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Abstract

Reinforcement learning for partially observable Markov decision problems (POMDPs)
is a challenge as it requires policies with an internal state. Traditional approaches
suffer significantly from this shortcoming and usually make strong assumptions on
the problem domain such as perfect system models, state-estimators and a Marko-
vian hidden system. Recurrent neural networks (RNNs) offer a natural framework
for dealing with policy learning using hidden state and require only few limiting
assumptions. As they can be trained well using gradient descent, they are suited for
policy gradient approaches.

In this paper, we present a policy gradient method, the Recurrent Policy Gradient
which constitutes a model-free reinforcement learning method. It is aimed at train-
ing limited-memory stochastic policies on problems which require long-term mem-
ories of past observations. The approach involves approximating a policy gradient
for a recurrent neural network by backpropagating return-weighted characteristic
eligibilities through time. Using a “Long Short-Term Memory” RNN architecture,
we are able to outperform previous RL methods on three important benchmark
tasks. Furthermore, we show that using history-dependent baselines helps reduc-
ing estimation variance significantly, thus enabling our approach to tackle more
challenging, highly stochastic environments.
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1 Introduction

Reinforcement learning (RL) is one of the most important problems in machine
learning, psychology, optimal control and robotics [1]. In this setting, it is gen-
erally assumed that we have an agent that learns from trial and error, directly
interacting with the environment to discover incrementally better policies. De-
spite all the successes in reinforcement learning, many common methods are
limited to fully observable problems with no hidden states. However, RL tasks
in realistic environments typically need to deal with incomplete and noisy
state information resulting from partial observability such as encountered in
partially observable Markov decision problems (POMDPs). Furthermore, the
goal of dealing with non-Markovian problems is most likely beyond the abil-
ities of traditional value function approaches. For such partially observable
and non-Markovian problems, the optimal solution will require a policy rep-
resentation with an internal memory. Among all function approximators with
internal state, recurrent neural networks (RNN) appear to be the method of
choice and can make a big difference in reinforcement learning problems. How-
ever, only few reinforcement learning methods are theoretically sound when
applied in conjunction with such function approximation, and catastrophic
divergence of traditional methods can be shown in this context [2].

Policy gradient (PG) methods constitute an exception, as these allow for learn-
ing policies even with noisy state information [3], work in combination with
function approximation [4,5], are compatible with policies that have internal
memory [6], can naturally deal with continuous actions [7–9] and are guaran-
teed to converge at least to a local minimum. Furthermore, most successful
algorithms for solving real world reinforcement learning tasks are applications
of PG methods, see, e.g., [10–12,3,7,13,14] for an overview. Provided the choice
of policy representation is powerful enough, PGs can tackle quite complex RL
problems.

At this point, policy gradient-based reinforcement learning exhibits two major
drawbacks from the perspective of recurrent neural networks, i.e., (i) the lack
of scalability of policy gradient methods in the number of parameters, and (ii)
the small number of algorithms that were developed specifically for recurrent
neural network policies with large-scale memory. Most PG approaches have
only been used to train policy representations with maximally a few dozen
parameters, while RNNs can have thousands. Surprisingly, the obvious com-
bination with standard backpropagation techniques has not been extensively
investigated (a notable exception being the SRV algorithm [15,16], which was,
however, solely applied to feedforward networks). In this paper, we address
this shortcoming, and show how PGs can be naturally combined with back-
propagation, and BackPropagation Through Time (BPTT) [17] in particular,
to form a powerful RL algorithm capable of training complex neural networks
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with large numbers of parameters.

