
FORSCHUNGSBERICHTE

KiJNSTLICHE INTELLIGENZ

Long Short Term Memory

Sepp Hochreiter, Jiirgen Schmidhuber

Report FKI-207-95

August 1995

TUM
TECHNISCHE UNIVERSIT AT MUNCHEN

lnstitut ftir Informatik (H2), D-80290 Miinchen, Germany

ISSN 0941-6358

Forschungsberichte Kiinstliche Intelligenz

ISSN 0941-6358

Institut fiir Informatil<
Technische UniversiUit Miinchen

Die Forschungsberlchte KUnstliche Intelli
genz enthallen vornehmlich Vorab-Ver~f
fen tljchu ngen, spezial isierte Ei nzelergeb
nisse und ergtinzende Materialien, die seit
1988 in der Kl I Kognitionsgruppe am
Lehrstuhl Prof. Brauer bzw. 1988-1993 in
der KI I Intellektik Gruppe am Lehrstuhl

· Prof. Jessen entstanden. Im Interesse einer
spateren Ver~ffentlichung wird gebeten,
die Forschungsberichte nicht zu ver
vietnUtigen. Alle Rechte und die Ver
antwortung fiir den Inhalt des Berichts
liegen bei den Autoren, die fUr kritischc
Hinweise dankbar sind.

Eine Zusammenstellung aller derz.cit liefer
baren FKI-Berichte und einzelne Exem
plare aus dieser Reihe konnen Sie bei
folgender Adresse anfordern oder Uber ftp
bez.iehen:

"FKl"
Institut fUr Infonnatik (H2)
Technische Universitat Mi.lnchen
D-80290 Mi.inchen
Gennany

. Phone:
Telex:
Fax:

+49 - 89- 2105 2406
tumue d 05-22854
+49- 89 - 2105 - 8207

e-mail: fki@informatik. tu-
muenchen.de

The "Forschungsberichte Klinstliche
Intelligenz" series includes primarily
preliminary publications, specialized partial
results, and supplementary material,
written by the members of the
AI I Cognition Group at the chair of Prof.
Brauer (since 1988) as well as the
"Intellektik" Group at the chair of Prof.
Jessen (1988-1993). In the interest of a
subsequent final publication these reports
should not be copied. All rights and the
responsibility for the contents of the report
are with the authors, who would Clppreciate
critical comments.

You can obtain a list of all available FKI
repo'rts as well as specific papers by
writing to the ndress below or via ftp:

. .
FTP:
machine: flop.infom1atik.tu-muenchen.de
or 131.159.8.35
login: anonymous
directory: publfki

LONG SHORT TERM MEMORY
Technical Report FKI-207-95

Sepp Hochreiter
Fakultat fiir Informatik

Technische Universitat Miinchen
80290 Miinchen, Germany

hochrei t@informatik. tu-muenchen.de

August 21, 1995

Abstract

Jiirgen Schmidhuber
IDSIA

Corso Elvezia 36
6900 Lugano, Switzerland

juergen@idsia.ch

"Recurrent backprop" for learning to store information over extended time periods takes
too long. The main reason is insufficient, decaying error back flow. We describe a novel, effi
cient "Long Short Term Memory" (LSTM) that overcomes this and related problems. Unlike
previous approaches, LSTM can learn to bridge arbitmry time lags by enforcing constant error
flow. Using gradient descent, LSTM explicitly learns when to store information and when
to access it. In experimental comparisons with "Real-T ime Recurrent Learning", "Recurrent
Cascade-Correlation", "Elman nets", and "Neural Sequence Chunking", LSTM leads to many
more successful runs, and learns much faster. Unlike its competitors, LSTM can solve tasks
involving minimal time lags of more than 1000 time steps, even in noisy environments.

1 INTRODUCTION

In principle, recurrent nets can use their feedback connections to store representations of recent in
put events in "short term memory". This is potentially significant for many applications, including
speech processing, non-Markovian control, and music composition (e .g . Mozer, 1992).

