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Abstract 

This paper introduces the "incremental self-improvement paradigm". Unlike previous methods, 
incremental self-improvement encourages a reinforcement learning system to improve the way it 
learns, and to improve the way it improves the way it learns ... , without significant theoretical limi­
tations - the system is able to "shift its inductive bias" in a universal way. Its major features are: 
(1} There is no explicit difference between "learning", "meta-learning", and other kinds of informa­
tion processing. Using a Turing machine equivalent programming language, the system itself occa­
sionally executes self-delimiting, initially highly random "self-modification programs" which modify 
the context-dependent probabilities of future action sequences (including future self-modification 
programs}. (2} The system keeps only those probability modifications computed by "useful" self­
modification programs: those which bring about more payoff (reward, reinforcement} per time than 
all previous self-modification programs. (3) The computation of payoff per time takes into account 
all the computation time required for learning - the entire system life is considered: boundaries 
between learning trials are ignored (if there are any). A particular implementation based on the 
novel paradigm is presented. It is designed to exploit what conventional digital machines are good 
at: fast storage addressing, arithmetic operations etc. Experiments illustrate the system's mode of 
operation. 

Keywords: Self-improvement, self-reference, introspection, machine-learning, reinforcement learning. 
Note: This is the revised and extended version of an earlier report from November 24, 1994. 
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1 INTRODUCTION 

A recent debate in the machine-learning community highlighted a fact that appears discouraging at first 
glance: in general, generalization cannot be expected, inductive inference is impossible, and nothing can 
be learned. See, e.g., (Dietterich, 1989; Schaffer, 1993; Wolpert, 1993; Schmidhuber, 1994). Paraphrasing 
from a previous argument (Schmidhuber, 1994): let the task be to learn some relation between finite 
bitstrings and finite bitstrings. Somehow, a training set is chosen. In almost all cases, the shortest 
algorithm computing a (non-overlapping) test set essentially has the same size as the whole test set. 
This is because most computable objects are irregular and incompressible (Kolmogorov, 1965; Chaitin, 
1969). The shortest algorithm computing the test set, given the training set, isn't any shorter. In other 
words, the relative algorithmic complexity of the test set, given the training set, is maximal, and the 
mutual algorithmic information between test set and training set is zero (ignoring an additive constant 
independent of the problem -see e.g. Kolmogorov, 1965; Chaitin, 1969; Solomonoff, 1964; Li and 
Vitanyi, 1993). Therefore, in almost all cases, (1) knowledge of the training set does not provide any 
clues about the test set, (2) there is no hope for generalization, and (3) inductive inference does not 
make any sense. 

Atypical real world / Previous lea1·ning algorithms. Apparently, however, generalization and 
inductive inference do make sense in the real world! One reason for this may be that the real world 
is run by a short algorithm. See (Schmidhuber, 1994). Anyway, problems that humans consider to be 
typical are atypical when compared to the general set of all well-defined problems. Otherwise, things like 
"learning by analogy", "learning by chunking", "incremental learning", "continual learning", "learning 
from invariances", "learning by knowledge transfer" etc. would not be possible, and experience with 
previous problems could not sensibly adjust the prior distribution of solution candidates in the search 
space for a new problem (shift of inductive bias, e.g. Utgoff, 1986). In fact, all previous learning systems 
are implicitly or explicitly designed to exploit task-specific regularities of some kind or another. 

No previous learning system, however, is designed to make optimal use of its computational time/space 
resources, by exploiting arbitrary, task-specific regularities (if there are any) . Such a system would have 
to be able (1) to develop arbitrary problem-specific representations, (2) to run arbitrary learning al­
gorithms, and (3) to find the "good" , problem-specific learning algorithms, as quickly as possible. In 
particular, it would have to be able to find algorithms for finding learning algorithms etc. 

Self-imp1·ovement. Is it possible to build such a system? A system that can tailor its learning 
behavior to the requirements of a given environment with arbitrary, initially unknown, problem-specific 
regularities? A system that can learn to improve its own learning strategy in a universal way, with­
out any significant theoretical limitations other than those imposed by the finiteness of the hardware? 
In principle, the answer is yes. The system described in this paper uses the novel "incremental self­
improvement paradigm" to exploit "benign" environments in a more general way than previous systems. 
Some of its properties are: (1) Unlike e.g. hillclimbingfevolutionaryfgenetic/other algorithms, it po­
tentially can evolve its own "smart" search strategies (as opposed to "dumb", non-adaptive strategies 
like the ones embodied by random mutation, "crossover" etc.). (2) Unlike with previous, less realistic 
approaches, each event in system life is viewed as a singular event - learning is inductive inference from 
non-repeatable experiences. (3) Unlike with previous approaches, the system 's objective function takes 
into account the computation time required for learning. 

Outline. Section 2 lists essential ingredients of the incremental self-improvement paradigm. Sec­
tion 3 exemplifies the basic principles, by describing and justifying a concrete (working) implementa­
tion. Twenty comments on both general and implementation-specific properties of incremental self­
improvement can be found in section 4. Illustrative applications to toy problems (including a simple 
"non-Markovian" maze task) will follow in section 5. Section 6 will then briefly describe the history of 
related ideas. 
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2 THE INCREMENTAL SELF-IMPROVEMENT PARADIGM 

Incremental self-improvement is a machine-learning paradigm designed for a system executing a lifelong 
sequence of actions in an arbitrary environment. The system's goal is to maximize cumulative payoff 
(reinforcement, reward) to be obtained throughout its entire span of life. To achieve its goal, the system 
continually attempts to create action subsequences leading to faster and faster payoff intake. The central 
ideas are as follows: 

1. Computing self-modifications. The initially highly random actions of the system actually 
are primitive instructions of a Turing machine equivalent programming language, which allows 
for implementing arbitrary learning algorithms. Action subsequences represent either (1) "nor­
mal" interactions with the environment, or (2) "self-modification programs". Self-modification 
programs can arbitrarily1 modify the probabilities of future action subsequences, including fu­
ture self-modification programs: the learning system is able to modify itself in a universal way. 
There is no explicit difference between "learning", "meta-learning", and other kinds of information 
processing. 

2. Life is one-way. Each action of the learning system (including probability modifying actions 
executed by self-modification programs) is viewed as a singular event in the history of system life. 
Unrealistic concepts such as "exactly repeatable training iterations", "boundaries between trials", 
"epochs", etc. are thrown overboard. In general, the environment cannot be reset. Life is one-way. 
Learning is inductive inference from non-repeatable experiences. 

3. Evaluations of self-modification programs. The system has a time-varying utility value, 
which is the average payoff per time since system start-up. Each self-modification program also 
has a time-varying utility value. This value is the average amount of payoff per time measured 
since the program began execution. Evaluations of utility take into account all the computation 
time required for learning, including the time required for evaluating utility. 

4. Useful self-modification programs accelerate payoff intake. The system keeps track of 
probability modifications computed by self-modification programs that it considers useful. Use­
fulness is defined recursively. If there are no previous useful self-modification programs (e.g. at 
system start-up), a new self-modification program is considered useful only for as long as its utility 
value exceeds the system's utility value. More recent self-modification programs are considered 
useful for as long as they have higher utility values than all preceding self-modification programs 
currently considered useful. 

Essentially, the system only keeps modifications to its probability values that originated from useful 
self-modification programs. The result is that payoff intake is constantly accelerated. Over time, 
the system tends to make better and better use of its computational resources. 

