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Abstract

I have argued that a simple but general formal theory
of creativity based on reward for creating or finding
novel patterns allowing for data compression progress
explains many essential aspects of intelligence includ-
ing science, art, music, humor. Here I discuss what
kind of general bias towards algorithmic regularities
we insert into our robots by implementing the prin-
ciple, why that bias is good, and how the approach
greatly generalizes the field of active learning. I pro-
vide discrete and continuous time formulations for on-
going work on building an Artificial General Intelli-
gence (AGI) based on variants of the artificial creativ-
ity framework.

Introduction

Since 1990 I have built artificial agents with an intrinsic
desire to create / discover more novel patterns, that is,
data predictable or compressible in hitherto unknown
ways (Sch91b; Sch91a; SHS95; Sch97c; Sch02a; Sch06a;
Sch07; Sch09c; Sch09b; Sch09a). The agents embody
approximations of a simple, but general, formal the-
ory of creativity explaining essential aspects of human
or non-human intelligence including science, art, music,
humor (Sch06a; Sch07; Sch09c; Sch09b; Sch09a). Cru-
cial ingredients are: (1) A predictor or compressor of
the continually growing history of actions and sensory
inputs, reflecting what’s currently known about how
the world works, (2) A learning algorithm that contin-
ually improves the predictor or compressor (detecting
novel spatio-temporal patterns that subsequently be-
come known patterns), (3) Intrinsic rewards measur-
ing the predictor’s or compressor’s improvements due
to the learning algorithm, (4) A reward optimizer or
reinforcement learner, which translates those rewards
into action sequences expected to optimize future re-
ward, thus motivating the agent to create additional
novel patterns predictable or compressible in previously
unknown ways. We implemented the following vari-
ants: (A) Intrinsic reward as measured by improvement
in mean squared prediction error (1991) (Sch91a), (B)
Intrinsic reward as measured by relative entropies be-
tween the agent’s priors and posteriors (1995) (SHS95),
(C) Learning of probabilistic, hierarchical programs and

skills through zero-sum intrinsic reward games of two
players, each trying to out-predict or surprise the other,
taking into account the computational costs of learning,
and learning when to learn and what to learn (1997-
2002) (Sch02a). (A, B, C) also showed experimentally
how intrinsic rewards can substantially accelerate goal-
directed learning and external reward intake. We also
discussed (D) Mathematically optimal, intrinsically mo-
tivated systems driven by prediction progress or com-
pression progress (2006-2009) (Sch06a; Sch07; Sch09c;
Sch09b).

How does the compression progress drive explain, say,
humor? Consider the following statement: Biological
organisms are driven by the “Four Big F’s”: Feeding,
Fighting, Fleeing, Sexual Activity. Some subjective ob-
servers who read this for the first time think it is funny.
Why? As the eyes are sequentially scanning the text
the brain receives a complex visual input stream. The
latter is subjectively partially compressible as it relates
to the observer’s previous knowledge about letters and
words. That is, given the reader’s current knowledge
and current compressor, the raw data can be encoded
by fewer bits than required to store random data of the
same size. But the punch line after the last comma
is unexpected for those who expected another “F”. Ini-
tially this failed expectation results in sub-optimal data
compression—storage of expected events does not cost
anything, but deviations from predictions require extra
bits to encode them. The compressor, however, does
not stay the same forever: within a short time interval
its learning algorithm improves its performance on the
data seen so far, by discovering the non-random, non-
arbitrary and therefore compressible pattern relating
the punch line to previous text and previous knowledge
about the “Four Big F’s.” This saves a few bits of stor-
age. The number of saved bits (or a similar measure of
learning progress) becomes the observer’s intrinsic re-
ward, possibly strong enough to motivate him to read
on in search for more reward through additional yet un-
known patterns. The recent joke, however, will never
be novel or funny again.