However, previous algorithms for learning what to put in short term memory take too much time
or don't work at all, especially when there are long time lags between inputs and corresponding
teacher signals.

For instance, with conventional "backprop through time" (BPTT, e.g. Williams and Zipser,
1992) or RTRL (e.g. Robinson and Fallside, 1987), error signals "flowing backwards in time"
tend to either (1) blow up or (2) vanish: the temporal evolution of the backpropagated error
exponentially depends e.g. on weights of self-connections (leading from some unit to itself). See
Hochreiter (1991) for a detailed analysis not limited to self-connections. Case (1) leads to oscil
lating weights. In case (2), learning to bridge long time lags takes a prohibitive amount of time,
or does not work at all. The approaches in Elman (1988), Fahlman (1991), Williams (1989), and
Schmidhuber (1992a) suffer from the same problems. Other methods that seem practicable for
short time gaps only are Time-Delay Neural Networks (Lang et al., 1990) and Plate's method
(Plate, 1993) (which updates unit activations based on a weighted sum of old activations, see also
de Vries and Principe, 1991).

To deal with long time lags, Mozer (1992) uses time constants influencing the activation
changes. However, for long time gaps the time constants need external fine tuning (Mozer, 1992).
Sun et al.'s alternative approach (1993) updates the activation of a recurrent unit by adding the
old activation and the (scaled) current net input. The net input, however, tends to perturb the
stored information, which again makes long term storage impracticable. Schmidhuber's chunker
systems do have a capability to bridge very long time lags, but only if the input sequence exhibits

1

locally predictable regularities (see Schmidhuber, 1992b; Schmidhuber et al., 1993; and Mozer,
1992).

aLong Short Term Memory" (LSTM), the new approach presented in this paper, overcomes
the problems above. Unlike chunking systems, even in noisy, highly unpredictable environments,
LSTM can learn loss-free information storage spanning arbitrary time periods. A major LSTM
feature is that it enforces constant, non-exploding, non-vanishing error flow. Unlike previous
approaches, ours quickly learns to distinguish between two or more occurrences of an element in
an input sequence. Constant error backprop also makes the method fast (see experiments).

Outline. For didactic purposes, the next section will introduce a naive approach to constant
error backprop, and highlight its problems concerning information storage and retrieval. These
problems will be solved by the LSTM architecture to be described in section 3. Section 4 will
present experimental comparisons with competing methods. LSTM outperforms them.

2 CONSTANT ERROR BACKPROP

Conventional BPTT (e.g. Williams and Zipser, 1992). Output unit k's target at timet is
d~;(t) . Using mean squared error, k's error signal is t?~:(t) = f~(net~:(t))(d~;(t)- yk(t)), where
yi (t) = /i(neti(t)) is the activation of a non-input unit i with activation fun ction fi , Wij is the
weight on the connection from unit j to i and neti(t) = l::::i WjiYi(t-1) is unit j's current net input.
Some non-output unit j's backpropagated error signal is t?j(t) = fj(netj(t)) L::::i Wijt?;(t + 1). The
corresponding contribution to Wij's total weight update is m'J;(t)yi (t- 1), where a is the learning
rate.

Constant error flow: naive approach. Consider a single unit j with a single connection to
itself. According to the rules above, a t time t, j's local error back flow is t? i (t) = fj (neti (t))t? i (t +
1)Wjj . To avoid exploding or vanishing error signals (see introduction) , we wish to enforce constant
error flow through unit j. Towards this end , we require fj(neti(t))wjj = 1. Integrating this

differential equation, we obtain /j(netj(t)) = n~~(t) for arbit rary netj(t). This means: /j has to be
JJ

linear , and unit j's activation has to remain constant: Yi(t + 1) = fi (neti(t + 1)) = /j(wiiyi (t)) =
yi (t). In the experiments, we will use /j = id, and Wjj = 1.

