
I

FORSCHUNGSBERICHTE
..

KUNSTLICHE INTELLIGENZ

Discovering Proble1n Solutions With
Low Kolmogorov Complexity and

High Generalization Capability

Jiirgen Schmidhuber

Report FKI-194-94

August 1994

TUM
TECHNISCHE UNIVERSIT AT MUNCHEN

Institut fiir Informatik (H2), D-80290 Mtinchen, Germany

ISSN 0941-6358

Forschungsberichte Kiinstliche Intelligenz

ISSN 0941-6358

Institut fiir Infonnatil{
Technische UniversiHit Miinchen

Die Forschungsberichte Ki.instliche Intelli­
genz enthalten vornehmlich Vorab-Verof­
fentlichungen, spezialisierte Einzelergeb­
nisse und erg~inzende Materialien, die seit
1988 in der KI I Kognitionsgruppe am
Lehrstuhl Prof. Brauer bzw. 1988-1993 in
der KI I Intellektik Gruppe am Lehrstuhl
Prof. Jessen entstanden. Im Interesse einer
spateren VerOffentlichung wird gebeten,
die Forschungsberichte nicht zu ver­
vielnHtigen. Alle Rechte und die Ver­
antwortung fur den Inhalt des Bcrichts
liegen bei den Autoren, die fur kri tische
Hinweise dankbar sind.

Eine Zusammenstellung aller derzeit liefer­
baren FKI-Berichte und einzelne Exem­
plare aus dieser Reihe konnen Sie bei
folgender Adresse anfordern oder i.iber ftp
beziehen:

"FKI"
Institut fi.ir Informatik (H2)
Technische Universiilit Mi.inchen
D-80290 Mi.inchen
Germany

Phone:
Telex:
Fax:
e-mail:

+49- 89- 2105 2406
tumue d 05-22854
+49- 89- 2105- 8207
fki@informatik. tu-

muenchen.de

The "Forschungsberichte Ki.ins tli che
Intelligenz" series includes primarily
preliminary publications, specialized partial
results , and supplementary material,
written by the members of th e
AI I Cognition Group at the chair of Prof.
Brauer (since 1988) as well as the
"Intellektik" Group at the chair of Prof.
Jessen (198 8-1993). In the interest of a
subsequent final publication these reports
should not be copied. All rights and the
responsibility for the contents of the report
are with the authors, who would appreciate
critical comments.

You can obtain a list of all available FKI­
reports as well as specific papers by
writing to the adress below or via ftp:

FTP:
machine: flop.inforn1atik. tu-muenchen.de
or 131.159.8.35
login: anonymous
directory: pub/fki

DISCOVERING PROBLEM SOLUTIONS WITH
LOW KOLMOGOROV COMPLEXITY AND

HIGH GENERALIZATION CAPABILITY
Technical Report FKI-194-94

Jiirgen Schmidhuber
Fakultat fiir Informatik

Technische Universitat Miinchen
80290 Miinchen, Germany

schrnidhu@inforrnatik.tu-rnuenchen.de
http://papa.informatik .tu-rnuenchen.de/rnitarbeiter/schrnidhu.htrnl

August 1994

Abstract

Many machine learning algorithms aim at finding "simple" rules to explain training data. The
expectation is: the "simpler" the rules, the better the generalization on test data (-+ Occam 's
razor). Most practical implementations, however, use measures for "simplicity" that lack the power,
universality and elegance of those based on Kolmogorov complexity and Solomonoff's algorithmic
probability. Likewise, most previous approaches (especially those of the "Bayesian" kind) suffer
from the problem of choosing appropriate priors. This paper addresses both issues. It first reviews
some basic concepts of algorithmic complexity theory relevant to machine learning, and how the
Solomonoff-Levin distribution (or universal prior) deals with the prior problem. The universal prior
leads to a probabilistic method for finding "algorithmically simple" problem solutions with high
generalization capability. The method is based on Levin complexity (a time-bounded generalization
of Kolmogorov complexity) and inspired by Levin's optimal universal search algorithm. With a given
problem, solution candidates are computed by efficient "self-sizing" programs that influence their own
runtime and storage size. The probabilistic search algorithm finds the "good" programs (the ones
quickly computing algorithmically probable solutions fitting the training data). Simulations focus
on the task of discovering "algorithmically simple" neural networks with low Kolmogorov complexity
and high generalization capability. It is demonstrated that the method, at least with certain toy
problems where it is computationally feasible, can lead to generalization results unmatchable by
previous neural net algorithms. Much remains do be done, however, to make large scale applications
and "incremental learning" feasible.

Keywords: Generalized K olmogorov complexity, Solomonoff-Levin distribution, generalization, univer­
sal search, self-sizing programs, neural networks.

1

1 INTRODUCTION

The first number is 2. The second number is 4. The third number is 6. The fourth number is 8. What
is the fifth number? The answer is 34. The reason is the following law. The nth number is

n 4
- 10n3 + 35n2

- 48n + 24.

But an IQ test requires you to answer "10" instead of "34". Why not "34"? The reasons are: (1)
"simple" solutions are preferred over "complex" ones. This idea is often referred to as "Occam's razor".
(2) It is assumed that the "simpler" the rules, the better the generalization on test data. (3) The makers
of the IQ test assume that everybody agrees on what "simple" means.

Similarly, many researchers agree1 that learning algorithms ought to extract "simple" rules to explain
training data. But what exactly does "simple" mean? The only theory providing a convincing objective
criterion for "simplicity" is the theory of Kolmogorov complexity (or algorithmic complexity). Contrary
to a popular myth, the incomputability of Kolmogorov complexity (due to the halting problem) does
not prevent machine learning applications, because there are tractable yet very general extensions of
Kolmogorov complexity. Few machine learning researchers, however, make use of the powerful tools
provided by the theory.

Purpose of paper. This work and the experiments to be presented herein are intended (1) to
demonstrate that basic concepts from the theory of Kolmogorov complexity are indeed of interest for
machine learning purposes, (2) to encourage machine learning researchers to study this theory, and (3)
to point to some limitations of the current state of the art and to important open problems.

Outline. Section 2 briefly reviews the following basic concepts of algorithmic complexity theory
relevant to machine learning: (1) Kolmogorov complexity, (2) The universal prior (or Solomonoff-Levin
distribution), under which the probability of a computable object (like the solution to a problem) is essen­
tially equal to the probability of guessing its shortest program on a universal computer, (3) Solomonoff's
theory of inductive inference, and how it justifies Occam's razor, (4) The principle of minimal description
length (MDL) in its general form, (5) Levin complexity (a generalization of Kolmogorov complexity) and
Levin's universal optimal search algorithm. For a given computable solution to a problem, consider the
negative log of the probability of guessing a program that computes it, plus the log of its runtime. The
Levin complexity of the solution is the minimal possible value of this. Levin's universal search algorithm
essentially generates and tests solution candidates (from a set of possible computable candidates) in order
of their Levin complexity, until a solution is found. For a broad class of problems, universal search can
be shown to be optimal with respect to total expected search time, leaving aside a constant factor which
does not depend on the problem. To my knowledge, section 3 presents the first general implementation
of (a probabilistic variant of) universal search on a conventional digital machine. It is based on efficient
"self-sizing" programs which influence their own runtime and storage size. Simulations in section 4 focus
on the task of finding "simple" neural nets with high generalization capability. Experiments with toy
problems demonstrate that the method, at least in certain cases where it is computationally feasible,
can lead to generalization results that seem to be impossible to obtain by more traditional neural net
algorithms (also briefly reviewed in section 4). To end this paper with a promising outlook, section 5
presents preliminary experiments with extensions designed for incremental learning. There, the "best"
solution candidate found so far serves as a basis for additional improvements. Although their theoretical
foundations are not yet well-developed, incremental extensions appear to be promising for improving
neural net algorithms, evolutionary and genetic algorithms, and other learning paradigms. Section 6
concludes with general remarks on problem solving and Occam's razor.

