Policy Gradient Critics

Daan Wierstra! and Jiirgen Schmidhuber!:?

! Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA),
CH-6928 Manno-Lugano, Switzerland, daan@idsia.ch
2 Department of Embedded Systems and Robotics, Technical University Munich,
D-85748 Garching, Germany, schmidhu@in.tum.de

Abstract. We present Policy Gradient Actor-Critic (PGAC), a new model-free
Reinforcement Learning (RL) method for creating limited-memory stochastic
policies for Partially Observable Markov Decision Processes (POMDPs) that re-
quire long-term memories of past observations and actions. The approach in-
volves estimating a policy gradient for an Actor through a Policy Gradient Critic
which evaluates probability distributions on actions. Gradient-based updates of
history-conditional action probability distributions enable the algorithm to learn
a mapping from memory states (or event histories) to probability distributions on
actions, solving POMDPs through a combination of memory and stochasticity.
This goes beyond previous approaches to learning purely reactive POMDP poli-
cies, without giving up their advantages. Preliminary results on important bench-
mark tasks show that our approach can in principle be used as a general purpose
POMDP algorithm that solves RL problems in both continuous and discrete ac-
tion domains.

1 Introduction

Reinforcement Learning [1] algorithms often need to deal with partial observability
problems naturally arising in real-world tasks. A naive approach would be to learn re-
active stochastic policies [2] which simply map observations to probabilities for actions.
The underlying philosophy here is that utilizing random actions, as opposed to deter-
ministic actions, will prevent the agent from getting stuck. In general this is clearly
suboptimal, and the employment of some form of memory seems essential for many re-
alistic RL settings. However, for cases where our memory system’s capacity is limited
— that is, imperfect, like for example all Recurrent Neural Network architectures — re-
active stochasticity may still facilitate learning good policies for realistic environments.
Hence the need to stress the importance of learning what we define as limited-memory
stochastic policies, that is, policies that map limited memory states to probability dis-
tributions on actions.

In spite of their apparent advantages, work on limited-memory stochastic policies
has been scarce so far, notable exceptions being finite state-based policy gradients [3,
4] and evolutionary search (e.g. [5]). We propose a novel approach to learning limited-
memory stochastic policies in partially observable environments. Conventional policy
gradient approaches update policy parameters using a sampling-based Monte Carlo es-
timate of the gradient in policy space — they constitute a framework of Actor-only meth-
ods — but this tends to lead to high variance estimates. Our new approach Policy Gra-
dient Actor-Critic (PGAC), however, is a dual Actor-Critic [1] architecture and updates

a policy’s parameters — the Actor — using a model-based estimated gradient on action
probabilities, the model being the Policy Gradient Critic. Since PGAC uses a gradient
that is provided directly by a Policy Gradient Critic, representing an action distribution
evaluation function over pairs of history / action distribution parameters, we can avoid
brute force Monte Carlo sampling, which provides numerous advantages including the
power of function approximator generalization. Computing the gradient from the Policy
Gradient Critic has the potential to yield a substantially improved estimate of benefi-
cial policy updates for the Actor. Moreover, by representing a Q-function over action
probability distributions rather than over concrete actions, we can explicitly represent
the value of stochasticity.

We use Long Short-Term Memory (LSTM) [6] as our memory-capable differen-
tiable recurrent function approximator (DRFA) for both Actor and Policy Gradient
Critic. DRFA-based RL algorithms are a perfect example of limited-memory algo-
rithms. The recurrency or memory of DRFAs can capture hidden state effects, which
enables the algorithm to deal with the partial observability that plagues many real-world
tasks. Like other DRFAsS, they are limited in their learning capacity, however, and prone
to local minima. These limitations can be partly compensated for by using PGAC’s ex-
plicitly learned value of stochasticity in action probabilities. We show that the resulting
PGAC method using LSTM is able to solve three fundamentally different benchmark
tasks: continuous control in a non-Markovian pole balancing task, discrete control on
the deep memory T-maze task, and discrete control on the extremely stochastic 89-state
Maze.

2 The Algorithm

In this section we explain our basic algorithm for learning limited-memory stochas-
tic policies. First, we summarily review the Reinforcement Learning framework as
used in this paper. The particular differentiable recurrent function approximator ap-
plied, LSTM, is briefly described. Then we outline how PGAC operates within the RL
framework using LSTM as DRFA for both Actor and Policy Gradient Critic.