Work on policy gradient methods with memory has been scarce so far, largely
limited to finite state controllers. Strikingly, memory models based on fi-
nite state controllers perform less than satisfactorily, even on quite simple
benchmarks (e.g. single pole balancing without velocity information cannot
be learned beyond 1000 time steps [6,18], whereas evolutionary methods and
the algorithm presented in this paper manage to balance the pole 100, 000+
steps). We conjecture that the reason is that for finite state controllers a
stochastic memory state model must be learned in conjunction with a pol-
icy, which is prohibitively expensive. In this paper, we extend policy gradient
methods to more sophisticated policy representations capable of representing
memory using an RNN architecture called Long Short-Term Memory (LSTM)
for representing our policy [19]. We develop a new reinforcement learning al-
gorithm aimed specifically at RNNs that can effectively learn memory-based
policies for deep memory POMDPs. This algorithm, the Recurrent Policy
Gradient (RPG) algorithm, backpropagates the estimated return-weighted el-
igibilities backwards through time using recurrent connections in the RNN.
As a result, policy updates can become a function of any event in the history.
We show that the presented method outperforms other RL methods on three
important RL benchmark tasks with different properties: continuous control
in a non-Markovian double pole balancing environment, and discrete control
on both the deep memory T-maze [20] task (which was designed to test an
RL algorithm’s ability to deal with extremely long term dependencies) and
the still-unsolved (up to human-level performance) stochastic 89-state Maze
task. Moreover, we show promising results in a complex car driving simulation
which is challenging for humans. Here, we can show real-time improvement
of the policy which has been largely unachieved in reinforcement learning for
such complex tasks.

The paper is organized as follows. The next section describes the reinforcement
learning framework and briefly reviews LSTM’s architecture. The subsequent
sections introduce the derivation of Recurrent Policy Gradient algorithm, and
present our experimental results using RPGs with memory. The paper finishes
with a discussion.

2 Preliminaries

In this section, we first briefly summarize the reinforcement learning termi-
nology as used in this paper with a focus on RL for RNNs. Subsequently, we
describe the particular type of recurrent neural network architecture used in
this paper, i.e., Long Short-Term Memory networks.
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2.1 Reinforcement Learning for Recurrent Neural Networks

First, let us introduce the RL framework used in this paper and the corre-
sponding notation. The environment produces a state gt at every time step.
Transitions from state to state are governed by a function p(gt+1|a1:t, g1:t) un-
known to the agent but dependent upon all previous actions a1:t executed
by the agent and all previous states g1:t of the system. Note that most rein-
forcement learning papers need to assume Markovian environments – we will
later see that we do not need to for policy gradient methods with an internal
memory. Let rt be the reward assigned to the agent at time t, and let ot be
the corresponding observation produced by the environment. We assume that
both quantities are governed by fixed distributions p(o|g) and p(r|g), solely
dependent on state g.

In the more general reinforcement setting, we require that the agent has
a memory of the generated experience consisting of finite episodes. Such
episodes are generated by the agent’s operations on the (stochastic) envi-
ronment, executing action at at every time step t, after observing observa-
tion ot and special ‘observation’ rt (the reward) which both depend solely
on gt. We define the observed history 1 ht as the string or vector of ob-
servations and actions up to moment t since the beginning of the episode:
ht = 〈o0, a0, o1, a1, . . . , ot−1, at−1, ot〉. The complete history H includes the un-
observed states and is given by HT = 〈hT , g0:T 〉. At any time t, the actor
optimizes Rt =

∑∞
k=t rkγ

t−k which is the return at time t where 0 < γ < 1
denotes a discount factor.

The expectation of this return Rt at time t = 0 is also the measure of quality
of our policy and, thus, the objective of reinforcement learning is to deter-
mine a policy which is optimal with respect to the expected future discounted
rewards or expected return J = E [R0] = limT→∞E

[∑T−1
t=0 γtrt

]
. For the av-

erage reward case where γ → 1 this expression remains true analytically but
needs to be replaced by J = limT→∞E[

∑T−1
t=0 rt/T ] in order to be numerically

feasible.

An optimal or near-optimal policy in a non-Markovian or partially observable
Markovian environment requires that the action at is taken depending on the
entire preceding history. However, in most cases, we will not need to store the
whole string of events but only sufficient statistics M(ht) of the events which
we call the limited memory of the agents past. Thus, a stochastic policy π can
be defined as π(a|ht) = p(a|M(ht); θ), implemented as an RNN with weights θ
and stochastically interpretable output neurons. This produces a probability
distribution over actions, from which actions at are drawn at ∼ π(a|ht).