2 BASIC CONCEPTS RELEVANT TO LEARNING

This section briefly reviews a few basic concepts from the theories of algorithmic probability and Kol­
mogorov complexity (a.k.a. "algorithmic complexity"). Selected references and a very brief and incom-

1The final section provides some remarks for those who don't agree.

2

plete history of the subject can be found at the end of the section.
Algorithmic complexity theory provides various different but closely related measures for the com­

plexity (or simplicity) of objects. We will focus on the one that appears to be the most useful for
machine learning. Informally speaking, the complexity of a computable object is the length of the
shortest program that computes it and halts, where the set of possible programs forms a prefix code.

To make this more precise, consider a Turing machine (TM) with 3 tapes: the program tape, the
work tape, and the output tape. All three are finite but may grow indefinitely. For simplicity, but
without loss of generality, let us focus on binary tape alphabets {0, 1}. Initially, the work tape and the
output tape consist of a single square filled with a zero. The program tape consists of finitely many
squares, each filled with a zero or a one. Each tape has a scanning head. Initially, the scanning head
of each tape points to its first square. The program tape is "read only", the output tape is "write
only", their scanning heads may be shifted only to the right (one square at a time). The work tape is
"read/write", its scanning head may move in both directions. Whenever the scanning heads of work
tape or output tape shift beyond the current tape boundary, an additional square is appended and filled
with a zero. The case of the program tape's scanning head shifting beyond the program tape boundary
will be considered later. For the moment we assume that this does never happen. The TM has a finite
number of internal states (one of them being the initial state). Its behavior is specified by a function
F (implemented as a look-up table). F maps the current state and the contents of the square above
the scanning head of the work tape to a new state and an action. There are 8 actions: shift worktape
left/right, write 1/0 on worktape, write 1/0 on output tape and shift its scanning head right, copy
contents above scanning head of program tape onto square above scanning head of work tape and shift
program tape's scanning head right, and halt.

Self-delimiting programs. Let I s I denote the number of bits in the bitstring s. Consider a
nonempty bitstring p written onto the program tape such that the scanning head points to the first bit
of p. p is a program for some TM T, iff T reads all I p I bits and halts. In other words, during the
(eventually terminating) computation process the head ofT's program tape incrementally moves from
its start position to the end of p, but not any further. One may say that p carries in itself the information
about when to stop, and about its own length. Obviously, no program can be the prefix of another one.

Compiler theorem. Each TM C, mapping bitstrings (written onto the program tape) to outputs
(written onto the output tape) computes a partial function fe : {0, 1}* --... {0, 1}• (le is undefined
where C does not halt). It is well known that there is a universal TM U with the following property:
for every TM C there exists a constant prefix J.le such that fe(P) = fu(J.leP) for all bitstrings P· . J.le is
the compiler that compiles programs for C into equivalent programs for U.

In what follows, let p denote a (self-delimiting) program.
Kolmogorov complexity. Given U, the Kolmogorov complexity (a.k.a. "algorithmic complexity,"

"algorithmic information," or occasionally "Kolmogorov-Chaitin complexity") of an arbitrary bitstring
s is denoted as Ku (s) and is defined as the length of a shortest program producing s on U:

Ku(s) = min{l p 1: /u(p) = s }.
p

Ku(s) is noncomputable, otherwise the halting problem could be solved. However, by comparing the
number of possible programs with less than n bits (< 2n) and the number of possible bitstrings with
greater than n bits (> > 2n), one observes: most strings s are complex (or "random", or "incompressible")
in the sense that they cannot be computed by a program much shorter than s.

Invariance theorem. Due to the compiler theorem, Ku1 (s) = Ku,(s) + 0(1) for two universal
machines U1 and U2. Therefore we may choose one particular universal machine U and henceforth write
K(s) = Ku(s).

Machine learning, MDL, and the prior problem. In machine learning applications, we are
often concerned with the following problem: given training data D, we would like to select the most
probable hypothesis H generating the data. Bayes formula yields

P(H I D)= P(D I H)P(H)
P(D) . (1)

3

We would like to select H such that P(H I D) is maximal. This is equivalent to minimizing

-logP(H I D) = -logP(D I H)- logP(H) + logP(D). (2)

Let us interprete these equations. Since D is given, P(D) may be viewed as a normalizing constant.
P(DIH) can usually be measured or at least approximated. According to classical information theory,
-log P(DIH) is the "optimal" (minimal, most efficient) code length or description length forD, given
H. - log P(H) is the minimal code length for H. This leads to the minimum description length (MDL)
principle: The best hypothesis for explaining the data is the one that minimizes the sum of the description
length of the hypothesis and the description length of the data when encoded by the hypothesis. But where
does the prior P(H) come from? How does one define an a priori probability distribution on the set of
possible hypotheses without introducing arbitrariness? This is often perceived as the prior problem of
Bayesian approaches. The theory of algorithmic probability, however, provides a solution.

Universal prior. Define Pu(s), the a priori probability of a bitstring s, as the probability of guessing
a (halting) program that computes s on U. Here, the way of guessing is defined by the following
procedure: initially, the program tape consists of a single square. Whenever the scanning head of the
program tape shifts to the right , do: (1) Append a new square. (2) With probability ! fill it with a 0;
with probability ! fill it with a 1. We obtain

Pu(s) = L (~)IPI.
p:Ju(p)=&

Clearly, the sum of all probabilities of all halting programs cannot exceed 1 (no halting program can be
the prefix of another one). But certain program tape contents may lead to non-halting computations.

Under different universal priors (based on different universal machines), probabilities of a given string
differ by not more than a constant factor independent of the string size, due to the invariance theorem
(the constant factor corresponds to the probability of guessing a compiler). Therefore we may drop
the index U and write P instead of Pu. This justifies the name "universal prior", also known as the
Solomonoff-Levin distribution. Universal priors appear to be the only convincing method for assigning
probabilities to hypotheses (or other computable objects) in advance.

Algorithmic entropy. -logP(s) is denoted by H(s), the algorithmic entropy of s.
Dominance of shortest programs. It can be shown (the proof is non-trivial) that

I<(s) = H(s) + 0(1).

Since H(s) = -logP(s), this implies

P(s) = (~)K(•)-0(1) = 2o(1) 2-K(•) = 0(2-K(•>) .
2

(3)

The probability of guessing any of the programs computing some string and the probability of guessing
its shortest program are essentially equal. The probability of a string is dominated by the probabilities
of its shortest programs.

Inductive inference and Occam's razor. Occam's razor prefers solutions whose minimal descrip­
tions are short over solutions whose minimal descriptions are longer. The "modern" prefix-based version
of Solomonoff's theory of inductive inference justifies Occam's razor in the following way. Suppose the
problem is to extrapolate a sequence of symbols (bits, without loss of generality). We have already
observed a bitstring s and would like to predict the next bit. Let si denote the event "s is followed by
symbol i" fori E {0, 1}. Bayes tells us

P(0 I) = P(s I sO)P(sO) = P(sO) P(1 I) _ P(s1)
8 8

P(s) P(s) '
8 8

- P(s) ·

We are going to predict "the next bit will be 0" if P(sO) > P(s1), and vice versa. Since P(si) =
0((!)K(•i)) for i E { 0, 1}, the continuation with lower Kolmogorov complexity will (in general) be the
more likely one.