2.1 Reinforcement Learning — Generalized Problem Statement

First let us introduce the notation used in this paper and the corresponding RL frame-
work (see Figure 1 for a schematic depiction of the framework used). The environment,
which is assumed to be Markovian, produces a state g; at every time step. Transitions
from state to state are governed by probabilities T'(g:+1|at, g:) dependent upon action
ay executed by the agent. Let r; be the reward assigned to the agent at time ¢, and let o,
be the corresponding observation produced by the environment. Both quantities, gov-
erned by fixed distributions p(o|g) and p(r|g), are solely dependent on the state g;. Let
Ry =>4y Ty 7" ! be the return at time ¢, where 0 < < 1 denotes a discount
factor and 7 denotes the length of the episode. The agent operates in episodes on the
stochastic environment, executing action a; at every time step ¢, after observing obser-
vation o; and special ‘observation’ r; (the reward) which both depend only on g;. The
environment-generated experience consists of finite episodes. A history h; is the string

World

'q + ™
l o ~ O(gy) }<gf—{T(9t+l\9t7(1/t)}—gﬂ e ~ 7(g) ‘
\ J
'q ™
)z
Y Y
Q
pér{u?b?lt?oa 7f7in;117d;a\;«>@
Y Y \/
L Q(he,pr) Q (e, pf) Q(ht, ar))
Agent

Fig. 1. PGAC in the reinforcement learning framework. Shown is the interaction between the
Agent and the World. The Agent consists of two components, the Actor my parameterized by
weights 6 and the Policy Gradient Critic ()., parameterized by weights w. () evaluates Actor-
provided action probability distribution parameters p, its perturbation p* and the actually exe-
cuted action a. Using the Jacobian of the Policy Gradient Ceritic, the parameters/weights of the
DRFA defining the Actor are updated using regular gradient ascent.

of observations, rewards and actions up to moment ¢ since the beginning of the episode:
hy = {00,70,a0,01,T1,0a1,...,04,7¢). Policy 7(ss; 0) produces a vector p; of proba-
bility distribution parameters (describing Dy,) over actions given a memory state, from
which actions a; are drawn a; ~ Dy, . Here, internal state variable s is some DRFA-
trained representation of the agent’s entire history of actions, rewards and observa-
tions sy = f*((00,70,G0,01,71,01,---,04,7);0) = f*(he;0) = f(s1—1, (04,71);6).
Now the objective of our algorithm is to optimize expected future discounted reward
E[R]=E {2;1 fytrt] by adjusting action probabilities Dy, appropriately. The esti-
mate on the quality of action probabilities described by some parameter vector p can
be expressed by a Q-function-like quantity: Q(h:, p) = Q(f(he),p) = Q(s:,p) is
a function that indicates the estimated expected future discounted reward of choosing
actions following distribution Dy, at time step ¢ after history h¢, and following policy ©

thereafter: Q(hy, p) =~ E [Rt|ht, a; ~ Dp,, Akt ~ ’Dﬁ}.

2.2 LSTM Recurrent Function Approximators

Differentiable recurrent function approximators constitute a class of architectures de-
signed to deal with issues of time, such as approximating time series. A crucial feature
of this class of architectures is that they are capable of relating events in a sequence, in
principle even if placed arbitrarily far apart. A typical DRFA 7 maintains an internal
state s; (its memory so to say) which it uses to pass on (compressed) history informa-
tion to the next moment by using recurrent connections. At every time step, the DRFA

takes an input vector o; and produces an output vector 7(s;; 6) from its internal state,
and since the internal state s; of any step is a function f of the previous state and the
current input signal s; = f(o¢, s¢—1; 0), it can take into account the entire history of past
observations by using its recurrent connections for recalling events. Like conventional
neural networks, DRFAs can be trained using backpropagation and related techniques
based on gradient information. However, backpropagation is modified such that it works
through time (BackPropagation Through Time (BPTT) [7, 8]).

Recurrent Neural Networks (RNNs), a subset of this class of algorithms, have at-
tracted some attention in the past decade because of their simplicity and potential power.
However, though powerful in theory, they turn out to be quite limited in practice due to
their inability to capture long-term time dependencies — they suffer from the problem
of vanishing gradient [9], the fact that the gradient vanishes as the error signal is prop-
agated back through time. Because of this, events more than 10 time steps apart can
typically not be related.