How does the theory informally explain the moti-
vation to create or perceive art and music (Sch97b;
Sch97a; Sch06a; Sch07; Sch09c; Sch09b; Sch09a)? For



example, why are some melodies more interesting or
aesthetically rewarding than others? Not the one the
listener (composer) just heard (played) twenty times in
a row. It became too subjectively predictable in the
process. Not the weird one with completely unfamiliar
rhythm and tonality. It seems too irregular and contain
too much arbitrariness and subjective noise. The ob-
server (creator) of the data is interested in melodies that
are unfamiliar enough to contain somewhat unexpected
harmonies or beats etc., but familiar enough to allow for
quickly recognizing the presence of a new learnable reg-
ularity or compressibility in the sound stream: a novel
pattern! Sure, it will get boring over time, but not yet.
All of this perfectly fits our principle: The current com-
pressor of the observer or data creator tries to compress
his history of acoustic and other inputs where possible.
The action selector tries to find history-influencing ac-
tions such that the continually growing historic data al-
lows for improving the compressor’s performance. The
interesting or aesthetically rewarding musical and other
subsequences are precisely those with previously un-
known yet learnable types of regularities, because they
lead to compressor improvements. The boring patterns
are those that are either already perfectly known or ar-
bitrary or random, or whose structure seems too hard to
understand. Similar statements not only hold for other
dynamic art including film and dance (take into ac-
count the compressibility of action sequences), but also
for “static” art such as painting and sculpture, created
through action sequences of the artist, and perceived
as dynamic spatio-temporal patterns through active at-
tention shifts of the observer. When not occupied with
optimizing external reward, artists and observers of art
are just following their compression progress drive!

How does the theory explain the nature of induc-
tive sciences such as physics? If the history of the
entire universe were computable, and there is no ev-
idence against this possibility (Sch06c), then its sim-
plest explanation would be the shortest program that
computes it. Unfortunately there is no general way
of finding the shortest program computing any given
data (LV97). Therefore physicists have traditionally
proceeded incrementally, analyzing just a small aspect
of the world at any given time, trying to find simple
laws that allow for describing their limited observa-
tions better than the best previously known law, essen-
tially trying to find a program that compresses the ob-
served data better than the best previously known pro-
gram. An unusually large compression breakthrough
deserves the name discovery. For example, Newton’s
law of gravity can be formulated as a short piece of
code which allows for substantially compressing many
observation sequences involving falling apples and other
objects. Although its predictive power is limited—for
example, it does not explain quantum fluctuations of
apple atoms—it still allows for greatly reducing the
number of bits required to encode the data stream,
by assigning short codes to events that are predictable
with high probability (Huf52) under the assumption

that the law holds. Einstein’s general relativity the-
ory yields additional compression progress as it com-
pactly explains many previously unexplained deviations
from Newton’s predictions. Most physicists believe
there is still room for further advances, and this is
what is driving them to invent new experiments un-
veiling novel, previously unpublished patterns (Sch09c;
Sch09b; Sch09a). When not occupied with optimizing
external reward, physicists are also just following their
compression progress drive!

More Formally

Let us formally consider a learning agent whose sin-
gle life consists of discrete cycles or time steps t =
1, 2, . . . , T . Its complete lifetime T may or may not
be known in advance. In what follows, the value of
any time-varying variable Q at time t (1 ≤ t ≤ T )
will be denoted by Q(t), the ordered sequence of values
Q(1), . . . , Q(t) by Q(≤ t), and the (possibly empty) se-
quence Q(1), . . . , Q(t − 1) by Q(< t). At any given t
the agent receives a real-valued input x(t) from the en-
vironment and executes a real-valued action y(t) which
may affect future inputs. At times t < T its goal is to
maximize future success or utility

u(t) = Eµ
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where the reward r(t) is a special real-valued input at
time t, h(t) the ordered triple [x(t), y(t), r(t)] (hence
h(≤ t) is the known history up to t), and Eµ(· | ·)
denotes the conditional expectation operator with re-
spect to some possibly unknown distribution µ from
a set M of possible distributions. Here M reflects
whatever is known about the possibly probabilistic re-
actions of the environment. For example, M may con-
tain all computable distributions (Sol64; Sol78; LV97;
Hut04). There is just one life, no need for predefined
repeatable trials, no restriction to Markovian interfaces
between sensors and environment, and the utility func-
tion implicitly takes into account the expected remain-
ing lifespan Eµ(T | h(≤ t)) and thus the possibility to
extend it through appropriate actions (Sch05; Sch06b;
Sch09d).