1 Note that such histories are also called path or trajectory in the literature.
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Fig. 1. The Long Short-Term Memory cell. The figure shows an LSTM cell with a
net input, a Constant Error Carousel (CEC), an input gate, a forget gate and an
output gate. The cell has an internal state CEC and a forget gate that determines
how much the CEC is attenuated at each time step. The input gate controls access
to the state by the external inputs and the outputs of other cells, and the output
gate determines how much and when the cell fires.

2.2 LSTM Recurrent Neural Networks as Policy Representation

Recurrent neural networks are designed to deal with issues of time, such as ap-
proximating time series. A crucial feature of this class of architectures is that
they are capable of relating events in a sequence, in principle even if placed
arbitrarily far apart. A typical RNN π maintains an internal state M(ht) (or
memory) which it uses to pass on (compressed) history information to the
next moment by using recurrent connections. At every time step, the RNN
takes an input vector ot and produces an output vector π(M(ht)) from its
internal state, and since the internal state M(ht) of any step is a function f
of the previous state and the current input signal M(ht) = f(ot, M(ht−1); θ),
it can take into account the entire history of past observations by using its
recurrent connections for recalling events. Not only can RNNs represent mem-
ory, they can, in theory, be used to model any dynamic system [21]. Like
conventional neural networks, they can be trained using a special variant of
backpropagation, backpropagation through time (BPTT) [17,22].

Usually BPTT is employed to find the gradient ∇θE in parameters θ (that
define f and π) for minimizing some error measure E, e.g. summed squared
error. This is done by first executing a forward pass through the RNN all to the
end of the sequence, at every time step unfolding the RNN, reusing parameters
θ for the recurrent connections, producing outputs and computing the error
δt. Then a (reverse) backwards pass is performed, computing the gradient
backwards through time by backpropagating the errors. Usually, this is done
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in a supervised fashion, but we will apply this technique to a reinforcement
learning setting.

RNNs have attracted some attention in the past decade because of their sim-
plicity and potential power. However, though powerful in theory, they turn out
to be quite limited in practice due to their inability to capture long-term time
dependencies – they suffer from the problem of vanishing gradient [23,24],
the fact that the gradient signal vanishes as the error signal is propagated
back through time. Because of this, events more than 10 time steps apart can
typically not be related.

One method purposely designed to avoid this problem is Long Short-Term
Memory (LSTM [19,25]), which constitutes a special RNN architecture ca-
pable of capturing long term time dependencies. The defining feature of this
architecture is that it consists of a number of differentiable memory cells,
which can be used to store activations arbitrarily long. Access to the inter-
nal state of the memory cell (the Constant Error Carousel or CEC) is gated
by gating units that learn to open or close depending on the context. Three
types of (sigmoidal) gates are present: input gates that determine the input
to the memory cell, forget gates that control how much of the CEC’s value is
transferred to the next time step, and output gates which regulate the output
of the memory cell by gating the cell’s output. See Figure 1 for a depiction of
LSTM’s structure.

LSTM networks have been shown to outperform other RNNs on numerous
time series requiring the use of deep memory [26]. Therefore, they seem well-
suited for usage in PG algorithms for complex, deep memory requiring tasks.
Whereas RNNs are usually used to predict, we use them to control an agent
directly, to represent a controller’s policy receiving observations and producing
action probabilities at every time step.

3 Recurrent Policy Gradients

In this section, we first formally derive the Recurrent Policy Gradient frame-
work. Subsequently, history-dependent baselines are introduced, and the sec-
tion is concluded with a description of the Recurrent Policy Gradient algo-
rithm.
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3.1 Derivation of Recurrent Policy Gradients

The type of RL algorithm we employ in this paper falls in the class of policy
gradient algorithms, which, unlike many other (notably TD) methods, update
the agent’s policy-defining parameters θ directly by estimating a gradient in
the direction of higher (average or discounted) reward.