One method purposely designed to circumvent this problem is Long Short-Term
Memory (LSTM), a special RNN architecture capable of capturing long term time de-
pendencies. The defining feature of this architecture is that it consists of a number of
memory cells, which can be used to store activations arbitrarily long. Access to the
memory cell is gated by units that learn to open or close depending on the context —
context being present observations o; and the previous internal state s;_ ;.

LSTM has been shown to outperform other RNNs on time series requiring the use
of deep memory [10]. Therefore, they seem well-suited for usage in RL algorithms for
complex, deep memory requiring tasks. Whereas DRFAs are typically used for next
step prediction, we use them as a function approximator to both estimate value change
(the Policy Gradient Critic) and to control (the Actor) given histories of observations,
actions and rewards.

2.3 Policy Gradient Actor-Critic

PGAC Reinforcement Learning for stochastic policies relies on the following ob-
servation: actions can be represented as special cases of probability distribution param-
eters. For example, any discrete action a can be represented as a special vector p where
one element of p is 1 and the other 0. Action ay in a three-dimensional discrete action
space can be expressed p = [0, 1, 0]. We can apply this representation to conventional
value functions, but now we can express more. Representing actions as probability dis-
tribution parameters enables us to construct Q-value functions over action probabilities.
For example, (s, [0.5,0.5]) would denote the value of executing a; with probability
0.5 and executing as with probability 0.5 in state s. For a one-dimensional Gaussian
case, a single action could be represented as p = [u, 0] = [3.0,0.0] with u = 3.0
and o = 0.0, but now this vector is more expressive: Q(s, [u, 0]) represents the esti-
mated expected value of executing a continuous action a drawn from normal distribu-
tion a ~ N (u, 0%).

Like many conventional temporal difference learning algorithms for POMDPs, the
PGAC algorithm uses two differentiable recurrent function approximators: one Actor
g parameterized by 6, and one Critic @,, parameterized by w. The crucial difference
between PGAC and other methods is the fact that its Policy Gradient Critic’s Q-function

Algorithm 1 Policy Gradient Actor-Critic
for each episode e do
for each time step ¢ do
Actor produces parameter vector p¢ from 7(h¢; 0)
Perturb vector p; to p;: p; ~ P(pt)
Finally draw an action a; according to p;: a¢ ~ Dy
Execute action a;, observe effects o¢41 and 7441
Update (SARSA-fashion) the Policy Gradient Critic’s Q.-value function for
(he, {a¢, pt, p; }) pairs using the following TD-errors for updating w:

E"P(hi—1,pi—1) = re + 7Q(he, pt) — Q(hi—1, Pt—1)

E™ (hi1,pi_1) = 1 +7Q(he, pt) — Q(he—1,Pi 1)
E"P(hy—1,ai-1) = 1 + 7Q(he, Pt) — Q(hu—1,2:-1)

Update Actor’s parameters 6 defining policy 7 as

Critic

e N]
. (2)
AD = § :Ol aQ(ht,thU) 8pt

i 8P§i) ﬁ,ed
Actor
end for
end for

evaluates probability distributions over actions rather than single actions. The Policy
Gradient Critic is forced to operate on incomplete information, i.e. it has to be able to
provide estimates on the quality of the policy given that the agent intends to let the ac-
tual action be drawn from a probability distribution governed by p. This way, the agent
explicitly includes the value of stochasticity in action selection in its Q-function. The
fact that this extended Policy Gradient Critic evaluates action probability distributions,
combined with the fact that the Actor provides the parameters for such a distribution,
eliminates the need for a prewired exploration policy, since exploration is adjusted on-
line while executing the policy. Another important reason for explicitly representing
the value of stochasticity is that, because of limited memory, a stochastic policy might
be the optimal one for some real-world tasks. It has been shown [2] that for some do-
mains deterministic policies can produce arbitrarily worse performance than stochastic
policies.