Of course, in reality unit j will not only be connected to itself but also to other units. This
invokes two obvious problems (also inherent in all other previous approaches):

1. Input weight conflict: for simplicity, let's focus on a single additional input weight Wjt·

Assume that the total error can be reduced by switching on unit j in response to a certain input,
and keeping it active for a long time (until it helps to compute a desired output) . Provided i
is non-zero, Wji will often receive conflicting weight update signals during this time (recall: j is
linear) : these signals will attempt to make Wji participate (1) in storing the input (by switching
on j) and (2) in protecting the input (by preventing j from being switched off by insignificant later
inputs). This conflict makes learning difficult, and calls for a more context-sensitive mechanism
for controlling "write operations" through input weights.

2. Output weight conflict: for simplicity, let's focus on a single additional output weight
Wk j . As long as unit j is non-zero, Wkj will attract conflicting weight update signals generated
during sequence processing: these signals will attempt to make Wkj participate in (1) accessing the
information stored in j and - at different times - in (2) protecting unit k from being perturbed by
j. Again, this conflict makes learning difficult, and calls for a more context-sensitive mechanism
for controlling "read operations" through output weights.

Due to the problems above, the naive approach does not work well. The next section shows
how to do it right.

2

3 LONG SHORT TERM MEMORY

Memory cells and gate units (see also Hochreiter, 1991). To obtain constant error flow without
the disadvantages of the naive approach, we extend the self-connected, linear unit j from section 2
by introducing additional features. The resulting, more complex unit is called a memory cell and
is denoted Cj. In addition to netci , Cj gets input from a special unit outi called an "output gate",
and from another special unit ini called an "input gate". ini 's activation at timet is denoted by
yini(t). outj's activation at timet is denoted by youti(t). inj, outi are ordinary hidden units.

At timet, Cj 's output yci (t) is computed in a sigma-pi-like fashion:

where the "internal state" Sci(t) is

: ;T,he differentiable function g scales netci. The differentiable function h scales memory cell outputs
computed from the internal state sci.

g

0

Figure 1: Architecture of memory cell Cj (the box) and corresponding gate units inj, outi. See text
for details.

Why gate units? To avoid the input weight conflict problem (see section 2), inj controls
the error flow to memory cell Cj 's input connections Wcii. The net can use ini to decide when to
keep or override information in memory cell Cj (see figure 1). To circumvent cj's output weight
conflict problem (see section 2), i out controls the error flow from unit j 's output connections. The
net can use outi to decide when to access memory cell Cj and when to prevent other units from
being perturbed by Cj (see figure 1).

Network topology. We use a network with an input layer, a hidden layer, and an output
layer. The fully self-connected hidden layer consists of memory cells and corresponding gate units.
All units (except gate units) in all layers are connected to all units in higher layers.

Learning / Computational complexity. We use a variant of RTRL (e.g. Robinson and
Fallside, 1987) which properly takes into account the altered (sigma-pi-like) dynamics caused by
input and output gates. However, to ensure constant error backprop, like with truncated BPTT
(e.g. Williams and Zipser, 1992), errors arriving a t "memory cell net inputs" (for cell Cj, this
includes netci, netini, netouti) do not get propagated back further in time (although they do serve
to change the incoming weights). Only within memory cells, errors are propagated back through
previous internal states Sci . This enforces constant error flow within memory cells. Thus, like

with Mozer's focused recurrent backprop algorithm (Mozer, 1989), only the derivatives ::c;~ need

3

to be stored and updated. This in turn implies O(n) update complexity per time step, where n is
the number of weights: the algorithm is very effi cient.