Now, let R(H) be some measure of the total reward accrued during a history.
R(H) could be the average of the rewards for the average reward case, or the
discounted sum for the discounted case. Let p(H|θ) denote the probability of a
history given policy-defining weights θ. The quantity the algorithm should be
optimizing is J =

∫
H p(H|θ)R(H)dH. This, in essence, indicates the expected

reward over all possible histories, weighted by their probabilities under policy
π. In order to be able to apply gradient ascent to find a better policy, we have
to find the gradient ∇θJ , which can then be used to incrementally update
parameters θ of policy π in small steps. Since we know that rewards R(H) for a
given history H do not depend on the policy parameters θ (that is, ∇θR(H) =
0), we can write ∇θJ = ∇θ

∫
H p(H|θ)R(H)dH =

∫
H ∇θp(H|θ)R(H)dH. Now,

using the “likelihood-ratio trick” we find

∇θJ =
∫
∇θp(H)R(H)dH

=
∫ p(H)

p(H)
∇θp(H)R(H)dH

=
∫

p(H)∇θ log p(H)R(H)dH.

Taking the sample average as Monte Carlo (MC) approximation of this ex-
pectation by taking N trial histories we get

∇θJ = EH

[
∇θ log p(H)R(H)

]
≈ 1

N

N∑
n=1

∇θ log p(Hn)R(Hn).

which is a fast approximation of the policy gradient for the current policy with
the convergence speed of O(N−1/2) to the true gradient independent of the
number of parameters of the policy (i.e., number of elements of the gradient).

Probabilities of histories p(H) are dependent on an unknown initial state dis-
tribution, on unknown observation probabilities per state, and on unknown
state transition function p(gt+1|a1:t, g1:t). But at least the agent knows its own
action probabilities, so the log derivative for agent parameters θ in ∇θ log p(h)
can be acquired by first realizing that the probability of a particular history
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is the product of all actions and observations given subhistories:

p(HT ) = p(〈o0, g0〉)
T∏

t=1

p(〈ot, gt〉|ht−1, at−1, g0:t)π(at−1|ht−1)

Taking the log-derivative results into transforming this large product into a
sum log p(HT ) = (const)+

∑T
t=0 log π(at|ht): where most parts are not affected

by θ, i.e., are constant. Thus, when taking the derivative of this term, we obtain

∇θ log p(HT ) =
T∑

t=0

∇θ log π(at|ht).

Substituting this term into our MC approximation results in a gradient es-
timator which only requires observed variables. However, if we make use of
the fact that future actions do not depend on past rewards, we can show that
these terms can be omitted from the gradient estimate (see [7] for details).
Thus, an unbiased gradient estimator is given by

∇θJ ≈ 1

N

N∑
n=1

T∑
t=0

∇θ log π(at|hn
t )Rn

t

which yields the desired gradient estimator which only has observable vari-
ables.

3.2 History-dependent Baselines

Nevertheless, an important problem with this Monte Carlo approach is the
often high variance in the gradient estimate. For example, if R(h) = 1 for all
h, the variance can be given by σ2

T = E[
∑T

t=0(∇θ log π(at|hn
t ))2] which grows

linearly with T . One way to tackle such problems and reduce this variance
is to include a constant baseline b (first introduced by Williams [27]) into
the gradient estimate ∇θJ ≈ 1

N

∑N
n=1

∑T
t=0∇θ log π(at|hn

t )(Rn
t − b). Baseline

b is typically taken to be the expected average return and subtracted from
the actual return, such that the resulting quantity (Rt − b) intuitively yields
information on whether the return was better or worse than expected. Due to
the likelihood-ratio trick

∫
p(H)∇θ log p(H)R(H)dH = ∇θ

∫
p(H)bdH = ∇θ1 =

0, we can guarantee that E[
∑N

n=1∇θ log p(Hn
t )b] = 0 and, thus, the baseline

can only reduce the variance but not bias the gradient in any way [27].

