
Continually Adding Self-Invented
Problems to the Repertoire: First
Experiments with POWERPLAY

Rupesh Kumar Srivastava, Bas R. Steunebrink, Marijn Stollenga and Jürgen Schmidhuber
The Swiss AI Lab IDSIA

University of Lugano & SUPSI
Galleria 2, 6928 Manno-Lugano, Switzerland
Email: {rupesh, bas, marijn, juergen}@idsia.ch

Abstract—Pure scientists do not only invent new
methods to solve given problems. They also invent
new problems. The recent POWERPLAY framework
formalizes this type of curiosity and creativity in a
new, general, yet practical way. To acquire problem
solving prowess through playing, POWERPLAY-based
artificial explorers by design continually come up
with the fastest to find, initially novel, but eventually
solvable problems. They also continually simplify or
speed up solutions to previous problems. We report
on results of first experiments with POWERPLAY.
A self-delimiting recurrent neural network (SLIM
RNN) is used as a general computational architecture
to implement the system’s solver. Its weights can en-
code arbitrary, self-delimiting, halting or non-halting
programs affecting both environment (through ef-
fectors) and internal states encoding abstractions
of event sequences. In open-ended fashion, our
POWERPLAY-driven RNNs learn to become increas-
ingly general problem solvers, continually adding new
problem solving procedures to the growing repertoire,
exhibiting interesting developmental stages.

I. INTRODUCTION

In traditional computer science, formally defined
tasks are typically solved by searching a space of
candidates until a solution is found and verified.
To automatically construct an increasingly general
problem solver, we expand the traditional search
space in an unusual way. The recent POWERPLAY
framework [22] incrementally searches the space
of possible pairs of (1) new tasks (from the set
of all computable tasks), and (2) modifications of
the current problem solver. The search continues
until the first pair is discovered for which (a) the
current solver cannot solve the new task, and (b)
the modified solver provably solves all previously
learned tasks plus the new one. Here the new task
may actually be to simplify, compress, or speed up
previous solutions.

As a concrete implementation of the solver, we

use a special neural network (NN) [2] architecture
called the Self-Delimiting NN or SLIM NN [23].
It is designed for incremental learning with auto-
modularization. Given a SLIM NN that can already
solve a finite known set of previously learned
tasks, an asymptotically optimal program search
algorithm [7], [24], [18], [19] can be used to find
a new pair that provably has properties (a) and (b).
Once such a pair is found, the cycle repeats itself.
This results in a continually growing set of tasks
solvable by an increasingly more powerful solver.
The resulting repertoire of self-invented problem-
solving procedures can be exploited at any time to
solve externally posed tasks.

The SLIM NN can be broken into modifiable
components, namely, its connection weights. By
keeping track of which tasks are dependent on
each connection, POWERPLAY can reduce the time
required for testing previously solved tasks. In
effect, only the tasks that depend on the changed
connections need to be retested. If the most recent
task does not require changes of many weights, and
if the changed connections do not affect many pre-
vious tasks, then validation may be very efficient.
Hence POWERPLAY prefers to invent tasks whose
validity check requires less computational effort.
This implicit incentive to generate modifications
that do not impact many previous tasks, leads
to a natural decomposition of the space of tasks
and their solutions into more or less independent
regions. Thus, divide and conquer strategies are
natural by-products of POWERPLAY.

Unlike our first implementations of curious /
creative / playful agents from the 1990s [15], [26],
[16] (cf. [1], [4], [11], [9]), POWERPLAY provably
(by design) does not have any problems with online
learning—it cannot forget previously learned skills,
automatically segmenting its life into a sequence

of clearly identified tasks with explicitly recorded
solutions. Unlike the task search of theoretically
optimal creative agents [20], [21], POWERPLAY’s
task search is greedy, yet practically feasible. This
paper presents the first experimental application of
this framework to pattern recognition and motor
control tasks demonstrating the above features.