Abuse problem and solutions. In the beginning of the learning phase, error reduction may
be possible even without storing information over time. Then the net will tend to abuse memory
cells , e.g. as bias cells. The difficulty is: it m ay take a long time to release abused memory cells
and make them available for further learning. A similar "abuse problem" appears if two memory
cells store the same (redundant) information. We investigate three solutions to the abuse problem:
{1) S equential network construction (e.g. Fahlman , 1991): a memory cell and the corresponding
gate units are added to the network whenever the error stops decreasing (see experiment 1 in
section 4) . {2} Output gate bias: each output gate gets a negative initial bias, to push memory
cell activations towards zero. Memory cells with more negative bias automatically get "allocated"
later (see experiment 2 in section 4). {3) Output gate competition: lateral inhibition ensures that
no two ouput gates can be act ive simultaneously (see experiment 2 in section 4).

M emory cell blocks. N memory cells sharing the same input gate and the same output gate
form a new structure called a "memory cell block of size N ". Memory cell blocks can store more
information than a single memory cell. In experiment 2 (section 4), we will use a memory cell
block of size 2.

4 EXPERIMENTS

4.1 EXPERIMENT 1: SEQUENCE PREDICTION

Task. There are p + 1 possible input symbols denoted by at, ... , ap-t , ap = x,ap+ l = y. ai
is "locally" represented by the p + 1-dimensional vector whose ith component is 1 (all other
components are 0). A net with p+ 1 input units and p+ 1 output units sequentially observes input
symbol sequences , one at a time, permanent ly trying to predict the next symbol. To emphasize
the "long time Jag problem", we use a training set consisting of only two very similar sequences:
(y, a t , a2, ... , ap- b y) and (x , at, a2, ... , ap-1 1 x). To predict the final element, the net has to learn
to store a representation of the first element for p time steps.

We compare "Real-T ime Recurrent Learning'' (RTRL, e.g. Robinson and Fallside, 1987) ,
the sometimes very successful neural sequence chunker (CH, Schmidhuber, 1992b), and our new
method (LST M). In all cases, weights are ini t ialized in [-0.2,0.2). Training is stopped after 5
million sequence presentations. Success is defi ned as "maximal absolute output error of all units
always below 0.25".

Architectures. RT RL: one self-recurrent hidden unit , p+ 1 non-recurrent output units. Each
layer has connections from all layers below. All units sigmoid in [0,1).

CH: both nets like with RTRL above, but one has an additional output for predicting the
hidden unit of the other one (see Schmidhub er, 1992b for details).

LSTM: like with RTRL, but the hidden unit is replaced by a memory cell and an input gate
(no output gate required) . g is sigmoid in [0,1) and h = id. Memory cell and input gate are added
once the error has stopped decreasing (see abuse problem: solution (1) in section 3).

R esults . Using RTRL and a 4 time step delay (p = 4) , ~ of all t rials were successful. No t rial
was successful with p = 10. With long time lags, only the neural sequence chunker and the new
approach achieved successful trials. With p = 100, the sequence chunker solved the task in only
~ of all trials. LSTM, however, always learned t o solve the t ask. Comparing successful trials only,
LSTM learned m u ch fast er. See table 1 for details.

EXPERIMENT lb: no local r egularities. With the task above, CH sometimes learns
to correctly predict the final element , but only because of predictable local regularities in the input
stream that allow fo r compressing the sequ ence. In an additional, more difficul t task (involving
many more different possible sequences) , we remove compressibility by replacing the determinis
tic subsequence (a1, a2, . .. , ap- l) by a random subsequence (of length p- 1) over the alphabet
a 1, a2, .. . , ap-1· As expected, the chunker fa i led to s olve this task. Our new approach, however,
was always successful. On average, success was achieved after 5,680 sequence presentations (mean

4

·· . . ·~·

Method Delay p Learning rate % Successful trials Success after

RTRL 4 1.0 78 1,043,000
RTRL 4 4.0 56 892,000
RTRL 4 10.0 22 254,000
RTRL 10 1.0-10.0 0 > 5,000,000
RTRL 100 1.0-10.0 0 > 5,000,000