Whereas previously a constant baseline was used, we can in fact extend
the baseline concept to include subhistory-dependent function approximators
B(ht) parameterized by w. The correctness of this approach can be realized
by applying the same trick

∫
a∇θπ(a|ht)B(ht)da = 0 for every possible sub-

history ht. Now the baseline B(ht) can be represented as an LSTM RNN
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receiving observations and actions as inputs, trained to predict future return
given the current policy π. This construct closely resembles the concept of
value functions in temporal difference methods. However, note that we do not
use temporal difference methods for training the history-dependent baseline
network (since such updates can be arbitrarily bad in partially observable
environments [2]), but apply supervised training using simply the actually ex-
perienced returns as targets for every time step. Using non-constant, history-
dependent baselines, our algorithm now uses two separate RNNs: one policy
π parameterized by θ, and one baseline network B parameterized by w. Us-
ing the extended baseline network, the gradient update for the policy now
becomes ∇θJ ≈ 1

N

∑N
n=1

∑T
t=0∇θ log π(at|hn

t )(Rn
t −B(hn

t )).

3.3 The Recurrent Policy Gradients Algorithm

Typically, PG algorithms learn to map observations to action probabilities,
i.e. they learn stochastic reactive policies. As noted before, this is clearly sub-
optimal for all but the simplest partial observability problems. We would like
to equip our algorithm with adaptable memory, using LSTM to map histories
or memory states to action probabilities. Unlike earlier methods, our method
makes full use of the backpropagation technique while doing this: whereas
most if not all published and experimentally tested PG methods (as far as
the authors are aware) estimate parameters θ individually, we use eligibility-
backpropagation through time (as opposed to standard error-backpropagation
or BPTT [17]) to update all parameters conjunctively, yielding solutions that
better generalize over complex histories. Using this method, we can map his-
tories to actions instead of observations to actions.

In order to estimate the gradient for a history-based approach, we map histo-
ries ht to action probabilities by using LSTM’s internal state representation.
Backpropagating return-weighted eligibilities [27] affects the policy such that
it makes histories that were better than other histories (in terms of reward)
more likely by reinforcing the probabilities of taking similar actions for similar
histories.

Recurrent Policy Gradients are architecturally equal to supervised RNNs,
however, the output neurons are interpreted as a probability distribution. It
takes, at every time step during the forward pass of BPTT, as input observa-
tion ot and reward rt. Together with the recurrent connections, these produce
outputs π(ht), representing the probability distribution on actions.

Only the output part of the neural network is interpreted stochastically. This
allows us, during the backward pass, to only estimate the eligibilities of the
output units at every time step. The gradient on the other parameters θ can
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be derived efficiently via eligibility backpropagation through time, treating
output eligibilities like we would treat normal errors (‘deltas’) in an RNN
trained with gradient descent. Also, by having only stochastic output units,
we do not have to compute complicated gradients on stochastic internal (be-
lief) states such as done in [6,18] – eligibility backpropagation through time
disambiguates relevant hidden state automatically, when possible.

4 Experiments

We carried out experiments on four fundamentally different problem domains.
The first task, double pole balancing with incomplete state information, is a
continuous control task that has been a benchmark in the RL community for
many years. RPGs outperform all other single-agent methods on this task,
as far as we are aware. The second task, the T-maze, is a difficult discrete
control task that requires remembering its initial observation until the end
of the episode. On this task, RPGs outperformed the second-best method by
more than an order of magnitude for longer corridors. The third task, the
89-state Maze, is a highly stochastic POMDP maze task which has yet to be
solved up to human level performance. On this task, RPGs outperform all
other (model-free) algorithms.

Last, we show promising results on a complex car driving simulation (TORCS)
which is challenging for humans. Here, we can show real-time improvement
of the policy, something which has been largely unachieved in reinforcement
learning for such complex tasks.

All experiments were carried out with 10-cell LSTMs. The baseline estimator
used was simply a moving average of the return received at any time step,
except for the 89-state Maze task, where an additional LSTM network was
used to estimate a history-dependent baseline.