3 A CONCRETE, WORKING IMPLEMENTATION 

This section presents one of many possible implementations of the incremental self-improvement paradigm. 
The implementation makes use of an integer-based programming language. The language is assembler­
like and has primitive instructions designed to exploit what conventional digital machines are good at: 
fast storage addressing, jumping, basic arithmetic operations, etc. The language is universal (i.e., Tur­
ing machine equivalent). It is related to one previously published (Schmidhuber, 1994), but there are 
significant differences and extensions. In particular, this language is "self-referential" in a manner that 
will be described below. 

I Throughout thls paper, when referring to "arbitrary" modifications, functions, etc., there is only one essential require­
ment of these modifications or functions: they must be computable. 
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3.1 OVERVIEW 

The system has a finite amount of addressable storage broken into two groups: work cells and program 
cells. The system exists in an environment, that occasionally writes inputs into certain work cells. No 
assumptions are made about the environment (it may or may not be non-deterministic, for example). 
There is a fixed set I of integer instruction values and integer argument values. There is also an internal 
variable (not stored in an addressable cell) called the Instruction Pointer (JP), which always points to 
one of the program cells (initially to the first one). 

For each program cell and for every possible instruction and instruction argument, there is a proba­
bility value P;j, where i is the index of a program cell, and j E I. P;j specifies for cell i the conditional 
probability that, when pointed to by JP, its contents will be j. If JP= i and the contents of i is inter­
preted as an instruction, then the cells that immediately follow i will be interpreted as the instruction's 
arguments. If the instruction and its arguments pass a syntax check, the instruction is executed. This 
may result in modifications of JP and/or environment and/or storage. If the test is not passed, the JP is 
reset to the first program cell. If the instruction does not itself modify JP (with a "jump" instruction), 
then JP is incremented to point to the following cell. This instruction cycle is repeated over and over 
again and represents the basic operation of the system. 

Some instructions are special "self-referential" instructions. Two of them can address and modify 
arbitrary P;j values (and they are the only instructions that can do this). There is also another self­
referential instruction that groups a sequence of probability-modifying instructions and other instructions 
into a self-delimiting self-modification program - so named because the end of such a program is com­
puted by itself. Some of the (initially highly random) action subsequences executed during system life 
will indeed be self-delimiting self-modification programs. They can compute arbitrary sequences of mod­
ifications of P;j values, resulting in arbitrary modifications of context-dependent probabilities of future 
action subsequences, including future self-modification programs. 

Occasionally the environment may provide "payoff" - a real number indicating how well the system 
has done. The system's goal is to maximize the sum of all payoffs to be obtained throughout its entire 
(initially unknown) life span. This is done as follows: 

The payoff/time ratio is constantly monitored and updated after every instruction. There is an 
unmodifiable top-level credit assignment strategy. It also executes after each instruction except when a 
self-modification program is running. The task of the top-level is to countermand the modifications to 
the P;j values that were made by self-modification programs no longer considered useful (see recursive 
description in section 2). This countermanding is done by restoring "old" probability distributions saved 
onto a stack before the corresponding self-modification programs modified them. The computation time 
required for top-level management is taken into account when measuring usefulness. 

It will be seen that this scheme favors sequences of useful self-modification programs leading to faster 
and faster payoff intake. In particular, self-modification programs can prove their long term usefulness 
by setting the stage for additional, useful self-modification programs, which potentially include programs 
executing known (and not yet known) learning algorithms. This encourages "learning how to learn". 

3.2 TECHNICAL DETAILS 

Span of system life. For simplicity, we assume discrete time. System life begins at "birth," time step 
zero. It ends at "death," time step T. T is not necessarily known in advance. 

Goal / Payoff. Occasionally, the environment provides "payoff". Payoff is an integer number 
depending on the tasks to be solved. The sum of all payoffs obtained between birth and time t > 0 is 
denoted by R(t). Throughout its lifetime, the system's goal is to maximize R(T), the cumulative payoff 
at "death". At a given time, the system can only maximize future payoff - the past is already gone. 

Storage. The system's storage is a single array of cells. Each cell has an integer address in the interval 
[Min ,Max]. Maxis a positive integer. Minis a negative integer. a; denotes the cell with address i. 
The variable contents of a; are denoted by c; E [-M axint, M axint], and are of type integer as well 
(Maxint ~ Max; Maxint ~ abs(Min)). Special addresses, lnputStart, lnputEnd, RegisterStart, and 
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Primitive Semantics 

Stop() Halt current run 
Jmp(a1) JP.__ Cal 

Jmpleq(a1, a2, a3) If Cc01 < Cc. 2 JP - Ca3 
Jmpeq(a1, a2, a3) If Cc., = Cc. 2 JP .__ Ca3 
Add(a1, a2, a3) Cco3 -Cc., + Cca2 
Sub(a1, a2, a3) Cco3 .__Cc., -- Cc., 
Mul(a1 , a2, a3) Cc.3 -Cc., *Cc., 
Div(a1, a2, a3) Cc.3 .-- Cc.,/ cc.2 (integer division) 
Rem(a1, a2, a3) Cc03 .-- remainder(cc.,/cc.,) 

Inc(a1) Cc., .-- Cc. , + 1 
Dec(a1) Cc.' .__ Cc. , -- 1 

Mov(a1, a2) Cca2 ..,_. Cca 1 

Init(a1, a2) Cal-ProgromSlart-2 - a2 
Output;( ... ) i-th problem specific primitive for influencing the environment 
Input;( ... ) i-th primitive for perceiving environmental input 

GetP(a1, a2, a3) Cc. 3 - round(Maxint * Pc., ,c. 2 ) 

IncP(a1, a2, a3) 'Vk f. Co2: Pc., ,k - 0.01cc.3Pc. 1 ,k i Pc. 1 ,c.2 .__ 1-- 0.01cc.3(1- Pc. 1 ,c.2) 
DecP(a1, a2, a3) 'Vk f. . p l ·U.uu •• 3r •• , .•• , p . p 0 01 p Co2. c.,,k <-- 1-P ,, c. , ,k, Cat,Co2 <-- . Cca3 Cat ,Ca2 . .. 

EndSelfMod() Enable top level strategy for restoring probabilities (see text) 

Table 1: Semantics of primitives and their parameters. The "normal" primitives are shown in the top 
block; the "self-referential" primitives are shown in the bottom block. Note the extensive use of double­

. indexed indirect addressing. Results of arithmetic operations leading to underfiowjoverfiow are replaced 
by -M axint /M axint, respectively. The same holds for positive and negative divisions by zero. DeeP 

· and IncP have no effect if the indirectly addressed cell contents cc.3 are not an integer between 1 and 99, 
or if the corresponding probability modification would lead to at least one P value below MinP. Rules 
for syntactic correctness: JP may point to any program cell a;, i < Max- 3 {enough space has to 
be left for arguments). Operations that read cell contents {such as Add, Move, Jumpleq etc.) may read 
only from existing addresses in storage. Operations that write cell contents (such as Add, Move, GetP 
etc:) may write only into work area addresses in [M in, ProgramStart- 1) . 

ProgramStart , are used to further divide storage into segments: Min < JnputStart ~ JnputEnd < 0 = 
Register Start < ProgramStart < M ax. The input area is the set of input cells {a; : I nputStart ~ i ~ 
I nputEnd}. The register area is the set of register cells {a; : 0 ~ i < ProgramStart} . "Registers" 
are convenient for indirect-addressing purposes. The program area is the set of program cells {a; : 
ProgramStart ~ i < M ax} . Integer sequences in the program area are interpreted as executable code. 
The work area is the set of work cells {a; : M in ~ i < ProgramStart}. Instructions executed in the 
program area may read from and write to the work area. Both register area and input area are subsets 
of the work area. 

Environmental inputs. At every time step, new inputs from the environment may be written into 
the input cells. 