Recent work has led to the first reinforcement learn-
ing (RL) machines that are universal and optimal in
various very general senses (Hut04; Sch02c; Sch09d).
Such machines can in theory find out by themselves
whether curiosity and creativity are useful or useless in
a given environment, and learn to behave accordingly.
In realistic settings, however, external rewards are ex-
tremely rare, and we cannot expect quick progress of
this type, not even by optimal machines. But typically
we can learn lots of useful behaviors even in absence of
external rewards: unsupervised behaviors that just lead
to predictable or compressible results and thus reflect
the regularities in the environment, e. g., repeatable
patterns in the world’s reactions to certain action se-
quences. Here we argue that a bias towards exploring



previously unknown environmental regularities is a pri-
ori good in the real world as we know it, and should be
inserted into practical AGIs, whose goal-directed learn-
ing will profit from this bias, in the sense that behaviors
leading to external reward can often be quickly com-
posed / derived from previously learnt, purely curiosity-
driven behaviors. Here we shall not worry about the
undeniable possibility that curiosity and creativity can
actually be harmful and “kill the cat”, that is, we as-
sume the environment is benign enough. Based on ex-
perience with the real world it may be argued that this
assumption is realistic. Our explorative bias greatly
reduces the search space for goal-directed learning in
environments where the acquisition of external reward
has indeed a lot to do with easily learnable environmen-
tal regularities.

To establish this bias, in the spirit of our previ-
ous work since 1990 (Sch91b; Sch91a; SHS95; Sch97c;
Sch02a; Sch06a; Sch07; Sch09c; Sch09b; Sch09a) we
simply split the reward signal r(t) into two scalar real-
valued components: r(t) = g(rext(t), rint(t)), where g
maps pairs of real values to real values, e.g., g(a, b) =
a + b. Here rext(t) denotes traditional external reward
provided by the environment, such as negative reward
in response to bumping against a wall, or positive re-
ward in response to reaching some teacher-given goal
state. The formal theory of creativity, however, is es-
pecially interested in rint(t), the internal or intrinsic
or curiosity or creativity or aesthetic reward, which
is provided whenever the data compressor / internal
world model of the agent improves in some measur-
able sense—for purely creative agents rext(t) = 0 for all
valid t. The basic principle is essentially the one we
published before in various variants (Sch91b; Sch91a;
SHS95; Sch97c; Sch02a; Sch06a; Sch07; Sch09c; Sch09b;
Sch09a):

Generate intrinsic curiosity reward or creativity re-
ward for the controller in response to improvements
of the predictor or history compressor.

This is just a statement of the problem - we concep-
tually separate the goal (finding or creating data that
can be explained / compressed / understood better)
from the means of achieving the goal. Once the goal is
formally specified in terms of an algorithm for comput-
ing curiosity rewards, let the controller’s RL mechanism
figure out how to translate such rewards into action se-
quences that allow the given compressor improvement
algorithm to find and exploit previously unknown types
of compressibility.

Computing Creativity Rewards

As pointed out above, predictors and compressors are
closely related. Any type of partial predictability of
the incoming sensory data stream can be exploited to
improve the compressibility of the whole.

At any time t (1 ≤ t < T ), given some compressor
program p able to compress history h(≤ t), let C(p, h(≤
t)) denote p’s compression performance on h(≤ t). An

appropriate performance measure would be

Cl(p, h(≤ t)) = l(p), (2)

where l(p) denotes the length of p, measured in num-
ber of bits: the shorter p, the more algorithmic regu-
larity and compressibility and predictability and law-
fulness in the observations so far. The ultimate limit
for Cl(p, h(≤ t)) would be K∗(h(≤ t)), a variant of the
Kolmogorov complexity of h(≤ t), namely, the length
of the shortest program (for the given hardware) that
computes an output starting with h(≤ t) (Sol64; Kol65;
LV97; Sch02b).

Cl(p, h(≤ t)) does not take into account the time
τ(p, h(≤ t)) spent by p on computing h(≤ t). An al-
ternative performance measure inspired by concepts of
optimal universal search (Lev73; Sch02c; Sch04) is

Clτ (p, h(≤ t)) = l(p) + log τ(p, h(≤ t)). (3)

Here compression by one bit is worth as much as run-
time reduction by a factor of 1

2
. From an asymp-

totic optimality-oriented point of view this is one of
the best ways of trading off storage and computation
time (Lev73; Sch02c; Sch04).

In practice so far we have mostly used less univer-
sal adaptive compressors or predictors though (Sch91b;
Sch91a; SHS95; Sch02a; Sch06a).