II. NOTATION & ALGORITHMIC FRAMEWORK
FOR POWERPLAY (VARIANT II) [22]

B∗ denotes the set of finite bitstrings over the
binary alphabet B = {0, 1}, N the natural numbers,
R the real numbers. The computational architecture
of POWERPLAY’s problem solver may be a de-
terministic universal computer, or a more limited
device such as a feedforward NN. All problem
solvers can be uniquely encoded [5] or imple-
mented on universal computers such as universal
Turing Machines (TM) [27]. Therefore, without
loss of generality, we can assume a fixed universal
reference computer whose inputs and outputs are
elements of B∗. User-defined subsets S, T ⊂ B∗

define the sets of possible problem solvers and task
descriptions. For example, T may be the infinite set
of all computable tasks, or a small subset thereof.
P ⊂ B∗ defines a set of possible programs which
may be used to generate or modify members of
S or T . If our solver is a feedforward NN, then
S could be a highly restricted subset of programs
encoding the NN’s possible topologies and weights,
T could be encodings of input-output pairs for
a supervised learning task, and P could be an
algorithm that modifies the weights of the network.

The problem solver’s initial program is called s0.
A particular sequence of unique task descriptions
T1, T2, . . . (where each Ti ∈ T) is chosen or “in-
vented” by a search method (examples below) such
that the solutions of T1, . . . , Ti can be computed by
si, the i-th instance of the program, but Ti cannot
be solved by si−1. Each Ti consists of a unique
problem identifier that can be read by si through
some built-in mechanism (e.g., input neurons of an
NN as in Sec. III and IV), and a unique description
of a deterministic procedure for deciding whether
the problem has been solved. For example, a simple
task may require the solver to answer a particular
input pattern with a particular output pattern. Or it
may require the solver to steer a robot towards a
goal through a sequence of actions. Denote T≤i =
{T1, . . . , Ti}; T<i = {T1, . . . , Ti−1}. A valid task
Ti (i > 1) may require solving at least one
previously solved task Tk (k < i) more efficiently,
by using less resources such as storage space,
computation time, energy, etc. quantified by the

function Cost(s, T). The algorithmic framework
(Alg. 1) incrementally trains the problem solver
by finding p ∈ P that increase the set of solvable
tasks. For more details, the reader is encouraged to
refer to the original report [22].

Algorithm 1 POWERPLAY Framework (Variant II)
Initialize s0 in some way
for i := 1, 2, . . . do

Declare new global variables Ti ∈ T , si ∈ S, pi ∈
P , ci, c∗i ∈ R (all unassigned)
repeat

Let a search algorithm (e.g., Section III) set pi,
a new candidate program. Give pi limited time
to do:
* TASK INVENTION: Unless the user specifies
Ti, let pi set Ti.
* SOLVER MODIFICATION: Let pi set si by
computing a modification of si−1.
* CORRECTNESS DEMONSTRATION: Let pi
compute ci := Cost(si, T≤i) and c∗i :=
Cost(si−1, T≤i)

until c∗i − ci > ε (minimal savings of costs such
as time/space/etc on all tasks so far)
Freeze/store forever pi, Ti, si, ci, c

∗
i

end for

III. EXPERIMENT 1: SELF-INVENTED PATTERN
RECOGNITION TASKS

In our first experimental investigation of
POWERPLAY we examined pattern-classification
tasks. In this setup, s encodes an arbitrary set of
weights for a fixed-topology multi-layer perceptron
(MLP). The MLP maps two-dimensional, real-
valued input vectors from the unit square to binary
labels; i.e., s: [0, 1) × [0, 1) → 0, 1. The output
label is 0 or 1 depending on whether or not the
real-valued activation of the MLP’s single output
neuron exceeds 0.5. Binary programs p ∈ P com-
pute tasks and modify s as follows. If p1 (the first
bit of p) is 1, this indicates that the current task is to
simplify s by weight decay, under the assumption
that smaller weights are simpler. But if p1 is 0, then
the target label of the current task candidate T is
given by the next bit p2, and T ’s two-dimensional
input vector is uniquely encoded by the remainder
of p’s bit string, p3p4 . . . pn, according to a pre-
wired coding scheme. A pseudo-random sequence
generator is used to decode the tasks using the
bitstrings in this experiment. It is re-seeded by the
same seed every time a new task search begins,
thus ensuring a deterministic search order. Since
we only have two labels in this experiment, we do
not need p2 as we can choose the target label to be
different from the label currently assigned by the
MLP to the encoded input. To run p for t steps (on

(a) (b) (c) (d)

Fig. 1. (a) The MLP finds it easiest to learn to give the same label to the first patterns. (b) After giving the same label to the
entire space (which is helped by the drive to compress), the MLP soon invents pattern classifications involving the opposite class.
The compression drive still forces the decision boundary to be linear. (c) As more associations are invented, it becomes harder
and harder to learn new ones that break the previous solver’s generalization ability, while maintaining a linear boundary. (d) The
decision boundary becomes non-linear, and increasingly so, as more and more associations are invented and learned.

a training set of i patterns so far) means to execute
bt/2ic epochs of gradient descent on the training
set and check whether the patterns are correctly
classified. One step always means the processing
of one pattern (either a forward or backward pass),
regardless of the task.