Primitives. The number of instructions is nop• (nop• << Alfaxint). Each such "primitive" is rep­
resented by a unique number in the set {0, 1, ... , nop•- 1} (due to the code being written in C). The 
primitive with number j is denoted by Pi. Primitives may have from zero to three arguments, each 
of which has a value in {0, 1, ... , nop• - 1}. The semantics of the primitives and their corresponding 
arguments are given in Table 1. The non-self-referential ("normal") primitives include actions for com­
parisons, and conditional jumps, for copying storage contents, for initializing certain storage cells with 
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small integers, and for adding, multiplying, dividing, and halting. They also include output actions for 
modifying the environment, and input actions for perceiving environmental states. The "self-referential" 
primitives will be described in detail below. 

Primitive and argument probabilities. For each cell a; in the program area, there is a discrete 
probability distribution P; over the set of possible cell contents. The variable JnstructionPointer (JP) 
always points to one of t he program cells. If JP = i and i < M ax - 3, then Pii denotes the probability 
of selecting primitive Pi as the next instruction. The restriction i < M ax- 3 is needed to leave room for 
the instruction's possible arguments should it require any. Once Pi is selected: Ci +-- j. If Pi has a first 
argument, then Pi+l,k is the probability of k being chosen as its actual value, fork E {0, 1, ... , n 0p8 -1}. 
Once some k is selected: Ci+l +-- k. Analoguously, if Pi has a second argument, then Pi+2,1 is the 
probability of I being chosen as its actual value, for I E {0, 1, . .. , n 0p8 - 1}. Once some l is selected: 
ci+2 +-- I. And finally, if Pi has a third argument, then Pi+a,m is the probability of m being chosen as 
its actual value, for mE {0, 1, ... , n 0 p8 - 1}. Once some m is selected: Ci+3 +--m. 

Arguments point to storage addresses. To reduce the number of probability values for each program 
cell, primitive arguments are restricted to only n 0 p8 different values. Therefore, to allow all storage 
cells to be addressed, double indexed indirect addressing is used for most instructions. That is, 
(for most instructions) the arguments point to cells in the register area, which in turn point to cells in 
storage. Recall that the range of values available to registers (and other work cells) is far less restricted, 
which effectively allows all storage cells to be addressed. 

Self-referentia l prim itives. Two special primitives, DeeP and JncP, may be used to address and 
modify the current probability distribution of any program cell (see Table 1). With the action DeeP, 
the Pii value for a particular cell/value pair (a;,j) can be decreased by some factor in {0.01, 0.02, 
... , 0.99}. The probabilities for that cell are then normalized. Likewise, with the action IncP, the 
complement (1 - P;i) of the P;i value for a particular cell a; and value j can be decreased by a factor in 
{0.01, 0.02, . .. , 0.99} (and the cell probabilities are again renormalized). DeeP and JncP have no effect 
if the indirectly addressed cell contents cc.3 (see Table 1) are not an integer between 1 and 99, or if the 
corresponding probability modification would lead to at least one P value below MinP (a small positive 
constant). 

The primitive GetP can be used to write scaled versions of current probability values into work cells. 
GetP is potentially useful for purposes of introspection. 

Instruction cycle. A single step of the interpreter works as follows: if JP points to program cell a;, 
a primitive and the corresponding arguments are chosen randomly according to the current probability 
distributions, as already described. They are sequentially written onto the program area, starting from 
a;. Syntax checks are performed. Rules for syntactic correctness are given in the caption of Table 1. If 
syntactically correct, the instruction gets executed. Otherwise, the current "run" (see next paragraph) 
is halted. If the program did not halt nor change the value of JP (e.g. by causing a jump), JP is set to 
the address of the cell following the last argument of the current instruction. 

Runs. In the beginning of a "run", JP is set equal to ProgramStart, and the instruction cycle is 
repeated until a halt situation (e.g. syntax error) is encountered. Due to MinP being positive, there is 
always a non-vanishing halting probability. 

System life. At time step 0, storage is initialized with zeros. The probability distributions of all 
program cells are initialized with maximum entropy distributions (Shannon, 1948). That is, all P;i 
values are initialized to the same value, so that there is no bias for a particular value in any cell . After 
initialization, runs are repeated over and over again until time T. Recall that T does not have to be 
known in advance. 

Work area as part of the environment. Neither storage nor environment are re-initialized 
after each run. The system might use the environment to store representations of previous events, by 
executing actions that modify the environment2. Likewise, the program area may use the work area 
to store representations of previous events. Thus, the work area may be viewed as part of the total 
environment of the program area. 

2 Leslie Kaelbling sometimes refers to this as "writing on the walls" but says that the "real" name is "stigmergy" 
(personal communication, 1994/1995). 
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Programs. Each subsequence of primitives executed during system life is called a program. Prim­
itives can be combined to form programs for performing arbitrary computations. The only limitations 
are those imposed by the necessarily finite hardware. 

Self-delimiting self-modification programs. Occasionally, the system will modify one of its 
probability distributions, by using lncP or DeeP. Occasionally, it will execute the EndSelfMod primitive. 
The first probability modification after an EndSelfMod action or after system "birth" begins a self­
modification program. The self-modification program ends itself by executing the EndSelfMod action. 
Due to the universality of the underlying programming language, self-modification programs may result 
in specific, arbitrary modifications of context-dependent probabilities of future programs. However, due 
to MinP being positive, the probability of selecting and executing a particular instruction at a particular 
time cannot entirely vanish. 

The remainder of this section is devoted to basic concepts required to ensure that the system keeps 
only probability modifications computed by "useful" self-modification programs: essentially those which 
bring about more payoff per time than all previous self-modification programs. 

. Payoff/time ratios. Suppose a self-modification program s started execution at time t 1 and com­
pleted itself at time t2 . Fort ~ t2 and t $ T , the payoff/time ratio Q(s, t) is defined as 

Q(s, t) = R(t)- R(t1). 
t- tl 

DEFINITION: useful self-modification programs. The usefulness of a self-modification program 
is defined recursively: at birth, there are no useful self-modification programs. At some later point t in 
system life, we consider two cases: a self-modification program s that ended itself at time t 2 is considered 
useful if 

(1) (a) there are no previous self-modification programs that are considered useful, and 

(b) for all t:c ~ t2, t:c ::=; t: Q( s, t:c) > R~:·,) (the total payoff/time ratio at time t:c ). Or 

(2) (a) there are previous self-modification programs considered useful, and 

(b) for all t:c ~ t 2,t:c ::=; t: Q(s,t:c) > Q(s',t:c), where s' is the most recent useful self-modification 
program preceding s. 

The. computation of payoff/time ratios always takes into account all computation time, 
including time required for learning. 

FACT 1. At a given time, to decide whether the most recent useful self-modification pro­
gram remains useful, one needs to compare its current payoff/time ratio only to the current 
payoff/time ratio of the most recent previous useful self-modification program. 

FACT 2. A completed self-modification program is considered useful as long as average 
payoff intake since its beginning occurred faster than with all previous self-modification 
programs still considered useful. 

Proof. See definition of usefulness above. 

