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"Recurrent backprop" for learning to store information over extended time periods takes 
too long. The main reason is insufficient, decaying error back flow. We describe a novel, effi­
cient "Long Short Term Memory" (LSTM) that overcomes this and related problems. Unlike 
previous approaches, LSTM can learn to bridge arbitmry time lags by enforcing constant error 
flow. Using gradient descent, LSTM explicitly learns when to store information and when 
to access it. In experimental comparisons with "Real-T ime Recurrent Learning", "Recurrent 
Cascade-Correlation", "Elman nets", and "Neural Sequence Chunking", LSTM leads to many 
more successful runs, and learns much faster. Unlike its competitors, LSTM can solve tasks 
involving minimal time lags of more than 1000 time steps, even in noisy environments. 

1 INTRODUCTION 

In principle, recurrent nets can use their feedback connections to store representations of recent in­
put events in "short term memory". This is potentially significant for many applications, including 
speech processing, non-Markovian control, and music composition (e .g . Mozer, 1992). 

However, previous algorithms for learning what to put in short term memory take too much time 
or don't work at all, especially when there are long time lags between inputs and corresponding 
teacher signals. 

For instance, with conventional "backprop through time" (BPTT, e.g. Williams and Zipser, 
1992) or RTRL (e.g. Robinson and Fallside, 1987), error signals "flowing backwards in time" 
tend to either (1) blow up or (2) vanish: the temporal evolution of the backpropagated error 
exponentially depends e.g. on weights of self-connections (leading from some unit to itself). See 
Hochreiter (1991) for a detailed analysis not limited to self-connections. Case (1) leads to oscil­
lating weights. In case (2), learning to bridge long time lags takes a prohibitive amount of time, 
or does not work at all. The approaches in Elman (1988), Fahlman (1991), Williams (1989), and 
Schmidhuber (1992a) suffer from the same problems. Other methods that seem practicable for 
short time gaps only are Time-Delay Neural Networks (Lang et al., 1990) and Plate's method 
(Plate, 1993) (which updates unit activations based on a weighted sum of old activations, see also 
de Vries and Principe, 1991). 

To deal with long time lags, Mozer (1992) uses time constants influencing the activation 
changes. However, for long time gaps the time constants need external fine tuning (Mozer, 1992). 
Sun et al.'s alternative approach (1993) updates the activation of a recurrent unit by adding the 
old activation and the (scaled) current net input. The net input, however, tends to perturb the 
stored information, which again makes long term storage impracticable. Schmidhuber's chunker 
systems do have a capability to bridge very long time lags, but only if the input sequence exhibits 
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locally predictable regularities (see Schmidhuber, 1992b; Schmidhuber et al., 1993; and Mozer, 
1992). 

aLong Short Term Memory" (LSTM), the new approach presented in this paper, overcomes 
the problems above. Unlike chunking systems, even in noisy, highly unpredictable environments, 
LSTM can learn loss-free information storage spanning arbitrary time periods. A major LSTM 
feature is that it enforces constant, non-exploding, non-vanishing error flow. Unlike previous 
approaches, ours quickly learns to distinguish between two or more occurrences of an element in 
an input sequence. Constant error backprop also makes the method fast (see experiments). 

Outline. For didactic purposes, the next section will introduce a naive approach to constant 
error backprop, and highlight its problems concerning information storage and retrieval. These 
problems will be solved by the LSTM architecture to be described in section 3. Section 4 will 
present experimental comparisons with competing methods. LSTM outperforms them. 

2 CONSTANT ERROR BACKPROP 

Conventional BPTT (e.g. Williams and Zipser, 1992). Output unit k's target at timet is 
d~;(t) . Using mean squared error, k's error signal is t?~:(t) = f~(net~:(t))(d~;(t)- yk(t) ), where 
yi (t) = /i( neti(t)) is the activation of a non-input unit i with activation fun ction fi , Wij is the 
weight on the connection from unit j to i and neti(t) = l::::i WjiYi(t-1) is unit j's current net input. 
Some non-output unit j's backpropagated error signal is t?j(t) = fj(netj(t)) L::::i Wijt?;(t + 1). The 
corresponding contribution to Wij's total weight update is m'J;(t)yi (t- 1), where a is the learning 
rate. 