Assume now that POWERPLAY has already
learned a version of s called si−1 able to classify
i− 1 previously invented training patterns (i > 1).
Then the next task is defined by a simple enumer-
ative search in the style of universal search [8],
[24], [19], which combines task simplification and
systematic run-time growth (see Alg. 2).

Algorithm 2 POWERPLAY implementation for ex-
periment 1

Initialize s0 in some way
for i := 1, 2, . . . do

for m := 1, 2, . . . do
for all candidate programs p s.t. L(p) ≤ m do

Run p for at most 2m−L(p) steps;
if (p creates si from si−1 correctly classifying
all i training patterns so far) and (si either is
substantially simpler than si−1, or can also
classify a newly found pattern misclassified
by si−1) then

Set pi := p (store the candidate)
exit m loop;

end if
end for

end for
end for

Since the compression task code is the single bit
‘1’, roughly half of the total search time is spent on
simplification, the rest is spent on the invention of
new training patterns that break the MLP’s current
generalization ability.

After each successful search for a new task,
the labels of grid points are plotted in a rather
dense grid on the unit square (Fig. 1), to see
how the MLP maps [0, 1) × [0, 1) to 0, 1, thus

monitoring the evolution of its generalization map.
As expected, the experiments show that in the
beginning POWERPLAY prefers to invent and learn
simple linear functions. However, there is a phase
transition to more complex non-linear functions
after a few tasks, indicating a new developmental
stage [12], [17], [10]. This is a natural by-product
of the search for simple tasks—they are easier to
invent and verify than more complex non-linear
tasks. As learning proceeds, we observe that the de-
cision boundary becomes increasingly non-linear,
which happens because the system has to come up
with tasks which the solver cannot solve yet, but
the solver becomes increasingly more powerful, so
the system has to invent increasingly harder tasks.

IV. EXPERIMENT 2: SELF-INVENTED TASKS
INVOLVING MOTOR CONTROL AND INTERNAL

ABSTRACTIONS

A. Self-Delimiting (SLIM) Programs Running on A
Recurrent Neural Network (RNN)

Here we demonstrate how a POWERPLAY-based
RNN continually invents novel sequences of ac-
tions in an environment, over time becoming a
more and more general solver of self-invented
problems. RNNs are general computers that al-
low for both sequential and parallel computations.
Given enough neurons and an appropriate weight
matrix, an RNN can compute any function com-
putable by a standard PC [14]. We use a particular
RNN named SLIM RNN [23] to define S for our
experiment. Its salient features are explained here.

The k-th computational unit or neuron of our
SLIM RNN is denoted uk (0 < k ≤ n(u) ∈ N).
wlk is the real-valued weight on the directed con-
nection clk from ul to uk. At discrete time step
t = 1, 2, . . . , tend of a finite interaction sequence
with the environment, uk(t) denotes the real-valued
activation of uk. There are designated neurons

(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

Fig. 2. SLIM RNN activation scheme. At various time steps, active/winning neurons and their outgoing connections are highlighted.
At each step, at most one neuron per WITAS can become active and propagate activations through its outgoing connections.

(a) (b)

Fig. 3. (a) Fovea design. Pixel intensities over each square are
averaged to produce a real valued input. The smallest squares
in the center are of size 3x3. (b) The RNN controls the fovea
movement over a static image, such as a still from the Space
Invaders game.

serving as online inputs which read real valued
observations from the environment and outputs
whose activations are passed to the environment
for interpretation of actions, e.g., the movement
commands for a robot. We initialize all uk(1) = 0
and compute uk(t+ 1) = fk(

∑
l w

lkul(t)) where
f may be of the form fk(x) = 1/(1 + e−x), or
fk(x) = x, or fk(x) = 1 if x ≥ 0 and 0 otherwise.
To program the SLIM RNN means to set the weight
matrix 〈wlk〉.

