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Abstract

Artificial General Intelligence will not be general without computer vision.
Biologically inspired adaptive vision models have started to outperform traditional
pre-programmed methods: our fast deep / recurrent neural networks recently col-
lected a string of 1st ranks in many important visual pattern recognition bench-
marks: IJCNN traffic sign competition, NORB, CIFAR10, MNIST, three ICDAR
handwriting competitions. We greatly profit from recent advances in computing
hardware, complementing recent progress in the AGI theory of mathematically
optimal universal problem solvers.
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1 Introduction
Computer vision is becoming essential for thousands of practical applications. For ex-
ample, the future of search engines lies in image and video recognition as opposed
to traditional text search. Autonomous robots such as driverless cars depend on vi-
sion, too. Generally speaking, the “G” in “AGI” will be undeserved without excellent
computer vision.

AGI research is currently driven by two types of progress. On the one hand, the new
millennium brought the first universal problem solvers [10, 21] that are theoretically
optimal in asymptotic and other senses, putting AGI research on a sound mathematical
footing for the first time, although such approaches are currently not yet practically
feasible. On the other hand, due to ongoing hardware advances, the computing power
per Swiss Franc is still growing by a factor of 100-1000 per decade, greatly increasing
the practical feasibility of less general methods invented in the previous millennium.
This paper reflects the second type of progress, exploiting graphics cards or GPUs
(mini-supercomputers normally used for video games) which are 100 times faster than
today’s CPU cores, and a million times faster than PCs of 20 years ago, to train biolog-
ically plausible deep neural nets on vision tasks.

Excellent object recognition results illustrate the benefits of this pragmatic ap-
proach. As of January 2011, our neural computer vision team has collected a string of
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1st ranks in many important and highly competitive international visual pattern recog-
nition benchmarks.

1. IJCNN’s online Traffic Sign Recognition Benchmark (1st & 2nd rank; 1.02%
error rate), January 2011 [4].

2. NORB data set, NY University, 2004 [13]. Our team set the new record (2.53%
error rate) in February 2011 [3].

3. CIFAR-10 data set of Univ. Toronto, 2009 [11]. Our team set the new record
(19.51% error rate) in 2011 [3].

4. MNIST data set of NY University, 1998 [12]. Our team set the new record
(0.35% error rate) in 2010 [2], and tied it again in January 2011 [3].

5. Three Handwriting Recognition Competitions at ICDAR 2009, all won by our
multi-dimensional LSTM recurrent neural networks trained by Connectionist
Temporal Classification (CTC) [7, 8]: Arabic Handwriting Competition of Univ.
Braunschweig, Handwritten Farsi/Arabic Character Recognition Competition,
French Handwriting Competition based on data from the RIMES campaign.

Remarkably, none of the above requires the traditional sophisticated computer vision
techniques developed over the past six decades or so. Instead, our biologically rather
plausible systems are inspired by human brains, and learn to recognize objects from
numerous training examples. We use supervised, artificial, feedforward or recurrent
[9, 7, 8] (deep by nature) neural networks with many non-linear processing stages, a
bit inspired by early hierarchical neural systems such as Fukushima’s Neocognitron
[5]. We sometimes (but not always) profit from sparse network connectivity and tech-
niques such as weight sharing & convolution [12, 1, 25], max-pooling [17], and contrast
enhancement [6] like the one automatically generated by unsupervised Predictability
Minimization [18, 22, 24].

2 Neural Network ReNNaissance
Our NNs are now outperforming all other methods including the theoretically less gen-
eral and less powerful support vector machines based on statistical learning theory [27]
(which for a long time had the upper hand, at least in practice). Such results are cur-
rently contributing to a second Neural Network ReNNaissance (the first one happened
in the 1980s and early 90s).

3 Outlook
The methods discussed above are passive learners - they do not learn to actively search
for the most informative image parts. Humans, however, use sequential gaze shifts
for pattern recognition. This can be more efficient than the fully parallel one-shot
approach. That’s why we intend to combine the fast deep / recurrent nets above with
variants of what to our knowledge was the first artificial fovea sequentially steered by
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a learning neural controller [23], using a variant of reinforcement learning to create
saccades and find targets in a visual scene.

4 Conclusion
The first decades of attempts at AGI have been dominated by heuristic approaches,
e.g., [15, 16, 26, 14]. In recent years things have changed, however. The new millen-
nium brought the first mathematically sound, asymptotically optimal, universal prob-
lem solvers, providing a new, rigorous foundation for the previously largely heuristic
field of General AI and embedded cognitive agents, identifying the limits of both hu-
man and artificial intelligence, and providing a yardstick for any future approach to
general cognitive systems [19, 10, 20]. The field is indeed becoming a real formal
science.

On the other hand, however, one cannot dispute the significance of hardware progress
on the road to practical AGI, as illustrated by our recent practical successes mentioned
in this paper, achieved by methods which are combinations of algorithms mostly de-
veloped in the previous millennium, but greatly profiting from dramatic advances in
computational power per Swiss Franc, obtained in the new millennium.

We are confident that theory and practice will converge in the not-so-distant future.
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