Keeping track of useful self-modifications. In order to evaluate whether life after the beginning 
of some self-modification program was "better" or "worse" than before, and to be able to countermand 
probability modifications computed by self-modification programs that seem useless or even harmful, 
a stack, S, is introduced. The k-th entry of S, k E {O,l , ... ,StackSize}, is denoted S(k). S(k) 
consists of the following variables: S(k).t, S(k).R, S(k) .address, S(k) .first, and S(k) .oldP (a vector 
of n0 p1 variables). The variable sp points to the current topmost stack entry. If sp = 0 (the value at 
system start up), the stack is empty. If the system modifies some probability distribution Pi at time 
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t (by using IncP or DeeP) , sp is incremented, and the following values are pushed onto the stack: 
the current time, the total payoff so far, the address of the modified program cell, its old probability 
distribution right before the current modification (represented by n0 p3 real values), and a pointer to the 
stack entry corresponding to the first probability modification computed by the current self-modification 
program. More formally: S(sp).t ._ t; S(sp).R ._ R(t); S(sp).address r- i; S(sp) .oldP r- Pi before the 
modification (represented by n0 p 3 real values). If t marks the beginning of a self-modification program, 
then S(sp) .first .- sp. Otherwise (in the middle of a self-modification program), S(sp).first ._ S(sp­
l).first. The zeroth stack entry, which cannot be popped, is initialized as follows: S(O).t .- 0; S(O) .R-
0; S(O).first .- 0. The remaining values are undefined. 

UNMODIFIABLE TOP-LEVEL CREDIT ASSIGNMENT STRATEGY: inductive infer­
ence based on single experiences. It is very simple. If there is no self-modification program running, 
then after each completed instruction cycle, a decision is made as to whether probability distributions 
modified by previous self-modification programs should be kept or replaced by their old values from the 
stack. The process works as follows. After each completed instruction cycle, do: 

(1) If there currently is an incomplete self-modification program (not yet ended 
by an EndSelfMod action), do nothing. 

(2) Else successively pop and restore saved probability distributions, until the 
payoff/time ratio since the beginning of the most recent self-modification pro­
gram that computed modifications of probability distributions currently saved 
on the stack exceeds the payoff/time ratio of the preceding such self-modification 
program (if there is any- otherwise compare with the total payoff/time ratio). 
More formally (t denotes the current time): 

While sp =F 0 and 

R(t)- S(S(sp).first).R < R(t)- S(S(S(sp).first - l).first).R 
t- S(S(sp).first).t - t- S(S(S(sp).first- l).first).t 

do: Ps(Jp).i - S(sp).oldP; sp r- sp- 1. 

FACT 1 above says that at a given time, the top-level strategy needs to consider only the two most 
recent self-modification programs whose direct effects have not yet been countermanded, in order to 
decide whether to pop the stack. Then why do we need a while loop as above? The reason 
is that popping and restoring probability distributions takes time (t increases during execution of the 
while loop), possibly causing utility values to drop. Therefore, in the process of popping and restoring 
distributions modified by one program, the payoff/time ratio of the preceding program may fall enough 
so that the distributions it modified must be restored, too. The process can potentially continue until 
the stack is completely empty. 

FACT 3. After each instruction (except during the execution of a self-modification program), 
the top-level ensures that the beginning of each completed self-modification program that 
computed valid probability modifications has been followed by faster payoff intake than the 
beginnings of all previous such self-modification programs. All currently valid probability 
modifications were computed by currently useful self-modification programs. The nature of 
the environment does not matter. 

Proof. See formal top-level description and FACT 2. 
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4 TWENTY COMMENTS 

The experiments are described in section 5. If you are in a hurry, you can skip these (mostly rather 
obvious) comments. 

1. Why self-delimiting self-modification programs? The EndSelfMod primitive allows the sys­
tem to delay top-level evaluations of probability modifications arbitrarily. The expectation of the 
delay remains finite , however, due to MinP being positive. The system's delaying capabilities 
are important, for two reasons: (1) In general, payoff events will be separated by long (unknown) 
time lags. Hence, novel probability modifications are not necessarily bad if they do not lead to 
immediate payoff. The system itself should be able to learn how much time to spend on waiting for 
first payoff events. (2) Two successive modifications of two particular probability distributions may 
turn out to be beneficial, while each by itself may be harmful. Therefore, the system should be able 
to compute arbitrary sequences of probability modifications, before facing top-level evaluations. 

Delaying top-level evaluations does cost time, though, which is taken into account when usefulness 
is measured. In the long run, the system is encouraged to create useful self-modification programs 
of the appropriate size. 

2. Non-decreasing search space. Due to MinP being positive, there will always be a non-vanishing 
(possibly tiny) probability of executing any program at any time. Thus, the space of possible action 
subsequences will never really decrease. Only the probability distribution on this space (the bias) 
can change. But there cannot be total determinism corresponding to total lack of exploration. 

3, Speeding up payoff intake/ Learning how to learn. The top-level takes the entire learning 
history into account: note that at timet, the value t- S(S(sp).first) .t stands for all the time 
since the beginning of the most recent self-modification program whose effects have not yet been 
countermanded. The utility value of a self-modification program is based on total elapsed time 
since the program began. This includes the computation time required for learning. Over time, 
the system tends to make better and better use of its limited temporal and spatial resources: due 

·. to FACT 3, self-modifications that speed up payoff intake in the long run are preferred. So are 
self-modifications speeding up the search for self-modifications speeding up payoff intake. This 
encourages "learning how to learn", and "learning how to learn how to learn" ... , and represents an 
essential difference to previous approaches to continual learning, see (Ring, 1994) . 

4: Directed mutations as opposed to random mutations. Unlike evolutionary and genetic 
algorithms (Rechenberg, 1971; Schwefel, 1974; Holland, 1975; Hoffmeister and Back, 1991; Koza, 
1992), self-modification programs may lead to very specific, directed sequences of strategy muta­
tions, as opposed to undirected, totally random mutations. The system can arbitrarily modify its 
prior distribution on the space of solution candidates. Just as evolution "discovered" that having 
the "genetic crossover operator" was a "good thing", the system is potentially able to discover that 
various more directed search strategies are "good things" . 

5. Life is one-way. Note that only direct effects of self-modification programs on primitive proba­
bility distributions can be countermanded by the top-level strategy. In realistic environments, it 
is not possible to countermand all indirect effects and effects of the system behavior on the un­
known environment- life is one-way. However, the top level may encourage the development of 
environment-specific strategies for countermanding certain indirect effects. Such strategies will be 
kept as long as they appear to be more useful than previous strategies. By focusing on the obser­
vation and control of changes of probability distributions (as opposed to general changes involving 
internal state and environment), the top level attempts to control a complex world by controlling 
a small part of it, namely, the variable probability distributions. The latter, however, may have 
an arbitrary influence on themselves and the rest of the world. 
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6. "Usefulness" and "true usefulness". Incremental self-improvement keeps useful self-modifi­
cations only in the sense that "useful" was defined above. However, the system will never have a 
proof that a particular self-modification program was the "true" reason for more payoff. In fact, 
what the system actually does is inductive inference based on single experiences: at one 
point in its life it did something, and at some later point it measures apparent overall effects on 
its performance. What appeared to be "useful" up until now is assumed to remain "useful" in the 
future, though it may have been just a fluke that might later turn out actually to have harmful 
consequences: "shifts of inductive bias" generated by the system itself may be evaluated as harmful 
in the eyes of a "god-like" external observer with additional prior knowledge. But without access to 
complete knowledge of the environment, the system is forced to rely upon its previous experience 
to decide what's harmful and what's not. This is what inductive inference is all about3 . 

7. What about self-modifications "useful just by chance"? This question is related to the 
last comment. For the sake of the argument, suppose a self-modification program is considered 
useful by the system, but not by a god-like external observer. This does not at all imply a 
fatal catastrophy: typically, the reason for the apparent usefulness of the actually useless (or 
even harmful) self-modification program will be that its long-term effects were overcompensated 
(before the corresponding probability modifications were cancelled) by later, "truly" useful self­
modification programs. And note that the system will always have a chance to undo previous 
probability modifications, by executing appropriate additional self-modifications. 