4

Since Kolmogorov complexity is incomputable in general, the universal prior is so, too. A popular
myth states that this fact renders useless the concepts of Kolmogorov complexity, as far as practical
machine learning is concerned. But this is not so, as will be seen next. There we focus on a natural,
computable, yet very general extension of Kolmogorov complexity.

Levin complexity. Let us slightly extend the notion of a program. In what follows, a program
is a string on the program tape which can be scanned completely by U. The same program may lead
to different results, depending on the runtime. For a given computable string, consider the log of the
probability of guessing a program that computes it, plus the log of the corresponding runtime. The
Levin complexity of the string is the minimal possible value of this. More formally, let U scan a program
q (a program in the extended sense) written onto the program tape before it finishes printing s onto the
work tape. Let t(q, s) be the number of steps taken before s is printed. Then

I<t(s) = min{l q I +log t(q, s)}.
q

An invariance theorem similar to the one for I< holds for Kt as well.
Universal search. Suppose we have got a problem whose solution can be represented as a (bit)string.

Levin's universal optimal search algorithm essentially generates and evaluates all strings (solution can­
didates) in order of their Kt complexity, until a solution is found . This is essentially equivalent to
enumerating all programs in order of decreasing probabilities, divided by their runtimes. Each program
computes a string that is tested to see whether it is a solution to the given problem. If so, the search
is stopped. To get some intuition for universal search, let P(s I p) denote the probability of computing
a solution s from a halting program p on the program tape. For each p there is a given runtime t(p).
Now suppose the following gambling scenario. You bet on the success of some p. The bid is t(p). To
minimize your expected losses, you are going to bet on the p with maximal Pt(~y). If you fail to hit
a solution, you may bet again, but not on a p you already bet on. Continuing this procedure, you
are going to list hal ting programs pin order of decreasing Pt((~f). Of course, neither P(s I p) nor t(p)
are usually known in advance . Still, for a broad class of problems, including P and N P problems and
time-limited optimization problems, universal search can be shown to be optimal with respect to total
expected search time, leaving aside a constant factor independent of the problem size: if string s can be
computed within t time steps by a program p, and the probability of guessing p (as above) is P, then
within 0(j) time steps, systematic enumeration according to Levin will generate p, run it for t time
steps, and output s. In the experiments below, a probabilistic algorithm strongly inspired by universal
search will be used.

Conditional a lgorithmic complexity. The complexity measures above are actually simplifications
of slightly more general measures . Suppose the universal machine U starts the computation process with
a nonempty string x already written on its work tape. Conditional Kolmogorov complexity K(s I x) is
defined as

K(s I x) = minp{l p 1: U computes s from p, given x on the worktape}.

Kt(s I x) is defined analoguously. Variants of conditional complexity are used to determine how much
information some string conveys about another one. In the context of machine learning, conditional
complexity measures how much additional information has to be acquired, given what is already known.

History spotlights / Selected references

In 1965, A. N. Kolmogorov (1903-1987), founder of modern axiomatic probability theory (Kolmogorov,
1933), was the first to introduce a variant of the complexity measure [(for its own sake (Kolmogorov,
1965). Levin (1984) cites announcements of Kolmogorov's lectures on this subject dating back to 1961. In
independent and even earlier work, R. J. Solomonoff (1964) had already come up with the same measure
as a by-product of his work on algorithmic probability and inductive inference (a preliminary version of
his paper is dated 1960) . Both Solomonoff and Kolmogorov observed J('s machine independence. Today,
even Solomonoff himself refers to J(as "Kolmogorov complexity", e.g. (Solomonoff, 1986). In 1969, G.
J. Chaitin independently also published the essential concepts (Chaitin, 1969) (some hints were already

5

provided at the end of his 1966 paper). Important related early work is described in (Martin-Lof, 1966;
Gacs, 1974; Schnorr, 1971). Apparently, L. A. Levin was the first to introduce and analyze today's
"standard form" of Kolmogorov complexity based on halting programs and prefix codes (Levin, 1974),
see also (Gacs, 1974; Levin, 1973a; Levin, 1976; Zvonkin and Levin, 1970). Levin proved equation (3):
I<(s) = H(s)+0(1). The importance of prefix codes was independently seen by Chaitin (1975), who also
proved (3) and attributes part of the argument to N. Pippenger. Levin introduced Kt complexity and
the universal optimal search algorithm (see e.g. (Levin, 1973b) and (Levin, 1984), where related ideas
are attributed to Adleman- see also (Adleman, 1979)). Other generalizations of Kolmogorov complexity
have been proposed, e.g. (Hartmanis, 1983), but see the contributions in (Watanabe, 1992) for more.
Easily computable approximations of the MDL principle were formulated by Wallace and Boulton (1968)
and Rissanen (1978, 1983, 1986). Such approximations build the basis of most if not all current machine
learning applications, e.g. (Quinlan and Rivest, 1989; Gao and Li, 1989; Milosavljevic and Jurka, 1993;
Pednault, 1989). Barzdin, referred to in (Zvonkin and Levin, 1970), related Kolmogorov complexity
to a variant of Godel's incompleteness theorem, a subject which became a central theme of Chaitin's
research (Chaitin, 1987). Meanwhile, the theory of Kolmogorov complexity has split into many subfields.
An excellent overview and many additional details on the history are given in Li and Vitanyi's book
(1993). See also (Cover et al., 1989). See (Schmidhuber, 1994) for an application to fine arts. The
presentation above is partly inspired by presentations found in (Chaitin, 1987), (Li and Vitanyi, 1993),
and (Solomonoff, 1986).

3 PROBABILISTIC SEARCH FOR USEFUL SELF-SIZING
PROGRAMS WITH LOW LEVIN COMPLEXITY

Levin's universal search algorithm was considered of interest for theoretical purposes (see e.g. (Allender,
1992) and (Li and Vitanyi, 1993)). However, it seems that nobody implemented it for experimental
applications, perhaps in fear of the ominous "constant factor" which may be large. To my knowledge,
general universal search was implemented for the first time during the project that led to this paper
(Solomonoff (1986) himself apparently implemented restricted versions). In what follows, however, I
will focus on the implementation of a slightly different probabilistic algorithm (also based on Levin
complexity and strongly inspired by universal search). The experimental results obtained with the
probabilistic algorithm (see section 4) are very similar to those obtained by the original universal search
procedure (Schmidhuber and Jankowski, 1994).

Overview. The method described in this section searches and finds algorithms that compute so­
lutions to a given problem specified by possibly very limited "training data". The goal is to discover
solutions with high generalization performance on "test data" unavailable during the search phase. To­
wards this purpose, the probabilistic search algorithm randomly generates programs written in a general
assembler-like programming language based on sequences of integers. Programs may influence their own
storage size and runtime. Each program computes a solution candidate which is tested on the training
data. The probability of generating a program p and an upper bound tmax for its runtime essentially
equals the quotient of the probability of guessing p, and tmax. This implies that candidates with low
Levin complexity are preferred over candidates with high Levin complexity. To measure generalization
performance, candidates fitting the training data are evaluated on test data. In the experiments (section
4), solution candidates will be weight matrices for a neural net supposed to solve certain generalization
tasks that are difficult or impossible to solve by conventional neural net algorithms.