CH 100 1.0 33 32,400
LSTM 100 1.0 100 5,040

Table 1: Percentage of successful trials and number of training sequences until success, for "Real
Time Recurrent Learning" {RTRL), neural sequence chunking {CH), and new method {LSTM).
Table entries refer to the mean of 18 trials. With 100 time step delays, only CH and LSTM achieve
successful trials. Even when we ignore the unsuccessful trials of the other approaches:
LSTM learns much faster.

of 18 trials). This illustrates: the new approach does not depend on sequence regularities.
EXPERIMENT le: very long time lags - no local regularities. There are p + 4

possible input symbols denoted al, ... ,ap-ltap,ap+l = e,ap+2 = b,ap+3 = x,ap+4 = y. a1, ... ,ap
are also called "distractor symbols". Again, ai is locally represented by the p+4-dimensional vector
whose ith component is 1 (all other components are 0). A net with p+4 input units and 2 output
units sequentially observes input symbol sequences, one at a time. The training set is the union
of two very similar subsets ofsequences: {(b,y,ai 1 ,ai2 , ••• ,aiq+k'e,y) Jl :s; it,i2, .. . ,iq+k::::; q}
and {(b,x,ai 11 ai2 , ••• ,aiq+k'e,x) 1 1::::; it,iz, ... ,iq+k::::; q}. To pick a training sequence, we
first select some non-negative integer k with probability P(k) = 1

1
0U0)k. Once k is selected,

a training sequence is generated according to a uniform distribution on the possible sequences
with length q + k + 4. The minimal sequence length is q + 4. The expected sequence length is
q + 14 = 4 + I:r= P(k)(q + k). The expected number of occurences of element ai, 1 ~ i ~ p,
in a sequence is q+~O ~ 9... The goal is to predict the last symbol, which always occurs after the
"trigger symbol" :. To ~redict the fin al element, the net has to learn to store a representation
of the second element for at least q + 1 time steps (until it sees the trigger symbol e). Success is
defined as "prediction error (for final sequence element) of both output units always below 0.2".

Architecture f Learning. Weights are initialized in [-0.2,0.2]. To avoid too much learning
time variance due to different weight initializations, the hidden layer has two memory cells (al
though one would be sufficient). There are no other hidden units. No unit is biased. his sigmoid in
[- 1, 1], and g is sigmoid in [- 2, 2]. This allows for pushing absolute memory cell outputs towards
1.0. Error signals occur only for predictions of the final sequence element. The learning rate is
always 0.01. Note that the minimal time lag is always q + 1 - the net never sees short training
sequences facilitating the classification of long test sequences.

Results. 20 trials were made for all tested pairs (p, q). Table 2 lists the mean of the num
ber of training sequences required by LSTM to achieve success (of course, RTRL and the other
competitors have no chance of solving tasks with time lags involving 1000 time steps).

Scaling. Table 2 shows: if we let the number of input symbols (and weights) increase in
proportion to the time Jag, learning time increases very slowly. This is a another remarkable
property of LSTM not shared by any other architecture we are aware of. Indeed, architectures like
RTRL are far from scaling reasonably - instead, they appear to scale exponentially, and appear
quite useless when the time lags exceed as few as 10 time steps.

Dish·actor influence. In Table 2, the column headed by 9.. reflects the expected frequency
of distractor symbols. Increasing this frequency decreases lear~ing speed. This effect is due to
weight oscillations caused by frequently observed input symbols.

5

q (time Jag -1) p (#random inputs)

50 50
100 100
200 200
500 500

1,000 1,000

1,000 500
1,000 200
1,000 100
1,000 50

i Success after
" 1 30,000
1 31,000
1 33,000
1 38,000
1 49,000

2 49,000
5 75 ,000
10 135,000
20 203,000

Table 2: LSTM with very long minimal time lags q + 1. p is the number of available distractor
symbols. ! is the expected number of occurences of a given distractor symbol in a sequence. The

last column lists the number of training sequences required by LSTM (of course, RTRL and the
other competitors have no chance of solving tasks with time lags involving 1000 time steps). If we
let the number of dish·actor symbols (and weights) increase in proportion to the time
lag, learning time increases very slowly. The lower block illustrates the expected performance
slow-down due to increased frequ ency of distractor symbols.