8. Universality/ Learning to remember. It is not difficult to show that the primitives in Table 1 
form a universal set in the following sense: they can be composed to form programs writing any 
computable integer sequence onto the work area, within the hardwired size and range limitations. 
Note that the primitives make it easy to create action sequences for handling stacks, recursion, etc. 
The scheme allows for very general sequential interaction with the environment (given appropriate 
problem-specific actions that translate storage contents into output actions and environmental 
changes). The self-referential primitives are designed to allow for specific changes of probability 
distributions of all program cells (possibly done very quickly, making things like "one-shot learning" 
possible). 

Universality implies that the system is in principle capable of creating programs for storing repre­
sentations of environmental events. Unlike with most previous reinforcement-learning algorithms, 
see e.g. (Barto, 1989; Watkins, 1989; Dayan and Sejnowski, 1994; Williams, 1992; Sutton, 1991), 
there is no need for a Markovian interface (Schmidhuber, 1991) between the environment and the 
learning system. Also, there is no need for a "discount factor" discounting the system's expectation 
of future payoff in case of potentially infinite life spans. 

9. Doesn't the system start with a huge disadvantage? Conventional learning systems have 
a fixed learning strategy for selecting and testing solution candidates from some "non-universal" 
search space. Incremental self-improvement, however, does not only search for solutions to some 
specific task, but also for learning strategies for finding solutions. Doesn't the system's universality 
increase its search space? In general, it does. With many toy tasks, an external user will be able 
to provide a conventional learning algorithm with enough problem-specific bias to solve a certain 
task more quickly than (initially less informed) search based on incremental self-improvement. On 
the other hand, however, unlike previous learning methods, incremental self-improvement can use 
experience to modify its search in a universal way, by exploiting arbitrary task-specific regularities 
if there are any, and by creating its own problem-specific bias. In the long run, this advantage may 
outweigh initial disadvantages due to universality. 

3 Perhaps, tomorrow you will be punished for scratching your ear 10 years ago - maybe this is in the nature of the 
algoritlun running the universe. There is no proof that this is n ot going to happen (though our environment appears 
t o be somewhat more benign than this). In general, you would not have a chance to discover the "true" reason for the 
punislunent. 
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10. Inserting prior bias / Efficien cy considerations. Primitive instructions need not be low-level 
instructions like those in Table 1. They may correspond to complex submodules reflecting the 
user's prior knowledge. Informally, there is one general constraint to obey (Schmidhuber, 1994): 
whatever is computable on the used hardware, should be computable just as efficiently (up to a 
small constant factor) by a program written in the programming language. For instance, on a 
typical serial digital machine we would like to have instructions exploiting fast storage addressing 
mechanisms. We would not want to limit ourselves to the simulation of, say, a slow one tape 
Turing machine. Likewise, on a machine with many parallel processors we would like to use a set 
of instructions allowing for processes with maximal parallelism. 

11. Bias towards short runs. Unlike Levin's universal search algorithm (which is optimal for a 
wide variety of non-incremental search problems based on trials with exactly repeatable initial 
conditions; see Levin, 1974), the system presented here has no explicit bias towards runs with low 
Kolmogorov complexity or low Levin complexity (Kolmogorov, 1965; Chaitin, 1969; Solomonoff, 
1964; Levin, 1974) -e.g. runs based on only few instructions repeated over and over again. In 
principle, however, it may create/strengthen such a bias, and the bias will stick if it appears to be 
useful. 

Of course, a priori bias of this kind can be explicitly introduced by the programmer. One possibility 
is .to reward low-complexity runs more than others (by providing more external payoff). Another 
possibility is this: instead of selecting primitives randomly (according to the current probability 
distributions) at each time step of each run, make random selections only if JP points to a program 
cell that has not yet been used during the current run. Otherwise use the instruction executed 
during the most recent visit of the program cell. This leads to an explicit bias towards low 

· algorithmic probability (Solomonoff, 1964), and has been done previously in (Schmidhuber, 1994). 
Occasionally, this will lead to non-halting programs. For such cases, upper runtime bounds need 
to be introduced. In the spirit of the incremental self-improvement paradigm, such time bounds 
should be computed by the system itself (using appropriate special primitives). For an additional 
comment on inserting prior bias, see section 5.3. 

12. Exploration/exploitation tradeoff. The system itself can decide how much time it wants to 
spend on exploring effects of new action sequences, and how much time it wants to spend on 
exploiting beneficial effects of action sequences that it tried before. In the long run, the system 
will prefer those strategies that led to the best (environment-specific) balance between exploration 
and exploitation. 

13. One task, many tasks. An external user may choose a way of translating tasks and system 
performance into payoff. From the user's point of view, there may be many tasks, and the system 
itself may choose which to attack first. From the system's point of view, there is only one task, 
namely, to maximize cumulative payoff. Note that every task that requires the maximization of 
some kind of reward may be viewed as being decomposable into many tasks: the first task is to 
generate actions leading to a little bit of reward . The next task is to generate actions leading to 
more reward , etc. 

14. What if "the task changes?" In the light of what has been said above, this is actually a 
misleading question. It is tinged by the idea of "exactly repeatable training events" suddenly 
being replaced by different "exactly repeatable training events". But, in this paper there is no 
unrealistic a priori assumption of exactly repeatable training events. From the system's point 
of view, there is only one task, namely, to maximize cumulative payoff (see previous comment). 
The system always tends to keep the strategy that led to the best overall results so far. Without 
additional prior knowledge, there are no alternatives: the system cannot know whether payoff 
changes are due to external "task changes", or whether they are due to long term effects of its 
own previous actions (as discussed in comments 6 and 7 above). Life is one-way, and change 
is in the nature of a dynamic environment. For the sake of the argument, however, suppose a 
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particular sequence of probability modifications appears justified at a certain point t 1 , and the 
external observer decides that the "first task is solved". At time t2 > t 1 , however, the system 
fails to keep its old payoff/time ratio because the "task has changed" in the eyes of the external 
observer. Then, over time, direct effects of previously "useful" self-modification programs will 
tend to be countermanded in inverse order of their occurrence (unless they don't get protected 
by additional useful self-modification programs), until the current probability distributions reflect 
knowledge useful for solving both tasks. All probability modifications will be countermanded only 
if the initial strategies developed for solving the first task are useless for solving the second task. 
But without additional prior knowledge, this does make sense from the learning system's point of 
VIeW. 

15. Teacher as part of the environment. (1) Of course, an external teacher may provide task­
specific inputs conveying information about task changes. But the system has first to learn to 
make use of these inputs. Analoguously, children first have to learn to interprete sound waves 
emitted by their parents as teacher signals. They will learn this if it turns out to be useful in the 
long run. (2) To achieve his teaching goals, the teacher may directly influence the way payoff is 
generated, thus influencing the context sensitivity of the reward. In both cases, it is natural to 
view the teacher as part of the environment. 

16. Direct teacher forcing. The teacher may decide that the current strategy of the system (at 
time t1) is actually a valuable one and should not be countermanded. Instead of influencing payoff 
generation (see previous comment), he may decide to influence the learning process directly, by 
preventing the top-level strategy from countermanding probability modifications generated by self­
modification programs considered useful at time t1. This would be one way to insert additional 
prior knowledge. 

17. Success history in stack. At a given time, the current history of useful self-modifications is 
reflected by the current stack entries. Each self-modification program "on the stack" was followed 
by faster payoff intake than all previous self-modification programs "on the stack". This is true 
despite the fact that time for computing and testing later self-modification programs is taken into 
account. 

18. Useful self-modification programs are rare. Each self-modification program undergoes a test 
which may last for the entire remaining system life, provided the program is considered useful for 
such a long time. Typically, only few self-modification programs will be followed by faster payoff 
intake than all previous useful self-modification programs. Therefore, the costs of saving "old" 
probability distributions in the stack typically will tend to remain comparatively small. This is 
borne out by the experiments in section 5. 