"Universal" programming language. First we need a "universal" set of primitive instructions
(called "primitives") that may be composed to form arbitrary algorithms for computing arbitrary (partial
recursive) functions. The only limitation we are willing to accept is the storage size of our machine.

It is easy to devise "universal" sets of primitives. Which ones do we prefer? Informally, there is one
general constraint to obey: whatever is computable on the used hardware, should be computable just
as efficiently (up to a small constant factor) by a program composed from primitives. For instance, on
a typical serial digital machine we would like to use primitives exploiting the fast storage addressing

6

mechanisms. We would not want to limit ourselves to the simulation of, say, a slow one tape 'lUring
machine. Likewise, on a machine with many parallel processors we would like to use a set of primitives
allowing for programs with maximal parallelism. In what follows, the focus will be on conventional
digital machines. Here is a description of the set-up used in the experiments to be described later:

Storage. Programs are sequences of integers. They are stored in the storage, consisting of a single
array of cells. Each cell has an integer address in the interval [-sw,sp] · Both Sw and Spare positive
integers. The program tape is the set of cells with addresses in [0, sp]· The work tape is the set of
cells with addresses in [-sw, -1]. Cells with non-negative addresses belong to the program tape. Cells
with negative addresses belong to the work tape. The contents of the cell with address i is denoted by
Ci E [-maxint, maxint], and is of type integer as well (in the implemented version, maxint equals 10000).
During execution of a program, the used portion of the program tape may increase. The used portion
of the work tape may increase or decrease. At any time step, the variable M ax (-1 ~ M ax ~ sp)
denotes the topmost address of the used storage. The variable M in (-sw ~ M in ~ 0) denotes its
smallest address. At any given time, legal addresses are in the dynamic range [M in, OracleAddress],
where OracleAdd7·ess = M ax + 1, by definition. At any given time, the integer sequence on the program
tape (up to address Max) is called the current program. Max = -1 implies the "empty" program.

Instructions. At any given time, the variable InstructionPointer may equal the address of one
of the cells, whose contents may be interpretable as an instruction. There are nop• different possible
instructions (in the implemented version, nop• = 13). Each instruction is uniquely represented by an
instruction number from the set {0, ... , n0p3 -1}. An instruction may have up to three arguments (of type
integer), or none. Arguments are stored in the addresses following the address of the instruction. For
each argument of each instruction, there is a legal argument range (a set of integer values the argument
is allowed to take on). Within certain limits, legal argument ranges can be dynamically modified by
programs, as will be seen shortly.

Initialization, time limits, time probability. In the beginning of the execution of a "program"
or "run", the variables OracleAddress, InstructionPointer, M in, and CurrentRuntime are all set to zero.
The variable CurrentTimeLimit is used to define an upper bound for the runtime of the current program.
To obtain a probabilistic variant of universal search, CurrentTimeLimit is chosen randomly as follows:
elements from the set {0, 1} are drawn with equal probability until the first "1" is drawn. Let n1 denote
the number of trials. CurrentTimeLimit is set to U nitTime x 2n,, where U nitTime equals 16 time steps
(each program will be allowed to execute at least 16 instructions- but it may choose to halt earlier). If
CurrentTimeLimit exceeds M axTimeLimit, then it is replaced by MaxTimeLimit = 224 = 16,777,216.
The time probability of the current program is defined by max((~)n', Ma~~ii~~'I:tmit). Short runtimes are
more likely than long runtimes.

Instruction cycle and oracles. A single step of the program interpreter works as follows: if the
InstructionPointer equals 01·acleAddress (= Max + 1), then this is interpreted as the request for an
oracle. A primitive and the corresponding arguments are chosen randomly from the set oflegal options (to
be described below). They are sequentially written onto the program tape, starting from OracleAddress.
M ax and OracleAddress are increased accordingly, to reflect the growth of used program tape. Then
the new primitive gets executed (except when growth beyond Sp halts the program). If there is no oracle
request: if the InstructionPointer equals i, then if the content Ci E [0, nop• - 1], the corresponding
number of arguments ni and the corresponding legal argument ranges are looked up and checked against
the contents of the ni addresses following the current address. If the instruction is "syntactically correct",
it gets executed. Otherwise the current program is halted. If the executed primitive did not change the
value of the InstructionPointer (e.g. by causing a jump), the InstructionPointer is set to point to the
address following the address of (the last argument of) the current instruction. If an instruction was
executed, CurrentRuntime is incremented. If the CurrentTimeLimit is reached, the program is halted.

Runs, programs, and space probability. After initialization, the instruction cycle is repeated
until a halt situation is encountered. The space probability of a program is defined as the product of the
probabilities of all parameters and primitives requested and executed during its runtime. Essentially,
the space probability is the probability of guessing the executed content of the program tape.

Probabilistic search. Programs are generated randomly and executed as described above, and

7

their results are evaluated until some problem-specific performance criterion is met. Obviously, results
with low Levin complexity are preferred over results with high Levin complexity. (In an alternative
implementation, the original universal search algorithm was used to systematically generate all solution
candidates in order of their Levin complexities).

Used primitives. The instruction numbers and the semantics of the primitives used in the ex­
periments are listed below. An expression of the form "addressi" denotes the value (interpreted as an
address) found in the ith cell following the one containing the current instruction (indirect addressing is
used throughout). The following list assumes syntactical correctness of the instructions. Rules for legal
argument ranges and syntactical correctness will be given shortly.

0 Jumpleq(addressl, address2, address3). If the contents of addressl is less than or equal
to the contents of address2, the InstructionPointer is set equal to address3.

1 Output(.. .). A primitive for interaction with an external environment. It corresponds
to the TM action of "writing the output t ape" (see section 2). In the experiments,
<<output" will be called ((Write Weight". It will be used to generate weights for a neural
network. Variants of it will be specified where needed.

2 Jump{addressl). The InstructionPointer is set equal to addressl.

3 Stop(). Halt the current program.
4 Add{addressl, address2, address3). The contents of addressl is added to the contents

of address2, the result is written into address3.

5 Getlnput(address I, address2). Another primitive for interaction with an external envi­
ronment. It requires n1 separate "input fields" that may be modified by the environment
(in the experiments, n 1 will equal 20) . Getlnput reads the current value of the ith input
field into address2, where i is the value found in addressl. In conjunction with primi­
tives changing the environmental state, Getlnput provides an opportunity for exploiting
the computing resources of the "outside world". In the applications below, however ,
Getlnput will be pretty useless - all the input fields will remain zero all the time.

6 Move(addressl, address2). T he contents of addressl is copied to address2.

7 Allocate{ address I). The size of the work tape is increased by the value found in address I,
the new cells are initialized with zeros. M in is updated accordingly (growth beyond
-sw halts the program). No variable can be written before enough space has been
Allocated on the work t ape. As will be explained below, Allocate is essential for self­
sizing programs.

8 Increment(addressl). The contents of addressl is incremented.

9 Decrement(addressl). The contents of addressl is decremented.

10 Subtract{addressl , address2, address3). The contents of addressl is subtracted from the
contents of address2, the result is written into address3.

11 Multiply(addressl , address2, address3). The contents of addressl is multiplied by the
contents of address2, the result is written into address3.