A special feature of the SLIM RNN is that there
is a single halt neuron in the network which has
a fixed halt-threshold, such that if at any time
t the activation at the neuron exceeds the halt-
threshold, the network’s computation stops. Thus,
any network topology in which there exists a path
from the online or task inputs to the halt neuron
can run self-delimiting programs [8], [3], [24], [19]
studied in the theory of Kolmogorov complexity
and algorithmic probability [25], [6]. Inspired by a
previous architecture [13], neurons other than the
inputs and outputs in our RNN are arranged in
winner-take-all subsets (WITAS) of nwitas neurons
each (nwitas = 4 was used for this experiment). At
each time step t, uk(t) is set to 1 for the winning
neuron in each WITAS (the one with the highest
activation), and for other neurons it is set to 0. This

feature gives SLIM RNN a special modularization
ability, since neurons can act as gates to different
regions of the network. By regulating the informa-
tion flow through the network, it becomes possible
to use only a fraction of the weights 〈wlk〉 for
each task the network learns. Since POWERPLAY
methodically increases search time and devotes
half the search time to simplification, this feature
encourages the network to invent novel tasks that
do not require many changes of weights used by
many previous tasks. Sec. IV-C shows that it tends
to modify the weight matrix such that over time
novel tasks depend on fewer weights.

Aside from the online input, output and halt
neurons, a fixed number nti of neurons are set to
be task inputs. These inputs remain constant for
1 ≤ t < tend and serve as self-generated task
labels. Finally, there is a subset of ns internal state
neurons whose activations are considered as the
final outcome when the program halts. Thus a task
is: Given a particular task input, interact with the
environment (read online inputs, produce outputs)
until the network halts and produces a particular
internal state, which is read from the internal state
neurons. Essentially arbitrary computable tasks can
be represented in this way by the SLIM RNN.
Fig. 2 illustrates the network activation on a par-
ticular task. A more detailed discussion of SLIM
RNNs and their efficient implementation can be
found in a previous paper [23].

Our SLIM RNN implementation efficiently re-
sets activations computed by the numerous unsuc-
cessful tested candidate programs. We keep track
of used connections and active (winner) neurons
at each time step, to reset activations such that
tracking/undoing effects of programs essentially
does not cost more than their execution.

B. RNN-Controlled Fovea Environment

The environment for this experiment consists
of a static image which is observed by the RNN
through a fovea, whose movement it can control at

each time step. The size of the fovea is 81 × 81
pixels; it produces 25 real valued online inputs
(normalized to [0, 1]) by averaging the pixel inten-
sities over regions of varying sizes such that it has
higher resolution at the center and lower resolution
in the periphery (Fig. 3). The fovea is controlled
using 8 real-valued outputs of the network, and
a parameter win-threshold. Out of the first four
outputs, the one with the highest value greater
than the win-threshold is interpreted as a movement
command: up, down, left, or right. If none of the
first four outputs exceeds the threshold, the fovea
does not move. Similarily, the next four outputs are
interpreted as the extent of movement of the fovea
over the image (3, 9, 27 or 81 pixels in case of
exceeding the threshold, 1 pixel otherwise).

C. Results

The SLIM RNN described in Sec. IV-A is
trained on the fovea environment using the
POWERPLAY framework in a manner similar to
Alg. 2. The difference lies in the encoding of task
inputs and the definition of ‘inventing and learning’
a task. The bitstring p now encodes a set of nti

real numbers between 0 and 1 which denote the
constant task inputs for this program. A new task
is considered learned if given a new set of task
inputs, the network halts and reaches an internal
state after interacting with the environment, and is
also able to reproduce the saved internal states of
all previously learned tasks. If the network cannot
halt within a chosen fraction of the time budget
dictated by L(p), the remaining budget is used for
trying to learn the task using a simple mutation
rule, by modifying a few weights of the network.

In this way, the network’s internal states abstract
from its trajectories through the fovea environment
as it invents more and more tasks without forgetting
previously learned ones. A SLIM RNN consisting
of 40 WITAS, with 4 neurons in each WITAS,
invented 46 action sequences for guiding the fovea
before halting, within 24 hours on a standard PC.
The action sequences exploring the environment
were of varying lengths (3–10 steps).