Constant error flow: naive approach. Consider a single unit j with a single connection to 
itself. According to the rules above, a t time t, j's local error back flow is t? i ( t) = fj ( neti (t) )t? i ( t + 
1)Wjj . To avoid exploding or vanishing error signals (see introduction) , we wish to enforce constant 
error flow through unit j. Towards this end , we require fj(neti(t))wjj = 1. Integrating this 

differential equation, we obtain /j(netj(t)) = n~~(t) for arbit rary netj(t). This means: /j has to be 
JJ 

linear , and unit j's activation has to remain constant: Yi(t + 1) = fi (neti(t + 1)) = /j(wiiyi (t)) = 
yi (t). In the experiments, we will use /j = id, and Wjj = 1. 

Of course, in reality unit j will not only be connected to itself but also to other units. This 
invokes two obvious problems (also inherent in all other previous approaches): 

1. Input weight conflict: for simplicity, let's focus on a single additional input weight Wjt· 

Assume that the total error can be reduced by switching on unit j in response to a certain input, 
and keeping it active for a long time (until it helps to compute a desired output) . Provided i 
is non-zero, Wji will often receive conflicting weight update signals during this time (recall: j is 
linear) : these signals will attempt to make Wji participate (1) in storing the input (by switching 
on j) and (2) in protecting the input (by preventing j from being switched off by insignificant later 
inputs). This conflict makes learning difficult, and calls for a more context-sensitive mechanism 
for controlling "write operations" through input weights. 

2. Output weight conflict: for simplicity, let's focus on a single additional output weight 
Wk j . As long as unit j is non-zero, Wkj will attract conflicting weight update signals generated 
during sequence processing: these signals will attempt to make Wkj participate in (1) accessing the 
information stored in j and - at different times - in (2) protecting unit k from being perturbed by 
j. Again, this conflict makes learning difficult, and calls for a more context-sensitive mechanism 
for controlling "read operations" through output weights. 

Due to the problems above, the naive approach does not work well. The next section shows 
how to do it right. 
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3 LONG SHORT TERM MEMORY 

Memory cells and gate units (see also Hochreiter, 1991). To obtain constant error flow without 
the disadvantages of the naive approach, we extend the self-connected, linear unit j from section 2 
by introducing additional features. The resulting, more complex unit is called a memory cell and 
is denoted Cj. In addition to netci , Cj gets input from a special unit outi called an "output gate", 
and from another special unit ini called an "input gate". ini 's activation at timet is denoted by 
yini(t). outj's activation at timet is denoted by youti(t). inj, outi are ordinary hidden units. 

At timet, Cj 's output yci (t) is computed in a sigma-pi-like fashion: 

where the "internal state" Sci(t) is 

: ;T,he differentiable function g scales netci. The differentiable function h scales memory cell outputs 
computed from the internal state sci. 

g 

0 

Figure 1: Architecture of memory cell Cj (the box) and corresponding gate units inj, outi. See text 
for details. 

Why gate units? To avoid the input weight conflict problem (see section 2), inj controls 
the error flow to memory cell Cj 's input connections Wcii. The net can use ini to decide when to 
keep or override information in memory cell Cj (see figure 1). To circumvent cj's output weight 
conflict problem (see section 2), i out controls the error flow from unit j 's output connections. The 
net can use outi to decide when to access memory cell Cj and when to prevent other units from 
being perturbed by Cj (see figure 1). 

Network topology. We use a network with an input layer, a hidden layer, and an output 
layer. The fully self-connected hidden layer consists of memory cells and corresponding gate units. 
All units (except gate units) in all layers are connected to all units in higher layers. 

Learning / Computational complexity. We use a variant of RTRL (e.g. Robinson and 
Fallside, 1987) which properly takes into account the altered (sigma-pi-like) dynamics caused by 
input and output gates. However, to ensure constant error backprop, like with truncated BPTT 
(e.g. Williams and Zipser, 1992), errors arriving a t "memory cell net inputs" (for cell Cj, this 
includes netci, netini, netouti) do not get propagated back further in time (although they do serve 
to change the incoming weights). Only within memory cells, errors are propagated back through 
previous internal states Sci . This enforces constant error flow within memory cells. Thus, like 

with Mozer's focused recurrent backprop algorithm (Mozer, 1989), only the derivatives ::c;~ need 
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to be stored and updated. This in turn implies O(n) update complexity per time step, where n is 
the number of weights: the algorithm is very effi cient. 