12 Free(addressl). The size of the work tape is decreased by the value found in addressl.
M in is updated accordingly. This primitive complements Allocate.

Rules for legal argument ranges and syntactical correctness. Jumps may lead to any ad­
dress in the dynamic range [M in, M ax + 1) (recall that M ax + 1 always equals the current value of
OracleAddress). Operations that read the contents of certain cells (like add, move, jumpleq etc.) may
read only from addresses in [M in, M ax]. Operations that change the contents of certain cells may write
only into work tape addresses in [M in, -1). Thus, the program tape is "read/execute" only, except for
random writes requested by moves of the InstructionPointer to OracleAddress. This makes reruns
easy, as will be seen below. T he work tape is "read/write/execute". Results of arithmetic operations
leading to underflow or overflow are replaced by -maxint or maxint, respectively. No more than 5 work
tape cells may be Allocated or Freed at a time.

8

COMMENTS

1. Universality. It is not difficult to show that the above primitives form a universal set in the following
sense: they can be composed to form programs writing any computable integer sequence onto the work
tape (within the given size and range limitations). Note that the primitives make it easy to create
programs for handling stacks, recursion, etc. A program may create executable code (or sub-programs)
on the work tape. Since executable code is represented as a sequence of numbers, the code may modify
itself. The scheme allows for very general sequential interaction with the environment (given appropriate
problem-specific actions translating storage contents into output actions and environmental changes).

2. Self-sizing programs. The whole set-up is an adaptation of the Thring machine from section
2. It is designed to be more efficient in the sense that programs may exploit what conventional digital
machines are good at: fast storage addressing, jumping, etc.2 Using a single array of cells with negative
addresses for the work tape and positive addresses for the program tape considerably simplifies the
primitives. At first glance, there seems to be a price to pay for the general addressing capabilities:
random jumps are unlikely to contribute to successful programs if there are many possible legal addresses
to jump to. However, since programs may influence their own size and thus the number of available legal
addresses, they have the potential to remain small and "likely", as will be seen next.

How do programs influence their own size? They can keep small by (1) avoiding requests for new
oracles (e.g. by avoiding jumps to the current OracleAddress), and (2) by using Allocate and Free in
a balanced way. Oracle requests, Allocate and Free provide the only ways of influencing the number of
"visible" legal addresses available in used storage. The oracle requests are the only source of randomness,
however. If the current program does not request many oracles, its space probability will tend to remain
low, although the program may perform extensive computations. The bigger the used storage, however,
the smaller the probability of guessing a particular "visible" address, and the less likely the arguments
of instructions (like "Jumleq") generated by future oracle requests. Small is beautiful.

3. Reruns. Since the program tape is "read/execute" only, we can rerun a randomly chosen halting
program written onto the program t ape by erasing the work tape, making the InstructionPointer equal
to 0, and starting the execution loop. The contents of the program tape completely determine the
contents of the work tape at any given time (unless the environment reacts in a non-deterministic way) .
The desire for being able to rerun programs also is the reason for the way oracle requests are handled.
One might have introduced an extra primitive "Request Oracle" calling for a random instruction to appear
in some location, say, at the end of the used program tape. But then different reruns would have led to
different oracles, in general. The way it is done, oracle requests are generated by any operation moving
the InstructionPointer to the top of the used program tape (the OracleAddress), and any oracle is
executed immediately. (Thus, any legal instruction appearing on the program tape out of the blue is
executed at least once. One might say that "randomness is not wasted" but handled efficiently.) During
reruns, the same moves of the InstructionPointer will not provoke oracle requests. This is because what
used to be the OracleAddress at some point of guessing the program, now isn't any more. During reruns,
there is absolute determinism (unless the environment reacts in a non-deterministic way, of course).

4 . Probabilistic setting. Why use a probabilistic search algorithm instead of the original universal
search procedure? Why create time limits and programs randomly instead of systematically enumerating
them? One reason is to avoid unintended bias. For instance, unintended bias may be introduced by
imposing a systematic (say, alphabetic) order among programs with equal quotients of probability and
runtime. A drawoack of the probabilistic version above, however , is that programs with low Levin
complexity (in general) will be tested more than once.

When speed is an issue, then we will prefer systematic enumeration, or a slightly more complicated
probabilistic variant whose expected search time equals the one of systematic enumeration. Variants
of systematic universal search based on the primitives above were implemented in collaboration with
Norbert Jankowski (Schmidhuber and Jankowski, 1994). With the examples below, however, total

2Jn principle, it is possible to run a variant of universal search on a neural net architecture instead of a conventional
digital machine. In earlier work, it was shown (in a different context) how neural nets may "talk about their own weights in
terms of activations" and modify their own weight matrix (Schmidhuber, 1993b; Sclunidhuber, 1993a). Such self-modifying
capabilities can be used to form the basis of a universal set of primitives.

9

search time is not the main issue: the simulations in the next section (based on probabilistic search)
are intended to highlight generalization performance, not speed. Very similar results were obtained by
systematic search, however.

4 APPLICATION: FINDING "SIMPLE" NEURAL NETS

Neural networks are particularly well-studied instances of "generalizers", see e.g. (Maass, 1994; Baum
and Haussler, 1989; Amari and Murata, 1993; Wolpert, 1993; Moody, 1992; Pearlmutter and Rosenfeld,
1991; Barren, 1988; Mozer and Smolensky, 1989) and the numerous references given below. For this
reason, the simulations presented in this section focus on the task of finding algorithmically simple neural
networks with high generalization capability. Let us first briefly look at a few rather recent definitions of
"simplicity" used in supervised neural net training algorithms. In what follows, "solutions" are weight
vectors of neural nets.

4.1 PREVIOUS ALGORITHMS FOR MAKING NETS "SIMPLE"

• Weight decay. A special error term (in addition to the standard term enforcing matches between
desired outputs and actual outputs) encourages weights close to zero. The idea is that a zero
weight does not cost many bits to be specified, thus being "simple" (Hinton and van Camp,
1993). Pearlmutter and Hinton were probably the first to propose weight decay, while Rumelhart
was perhaps the first to suggest its use for reducing overfitting. Variants of weight decay were
successfully applied by Weigend et al. (1990), Krogh and Hertz (1992), and others.

• Soft weight sharing. Nowlan and Hinton (1992) introduce an additional objective function en­
couraging groups of weights with nearly equal values. The weights are taken to be generated by
mixtures of Gaussians. The fewer the number of Gaussians and the closer some weight is to the
center of some Gaussian, the higher its probability, and the fewer bits are needed to encode it
(according to classical information theory (Shannon, 1948)).

• Bayesian strategies for backprop nets. MacKay evaluates hyper-parameters (such as weight-decay
rates) with respect to their probabilities of generating the observed data (MacKay, 1992). Estimates
of the probabilities are computed on the basis of Gaussian assumptions.

• Optimal Brain Surgeon. Hassibi and Storck (1993) use second order information to obtain "simple"
nets by pruning weights whose influence on the error is minimal,_and changing other weights to
compensate. See (LeCun et al., 1991) for a related approach. See (Vapnik, 1992) and (Guyon
et al., 1992) for some theoretical analysis.

• "Non-algorithmic" MDL methods based on Gaussian priors. To minimize the sum of the description
lengths of a neural net and its errors, Hinton and van Camp (1993) assume Gaussian weight priors
and Gaussian error distributions, and minimize the asymmetric divergence (or Kullback-Leiber
distance) between prior and posterior after training.