19. Limited stacksize - "circular" stack. In practical applications, the stack will be finite. A 
circular stack that overwrites earlier stack entries (starting from the bottom entries) could keep 
track of self-modifications after stack overflow (circular stack). Only the StackSize most recent 
probability modifications could then be directly restored by popping. However, every probability 
distribution can be indirectly restored by additional self-modification programs executed by the 
system itself. In the experiments conducted so far , there never was a danger of stack overflow. See 
section 5. 

It is intended to introduce additional introspective primitives for addressing and examining stack 
entries (in the style of GetP). This is not yet implemented, however. 

20. When to apply incremental self-improvement? It is always possible to construct "cruel" 
environments, where previous experiences are necessarily useless for future planning. Indeed, as 
can be seen from what has been said in the introduction, almost all thinkable environments are 
of this kind (except those which we generally are most interested in : those with regularities). 
The incremental self-improvement paradigm won't be of any help in the general case. The same 
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Primitive Semantics 

Write(a1, a2) 
Read(al, a2) 

Table 2: Semantics of problem specific primitives and their parameters. Again, double-indexed indirect 
addressing is employed. See text for rules for syntactic correctness. Compare with Table 1. 

5 

holds for any other learning paradigm, though. However, if certain aspects of the environment 
"repeat themselves", if experiments conducted in the environment do not change it such that 
previous knowledge becomes totally useless, if the tasks to be solved do exhibit "regularities", 
then the incremental self-improvement paradigm appears to be a very general way of exploiting 
this. Incremental self-improvement should be of interest in cases where the user's bias is already 
captured by the choice of the initial programming language, and where the user expects additional 
(yet unknown) problem-specific regularities. 

ILLUSTRATIVE EXPERIMENTS 

The following brief case studies are not designed to impress but to illustrate basic aspects of the system. 
The first task requires to compute regular integer strings. The second task is a maze task from (Sutton, 
1991). With both tasks, the system uses low-level problem-specific primitives in addition to the general 
primitives from Table 1. The primitives reflect the system's initial (weak) bias. Of course, different 
problem-specific primitives lead to different initial bias and performance. A task that can be solved 
within a few minutes using one set of primitives may require a day of computation time using a different 
·set of primitives. The purpose of this section, however, is not to perform a statistically significant 
experimental evaluation of the system's initial bias, or to study effects of introducing different kinds 
of initial bias, or to compare the system to other learning systems with different initial bias. Instead, 
this section's purpose is to describe typical aspects of system lives illustrating the system's basic (bias 
independent) mode of operation. 

5.1 WRITING VARIABLE SEQUENCES 

Task. The external environment consists of an array of 30 variables Vo, vb ... I v29· The i-th variable 
is denoted by V;. Its current contents are denoted by C; E [-M axint, M axint]. Time is measured in 
discrete time steps. At time step 0, all variables are initialized with zeros. Every 1000 time steps, the 
number of variables whose values equal their addresses is written into a special input cell. This 
number is the current payoff. Then, all variables are re-initialized with zeros. The goal is to maximize 
cumulative payoff. 

Details. In addition to the 17 general primitives from Table 1 (not counting input/output primi­
tives), there are two problem-specific primitives. Each has two integer arguments: Write(al, a2) writes 
the contents of the storage cell indirectly addressed by the first argument into the variable indirectly 
addressed by the second argument. Read(al, a2) writes the contents of the variable indirectly addressed 
by the second argument into the work cell indirectly addressed by the second argument. See Table 2. 
Write and read operations outside the valid ranges halt the current run. 

Since nopJ = 17 + 2 = 19, all initial probabilities of all possible contents of all program cells are equal 
to 1

1
9 • Parameters for storage size etc. are: Min = -1000, Max = 100, ProgramStart = bottom(n"r) , 

MinP = 0.001, StackSize = 10, 000, Maxint = 10,000. To inform the system about what is going on, 
the following values are written into special input cells whenever they change: JP, sp, and the remainder 
of tj M axint (integer division, where t denotes the current time). 
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Measuring time. By definition, each computation that requires the consideration of all nops proba­
bilities of some program cell (such as selecting an instruction, selecting a parameter, pushing or popping 
probability distributions during top-level management, etc.) costs one time step. Other computations 
do not cost anything. This ensures that measured time is of the order of total cpu-time. The somewhat 
unelegant way of measuring time was introduced because measuring cpu-time directly turned out to be 
somewhat unreliable. 

How difficult is this task? For a number of reasons, the task is non-trivial- the system does not 
appear to have much built-in bias towards the task: (1) Only one of the 19 primitives (Write) may affect 
variable contents at all. But initially, the system does not even have such seemingly trivial knowledge 
- there is no buil t-in idea about which actions may lead to payoff. Therefore, it has to find out on 
its own. (2) The values referred to by the two arguments of Write have to be identical and within the 
required ranges to lead to a useful result. (3) There are 30 different variables with 30 different values. 
Only one of them, namely Vo, is correctly re-initialized with its own address after each payoff event. ( 4) 
There is no explicit a priori bias towards short programs, such as the one in (Schmidhuber, 1994) for a 
related task. (5) Finally, recall that the work area is never re-initialized after system birth. Hence, as 
mentioned above, it may be viewed as part of the environment of the program area. The environment 
is changing quite unpredictably, due to actions executed by the system itself. 

Performance was measured with and without self-modification capabilities. In the latter case, the 
primitives IncP and DeeP had no effect. Both versions were run for 109 time steps, corresponding to 
106 payoff events, or about half a day of computation time on a SUN SPARC 10. Note that the optimal 
cumulative payoff is 3.0* 107 . This value can be achieved only by a system with "optimal" prior bias­
starting at birth, such a system keeps executing optimal actions without having to learn anything. 

5 .1.1 RESULTS WITHOUT SELF-MODIFICATIONS. 

At system death, total payoff equaled about 1.41 * 106 • Average payoff per payoff event was about 
1.41. Most of the total payoff (about 1.0 * 106 ) could be attributed to the fact that Vo was correctly 
re-initialized after each payoff event: the system received a little bit of payoff even in cases where it did 
not execute any write operations. As expected, average payoff intake did not significantly increase or 
decrease during the lifetime of the system. However , this was not safely predictable in advance, due to 
the changing environment. 

5.1.2 RESULTS WITH SELF-MODIFICATIONS. 

At system death, total payoff was about 1.87 * 107. To find out whether the incremental self-improvement 
paradigm did indeed lead to incremental self-improvement, let us have a look at the learning history. 

Self-generated reduction of numbers of probability modifications. In the beginning, the 
system computed a lot of probability modifications but soon preferred to decrease the number of prob­
ability modifications per time interval. There were 36,729 probability modifications during the first 106 

time steps. There were 9,045 probability modifications during the second 106 time steps. Almost all 
probability changes were countermanded by the top-level strategy; by this time, the stack had only 
49 entries corresponding to 27 useful self-modification programs. Most of the useful self-modification 
programs computed either one or two probability modifications. After 107 time steps, there were only 
about 4,000 probability modifications per 106 time steps . 

. Speed-up of payoff intake. By then, the system behaved much more deterministically. Average 
payoff per payoff event had increased from 1.4 to 10.5 (the optimal value being 30.0, of course), and 
the stack had 66 entries. These entries corresponded to 66 modifications of single cell probability 
distributions, computed by 40 self-modification programs - each being more "useful" than all the 
previous ones. Storage a lready looked very messy. For instance, almost all cells in the work area 
were fi lled with (partly big) integers quite different from the initial values. Recall that the work area is 
never re-initialized and may be viewed as part of the environment of the program area. 