4.2 EXPERIMENT 2: EMBEDDED REBER GRAMMAR

Task. Symbol strings are produced by the "embedded Reber grammar", which is often used as
a benchmark for recurrent networks, e.g. Smith and Zipser (1989), Cleeremans et al. (1989) and
Fahlman (1991). Again, the task is to read strings, one symbol at a time, and to permanently
predict the next symbol.

Sa.~. TT/ REBER "" T

T ~ "" S ~ """"'" "'. ~~ p ~~ ~.____ T .~
~V/ ~""m/-

T cJ ~. GRAMMAR

Figure 2:
grammar.

Figure 3: Transition diagram for the embedded

Transition diagram for the Reber Reber grammar. Each box represents a copy of
a Reber grammar (see figure 2).

Starting at the leftmost node of the directed graph in figure 3, legal strings are generated se
quentially (beginning with the empty string) by following edges (and appending the corresponding
symbols to the current string), until the rightmost node is reached. Edges are chosen randomly if
there is a choice (probability: 0.5). This task is not trivial: to predict the symbol before the last
one, the net has to remember the second symbol.

Comparison. We compare RTRL (results taken from Smith and Zipser (1989), where only
the few successful trials are listed), the "Elman net" (ELM) (results taken from Cleeremans et al.,
1989), Fahlman's "Recurrent Cascade-Correlation" (RCC) (results taken from Fahlman, 1991),
and our new method (LSTM).

Training / Testing. We use local input/output representation as in section 4.1 (7 input

6

method hidden units learning rate % of success I success after I
RTRL 3 0.05 "some fraction" 173,000
RTRL 12 0.1 "some fraction" 25,000
ELM 15 0 >200,000
RCC 7-9 50 182,000

LSTM 3 blocks, size 2 0.5 100 8,440

Table 3: Embedded Reber grammar: percentage of successful trials and number of sequence pre
sentations until success for RTRL {results taken from Smith and Zipser, 1989), "Elman net"
{results taken from Cleeremans et al. , 1989), "Recurrent Cascade-Correlation" (results taken from
Fahlman, 1991) and our new approach {LSTM). Only LSTM always learns to solve the task.

-.Eve n when we ignore the unsuccessful trials of the other approaches: LSTM learns
nmch faster {the number of required training examples varies from 3,800 to 24,100) .

. units, 7 output units). Following Fahlman, we use 256 training strings and 256 separate t est
. strings. After string presentation, all activations are reinitialized with zeros. A trial is considered
successful if all string symbols of all sequences in both test set and training set are predicted
correctly: if the output unit(s) corresponding to the possible next symbol(s) is(are) always the
most active ones.

Archite ctures. Architectures for RTRL, ELM, RCC are reported in the references listed
above. For LSTM, we use 3 memory cell blocks. Each block has 2 memory cells. All activa tion
functions a re sigmoid in [0 , 1], except for h, which is sigmoid in [- 1, 1] , and g, which is sigmoid
in [-2, 2]. This allows for pushing the absolute memory cell outputs towards 1.0. All weights are
initialized in [-0.2, 0.2] . The initial output gate biases are - 1, -2,-3 (see abuse problem solution
(2) of section 3) . The learning rate is 0.5.

R esults . We use 3 different , randomly generated pairs of training sets and test sets. With
each such pair, 10 trials with different weight initializations are made. See table 3 for results
(mean of 30 trials). Unlike the other methods , LSTM always learns to solve the task. Even when
we ignore the unsuccessful trials of the other appr·oaches, LSTM learns much faster.

With additional output gate competition (solution (3) of the abuse problem of section 3),
learning was even faster.