4.1 Continuous Control: Partially Observable Single & Double Pole Balanc-
ing

This task involves trying to balance a pole hinged on a cart that moves on
a finite track (see Figure 2). The single control consists of the force F ap-
plied to the cart (in Newtons), and observations usually include the cart’s
position x, the pole’s angle β and velocities ẋ and β̇. It provides a perfect
testbed for algorithms focussing on learning fine control in continuous state
and action spaces. However, recent successes in the RL field have made the
standard pole balancing setup too easy and therefore obsolete. To make the
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x

Markov non-Markov

1 pole 863± 213 1893± 527

2 poles 4981± 1386 5649± 1548

Fig. 2. The non-Markov double pole balancing task. The task consists of a moving
cart on a track, with two poles of different lengths (1m and 0.1m) hinged on top.
The controller applies a (continuous) force F to the cart at every time step, after
observing pole angles β1 and β2. The objective is to indefinitely keep the poles from
falling. The table shows the results for RPGs on the pole balancing task, for the
four possible cases investigated in this paper: 1 pole Markov, 2 poles Markov, 1 pole
non-Markov, and 2 poles non-Markov. The results show the mean and standard
deviation of the number of evaluations until the success criterion was reached, that
is, when a run lasts more than 10, 000 time steps. Results are computed over 20
runs.

task more challenging, we (1) remove velocity information ẋ and β̇ such that
the problem becomes non-Markov, and (2) add a second pole to the same cart,
of length 1/10th of the original one. This yields non-Markovian double pole
balancing [28], a truly challenging task that has not been solved by any other
single-agent RL method but RPGs.

We applied RPGs to the pole balancing task, using a Gaussian output struc-
ture for our LSTM RNN, consisting of two output neurons: a mean µ (which
was interpreted linearly) and a standard deviation σ (which was scaled with
the logistic function between 0 and 1 in order to prevent variances from being
negative) where eligibilities were calculated according to [27]. We use a learn-
ing rate ασ2 (as suggested by Williams [27]) to prevent numerical instabilities
when variances tend to 0, and use learning rate α = 0.001, momentum = 0.9
and discount factor γ = 0.99. Initial parameters θ were initialized randomly
between −0.01 and 0.01. Reward was always 0.0, except for the last time step
when one of the poles falls over, where it is −1.0.

A run was considered a success when the pole(s) did not fall over for 10, 000
time steps. Figure 2 shows results averaged over 20 runs. RPGs clearly outper-
form earlier PG methods (for a comparison, see [18]’s finite state controller,
which cannot balance a single pole in a partially observable setting for more
than 1000 time steps, even after 500,000 trials). As far as we are aware, RPGs
constitute the only published single-agent approach that can satisfactorily
solve this problem.
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Fig. 3. The T-maze task. The agent observes its immediate surroundings and is
capable of the actions goNorth, goEast, goSouth, and goWest. It starts in the po-
sition labeled ‘S’, there and only there observing either the signal ‘up’ or ‘down’,
indicating whether it should go up or down at the end of the alley. It receives a
reward if it goes in the correct direction, and a punishment if not. In this example,
the direction is ‘up’ and N , the length of the alley, is 35.

4.2 Reinforcement Learning in Discrete POMDPs

In this section, we show the high performance of our algorithm for traditional
discrete POMDP problems. The Long Term Dependency T-maze from Section
4.2.1 is a standard benchmark for learning deep-memory POMDPs while the
89-state Maze in Section 4.2.2 is a problem where humans are still able to
beat the best known algorithmically learned policy (e.g. see [20]).

4.2.1 Long Term Dependency T-maze

The second experiment was carried out on the T-maze [20] (see Figure 3).
Designed to test an RL algorithm’s ability to correlate events far apart in
history, it involves having to learn to remember the observation from the first
time step until the episode ends. At the first time step, it starts at position
S and perceives the X either north or south – meaning that the goal state
G is in the north or south part of the T-junction, respectively. Additionally,
the agent perceives its immediate surroundings. The agent has four possible
actions: North, East, South and West. These discrete actions are represented
in the network as a softmax layer. When the agent makes the correct decision
at the T-junction, i.e. go south if the X was south and north otherwise, it
receives a reward of 4.0, otherwise a reward of -0.1. In both cases, this ends
the episode. Note that the corridor length N can be increased to make the
problem more difficult, since the agent has to learn to remember the initial
‘road sign’ for N + 1 time steps. In Figure 3 we see an example T-maze with
corridor length 35.