• Methods for finding "flat" minima. Hochreiter and Schmidhuber (1994) use efficient second order
methods to search for large connected regions of "acceptable" error minima. This corresponds to
"simple" networks with low description length and low expected overfitting.

• "Mutual information networks". Deco et al. (1993) measure network complexity with respect
to given data by measuring the mutual information between inputs and internal representations
extracted by the hidden units.

• Methods for removing redundant information from input data. If the input data can be com­
pressed, the networks processing the data can be made smaller (and simpler), in general. From
the standpoint of classical information theory, an optimal compression algorithm is one that builds

10

a factorial code of the input data (a code with statistically independent components, e.g. (Bar­
low, 1989)). Various "neural" methods for compressing input data are known. See (Schmidhuber,
1992b) for a "neural" method designed to generate factorial codes. See (Atick et al. , 1992) for a
focus on visual inputs. See (Schmidhuber, 1992a) for loss-free sequence compression. See (Becker,
1991) for numerous additional references.

There are also numerous heuristic constructive m ethods, where network size grows in case of un­
derfitting the training data. MDL approaches in other areas of machine learning include (Quinlan and
Rivest, 1989; Gao and Li, 1989; Milosavljevic and Jurka, 1993; Pednault, 1989). Among the implemented
methods, neither the neural net approaches nor the other ones are general in the sense of Solomonoff,
Kolmogorov, and Levin. All the previous implementations use measures for "simplicity" that lack the
universality and elegance of those based on Kolmogorov complexity and algorithmic information theory.
Many previous approaches are based on ad-hoc (usually Gaussian) priors.

The remainder of this paper is mostly devoted to simulations of the more general method based on the
universal prior, self-sizing programs, and the probabilistic search algorithm preferring candidates with
low Levin complexity over candidates with high Levin complexity. With certain seemingly trivial but
actually non-trivial toy problems it will be demonstrated that the approach can lead to generalization
results unmatchable by more traditional neural net algorithms. It should be mentioned , however, that
this does not say much about the applicability of the method to real world tasks.

4.2 GENERALIZATION TASKS: SIMULATIONS

In the experiments, the following values were used for maximal program tape size and work tape size:
sp = 100, Sw = 1000. The current implementation (which is not optimized for speed) tests about 3,000
programs per second on a SUN SPARC ELC. On average, a program runs for not many more than 10
time steps before halting or being halted. But there are programs running for millions of time steps, of
course.

4.3 A PERCEPTRON FOR COUNTING INPUTS

The following pattern association t ask may seem trivial but will be made difficult (for traditional ap­
proaches) by providing only very few training examples.

The task. A linear (perceptron-like) network with 100 input units, one output unit, and 100 weights,
is fed with lOO-dimensional binary input vectors. xP denotes the p-th input vector. x~ denotes the ith
component of xP, where i ranges from 0 to 99. Each input vector has exactly three bits set to one, all the
other bits are set to zero. Obviously, there are (1~0) = 161,700 possible inputs. The network 's output
in response to xP is

yP = LWiX~,
where Wi is the i-th weight. Each weight may t ake on integer values between -10000 and 10000. The
task is to find weights such that yP equals the number of on-bits in xP , for all 161,700 possible xP. The
number of solution candidates in the search space of possible weight vectors is huge: 20001100• This is
too much for exhaustive search.

The solution: The only solution to the problem is: make all Wi equal to 1. The Kolmogorov
complexity of this solution is small, since there is a short program that computes it. Its Levin complexity
is small, too, since its "logical depth" (the runtime of its shortest program (Bennett, 1988)) is less than
400 time steps.

The difficulty. If the training set is very small (e.g. if there are just four or five training examples),
then conventional perceptron algorithms will not solve this apparently simple problem. They will not
achieve good generalization on unseen test data. One reason is that connections from units that are
always off won't be changed at all by conventional gradient descent algorithms, e.g. (Werbos, 1974;
LeCun, 1985; Parker, 1985; Rumelhart et al., 1986). Note, however, that scaling the inputs differently

11

Addresses: 0 1 2 3 4 5
Contents: 1 1 0 1 1 0

Interpretation: Write Weight 1 jumpleq 1 1 0

Table 1: A program for the counting perceptron.

is not going to improve matters. Nor is weight decay. Weight decay encourages weight matrices with
many zero entries. For the current task, this is a bad strategy.

The train ing data. To illustrate the generalization capability of search for solution candidates with
low Levin complexity, only 3 training examples are used. They were randomly chosen from the
161,700 possible inputs. The first training example is the binary vector x 1 with on-bits at the positions
5, 17, and 86 (and off-bits everywhere else). The second one, x2

, has on-bits at the positions 13, 55, and
58. The third one, x3 , has on-bits at the positions 40, 87, and 94. In all three cases, the desired output
(target) is 3. Generalization results (to be described below) obtained with this particular training set are
very similar to those obtained with different sets of 3 training examples (created by randomly permuting
the input units that are never on).

The search procedure is as follows: the probabilistic search algorithm (as described in section 3) lists
and executes programs computing solution candidates (weight vectors). The primitive ((Write Weight"
(replacing ((output", see section 3) is used for writing network weights. It has one argument and uses the
variable WeightPointer taking on values from the set {0, 1, ... , 99}. In the beginning of a run, Weight­
Pointer and all weights are initialized to 0. The instruction number and the semantics of ((Write Weight "
are as follows (compare the list of primitives given in section 3):

1 Writ e Weight(address). WWeightPointer is set equal to the contents of address3 . The
variable WeightPoint er is incremented. Halt if WeightPointer out of range.

Only if the solution candidate fits the training data exactly is the solution tested on the
test data. Note that this is like a "reward-only-at-goal" task: The measure of success is binary - either
the network fits all the training data, or it doesn't. There is no teacher providing a more informative
error signal (such as the distance to the desired outputs).

RESULTS. Programs fitting the 3 training exemplars were found in 20 out of 100000 runs. Only
2 of them did not lead to perfect generalization on the C~0) - 3 = 161,697 unseen test
examples.

The first weight vector fitting the training data was found after 904 runs. The corresponding program
was a "wild" one, allocating a lot of space and executing many useless instructions, but still leading to
perfect generalization on all the unseen test data. Before halting, the program used 702 out of 1024
allocated time steps. Its time probability was 2- 6 (recall that the unit time is only 16 time steps). Its
space probability was 2.8 * 10- 18.

Another weight vector fitting the training data was computed during the 6038th run. The corre­
sponding program is given in table 1. Here is a more readable interpretation (each program instruction
is preceded by its address):

(0) Write the contents of address 1 (which is 1) onto the weight pointed to by

WeightPointer and i ncrement weight pointer. Halt if WeightPointer out of range .

(2) If the contents of address 1 is less or equal to the contents of address 1,

goto address 0 .

Since the condition tested in the second instruction is always true, this little program will write down
a correct solution, given enough time. It requires 201 time steps. In the case above it got more than
enough time: the randomly chosen time limit was 16 * 212 = 65536.

3To allow for real-valued weights, set wweightPointer equal to the contents of addreu, divided by 1000, say.

12

Addresses: 0 1 2 3 4 5 6 7
Contents: 1 0 1 0 0 5 5 0

Interpretation: Write Weight 0 Write Weight 0 jumpleq 5 5 0

Table 2: A faster program for the counting perceptron.