As a result of the network design, we observe
that the SLIM NN uses partially overlapping sub-
sets of connection weights for generating self-
invented trajectories. Fig. 4 shows that not all
connections are used for all tasks. The usage ratio
on the y-axis is defined as the number of tasks the
connection is used for, divided by the number of
tasks learned so far. The ratio is 1 for the first 200
connections, which are frequently used outgoing
connections from task and online inputs. On the

whole, as more tasks get learned, the number of
connections with high usage ratio falls, indicating
that the network is becoming more modular (many
tasks do not depend on the same connections). That
is, it becomes possible to modify connections with
a lower ratio to invent a new task without affecting
many previously learned ones.

V. CONCLUSION

POWERPLAY for SLIM RNN represents a
greedy implementation of central aspects of the
Formal Theory of Fun and Creativity [20], [21].
It permits general yet practically feasible, curi-
ous/creative agents that learn hierarchically and
modularly. This paper reports on the first known
general yet practical implementation. Each new
task invention either breaks the solver’s present
generalization ability, or compresses the solver, or
speeds it up.

We can know precisely what is learned by
our POWERPLAYing SLIM NN. The self-invented
tasks are clearly defined by inputs and internal
outcomes / results. Human interpretation of the
NN’s weight changes, however, may be difficult,
a bit like with a baby that generates internal
representations and skills or skill fragments during
play. What is their “meaning” in the eyes of the
parents, to whom the baby’s internal state is a black
box? In case of the fovea tasks, for example, the
learner invents certain input-dependent movements
as well as abstractions of trajectories in the en-
vironment (limited by its vocabulary of internal
states). The RNN weights at any stage encode the
agent’s present (possibly limited) understanding of
the environment and what can be done in it.

POWERPLAY has no problems with noisy inputs
from the environment. However, noisy versions of
an old, previously solved task must be considered
as new tasks, because in general we do not know
what is noise and what is not. But over time
POWERPLAY can automatically learn to generalize
away the “noise,” eventually finding a compact
solver that solves all “noisy” instances seen so far.

Our first experiments focused on developmental
stages of a purely creative system, and did not
involve any externally posed tasks yet. Future work
will test the hypothesis that systems that have been
running POWERPLAY for a while will be faster
at solving many user-provided tasks than systems
without such purely explorative components. This
hypothesis is inspired by babies who creatively
seem to invent and learn many skills autonomously,
which then helps them to learn additional teacher-
defined external tasks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

U
sa

g
e

R
at

io

Connection index

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

U
sa

g
e

R
at

io

Connection index

Fig. 4. Connection usage ratios for all SLIM RNN connections after 10 (left) and 40 (right) self-invented tasks have been learnt.
The network learns to better utilize its own architecture by using different connections for different tasks, thus reducing the number
of connections with high usage ratio. Such modularization can be exploited to speed up task search in later stages.

ACKNOWLEDGMENTS

POWERPLAY [22] and self-delimiting recurrent
neural networks (SLIM RNN) [23] were devel-
oped by J. Schmidhuber and implemented by
R.K. Srivastava and B.R. Steunebrink. We thank
M. Stollenga and N.E. Toklu for their help with
the implementations. This research was funded by
the following EU projects: IM-CLeVeR (FP7-ICT-
IP-231722) and WAY (FP7-ICT-288551).

REFERENCES

[1] A. Barto. Intrinsic motivation and reinforcement learning.
In G. Baldassarre and M. Mirolli, editors, Intrinsically
Motivated Learning in Natural and Artificial Systems.
Springer, 2012. In press.

[2] C. M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

[3] G. J. Chaitin. A theory of program size formally identical
to information theory. J. of the ACM, 22:329–340, 1975.

[4] P. Dayan. Exploration from generalization mediated by
multiple controllers. In G. Baldassarre and M. Mirolli,
editors, Intrinsically Motivated Learning in Natural and
Artificial Systems. Springer, 2012. In press.

[5] K. Gödel. Über formal unentscheidbare Sätze der Prin-
cipia Mathematica und verwandter Systeme I. Monatshefte
für Mathematik und Physik, 38:173–198, 1931.

[6] A. N. Kolmogorov. Three approaches to the quantitative
definition of information. Problems of Information Trans-
mission, 1:1–11, 1965.

[7] L. A. Levin. Universal sequential search problems. Prob-
lems of Information Transmission, 9(3):265–266, 1973.