So far we have discussed measures of compressor per-
formance, but not of performance improvement, which
is the essential issue in our creativity-oriented context.
To repeat the point made above: The important thing
are the improvements of the compressor, not its com-
pression performance per se. Our creativity reward
in response to the compressor’s progress (due to some
application-dependent compressor improvement algo-
rithm) between times t and t + 1 is

rint(t+1) = f [C(p(t), h(≤ t+1)), C(p(t+1), h(≤ t+1))],
(4)

where f maps pairs of real values to real values. Var-
ious alternative progress measures are possible; most
obvious is f(a, b) = a − b. This corresponds to a dis-
crete time version of maximizing the first derivative of
subjective data compressibility. Note that both the old
and the new compressor have to be tested on the same
data, namely, the history so far.

Asynchronous Framework for Maximizing
Creativity Reward

Compare (Sch06a; Sch07; Sch09b). Let p(t) denote the
agent’s current compressor program at time t, s(t) its
current controller, and do:

Controller: At any time t (1 ≤ t < T ) do:

1. Let s(t) use (parts of) history h(≤ t) to select and
execute y(t + 1).

2. Observe x(t + 1).

3. Check if there is non-zero creativity reward rint(t+1)
provided by the asynchronously running compres-
sor improvement algorithm (see below). If not, set
rint(t + 1) = 0.



4. Let the controller’s reinforcement learning (RL) al-
gorithm use h(≤ t+1) including rint(t+1) (and pos-
sibly also the latest available compressed version of
the observed data—see below) to obtain a new con-
troller s(t + 1), in line with objective (1). Note that
some actions may actually trigger learning algorithms
that compute changes of the compressor and the con-
troller’s policy, such as in (Sch02a). That is, the com-
putational cost of learning can be taken into account
by the reward optimizer, and the decision when and
what to learn can be learnt as well (Sch02a).

Compressor: Set pnew equal to the initial data com-
pressor. Starting at time 1, repeat forever until inter-
rupted by death at time T :

1. Set pold = pnew; get current time step t and set hold =
h(≤ t).

2. Evaluate pold on hold, to obtain compressor perfor-
mance measure C(pold, hold). This may take many
time steps.

3. Let some (possibly application-dependent) compres-
sor improvement algorithm (such as a learning algo-
rithm for an adaptive neural network predictor, pos-
sibly triggered by a controller action) use hold to ob-
tain a hopefully better compressor pnew (such as a
neural net with the same size but improved predic-
tive power and therefore improved compression per-
formance (SH96)). Although this may take many
time steps (and could be partially performed during
“sleep”), pnew may not be optimal, due to limitations
of the learning algorithm, e.g., local maxima.

4. Evaluate pnew on hold, to obtain C(pnew , hold). This
may take many time steps.

5. Get current time step τ and generate creativity re-
ward

rint(τ) = f [C(pold, hold), C(pnew , hold)], (5)

e.g., f(a, b) = a − b.

Obviously this asynchronuous scheme may cause long
temporal delays between controller actions and corre-
sponding creativity rewards. This may impose a heavy
burden on the controller’s RL algorithm whose task
is to assign credit to past actions (to inform the con-
troller about beginnings of compressor evaluation pro-
cesses etc., we may augment its input by unique rep-
resentations of such events). Nevertheless, there are
RL algorithms for this purpose which are theoreti-
cally optimal in various senses (Sch06a; Sch07; Sch09c;
Sch09b).

Continuous Time

In continuous time formulation, let O(t) denote the
state of subjective observer O at time t. The subjec-
tive simplicity or compressibility or regularity or beauty
B(D, O(t)) of a sequence of observations and/or actions
D is the negative number of bits required to encode D,
given O(t)’s current limited prior knowledge and lim-
ited compression method. The observer-dependent and

time-dependent subjective Interestingness or Novelty or
Surprise or Aesthetic Reward or Aesthetic Value or Joy
or Fun I(D, O(t)) is

I(D, O(t)) ∼
∂B(D, O(t))

∂t
, (6)

the first derivative of subjective simplicity: as O im-
proves its compression algorithm, formerly apparently
random data parts become subjectively more regular
and beautiful, requiring fewer and fewer bits for their
encoding.

Note that there are at least two ways of getting intrin-
sic reward: execute a learning algorithm that improves
the compression of the already known data, or execute
actions that generate more data, then learn to compress
or understand the new data better.