Abuse problem and solutions. In the beginning of the learning phase, error reduction may 
be possible even without storing information over time. Then the net will tend to abuse memory 
cells , e.g. as bias cells. The difficulty is: it m ay take a long time to release abused memory cells 
and make them available for further learning. A similar "abuse problem" appears if two memory 
cells store the same (redundant) information. We investigate three solutions to the abuse problem: 
{1) S equential network construction (e.g. Fahlman , 1991): a memory cell and the corresponding 
gate units are added to the network whenever the error stops decreasing (see experiment 1 in 
section 4) . {2} Output gate bias: each output gate gets a negative initial bias, to push memory 
cell activations towards zero. Memory cells with more negative bias automatically get "allocated" 
later (see experiment 2 in section 4). {3) Output gate competition: lateral inhibition ensures that 
no two ouput gates can be act ive simultaneously (see experiment 2 in section 4). 

M emory cell blocks. N memory cells sharing the same input gate and the same output gate 
form a new structure called a "memory cell block of size N ". Memory cell blocks can store more 
information than a single memory cell. In experiment 2 (section 4), we will use a memory cell 
block of size 2. 

4 EXPERIMENTS 

4.1 EXPERIMENT 1: SEQUENCE PREDICTION 

Task. There are p + 1 possible input symbols denoted by at, ... , ap-t , ap = x,ap+ l = y. ai 
is "locally" represented by the p + 1-dimensional vector whose ith component is 1 (all other 
components are 0). A net with p+ 1 input units and p+ 1 output units sequentially observes input 
symbol sequences , one at a time, permanent ly trying to predict the next symbol. To emphasize 
the "long time Jag problem", we use a training set consisting of only two very similar sequences: 
(y, a t , a2, ... , ap- b y) and (x , at, a2, ... , ap-1 1 x ). To predict the final element, the net has to learn 
to store a representation of the first element for p time steps. 

We compare "Real-T ime Recurrent Learning'' (RTRL, e.g. Robinson and Fallside, 1987) , 
the sometimes very successful neural sequence chunker (CH, Schmidhuber, 1992b), and our new 
method (LST M). In all cases, weights are ini t ialized in [-0.2,0.2). Training is stopped after 5 
million sequence presentations. Success is defi ned as "maximal absolute output error of all units 
always below 0.25". 

Architectures. RT RL: one self-recurrent hidden unit , p+ 1 non-recurrent output units. Each 
layer has connections from all layers below. All units sigmoid in [0,1). 

CH: both nets like with RTRL above, but one has an additional output for predicting the 
hidden unit of the other one (see Schmidhub er, 1992b for details). 

LSTM: like with RTRL, but the hidden unit is replaced by a memory cell and an input gate 
(no output gate required) . g is sigmoid in [0,1) and h = id. Memory cell and input gate are added 
once the error has stopped decreasing (see abuse problem: solution (1) in section 3). 

R esults . Using RTRL and a 4 time step delay (p = 4) , ~ of all t rials were successful. No t rial 
was successful with p = 10. With long time lags, only the neural sequence chunker and the new 
approach achieved successful trials. With p = 100, the sequence chunker solved the task in only 
~ of all trials. LSTM, however, always learned t o solve the t ask. Comparing successful trials only, 
LSTM learned m u ch fast er. See table 1 for details. 

EXPERIMENT lb: no local r egularities. With the task above, CH sometimes learns 
to correctly predict the final element , but only because of predictable local regularities in the input 
stream that allow fo r compressing the sequ ence. In an additional, more difficul t task (involving 
many more different possible sequences) , we remove compressibility by replacing the determinis­
tic subsequence (a1, a2, . .. , ap- l) by a random subsequence (of length p- 1) over the alphabet 
a 1, a2, .. . , ap-1· As expected, the chunker fa i led to s olve this task. Our new approach, however, 
was always successful. On average, success was achieved after 5,680 sequence presentations (mean 
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·· . . ·~· 