[8] L. A. Levin. Laws of information (nongrowth) and aspects
of the foundation of probability theory. Problems of
Information Transmission, 10(3):206–210, 1974.

[9] U. Nehmzow, Y. Gatsoulis, E. Kerr, J. Condell, N. H.
Siddique, and T. M. McGinnity. Novelty detection as
an intrinsic motivation for cumulative learning robots.
In G. Baldassarre and M. Mirolli, editors, Intrinsically
Motivated Learning in Natural and Artificial Systems.
Springer, 2012. In press.

[10] H. Ngo, M. Ring, and J. Schmidhuber. Compression
progress-based curiosity drive for developmental learning.
In Proc. of the 2011 IEEE Conf. on Development and
Learning and Epigenetic Robotics ICDL-EPIROB. 2011.

[11] P.-Y. Oudeyer, A. Baranes, and F. Kaplan. Intrinsi-
cally motivated learning of real world sensorimotor skills
with developmental constraints. In G. Baldassarre and
M. Mirolli, editors, Intrinsically Motivated Learning in
Natural and Artificial Systems. Springer, 2012. In press.

[12] J. Piaget. The Child’s Construction of Reality. London:
Routledge and Kegan Paul, 1955.

[13] J. Schmidhuber. A local learning algorithm for dynamic
feedforward and recurrent networks. Connection Science,
1(4):403–412, 1989.

[14] J. Schmidhuber. Dynamische neuronale Netze und das
fundamentale raumzeitliche Lernproblem. Dissertation,
Institut für Informatik, Technische Univ. München, 1990.

[15] J. Schmidhuber. Curious model-building control systems.
In Proc. of the Internat. Joint Conf. on Neural Networks,
Singapore, volume 2, pages 1458–1463. IEEE press, 1991.

[16] J. Schmidhuber. Artificial curiosity based on discovering
novel algorithmic predictability through coevolution. In
P. Angeline, Z. Michalewicz, M. Schoenauer, X. Yao, and
Z. Zalzala, editors, Congress on Evolutionary Computa-
tion, pages 1612–1618. IEEE Press, 1999.

[17] J. Schmidhuber. Exploring the predictable. In A. Ghosh
and S. Tsuitsui, editors, Advances in Evolutionary Com-
puting, pages 579–612. Springer, 2002.

[18] J. Schmidhuber. Bias-optimal incremental problem solv-
ing. In S. Becker, S. Thrun, and K. Obermayer, eds., Adv.
in Neural Information Processing Systems 15 (NIPS 15),
pages 1571–1578, Cambridge, MA, 2003. MIT Press.

[19] J. Schmidhuber. Optimal ordered problem solver. Machine
Learning, 54:211–254, 2004.

[20] J. Schmidhuber. Developmental robotics, optimal artificial
curiosity, creativity, music, and the fine arts. Connection
Science, 18(2):173–187, 2006.

[21] J. Schmidhuber. Formal theory of creativity, fun, and
intrinsic motivation (1990-2010). IEEE Transactions on
Autonomous Mental Development, 2(3):230–247, 2010.

[22] J. Schmidhuber. POWERPLAY: Training an Increasingly
General Problem Solver by Continually Searching for
the Simplest Still Unsolvable Problem. Technical Report
arXiv:1112.5309v1 [cs.AI], IDSIA, 2011.

[23] J. Schmidhuber. Self-delimiting neural networks. Tech-
nical report IDSIA-08-12, arXiv:1210.0118v1 [cs.NE],
IDSIA, 2012.

[24] J. Schmidhuber, J. Zhao, and M. Wiering. Shifting in-
ductive bias with success-story algorithm, adaptive Levin
search, and incremental self-improvement. Machine
Learning, 28:105–130, 1997.

[25] R. J. Solomonoff. A formal theory of inductive inference.
Part I. Information and Control, 7:1–22, 1964.

[26] J. Storck, S. Hochreiter, and J. Schmidhuber. Reinforce-
ment driven information acquisition in non-deterministic
environments. In Proceedings of the International Con-
ference on Artificial Neural Networks, Paris, volume 2,
pages 159–164. EC2 & Cie, 1995.

[27] A. M. Turing. On computable numbers, with an applica-
tion to the Entscheidungsproblem. Proc. of the London
Mathematical Society, Series 2, 41:230–267, 1936.