How does our formal theory of creativity and cu-
riosity generalize the traditional field of active learn-
ing, e.g., (Fed72)? To optimize a function may re-
quire expensive data evaluations. Active learning typ-
ically just asks which data point to evaluate next to
maximize information gain (1 step look-ahead), assum-
ing all data point evaluations are equally costly. Our
more general framework takes formally into account:
(1) Agents embedded in an environment where there
may be arbitrary delays between experimental actions
and corresponding information gains, e.g., (SHS95;
Sch91a), (2) The highly environment-dependent costs
of obtaining or creating not just individual data points
but data sequences of a priori unknown size, (3) Ar-
bitrary algorithmic or statistical dependencies in se-
quences of actions & sensory inputs, e.g., (Sch02a;
Sch06a), (4) The computational cost of learning new
skills, e.g., (Sch02a). Unlike previous approaches,
our systems measure and maximize algorithmic (Sol64;
Kol65; LV97; Sch02b) novelty (learnable but previ-
ously unknown compressibility or predictability) of self-
generated, general, spatio-temporal patterns in the
history of data and actions (Sch06a; Sch07; Sch09c;
Sch09b).

Ongoing and Future Work

The systems described in the first publications on arti-
ficial curiosity and creativity (Sch91b; Sch91a; SHS95;
Sch02a) already can be viewed as examples of imple-
mentations of a compression progress drive that en-
courages the discovery or creation of novel patterns, by
computationally more or less limited artificial scientists
or artists. To improve our previous implementations of
the basic ingredients of the creativity framework (see in-
troduction), and to build a continually growing, mostly
unsupervised AGI, we will evaluate additional combi-
nations of novel, advanced RL algorithms and adap-
tive compressors, and test them on humanoid robots
such as the iCUB. That is, we will (A) study better
practical adaptive compressors, in particular, recent,
novel artificial recurrent neural networks (RNN) (HS97;
SGG+09) and other general yet practically feasible



methods for making predictions; (B) investigate un-
der which conditions learning progress measures can
be computed both accurately and efficiently, without
frequent expensive compressor performance evaluations
on the entire history so far; (C) study the applicability
of recent improved RL techniques in the fields of arti-
ficial evolution, policy gradients, and others. In par-
ticular, recently there has been substantial progress in
RL algorithms that are not quite as general as the uni-
versal ones (Hut04; Sch02c; Sch09d), but nevertheless
capable of learning very general, program-like behav-
ior. In particular, evolutionary methods (Rec71) can
be used for training RNN, which are general comput-
ers. One especially effective family of methods uses
cooperative coevolution to search the space of network
components (neurons or individual synapses) instead of
complete networks. The components are coevolved by
combining them into networks, and selecting those for
reproduction that participated in the best performing
networks (GSM08). Other recent promising RL tech-
niques for RNN are based on the concept of policy gra-
dients (SMSM99; WS07; WSPS08b; RFS08; SOR+08;
WSPS08a).

Conclusion and Outlook

In the real world external rewards are rare. But un-
supervised AGIs using additional intrinsic rewards as
described in this paper will be motivated to learn many
useful behaviors even in absence of external rewards,
behaviors that lead to predictable or compressible re-
sults and thus reflect regularities in the environment,
such as repeatable patterns in the world’s reactions
to certain action sequences. Often a bias towards ex-
ploring previously unknown environmental regularities
through artificial curiosity / creativity is a priori desir-
able because goal-directed learning may greatly profit
from it, as behaviors leading to external reward may
often be rather easy to compose from previously learnt
curiosity-driven behaviors. It may be possible to for-
mally quantify this bias towards novel patterns in form
of a mixture-based prior (Sol64; Sol78; LV97; Sch02c;
Hut04), a weighted sum of probability distributions on
sequences of actions and resulting inputs, and derive
precise conditions for improved expected external re-
ward intake. Intrinsic reward may be viewed as analo-
gous to a regularizer in supervised learning, where the
prior distribution on possible hypotheses greatly influ-
ences the most probable interpretation of the data in
a Bayesian framework (Bis95) (for example, the well-
known weight decay term of neural networks is a con-
sequence of a Gaussian prior with zero mean for each
weight). Following the introductory discussion, some of
the AGIs based on the creativity principle will become
scientists, artists, or comedians.
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