First maximal payoff. After 286,918 payoff events, the system correctly had written al/30 variables 
for the first time, and received maximal payoff 30.0. Due to remaining non-determinism in the system, 
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the current average payoff per payoff event (measured shortly afterwards, at time step 300,000,000) was 
about 18.2. 

After 400,000 payoff events, current average payoff per payoff event was 19.3. By now, the number 
of probability modifications per 106 time steps was up to 6600 again. But the stack had only 131 entries 
(corresponding to 90 "useful" self-modification programs). After 500,000 payoff events, current average 
payoff per payoff event was 20.7 (143 stack entries). After 1,000,000 payoff events (at "system death"), 
it was about 23.7, with tendency to increase. By then, there were 185 stack entries. They corresponded 
to 132 self-modification programs, each being more "useful" than all the previous ones. 

Temporary speed-ups of performance improvement. Performance did not increase smoothly 
during the lifetime of the system. For instance, at time step 109,295 ,000, the system correctly had 
written more than 20 variables for the first time (namely 21). This record was not broken for a long time 
-for nearly 108 additional time steps. This time interval is comparable to the entire previous learning 
time. Then, an unexpected sequence of rather quick improvements began. At time 207,606,000, the new 
record was 23 correct variables. At time 217,961,000, the new record was 24. At time 225,123,000, the 
new record was 25. Nearly immediately afterwards, at time 225,254,000, the new record was 26. Thus, 
within less than 2 * 107 time steps, the record was broken 4 times. Then progress slowed down again. 
Such temporary speed-ups of performance improvement indicate useful shifts of inductive bias, which 
may later be replaced by inductive bias created by the next "breakthrough". 

Automatic fine-tuning of search space structure. A look at the stack entries revealed that 
many (but far from all) useful probability modifications focused on few program cells. Often, self­
modification programs directly changing the probabilities of certain additional self-modification programs 
were considered useful. For instance, 5 of the 167 stack entries at time step 8 * 107 corresponded to 
"useful" probability modifications of the (self-referential) IncP action of the program cell with address 
14. 8 entries corresponded to "useful" modifications of the EndSelfMod probability of various cells. Such 
stack entries may be interpreted as results of "adjusting the prior on the space of solution candidates" 
or "fine-tuning search space structure" or "learning to create directed mutations" or "learning how to 
learn". 

5.2 A NAVIGATION TASK 

Task (following Sutton, 1991). The external environment consists of a two-dimensional grid with 9 
by 6 fields. F;,i denotes the field in the i-th row and the j -th column. The following fields are blocked 
by obstacles: Fa,a, Fa,4, Fa,s, Fs,2, Fs,4, Fs,s, Fs,s. In the beginning, an artificial agent is placed on 
F1,4 (the start field). In addition to the 17 general primitives from Table 1 (not counting input/output 
primitives) , there are four problem-specific primitives with obvious meaning: one-step-north{), one-step­
south{), one-step-east(), one-step-west(). The system cannot execute actions that would lead outside 
the grid or into an obstacle. Again, the following values are written into special cells in the input area 
whenever they change: JP, sp, remainder(tf M axint). Another input cell is filled with a 1 whenever 
the agent is on the goal field, otherwise it is filled with a 0. Four additional input cells are rewritten 
after each execution of some problem-specific primitive: the first (second, third, fourth) cell is filled with 
M axint if the field to the north (south, east, west) of the agent is blocked or does not exist, otherwise 
the cell is filled with -M axint. When ever the agent reaches F9,6 (the goal field), the system receives a 
constant payoff {100), and the agent is transferred back to F1,4 (the start field). Parameters for storage 
size etc. are the same as with the previous task, and time is measured the same way. Clearly, to 
maximize cumulative payoff, the system has to find short paths from start to goal. 

How difficult is this task? Again , the system does not appear to have much built-in bias towards 
the task: (1) Unlike with previous reinforcement learning algorithms, the system does not have a smart 
initial strategy for temporal credit assignment - it has to develop its own such strategies. (2) Unlike 
with Sutton's original set-up (1991), the system does not see a built-in unique representation of its 
current position on the grid. From the system's point of view, its interface to the environment is non­
Markovian (Schmidhuber, 1991): the current input does not provide all information about the agent's 
current position. (3) To make use of the few inputs it gets, the system first has to discover that certain 
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input cells may be relevant for solving its task. ( 4) The total environment (including the work area) is 
changing quite unpredictably, due to actions executed by the system itself. 

5 .2.1 RESULTS WITHOUT SELF-MODIFICATIONS. 

As with the previous task, the system was first tested with self-referential primitives IncP and DeeP 
being switched off. At system death at time 109 , total payoff was about 0.79* 108 • Average "trial length" 
(number of time steps required to move from start to goal) was 12,637. The shortest trial ever occurred 
around time step 8.5 * 108 and took 168 time steps. 

5.2.2 RESULTS WITH SELF-MODIFICATIONS. 

At system death (at time 109), total payoff was about 9.57 * 108 • By then, average trial length (including 
time required for top-level management, of course) was down to 79.7 time steps (as opposed to more 
than 12,000 time steps without self-modifications), with ongoing tendency to decrease. As with the 
previous task, performance did not improve smoothly. The history of broken records reflects the history 
of performance improvements: 

· First, there was a rather quick sequence of improvements which lasted until time 2.75 * 106 • By then 
(after 1951 payoff events), the shortest trial so far had taken 83 time steps. Then, the "current record" 
did not improve any more for a comparatively long time interval: 5.28 * 106 time steps - the length of 
this "boring" time interval by far exceeded the entire previous learning time. 

Sudden imp1·ovement speed-up. Then, quite unexpected to the observer, the system started to 
create a new sequence of additional improvements around time step 8 * 106 . At time 8.04 * 106 , the 
record was down to 73. At time 8.84 * 106 , the record was down to 68. At time 9.25 * 106, the record was 
down to 63. At time 9. 57 * 106 , the record was down to 57. At time 10.14 * 106 , the record was down to 
50. At time 10.51 * 106 , the record was down to 32. Thus, within about 2.4 * 106 time steps, the record 
was broken 6 times, sometimes dramatically. Then, performance improvement slowed down again. 

Throughout this flurry of broken records starting at time 8.04 * 106, the number of stack entries 
increased quite steadily from 25 (corresponding to 17 useful self-modification programs) to 32 ( corre­
sponding to 22 self-modification programs). Apparently, around time step 8 * 106 , the system made 
a "revolutionary" discovery that permitted a sequence of more "evolutionary" additional directed self­
mutations. 

At system death (time step 109), the record was down to 22. T he system's average payoff intake 
per time interval still had a tendency to increase. In the end, there were 104 useful self-modification 
programs, each leading to "better" results than all previous ones. As with the previous task, many useful 
self-modification programs directly modified the probabilities of additional self-modification programs. 
Compare the paragraph entitled "automatic fine-tuning search space structure" in section 5.1.2. 

Experiment 2: corrupted inputs. In another experiment, the system was applied to the same 
task, but inputs were corrupted and unreliable. In the beginning, it took the system much longer to 
come up with short trials. At time 3.83 * 108 , the current record was 51. Then, not much happened for 
a long time: there was only one minor improvement (50) during the next 5.33 * 108 time steps. Again, 
the length of this "boring" time interval by far exceeded the entire previous learning time. Then, around 
time step 9.16 * 108 (corresponding to half a day of computation time), a "revolution" occurred: within 
only about 108 additional time steps, the record was broken 13 times: at time 10.15 * 108 , the record was 
down to 20. Throughout this sudden flurry of broken records starting at time 9.16 * 108 , the number of 
stack entries increased quite steadily from 138 (corresponding to 96 useful self-modification programs) 
to 189 (corresponding to 137 self-modification programs). Then , performance improvement slowed down 
again. System life ended at time step 1.5 * 109 . By this time, the record was down to 18. The system's 
average payoff intake per time interval still had a tendency to increase. 
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5.3 THREE COMMENTS 

1. Stability of probability modifications. With the experiments conducted so far, the top level 
hardly ever countermanded probability modifications other than those computed by the 10 most 
recent useful self-modification programs. For instance, once there were 120 stack entries, the 100 
oldest stack entries appeared extremely safe and had a good chance to survive the entire system 
life. This empirically justifies the method suggested in the comment on limited, circular stacks in 
section 4. 

