recognition:
Signal $\rightarrow$ words
HMM $\rightarrow$ observable is signal
$\rightarrow$ Hidden state is part of word formation

What is the most probable word given this signal?
UTTERLY GROSS SIMPLIFICATION
In practice: many levels of inference; not one big jump.

## HMMs are used and useful

But how do you design an HMM?
Occasionally, (e.g. in our robot example) it is reasonable to deduce the HMM from first principles.

But usually, especially in Speech or Genetics, it is better to infer it from large amounts of data. $\mathrm{O}_{1} \mathrm{O}_{2} . . \mathrm{O}_{\mathrm{T}}$ with a big " T ".


## Inferring an HMM

Remember, we've been doing things like

$$
\mathrm{P}\left(\mathrm{O}_{1} \mathrm{O}_{2} . . \mathrm{O}_{\mathrm{T}} \mid \lambda\right)
$$

That " $\lambda$ " is the notation for our HMM parameters.
Now We have some observations and we want to estimate $\lambda$ from them.

AS USUAL: We could use
(i) MAX LIKELIHOOD $\lambda=\operatorname{argmax} P\left(O_{1} . . \mathrm{O}_{\mathrm{T}} \mid \lambda\right)$

$$
\lambda
$$

(ii) BAYES

Work out $\mathrm{P}\left(\lambda \mid \mathrm{O}_{1} . . \mathrm{O}_{\mathrm{T}}\right)$
and then take $E[\lambda]$ or $\max P\left(\lambda \mid O_{1} . . O_{T}\right)$
$\lambda$

## Max likelihood HMM estimation

Define

$$
\begin{aligned}
& Y_{t}(i)=P\left(q_{t}=S_{i} \mid O_{1} O_{2} \ldots O_{T}, \lambda\right) \\
& \varepsilon_{t}(i, j)=P\left(q_{t}=S_{i} \wedge q_{t+1}=S_{j} \mid O_{1} O_{2} \ldots O_{T}, \lambda\right)
\end{aligned}
$$

$Y_{t}(i)$ and $\varepsilon_{t}(i, j)$ can be computed efficiently $\forall i, j, t$
(Details in Rabiner paper)
$\sum_{t=1}^{T-1} \gamma_{t}(i)=\begin{aligned} & \text { Expected number of transitions } \\ & \text { out of state } i \text { during the path }\end{aligned}$
$\sum_{t=1}^{T-1} \varepsilon_{t}(i, j)=\begin{aligned} & \text { Expected number of transitions from } \\ & \text { state } \mathrm{i} \text { to state } \mathrm{j} \text { during the path }\end{aligned}$

$$
\begin{aligned}
& \gamma_{t}(i)=\mathrm{P}\left(q_{t}=S_{i} \mid O_{1} O_{2} . . O_{T}, \lambda\right) \\
& \varepsilon_{t}(i, j)=\mathrm{P}\left(q_{t}=S_{i} \wedge q_{t+1}=S_{j} \mid O_{1} O_{2} . . O_{T}, \lambda\right) \\
& \sum_{t=1}^{T-1} \gamma_{t}(i)=\text { expected number of transitions out of state i during path } \\
& \sum_{t=1}^{T-1} \varepsilon_{t}(i, j)=\text { expected number of transitions out of i and into j during path }
\end{aligned}
$$

## HMM estimation

Notice $\frac{\sum_{t=1}^{T-1} \varepsilon_{t}(i, j)}{\sum_{t=1}^{T-1} \gamma_{t}(i)}=\frac{\binom{\text { expected frequency }}{\mathrm{i} \rightarrow \mathrm{j}}}{\binom{\text { expected frequency }}{\mathrm{i}}}$
$=$ Estimate of Prob $\left(\begin{array}{c}\text { Next state } \mathrm{S}_{\mathrm{j}} \mid \text { This state } \mathrm{S}_{\mathrm{i}}\end{array}\right)$
We can re-estimate
$\quad \mathrm{a}_{\mathrm{ij}} \leftarrow \frac{\sum \varepsilon_{t}(i, j)}{\sum \gamma_{t}(i)}$
We can also re-estimate
$\mathrm{b}_{\mathrm{j}}\left(O_{k}\right) \leftarrow \cdots \quad$ (See Rabiner)

## EM for HMMs

If we knew $\lambda$ we could estimate EXPECTATIONS of quantities such as
Expected number of times in state i
Expected number of transitions $i \rightarrow j$

If we knew the quantities such as
Expected number of times in state i
Expected number of transitions $i \rightarrow j$
We could compute the MAX LIKELIHOOD estimate of

$$
\lambda=\left\langle\left\{\mathrm{a}_{\mathrm{ij}}\right\},\left\{\mathrm{b}_{\mathrm{i}}(\mathrm{j})\right\}, \pi_{\mathrm{i}}\right\rangle
$$

Roll on the EM Algorithm...

## EM 4 HMMs

1. Get your observations $\mathrm{O}_{1} \ldots \mathrm{O}_{\mathrm{T}}$
2. Guess your first $\lambda$ estimate $\lambda(0), k=0$
3. $k=k+1$
4. Given $\mathrm{O}_{1} \ldots \mathrm{O}_{\mathrm{T}}, \lambda(\mathrm{k})$ compute $Y_{\mathrm{t}}(\mathrm{i}), \varepsilon_{\mathrm{t}}(\mathrm{i}, \mathrm{j}) \quad \forall 1 \leq \mathrm{t} \leq \mathrm{T}, \quad \forall 1 \leq \mathrm{i} \leq \mathrm{N}, \quad \forall 1 \leq \mathrm{j} \leq \mathrm{N}$
5. Compute expected freq. of state $i$, and expected freq. $i \rightarrow j$
6. Compute new estimates of $\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{j}}(\mathrm{k}), \pi_{\mathrm{i}}$ accordingly. Call them $\lambda(k+1)$
7. Goto 3 , unless converged.

- Also known (for the HMM case) as the BAUM-WELCH algorithm.


## Bad News

- There are lots of local minima


## GOOC NeMS

- The local minima are usually adequate models of the data.


## Notice

- EM does not estimate the number of states. That must be given.
- Often, HMMs are forced to have some links with zero probability. This is done by setting $\mathrm{a}_{\mathrm{ij}}=0$ in initial estimate $\lambda(0)$
- Easy extension of everything seen today: HMMs with real valued outputs
- There are lots d

Trade-off between too few states (inadequately modeling the structure in the data) and too many (fitting the noise).
Thus \#states is a regularization parameter.
Blah blah blah... bias variance tradeoff...blah blah...cross-validation...blah blah....AIC,
BIC....blah blah (same ol' same ol')

- EM does not estimate the number of states. That must be given.
- Often, HMMs are forced to have some links with zero probability. This is done by setting $\mathrm{a}_{\mathrm{ij}}=0$ in initial estimate $\lambda(0)$
- Easy extension of everything seen today: HMMs with real valued outputs


## What You Should Know

- What is an HMM ?
- Computing (and defining) $\alpha_{\mathrm{t}}(\mathrm{i})$
- The Viterbi algorithm
- Outline of the EM algorithm
- To be very happy with the kind of maths and analysis needed for HMMs

DON'T PANIC: starts on p. 257.

- Fairly thorough reading of Rabiner* up to page 266* [Up to but not including "IV. Types of HMMs"].
*L. R. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition," Proc. of the IEEE, Vol.77, No.2, pp.257--286, 1989.