After 351,168 runs, the system came up with a faster program. See table 2. The program does this:

(0) Write the contents of address 0 (which happens to be 1, due to the code of

''write'' being 1) onto the weight pointed to by WeightPointer and increment

WeightPointer. Halt if WeightPointer out of range .

(2) Write the contents of address 0 onto the weight pointed to by WeightPointer

and increment WeightPointer. Halt if WeightPointer out of range.

(4) If the contents of address 5 (which happens to be 5) is less than or equal

to the contents of address 5 (this is always true), goto address 0 .

This program writes two times before jumping, thus reducing runtime from 200 to 150 time steps
(recall that the execution of each instruction, including jumps, takes one time step). Its space probability
is 9.88* 10-9• Other successful programs with exactly the same runtime were found in 7 out
of 106 runs. No faster programs were found .

Comment. With the example above, probabilistic search among self-sizing programs leads to ex­
cellent generalization performance. At least in theory, however, it might be possible that an appropriate
variant of Nowlan's and Hinton's approach (1992) might achieve good generalization performance on
this task, too. Recall from section 3 that Nowlan and Hinton encourage groups of weights with equal
values, which is a good strategy in the case above. For this reason, the following task requires that no
two weights have equal values. The Kolmogorov complexity of the solution, however, will again be low.

4.4 A PERCEPTRON FOR ADDING INPUT POSITIONS

The task. We use the same perceptron-like network and the same input data as above. The goal is
different, however. The task is to find weights such that yP equals the sum of the positions of on-bits
in xP' for all (1~0) = 161,700 possible xP. Again, the task will be made difficult by providing only very
limited training data.

The solution. The only solution to the problem is: make all Wi equal to i. Like with the example
above, there are short and fast programs for computing the solution.

The training data. The 3 training inputs x1 , x2 , and x 3 from the previous task are used. The
target values are different, however. Obviously, the target for input vector x1 is 108. The target for
input vector x 2 is 126. The target for input vector x 3 is 221. Again, success is binary: only if the
solution candidate fits the 3 training examples exactly, the solution is evaluated on the test data. Note
that conventional perceptron algorithms cannot solve this generalization problem.

RESULTS. Programs fitting the training data were found in 10 out of 5.5 * 107 runs, using up a
total search time of 8.14 * 108 time steps. Only 2 of the 10 successful runs did not lead to perfect
generalization on the 161,697 unseen test examples.

The first weight vector fitting the training data was found after 6,902,963 runs. Again, the corre­
sponding program was a pretty wild one. But it led to perfect generalization on all the test data. Before
halting, the program used 502 out of 8192 allocated time steps. Its time probability was 2-8 • Its space
probability was 3.92 * 10-16• Table 3 shows the used part of the storage after execution. What the
program does is this:

13

Addresses:
Contents:

Table 3: Used storage after execution of a program for the adding perceptron.

Addresses:
Contents:

Table 4: Used storage after execution of a more elegant program for the adding perceptron.

(0) Allocate 3 cells on the ~ork tape. Initialize ~ith zero. Set Min = Min - 3.

(2) Get the contents of the input field (see list of instructions in section 3)

at position 11 (~hich is 0), and ~rite it into address -2.

(5) Write the contents of address -3 onto the ~eight pointed to by WeightPointer

and increment WeightPointer. Halt if WeightPointer is out of range.

(7) If the contents of address -3 is less or equal to the contents of address 9,

goto address 11 . Other~ise goto address 11.

(11) Increment the contents of address -3.

(13) Goto address -1.

(-1) If the contents of address 7 is less or equal to the contents of address 3

(al~ays true), goto address 5.

The instructions beginning at the addresses (2), (7), and (-1) are useless. But at least they are not
catastrophic. Essentially, the program first allocates space for a variable (initially zero) on the work
tape (recall that the program tape is "read/execute" only, and cannot be used for variables). Then it
executes a loop for incrementing and writing the variable contents onto the network's weight vector.

After 4.6 * 107 runs, a faster and rather elegant (nearly minimal) program was found. Table 4 shows
the used storage after execution. The program ran for 302 out of 512 allocated time steps. Its space
probability is 9.65 * 10-10 . Inspection will reveal the operation of the program.

Using different sets of 3 training examples (obtained by randomly permuting the input units that are
never on) led to very similar generalization results.

4.5 INDEXING WRITE OPERATIONS

Clearly, the choice of primitives affects the probabilities of solutions. Algorithmic information theory
tells us that this delays optimal search by no more than a constant factor. As long as the primitives
form a universal set, primitives from another set can be composed from them. Still, constant factors
may be large. Thi·s subsection repeats the experiment from section 4.4 with a slightly different set of
primitives increasing the constant factor.

The primitive "Write Weight" is redefined and gets an additional argument. The primitive "Get!nput"
is redefined and gets a new name: "Read Weight". There is no separate WeightPointer any more, and no
automatic increment mechanism for WeightPointer's position. Instead, the new primitives may directly
address, read and write the network's weights. The other primitives remain the same. Here are the two
new ones, together with their instruction numbers (compare section 5):

1 WriteWeight(addressJ, address2). Wi is set equal to the contents of addressl, where i is
the value found in address2.

14

Addresses:
Contents:

Table 5: Used storage after execution of another program for the adding perceptron, using a different
((Write Weight" primitive.

5 ReadWeight{addressl, address2). w; is written into the address found at location ad­
dressl, where i is the value found in address2.

Appropriate syntax checks halt programs whenever they attempt to do something impossible, like
writing a non-existent weight. Since the new "Write Weight" primitive has an additional argument (to
be guessed correctly), successful programs tend to be less likely.

RESULTS. Out of 108 runs using up a total search time of 1.436 * 109 time steps, 3 runs generated
weight vectors fitting the training data. All of them allowed for perfect generalization on all the
test data. During execution, one of them filled the storage as seen in table 5. The program ran for 399
out of 1024 allocated time steps. Its space probability was 9.95 * 10-9 . What it does is this:

(0) Allocate one cell on the vork tape. Initialize vith zero. Set Min = Min-1 .

(2) Increment the contents of address -1.

(4) Make We_, equal to the contents of address -1.

(7) Jump to address 0 .

Repeated execution of the instruction at address 0 unnecessarily allocates 100 cells of the work tape
but does not do any damage other than slightly slowing down the program.

Using different sets of 3 training examples (obtained by randomly permuting the input units that are
never on), led to very similar generalization results.

5 INCREMENTALSEARCH
As seen above, the probabilistic search algorithm inspired by universal search can lead to excellent
generalization performance. However, the tasks above are not very typical in the sense that the learning
system does not receive any feedback about its progress. The success criterion is binary: either the system
solves the task, or it doesn't. In "cruel" environments providing nothing but such limited evaluative
feedback , not much can be done. For such cases, Levin's algorithm is indeed opt imal.