The Actor my outputs, at every time step ¢, deterministically given history h;, prob-
ability distribution parameters py = 7w (hy; 6) from which the agent’s actions are drawn
a; ~ D,,. Additionally, the Policy Gradient Critic Q(h, p; w) estimates the value

E[Rt\ht,at ~ Dp,ap>t ~ Dﬂ} for Actor-produced p¢. After every episode, the
Actor’s policy can be updated by using the Policy Gradient Critic as a teacher which
provides a derivative for the direction in which to adjust Actor-provided policy p; =
7(h¢; 6). The Policy Gradient Critic can be taught using on-policy Temporal Difference
Learning techniques.

Actor Learning The Actor is updated by updating Actor-defining parameters 6 in
the direction of higher expected future discounted reward as predicted by the Policy
Gradient Critic:

9Q(hs, p1) 9p;”
2 az; op) 0
where pgl) denotes parameter ¢ of distribution parameter vector p; = 7(h;) produced
by the Actor at time ¢, and « denotes the learning rate. In order to compute this, using
a fixed Policy Gradient Critic, we backpropagate a gradient signal towards higher Q-
values from the Policy Gradient Critic’s inputs p, yielding the Jacobian of the Policy
0Q(h:,pi")
=
eters. These values are then further backpropagated from the Policy Gradient Critic into

the Actor architecture, now updating parameters 6 along the way. In essence, the Policy
Gradient Critic provides an estimate of the expected steepest gradient ascent for future
discounted reward on the current incoming action distribution parameters. These esti-
mated derivatives are then used by the Actor to update its policy, exactly in the direction
of better value suggested by the Policy Gradient Critic. The algorithm pseudocode is
provided in Algorithm 1.

Gradient Critic, the quantities for all 7 action probability distribution param-

Policy Gradient Critic Learning The Actor can only be updated if the Policy Gradient
Critic provides sufficiently accurate estimations on future discounted reward. To train
the Policy Gradient Critic, on-policy Temporal Difference Learning is used. Unlike
most reinforcement learning algorithms, PGAC does not learn a Q-value for actions
performed Q(h, a; w), it rather learns a Q-value for distributions on actions: the Q-value
Q(hs, p;w), represented by the Policy Gradient Critic, learns the expected value of
executing one action randomly drawn from probability distribution Dy, and following
stochastic policy 7p thereafter.

The Q-function estimates the value of a stochastic action under the policy provided
by the Actor. The Temporal Difference (TD) Errors E7” that can be easily extracted
from the experience are (history, action probability distribution) pairs (h;_1, p:—1) and
(ht—1,a¢-1):

ETD<ht717pt71> =71 +7Q(he, pt) — Q(he—1,Pe—1)
E™P(hy_1,a,-1) = re + YQ(hy, pr) — Q(he—1,a,-1)

where p is the Actor-produced vector of action probability distribution parameters, and
a denotes the actually executed action. The algorithm uses the Policy Gradient Critic’s
Jacobian to update the Actor, that is, it has to be able to represent how a difference
in action probabilities relates to a difference in value. The above two TD-errors might
not provide enough data points to reliably estimate such derivatives, though, since the
region around p; is not sampled by the Actor, although that is the region where the most
useful training information is localized. Therefore, we want to add perturbed samples
around p; in order to be able to estimate how the Q-value changes with respect to p;.

Providing such samples without biasing learning can be done using what we call a
‘perturbation / final draw’ operation. A ‘perturbation’ operation P perturbs probability
distribution parameters p — provided by the Actor — onto a new parameter vector p* ~
P(p), such that the expected distribution of actions a drawn from a ~ Dy« follow the
same distribution as actions drawn from the original a ~ Dp,.

Example distributions that can be perturbed are finite discrete distributions, where
all elements of vector p sum up to 1 (which, in our experiments, is implemented as a
softmax layer), or a Gaussian distribution, e.g. p = [u.o]. For finite discrete distribu-
tions, one way to construct a perturbation operation is to use a random number generator
u; where each u; represents a uniformly distributed random number between O and 1.

Good approximate values for p* can then be generated by p; = % where 3
g ¥ J

is a constant, taken to be 1 in this paper. For the simple Gaussian case p = (1, 0,], we
could construct perturbation p* = [pp« ~ N (1p, 0p/2),0.8660,).

Thus constructing p* values around p provides us with informative extra samples —
we could see them as hypothetical stochastic actions — that enable the function approx-
imator to estimate the value of other action probabilities than just those provided by the
Actor. This yields the following SARSA-like TD-errors for p, p* and a:

ETP(hy_1,pi—1) = 1t + vQ(he, Pt) — Q(hy—1,Pi—1)
ETP(hy_1,p;_1) = e +vQ(he, pr) — Q(hy—1,P}_1)
E"™P(hy_1,a,-1) = re + YQ(hy, pr) — Q(he—1,,-1)

It seems prudent to choose P such that p* are generated reasonably close to p.