Method Delay p Learning rate % Successful trials Success after 

RTRL 4 1.0 78 1,043,000 
RTRL 4 4.0 56 892,000 
RTRL 4 10.0 22 254,000 
RTRL 10 1.0-10.0 0 > 5,000,000 
RTRL 100 1.0-10.0 0 > 5,000,000 

CH 100 1.0 33 32,400 
LSTM 100 1.0 100 5,040 

Table 1: Percentage of successful trials and number of training sequences until success, for "Real­
Time Recurrent Learning" {RTRL), neural sequence chunking {CH), and new method {LSTM). 
Table entries refer to the mean of 18 trials. With 100 time step delays, only CH and LSTM achieve 
successful trials. Even when we ignore the unsuccessful trials of the other approaches: 
LSTM learns much faster. 

of 18 trials). This illustrates: the new approach does not depend on sequence regularities. 
EXPERIMENT le: very long time lags - no local regularities. There are p + 4 

possible input symbols denoted al, ... ,ap-ltap,ap+l = e,ap+2 = b,ap+3 = x,ap+4 = y. a1, ... ,ap 
are also called "distractor symbols". Again, ai is locally represented by the p+4-dimensional vector 
whose ith component is 1 (all other components are 0). A net with p+4 input units and 2 output 
units sequentially observes input symbol sequences, one at a time. The training set is the union 
of two very similar subsets ofsequences: {(b,y,ai 1 ,ai2 , ••• ,aiq+k'e,y) Jl :s; it,i2, .. . ,iq+k::::; q} 
and {(b,x,ai 11 ai2 , ••• ,aiq+k'e,x) 1 1::::; it,iz, ... ,iq+k::::; q}. To pick a training sequence, we 
first select some non-negative integer k with probability P(k) = 1

1
0U0 )k. Once k is selected, 

a training sequence is generated according to a uniform distribution on the possible sequences 
with length q + k + 4. The minimal sequence length is q + 4. The expected sequence length is 
q + 14 = 4 + I:r= P(k)(q + k). The expected number of occurences of element ai, 1 ~ i ~ p, 
in a sequence is q+~O ~ 9... The goal is to predict the last symbol, which always occurs after the 
"trigger symbol" :. To ~redict the fin al element, the net has to learn to store a representation 
of the second element for at least q + 1 time steps (until it sees the trigger symbol e). Success is 
defined as "prediction error (for final sequence element) of both output units always below 0.2". 

Architecture f Learning. Weights are initialized in [-0.2,0.2]. To avoid too much learning 
time variance due to different weight initializations, the hidden layer has two memory cells (al­
though one would be sufficient). There are no other hidden units. No unit is biased. his sigmoid in 
[- 1, 1], and g is sigmoid in [- 2, 2]. This allows for pushing absolute memory cell outputs towards 
1.0. Error signals occur only for predictions of the final sequence element. The learning rate is 
always 0.01. Note that the minimal time lag is always q + 1 - the net never sees short training 
sequences facilitating the classification of long test sequences. 

Results. 20 trials were made for all tested pairs (p, q). Table 2 lists the mean of the num­
ber of training sequences required by LSTM to achieve success (of course, RTRL and the other 
competitors have no chance of solving tasks with time lags involving 1000 time steps). 

Scaling. Table 2 shows: if we let the number of input symbols (and weights) increase in 
proportion to the time Jag, learning time increases very slowly. This is a another remarkable 
property of LSTM not shared by any other architecture we are aware of. Indeed, architectures like 
RTRL are far from scaling reasonably - instead, they appear to scale exponentially, and appear 
quite useless when the time lags exceed as few as 10 time steps. 

Dish·actor influence. In Table 2, the column headed by 9.. reflects the expected frequency 
of distractor symbols. Increasing this frequency decreases lear~ing speed. This effect is due to 
weight oscillations caused by frequently observed input symbols. 
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q (time Jag -1) p (#random inputs) 

50 50 
100 100 
200 200 
500 500 

1,000 1,000 

1,000 500 
1,000 200 
1,000 100 
1,000 50 

i Success after 
" 1 30,000 
1 31,000 
1 33,000 
1 38,000 
1 49,000 

2 49,000 
5 75 ,000 
10 135,000 
20 203,000 

Table 2: LSTM with very long minimal time lags q + 1. p is the number of available distractor 
symbols. ! is the expected number of occurences of a given distractor symbol in a sequence. The 

last column lists the number of training sequences required by LSTM (of course, RTRL and the 
other competitors have no chance of solving tasks with time lags involving 1000 time steps). If we 
let the number of dish·actor symbols (and weights) increase in proportion to the time 
lag, learning time increases very slowly. The lower block illustrates the expected performance 
slow-down due to increased frequ ency of distractor symbols. 