5 CONCLUSION

Long Short Term Memory represents a significant improvement over previous neural algorithms
for dealing with arbitrary, unknown, temporal delays between input and target events.

References

Cleeremans, A., Servan-Schreiber, D., and McClelland, J. L. (1989). Finite-state automata and
simple recurrent networks. Neural Computation, 1:372- 381.

de Vries, B. and Principe, J. C. (1991) . A theory for neural networks with time delays. In
Lippmann, R. P. , Moody, J. E., and Touretzky, D. S., editors , Advances in Neural Information
Processing Systems 3, pages 162-168. San Mateo, CA: Morgan Kaufmann .

Elman, J . L. (1988). Finding structure in time. Technical Report CRL 8801, Center for Research
in Language, University of California, San Diego.

Fahlman, S. E. (1991) . The recurrent cascade-correlation learning algorithm. In Lippmann, R. P.,
Moody, J. E ., and Touretzky, D. S., editors, Advances in N eural Information Processing
Systems 3, pages 190- 196. San Mateo, CA: Morgan Kaufmann.

7

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen . Diploma thesis,
Institut fiir lnformatik, Lehrstuhl Prof. Brauer, Technische Universitat Miinchen.

Lang, K. , Waibel, A., and Hinton , G. E. (1990) . A time-delay neural network architecture for
isolated word recognition. N eural Networks, 3:23- 43.

Mozer, M. C. (1989). A focused back-propagation algorithm for temporal sequence recognition.
Complex S ystems, 3:349- 381.

Mozer, M. C. (1992). Induction of multiscale temporal structure. In Moody, J . E., Hanson, S. J .,
and Lippman, R. P., editors, Advances in Neural Information Processing Systems 4, pages
275- 282. San Mateo, CA: Morgan Kaufmann.

Plate ; T. A. (1993). Holographic recurrent networks. In S. J . Hanson , J . D. C. and Giles, C. L.,
editors, Advances in Neural Information Processing S ystems 5, pages 34- 41. San Mateo, CA:
Morgan Kaufmann .

Robinson, A. J . and Fallside, F . (1987) . The utility driven dynamic error propagation network.
Technical Report CUED/F-INFENG/TR.l , Cambridge University Engineering Department.

Schmidhuber, J . H. (1992a) . A fixed size storage O(n3) time complexity learning algorithm for
fully recurrent continually running networks. Neura l Computation, 4(2) :243- 248.

Schmidhuber, J. H. (1992b). Learning complex, extended sequences using the principle of history
compression. Neura l Computation, 4(2):234- 242.

Schmidhuber, J . H., Mozer, M. C., and Prelinger, D. (1993). Continuous history compression. In
Hiining, H., Neuhauser, S., Raus, M., and Ritschel, W ., editors, Proc. of Intl. Workshop on
Neural Networks, RWTH Aachen, pages 87- 95. Augustinus.

Smith, A. W . and Zipser, D. (1989) . Learning sequential structures with the real-time recurrent
learning algori thm. International Journal of Neural S ystems, 1(2):125-131.

Sun, G., Chen, H., and Lee, Y . (1 993). Time warping invariant neural networks. InS. J. Hanson,
J . D. C. and Giles, C. L., editors, Advances in Neura l Information Processing Systems 5,
pages 180- 187. San Mateo, CA: Morgan Kaufmann .

Williams, R. J . (1989). Complexity of exact gradient computation algorithms for recurrent neural
networks. Technical Report Technical Report NU-CCS-89-27, Boston: Northeastern Univer
sity, College of Computer Science.

Williams, R. J . and Zipser, D. (1992) . Gradient-based learning algorithms for recurrent networks
and their computational complexity. In Chauvin, Y. and Rumelhart, D. E., editors, Back
propagation: Theory, Architectures and Applications. Hillsdale, NJ: Erlbaum.

8

FKI-207-95 Sepp Hochreiter, Jiirgen Schmidhuber: Long Short Term Memory

ISSN 0941-6358