Corridor length N was systematically varied from 10 to 100, and for each
length 10 runs were performed. Training was performed in batches of 20 nor-
malizing the gradient to length 0.3. Discount factor γ = 0.98 was used. In
Figure 4 the results are displayed, in addition to other algorithms’ results
(RL-Elman and RL-LSTM) taken from [20], of which the results on RL-LSTM
were the best results reported so far. We can see that RPGs clearly outperform
the value-based methods, even by more than an order of magnitude in terms
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Fig. 4. T-maze results. Elman-based Value Iteration (Elman VI) starts to degrade af-
ter corridor length N = 10, LSTM Value Iteration (LSTM VI) falters after N = 50,
while Recurrent Policy Gradients’ performance starts to degrade at length N = 100.
The plot shows the number of average iterations required to solve the task, averaged
over the successful runs. RPGs clearly outperform other RL methods on this task,
to the best of the authors’ knowledge. (The results for the Value Iteration based
algorithms are taken from [20]).

of iterations for corridor lengths longer than 40. Additionally, RPGs are able
to solve this task up to N=90, while the second best algorithm, RL-LSTM,
solves it up to N=50. The large performance gain on this task for Recur-
rent Policy Gradients might be due to the difference in complexity of learning
a simple (memory-based) policy versus learning unnecessarily complex value
functions. Nevertheless, the impressive performance advantage of RPGs over
value-based methods on this domains indicates a possibly significant poten-
tial for the application of Recurrent Policy Gradients to other deep-memory
domains.

4.2.2 The 89-state Maze

In this extremely stochastic benchmark task (see Figure 5; see [29] for a com-
plete description) the aim for the agent is to get to the goal as fast as possible
(where the reward is 1, other locations have reward 0) from a random starting
position and orientation, but within 251 time steps. For reward attribution,
discount factor γ = 0.98 is used. The agent has not only a position, but also
an orientation, and its actions consist of moving forward, turning left, turn-
ing right, turning about, and doing nothing. State transactions are extremely
noisy. Observations, which consist of 4 bits representing adjacent wall infor-
mation (wall or no wall), are noisy and are inverted with probability 10%,
which sets the chance of getting the correct observation somewhere between
0.65 and 0.81, depending on the agent’s location. It is interesting to note that,
to the authors’ knowledge, this domain has as of yet not been satisfactorily
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Fig. 5. The 89-state maze. In this extremely stochastic maze, the agent has a posi-
tion, an orientation, and can execute five different actions: forward, turnleft, turn-
right, turnabout, and doNothing. The agent starts every trial in a random position.
Its goal is to move to the square labeled ‘G’. Observations comprise the local walls
but are noisy (there is a high probability of observing walls where there are none
and vice versa). Action outcomes are noisy and cannot be relied on. See [29] for a
complete description of this problem domain.

solved, that is, solved up to human-comparable performance. Humans still
greatly outperform all algorithms we are aware of. That is what makes this a
very interesting and challenging task.

Because of the random starting position, this task is extremely difficult with-
out the use of any history-dependent baseline, since the agent might start
close to the target or not, which influences the expected rewards accordingly.
That is why we apply a history-dependent baseline for this task, trained with
α = 0.001 and momentum = 0.9 after every episode. 20 runs were performed
to test the performance of the algorithm, using a history-dependent baseline
which was trained on actually received returns using a separate LSTM network
with 10 memory cells with the same inputs as the policy network including
a bias. Each run was executed for 30, 000, 000 iterations. After that, the re-
sulting policy was evaluated. The median number of steps to achieve the goal
(in case the goal is achieved) was 58, and the goal was reached in 95% of
the trials. This compares favorably with the second best other (model-free)
method the authors are aware of, Bakker’s RL-LSTM algorithm [30] with 61
steps and 93.9%, respectively. In [29] the human performance of 29 steps and
100% is highlighted, which again underlines the difficulty of the task. However,
the fact that RPGs outperform all other algorithms on this task might indi-
cate that the application of Recurrent Policy Gradients to RNNs, especially
in combination with history-dependent baselines, might indeed be fruitful.