2. Revolutions and evolutions. In the tasks above, unexpected temporary speed-ups of perfor­
mance improvements were observed. Even if the system appears to be stuck for a long time, the 
external observer never can be sure that it will not suddenly discover a new, "revolutionary" shift 
of bias that builds the basis for additonal, smoother, "evolutionary" performance improvements. 
This is analoguous to the history of science itself. One nice thing about open-ended incremental 
self-improvement is that there is no significant theoretical limit to what the system may learn. 
This is, of course, due to the universal nature of the underlying programming language. 

Informally, a "revolution" corresponds to a self-improvement with high "conceptual jump size" 
(an expression coined by Solomonoff, 1990), while "evolution" corresponds to a sequence of self­
improvements with low conceptual jump sizes. 

3. Inserting prior bias. The experiments above certainly are not meant to convince the reader 
that from now on, he should combine the incremental self-improvement paradigm with the low­
level programming language from section 3 and apply it to real world problems. Instead, the 
experiments are meant to illustrate basic principles of the paradigm. Of course, with large scale 
problems, it is desirable to insert prior knowledge into the system (if such knowledge is indeed 

• available). With incremental self-improvement, a priori knowledge resides in the programmer's 
selection of primitives with problem-specific built-in bias (and in the payoff function he chooses). 
There is no reason why certain primitives should not be complex, time consuming programs by 
themselves, such as statistic classifiers, neural net learning algorithms, logic programs, etc. For 
instance, using different primitives for the navigation task from section 5.2 can greatly reduce the 
time required to achieve near-optimal trials. This paper, however, is not a study of the effects of 
different kinds of initial bias. 

6 HISTORY OF IDEAS I PREVIOUS WORK 

In what follows, I will briefly describe earlier work and the train of thought leading to this paper. 
Meta-evolution. My first attempts to come up with schemes for "true" 4 self-referential learning 

based on universal languages date back to 1986. They were partly inspired by a collaboration with 
Dickmanns and Winklhofer (1986). We used a genetic algorithm (GA) to evolve variable length Prolog 
programs for solving simple tasks5 . Soon there was a desire to improve the trivial mutation and crossover 
strategies used to construct new programs from old ones. This led to an algorithmic scheme (called 
"meta-evolution") for letting more sophisticated strategies be learned by a potentially infinite hierarchy 

4 I am not talking about fixed learning algorithms for adjusting the parameters of o thers. For instance, GAs are 
so~etimes used to adjust learning rates of gradient based neural nets, etc. Or a neural net is used to compute the weights 
of another neural net. In the literature, one can find quite a few approaches of this kind (too many to cite them all - I 
settle by citing none, not even my own). Although such approaches sometimes may have their merits, they do not deserve 
the attribute "self-referential" - the additional level typically just defers the credit assignment problem. 

There were a few apparently more general approaches. For instance, Lenat (1983) reports that his EURISKO system was 
able to discover certain heuristics for discovering heuristics. However, his approach, as well as all other previous approaches 
I am aware of, were either quite limited (many essential aspects of system behavior being unmodifiable), and/or lacked a 
convincing global credit assignment strategy (as embodied by the top-level strategy of the incremental self-improvement 
paradigm). 

5 Today, this approach would be classified as "Genetic Programming", e.g. (Koza, 1992). 
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of higher level GAs whose domains were to construct construction strategies (Schmidhuber, 1987). M eta­
evolution recursively creates a growing hierarchy of pools of programs - higher-level pools containing 
program modifying programs being applied to lower-level programs and being rewarded based on lower­
level performance. 

Collapsing meta-levels. The explicit creation of "meta-levels" and "meta-meta-levels" seemed 
unnatural, however. For this reason, alternative systems based on "self-referential" languages were 
explored, the goal being to collapse all meta-levels into one (Schmidhuber , 1987). At that time, however, 
no convincing global credit assignment strategy was provided. 

Self-referential neural nets. Later work presented a neural network with the potential to run 
its own weight change algorithm (Schmidhuber 1992, 1993a, 1993b ). With this system, top-level credit 
assignment is performed by gradient descent. This is unsatisfactory, however, due to problems with local 
minima, and because repeatable training sequences are required. In general, this makes it impossible to 
take the entire learning history into account. 

Algorithmic pt•obability / Universal search. Levin's universal search algorithm is theoreti­
cally optimal for certain "non-incremental" search tasks with exactly repeatable initial conditions. See 
Levin (1974, 1984); see also Adleman (1979). There were a few attempts to extend universal search to 
incremental learning situations, where previous "trials" may provide information about how to speed 
up further learning, see e.g. (Solomonoff, 1990; Paul and Solomonoff, 1991; Schmidhuber, 1994). For 
instance, to improve future performance, Solomonoff (1964, 1990) describes more traditional (as opposed 
to self-improving) methods for assigning probabilities to successful "subprograms". Alternatively, one 
of the actually implemented systems in (Schmidhuber, 1994) simply keeps successful code in its pro­
gram area. This system was a conceptual starting point for the one in the current paper. With first 
attempts (in September 1994), the probability distributions underlying the Thring machine equivalent 
language required for universal search were modified heuristically. One strategy was to slightly increase 
the context-dependent probabilities of program cell contents used in successful programs, and then con­
tinue universal search based on the new probability distributions. With a number of experiments, this 
actually led to good results (at first glance, more impressive results than those in the current paper, at 
least if one does not take the lack of bias into account, as one should always do) . The system, however, 
was unsatisfactory, precisely because there was no principled way of adjusting probability distributions. 
This criticism led to the ideas expressed in the current paper. 

Meta-version of universal search. Without going into details, Solomonoff (1990) mentions that 
self-improvement may be formulated as a time-limited optimization problem , thus being solvable by 
universal search. However, the straight-forward meta-version of universal search (generating and eval­
uating probability distributions in order of their Levin complexities- see Levin, 1974) just defers the 
credit assignment problem to the meta-level , and does not necessarily make optimal incremental use 
of computational resources and previous experience6 • Note that incremental self-improvement is not 
a meta-version of universal search . In fact , incremental self-improvement does not m ake a difference 
between "search" and "meta-search" . 

Ongoing/future work. The concrete implementation described in section 3 represents only one 
out of many ways of implementing the incremental self-improvement paradigm. It is intended to apply 
incremental self-improvement to more complex tasks, including prediction and control tasks, using a 
variety of universal, "self-referential" sets of primitives, including sets designed to exploit the benefits of 
parallel, neural net-like hardware . 

. 6 Solomonoff appears to be well aware of problems with the meta-version: at t he end of his 1990 paper, he refers to 
self-improvement as a "more distant goal" : "The kind of training needed involves more mathematics and work on various 
kinds of optimization problems - ultimately problems of improving computer programs." Another "more distant goal" 
mentioned by Solomonoff is to let the system work "on an unordered batch of problems - deciding itself which are the 
easiest, and solving them first". Note that the increm ental self-improvement paradigm addresses both goals, without 
depending on a meta-version of universal search. See e.g. comment 13 in section 4. 
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