Because of limited memory’s inheritantly imperfect state-from-history extraction
capabilities, there will always be a measure of hidden state present. If the amount
of state uncertainty reaches undesirable levels, it may be appropriate not to use TD-
learning techniques to train the Policy Gradient Critic, since conventional TD-updates
are essentially flawed in hidden state situations with discounted payoff [2]. Instead,
one would use direct history-to-return mappings. In essence, this can already be ac-
complished by simply using eligibility traces, which achieves a similar effect as \ ap-
proaches 1.

3 Experiments

We carried out experiments on three fundamentally different problem domains. The
first task, pole balancing with incomplete state information, is a continuous control task
that has been a benchmark in the RL community for many years. The second task, the
T-maze, is a difficult discrete control task that requires the agent to learn to remember
its initial observation until the end of the episode. The third task, the 89-state Maze [11],
is an extremely stochastic discrete control task.

All experiments were carried out with 15-cell LSTMs with direct input-output con-
nections for both Actor and Policy Gradient Critic, and learning took place in batches of
100 sequences (251 in the case of the 89-state Maze). Plain gradient descent and ascent
were used for Policy Gradient Critic and Actor, respectively. All experiments used an
eligibility trace with A = 0.8.

3.1 Continuous Control: non-Markovian Pole Balancing

B
|F
R S

Fig. 2. The non-Markov pole balancing task. The task consists of a moving cart on a track, with
a pole hinged on top. The controller applies a (continuous) force F' to the cart at every time
step, after observing the pole angle (3 (but not the angular velocity, making this a non-Markovian
problem). The objective is to indefinitely keep the pole from falling.

This task involves trying to balance a pole hinged to a cart that moves on a finite
track (see Figure 2). The single control consists of the force [’ applied to the cart (in
Newtons), and observations usually include the cart’s position = and the pole’s angle 3
and velocities 4 and . It provides a perfect testbed for algorithms focussing on learning
fine control in continuous state and action spaces. However, recent successes in the RL
field have made the standard pole balancing setup too easy and therefore obsolete. To
make the task more challenging, an extension is made: remove velocity information
i and [3 such that the problem becomes non-Markov. This yields non-Markovian pole
balancing [12], a more challenging task.

We applied PGAC to the pole balancing task, using a Gaussian output structure,
consisting of a x4 output neuron (which was interpreted linearly) and a o output neuron
(which was scaled with the logistic function in order to prevent o from being negative).
Using v = 0.99, reward was set to 0.0 at all time steps, except for the last time step
when one of the poles falls over, where the reward is —1.0.

A run was considered a success when the pole did not fall over for 5,000 time
steps. Averaged over 20 runs, it took 34,823 evaluations until the success criterion
was reached. Interesting is that during learning, often the full stochastic policy had a
higher value than the greedy policy (setting o to 0), showing the usefulness of learn-
ing stochastic policies. The results for non-Markovian control clearly outperform most
other single-agent memory-based continuous RL methods as far as we are aware (e.g.
compare [4]’s finite state controller which cannot hold up the pole for more than 1000
time steps even after half a million evaluations), but some methods that are not single-
agent, like evolutionary methods (e.g. [5]), still hold a competitive edge over PGAC.

3.2 Discrete Control: the Long Term Dependency T-maze

The second experiment was carried out on the T-maze [13] (see Figure 3), a discrete
control task with output neurons that code for a softmax layer from which an action is

Fig. 3. The T-maze task. The agent observes its immediate surroundings and is capable of the
actions north, east, south, and west. It starts in the position labeled ‘S’, there and only there
observing either the signal ‘up’ or ‘down’, indicating whether it should go up or down at the
T-junction. It receives a reward if it goes in the right direction, and a punishment if not. In this
example, the direction is ‘up’ and [V, the length of the alley, is 35.