4.2 EXPERIMENT 2: EMBEDDED REBER GRAMMAR 

Task. Symbol strings are produced by the "embedded Reber grammar", which is often used as 
a benchmark for recurrent networks, e.g. Smith and Zipser (1989), Cleeremans et al. (1989) and 
Fahlman (1991). Again, the task is to read strings, one symbol at a time, and to permanently 
predict the next symbol. 

Sa.~. TT/ REBER "" T 

T ~ "" S ~ """"'" "'. ~~ p ~~ ~. ....____ T .~ 
~V/ ~""m/-

T cJ ~. GRAMMAR 

Figure 2: 
grammar. 

Figure 3: Transition diagram for the embedded 

Transition diagram for the Reber Reber grammar. Each box represents a copy of 
a Reber grammar (see figure 2). 

Starting at the leftmost node of the directed graph in figure 3, legal strings are generated se­
quentially (beginning with the empty string) by following edges (and appending the corresponding 
symbols to the current string), until the rightmost node is reached. Edges are chosen randomly if 
there is a choice (probability: 0.5). This task is not trivial: to predict the symbol before the last 
one, the net has to remember the second symbol. 

Comparison. We compare RTRL (results taken from Smith and Zipser (1989), where only 
the few successful trials are listed), the "Elman net" (ELM) (results taken from Cleeremans et al., 
1989), Fahlman's "Recurrent Cascade-Correlation" (RCC) (results taken from Fahlman, 1991), 
and our new method (LSTM). 

Training / Testing. We use local input/output representation as in section 4.1 (7 input 
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method hidden units learning rate % of success I success after I 
RTRL 3 0.05 "some fraction" 173,000 
RTRL 12 0.1 "some fraction" 25,000 
ELM 15 0 >200,000 
RCC 7-9 50 182,000 

LSTM 3 blocks, size 2 0.5 100 8,440 

Table 3: Embedded Reber grammar: percentage of successful trials and number of sequence pre­
sentations until success for RTRL {results taken from Smith and Zipser, 1989), "Elman net" 
{results taken from Cleeremans et al. , 1989), "Recurrent Cascade-Correlation" (results taken from 
Fahlman, 1991) and our new approach {LSTM). Only LSTM always learns to solve the task. 

-.Eve n when we ignore the unsuccessful trials of the other approaches: LSTM learns 
nmch faster {the number of required training examples varies from 3,800 to 24,100) . 

. units, 7 output units). Following Fahlman, we use 256 training strings and 256 separate t est 
. strings. After string presentation, all activations are reinitialized with zeros. A trial is considered 
successful if all string symbols of all sequences in both test set and training set are predicted 
correctly: if the output unit(s) corresponding to the possible next symbol(s) is(are) always the 
most active ones. 

Archite ctures. Architectures for RTRL, ELM, RCC are reported in the references listed 
above. For LSTM, we use 3 memory cell blocks. Each block has 2 memory cells. All activa tion 
functions a re sigmoid in [0 , 1], except for h, which is sigmoid in [- 1, 1] , and g, which is sigmoid 
in [-2, 2]. This allows for pushing the absolute memory cell outputs towards 1.0. All weights are 
initialized in [-0.2, 0.2] . The initial output gate biases are - 1, -2,-3 (see abuse problem solution 
(2) of section 3) . The learning rate is 0.5. 

R esults . We use 3 different , randomly generated pairs of training sets and test sets. With 
each such pair, 10 trials with different weight initializations are made. See table 3 for results 
(mean of 30 trials). Unlike the other methods , LSTM always learns to solve the task. Even when 
we ignore the unsuccessful trials of the other appr·oaches, LSTM learns much faster. 

With additional output gate competition (solution (3) of the abuse problem of section 3), 
learning was even faster. 

5 CONCLUSION 

Long Short Term Memory represents a significant improvement over previous neural algorithms 
for dealing with arbitrary, unknown, temporal delays between input and target events. 
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