4.3 Car Racing with Recurrent Policy Gradients

In order to show that our algorithm performs well in a complicated real
task which is difficult for humans, we have carried out experiments on the
TORCS [31] car racing simulator. TORCS is an advanced open source racing
game with a graphical user interface and simulated simplified physics which
provide a challenging experience for game play. Additionally to being open
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source, the game was specifically designed for programming competitions be-
tween steering agents, and the code framework allows for easy plug-ins of
code snippets for competitions between preprogrammed drivers. As such, it
provides a perfect testbed for reinforcement learning algorithms that aim to
go beyond the current benchmark standards.

We trained our RPG agent on one single track (see Figure 6), on which it
has to learn to drive a Porsche GT1 and stay on the road while achieving
high speed. Whenever the car gets stuck off the road, a learning episode ends,
the car is put back on track and a new episode begins. The steering outputs
of the RNN, which were executed at a rate of 30 frames per second, are
interpreted as a Gaussian with one output neuron interpreted linearly (µ, the
mean) and one output neuron interpreted logistically between 0 and 1 (σ, the
standard deviation) to ensure it is nonnegative. The four observations which
were normalized around 0 with std 1, include a bias, the speed, the steering
angle, position on the road and look-ahead-distance (which was linearly varied
with speed). Its rewards consist of speed measurements at every time step, and
the agent receives negative rewards for spending time off track. A large penalty
is inflicted upon the car getting stuck off track, which ends an episode. The
car’s speed starts off at 10 km/h, which is gradually increased over time to
reach 70 km/h after 30 minutes.

We performed 10 runs on this lap using the same learning settings and 10-
cell network as applied to the non-Markovian double pole balancing task. The
baseline was updated after every 100 time steps. We found that the agent
learns, for all runs, to consistently steer and stay on the road after just under
2 minutes of real-time behavior. In all runs, the car first drives off the track
immediately four or five times, then learns to stay on track until it hits the
first curve, where it slides off again. Within two minutes, however, it drives
nearly perfectly in the middle off the road, and learns to ‘cut curves’ slightly
when the speed is increased gradually to 70 km/h after 30 minutes. The agent
can learn to drive safely – not getting off track – up to 70 km/h, after which
its behavior destabilized in all runs. Future work will investigate how to make
the behavior more robust and how to cope with higher speeds. This will have
to include speed control and braking by the network as well, which could be
actualized using additional (softmax) output neurons for gears, brakes and
gas. The fastest lap time achieved after 30 minutes of training was just under
3 minutes, which is, unfortunately, still twice as slow as a trained human player
or our preprogrammed agent.

To conclude, our car driving agent learns fast, in real-time (2 minutes), to
steer correctly and keep the vehicle on the road. This is about as fast as a
novice human player learns to stay on the road. Moreover, it reaches high
speeds of up to 70 km/h within 30 minutes of online training time. Although
rigid preprogrammed speed control destabilizes the agent with higher speeds,
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Fig. 6. The TORCS racing car simulator.

the fast learning suggests this approach might be worth investigating when
dealing with real-time learning problems in continuous robot control.

5 Conclusion

In this paper, we have introduced Recurrent Policy Gradients, an elegant and
powerful method for dealing with reinforcing learning in partially observable
environments. The algorithm, an RNN-based policy gradient method equipped
with memory capable of memorizing events from arbitrarily far in the past,
involves computing and backpropagating action eligibilities through time with
‘Long Short-Term Memory’ memory cells, thus updating a policy which maps
event histories to action probabilities. The approach outperformed other RL
methods on three important benchmarks with different characteristics. We
think Recurrent Policy Gradients might constitute both one of the simplest,
and one of the most efficient RL algorithms to date for difficult non-Markovian
tasks.
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