drawn probabilistically. Designed to test an RL algorithm’s ability to correlate events
far apart in history, it involves having to learn to remember the observation from the first
time step until the episode ends. At the first time step, it starts at position S and perceives
the X either north or south — meaning that the goal state G is in the north or south part of
the T-junction, respectively. Additionally to the first state’s X-flag, the agent perceives
only its immediate surroundings — whether there is a wall north, east, south or west of it.
The agent has four possible actions: North, East, South and West. While in the corridor,
if the agent bumps into the wall, it receives a punishment of —0.1, while if it goes east
or west, it receives a reward of 0.0. When the agent makes the correct decision at the
T-junction, i.e. go south if the X was south and north otherwise, it receives a reward
of 4.0, otherwise a reward of -0.1. In both cases, this ends the episode. Note that the
corridor length IV can be increased to make the problem more difficult, since the agent
has to learn to remember the initial ‘road sign’ for /N + 1 time steps. In Figure 3 we see
an example T-maze with corridor length 35.

Corridor length N was systematically varied from 10 to 60, and for each length 10
runs were performed. Discount factor v = 0.98 was used. In Figure 4 the results are
displayed. Using LSTM, PGAC is able to capture the relevant long term dependencies
(up to 40 time steps) necessary for solving this task. This is only slightly worse than
the best performing algorithm known to solve this task [13] which learns the task up to
corridor length 70.

3.3 Discrete Control: the 89-state Maze

In this extremely noisy benchmark task (see Figure 5; see [11] for a complete descrip-
tion) the aim is to get to the goal as fast as possible (where the reward is 1), but within
251 time steps. Discount factor v = 0.98 is used.

Good results were achieved for 10 runs of the algorithm. Each run was executed for
30,000, 000 iterations. After that, the resulting policy was evaluated. The median num-
ber of steps to achieve the goal (in case the goal is achieved) was 70, and the goal was
reached in 85% of cases. This compares favorably with memory-less SARSA()) [14],
one of the best (and similar) model-free approaches on this task, with numbers 73 steps
and 77%, respectively. However, Bakker’s RL-LSTM method [15] still clearly outper-
forms the PGAC algorithm with 61 steps and 93.9%, respectively.

Successful runs on TMaze
12 T T

10

No. successful runs
o
T

0 1 1 1 1
10 20 30 40 50 60
Corridor Length
Performance on TMaze

55 T T
sk]
2 a5 i
S
z
S
S 35 b
g sr 1
251 I I b
N
0 10 20 30 40 50
Corridor Length
Fig. 4. T-maze results. The upper chart shows the number of successful runs for N = 10, .. ., 60.

PGAC Reinforcement Learning’s performance starts to degrade at length N = 50. The lower plot
shows the number of average iterations required to solve the task, averaged over the successful
runs.

Fig. 5. The 89-state maze. In this extremely stochastic maze, the agent has a position, an orienta-
tion, and can execute five different actions: forward, turnleft, turnright, turnabout, and doNothing.
The agent starts every trial in a random position. Its goal is to move to the square labeled ‘G’.
Observations comprise the local walls but are noisy (there is a high probability of observing
walls where there are none and vice versa). Action outcomes are noisy and cannot be relied on.
See [11] for a complete description of this problem domain. It is interesting to note that, to the
authors’ knowledge, this domain has as of yet not been satisfactorily solved, that is, solved up to
human-comparable performance. That is what makes this a very interesting task.

4 Discussion

Initial results with PGAC Reinforcement Learning show that it is competitive with some
of the best approaches on very different benchmark tasks. It does not yet outperform the
best available approaches, though. This might be due to two reasons. First, the selec-
tion of the perturbation operator has a large influence on estimation variance. Further
research into adjusting the choice of this operator might include investigating the ap-
propriate finetuning of perturbations given the entropy in action distributions. Second,
since the algorithm uses a limited-memory algorithm, some measure of hidden state
remains present. This means that using on-policy temporal difference value updates as
discussed above is essentially flawed, although this problem is largely overcome by
the use of eligibility traces. A more correct but likely slower approach would involve
estimating returns directly from histories.

Since the algorithm addresses learning limited-memory stochastic policies — an
under-researched general class of problems which is essential to numerous real-world
reinforcement learning tasks — in a simple, natural framework, we hope its performance
will be boosted in future research by further analysis and the use of more advanced
techniques in, for example, gradient-based learning methods, temporal difference al-
gorithms and DRFA architectures. One area for improvement could include the devel-
opment of a more principled method for creating action distribution perturbations, or,
alternatively, the use of noise in the executed actions while weighting the obtained data
points proportionally to their respective probability densities.

Although policy gradient methods can also learn stochastic policies, PGAC is specif-
ically designed to both learn memory and to assign explicit value to stochasticity, mak-
ing it ideally suited to learning limited-memory stochastic policies. A key feature of
the algorithm is that the resulting stochastic policies are not learnt from brute force
sampling, but by using an actual Policy Gradient Critic model, with the advantage of
generalization and possibly lower estimation variance.

PGAC can be seen as an instance of generalized policy iteration, where value and
policy iteratively improve, reinforcing each other. Since a gradient is used to update
the action probabilities, it is not guaranteed to converge to a global optimum. However,
the use of stochasticity in continuous action spaces holds the promise of overcoming
at least part of the sensitivity normally associated with gradient-based continuous rein-
forcement learning.

5 Conclusion

We have introduced PGAC Reinforcement Learning, a new RL method for learning
limited-memory stochastic policies which updates continuous and stochastic policies.
A Policy Gradient Critic explicitly attributes value to stochasticity, yielding a flexible
algorithm that does not need a prewired exploration strategy since it learns to adapt
its stochastic action probabilities through experience. Using an appropriate recurrent
function approximator, Long Short-Term Memory, the algorithm is capable of solv-
ing difficult tasks in environments with long time dependencies and continuous action
spaces. Showing competitive results on three benchmark tasks, this algorithm seems
promising for extensions to real-world RL tasks.

Acknowledgments

This research was funded by SNF grant 200021-111968/1.

References

10.

11.

12.

13.

14.

15.

. Sutton, R., Barto, A.: Reinforcement learning: An introduction. Cambridge, MA, MIT Press

(1998)

. Singh, S., Jaakkola, T., Jordan, M.: Learning without state-estimation in partially observable

markovian decision processes. In: International Conference on Machine Learning. (1994)
284-292

. Aberdeen, D.: Policy-Gradient Algorithms for Partially Observable Markov Decision Pro-

cesses. PhD thesis, Australian National University (2003)

. Meuleau, N., L., Kim, K., Kaelbling, L.P.: Learning finite-state controllers for partially

observable environments. In: Proc. Fifteenth Conference on Uncertainty in Artificial Intelli-
gence (UAI ’99). Morgan Kaufmann. (1999) 427-436

. Gomez, F.J., Schmidhuber, J.: Co-evolving recurrent neurons learn deep memory POMDPs.

In: Proc. of the 2005 conference on genetic and evolutionary computation (GECCO), Wash-
ington, D. C., ACM Press, New York, NY, USA (2005)

. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8) (1997)

1735-1780

. Werbos, P.: Back propagation through time: What it does and how to do it. In: Proceedings

of the IEEE. Volume 78. (1990) 1550-1560

. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent net-

works. Neural Computation 1(2) (1989) 270-280

. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent nets:

the difficulty of learning long-term dependencies. In Kremer, S.C., Kolen, J.F,, eds.: A Field
Guide to Dynamical Recurrent Neural Networks. IEEE Press (2001)

Schmidhuber, J.: RNN overview, with links to a dozen journal publications (2004)
http://www.idsia.ch/“juergen/rnn.html.

Littman, M., Cassandra, A., Kaelbling, L.: Learning policies for partially observable en-
vironments: Scaling up. In Prieditis, A., Russell, S., eds.: Machine Learning: Proceedings
of the Twelfth International Conference, Morgan Kaufmann Publishers, San Francisco, CA
(1995) 362-370

Wieland, A.: Evolving neural network controllers for unstable systems. In: Proceedings of
the International Joint Conference on Neural Networks (Seattle, WA), Piscataway, NJ: IEEE
(1991) 667-673

Bakker, B.: Reinforcement learning with long short-term memory. In: Advances in Neural
Information Processing Syst., 14, (2002). (2002)

Loch, J., Singh, S.: Using eligibility traces to find the best memoryless policy in partially
observable Markov decision processes. In: Proc. 15th International Conf. on Machine Learn-
ing, Morgan Kaufmann, San Francisco, CA (1998) 323-331

Bakker, B.: The State of Mind: : Reinforcement Learning with Recurrent Neural Networks.
PhD thesis, Leiden University (2004)