With many typical learning situations in the real world , however, there is more informative feedback.
For instance, "supervised" gradient-based neural net algorithms like back-prop (Werbos, 1974; LeCun,
1985; Parker, 1985; Rumelhart et al., 1986) make use of information provided by error signals (distances
between actual network outputs and target values). Unlike universal search, these algorithms incre­
mentally adjust network weights in an iterative manner: solution candidates found in previous trials
serve as a basis for additional improvements. Reinforcement learning algorithms (Watkins, 1989; Dayan
and Sejnowski, 1994; Barto et al., 1983; Williams, 1988; Schmidhuber, 1989) (see Barto (1989) for an
overview) receive less informative environmental feedback than supervised learning algorithms, but they
are designed to work in an incremental fashion as well. For instance, they tend to make use of the
information provided by the magnitude of the rewards, and by the amount of time between rewarding
events. Again , "good" solutions build the basis for "better" solutions. The same is true for simple
hill-climbing and for "evolutionary" and "genetic" algorithms (GAs) (Rechenberg, 1971; Schwefel, 1974;
Holland, 1975; Hoffmeister and Back, 1991)(see e.g. (Dickmanns et al., 1986; Schmidhuber , 1987; Koza,
1992) for applications of the GA paradigm to the evolution of computer programs).

The original universal search procedure as formulated by Levin is not designed for incremental learn­
ing situations. Indeed, the current theory of incremental learning is not well-developed. However, there

15

appears to be more than one reasonable way of appropriately extending universal search. Some possi­
bilities are given in Solomonoff's and Paul's more recent work, see (Solomonoff, 1986; Solomonoff, 1990;
Paul and Solomonoff, 1991). Apparently, however, nobody has implemented incremental extensions of
universal search so far, although both Solomonoff and Paul emphasize the importance of experiments.

An in-depth study of extensions designed for incremental learning is beyond the scope of this paper.
To end it with a promising outlook, however, a few initial experimental results with certain probabilistic
variants of the first implemented incremental extensions will be reported next.

5.1 EXPERIMENTS WITH INCREMENTAL EXTENSIONS

The basic set-up for the experiment with the network described in section 4.4 (the "adding" perceptron)
is used again. However, to allow for "incremental learning" , the following modifications are introduced.

Generation of "mutations" with low Levin complexity. To provide more informative feedback,
weight vectors are evaluated in a non-binary fashion. The "fitness" of a weight vector is defined as its
number of "correct" weights. Recall that the solution requires the ith weight to equal i. The weights
(initially zero) are not re-initialized after each run. Instead, whenever there is an improvement (whenever
some run leads to a weight vector with more correct weights than the best found so far), the weights of
the modified weight vector are stored. Further runs try to generate further improvements of the modified
weight vector. In other words, each run leads to a "mutation" of the best weight vector found so far.
Essentially, weight vector mutations are listed in order of their Levin complexity, until an improvement
is found. The improved weight vector goes into a new round of mutations.

Mutations of mutation algorithms. With the problem from section 4.5, the above modification
by itself did not lead to a significant reduction of total search time. Typical improvements led to
at most one additional correct weight per run (with most runs, there was no improvement at all).
However, by introducing another modification, search time sometimes was reduced dramatically. Let
us define the "fitness" of an improvement as the difference between the fitness of the newly generated
weight vector and the best found so far. The additional modification is this: whenever the fitness
of an improvement exceeds both 2 and the fitness of the best improvement so far , the corresponding
mutation program is kept on the program tape. The work tape is erased. The following trials start with
InstructionPointer being equal to the address following the end of the successful program (M in +- 0,
OracleAddress +- InstructionPointer) . This means: new mutation programs may build on earlier
successful mutation programs. This makes the approach similar in spirit to the approaches proposed
in (Solomonoff, 1986; Solomonoff, 1990; Paul and Solomonoff, 1991). Successful programs often will
represent short descriptions of mutations of many different solution components. The probability of a
new successful mutation may be higher if we may mutate successful mutation algorithms (instead of just
mutating mutation results). Thus, additional improvements may be more likely. Think of this: most
programmers prefer rewriting programs in a high level language instead of rewriting the microcode.

RESULTS. With the first test, 25 of the first 1,356,777 runs led to 1-step improvements. This
means that about one out of 54,271 runs led to a "better" weight vector (whose number of correct
weights exceeded the one of the best found so far by exactly 1). In the end of this period, the network's
weight vector had 25 correct weights. Then, at run number 1,356,777, there was a dramatic improvement
leading to 57 correct weights. As described above, the corresponding mutation program was left on the
program tape. It~ space probability was 1.47 * 10-2 1. Very briefly after this event, at run number
1,357,193, the system generated an additional dramatic improvement. The additional code was just a
jump to a useful position in the old code. Together with the old code, the new program led to 99 correct
weights. The space probability of the additional code was high: 3.3 * 10- 3 (this is the reason why it
was found so quickly). The only missing correct weight was generated shortly after that, at run number
1,357,233. Thus, only 456 runs after the first dramatic improvement, the solution was completed. This
corresponds to not more than a small fraction of a second of additional cpu time.

With the second test, again there was a series of at most 1-step improvements. This time it lasted
until the network's weight vector had 46 correct weights. Then, at run number 6,308,386 (after about
half an hour of cpu time), there was an apparently minor improvement leading to 49 correct weights.

16

But the minor improvement was actually a major breakthrough. The corresponding mutation program
became the building block for a flurry of additional improvements. Nearly immediately afterwards, after
run number 6,308,631, there were 53 correct weights. After run number 6,308,812, there were 68 correct
weights. After run number 6,310,125, there were 99 correct weights. After run number 6,310,280, there
were 100 correct weights. Thus, within only 1894 runs (less than a second of cpu time) following the
apparently minor improvement , the solution was completed.

In additional experiments, the weight vector was reinitialized (with zeros) after each run. But
programs leading to further improvements were not erased from the program tape, just as described
above. On average, this led to equal or even better performance than the version keeping the best
weight vector so far. Similar observations were made with other variants of incremental search.

COMMENTS I PROBLEMS I FUTURE WORK

1. Learning speed. The incremental extensions turned out to be faster than non-incremental search
(compare section 4.5). Obviously, once a useful program is found, it may serve as a useful subprogram.
This may dramatically increase the probability of further improvements, and thus reduce search time.
In a way, the system may learn how to learn faster.

2. On improving "evolutionary" algorithms. In theory, the strategy of listing parameter
mutations in order of their Levin complexity appears to be a smarter mutation strategy than the trivial
mutation strategies employed by conventional hill-climbing , evolut ionary and genetic algorithms, e.g.
(Rechenberg, 1971; Schwefel, 1974; Holland , 1975; Hoffmeister and Back, 1991; Dickmanns et al., 1986;
Koza, 1992). In general, the latter cannot be expected to come up (within reasonable t ime) with non­
trivial changes that require many simultaneous "correlated mutations" in quite different positions (at
every 5th position , say). Universal search, however, soon will find useful "correlated mutations" if their
Levin' complexities are low. Therefore, incremental extensions of universal search appear to be promising
candidates for learning more complex tasks, and for replacing the less sophisticated strategies typically
used for more traditional algorithms.

3; Code explosion. In theoretical investigations, more complex strategies for handling "subpro­
grams" have been proposed. Solomonoff described methods for giving new names to successful programs,
and using them as more complex primitives (Solomonoff, 1964; Solomonoff, 1986). This approach suf­
fers from the same obvious problem as the methods tested above: as the code continues to expand,
there is more material with which to form new programs (this will be referred to as the "code explosion
problem"). Sometimes, code explosion may have a negative influence on the probability of additional
successful code. For such reasons, Paul and Solomonoff (1991) address theoretical advantages of grouping
related programs into "directories" of subprograms.

4 . Compressing successful programs. To a degree, the severeness of the code explosion problem
might be diminishable by searching for programs compressing old successful code. Solomonoff (1986)
proposed to spend about one half of total search time on trying to compress previous useful programs, but
this idea was not pursued (the focus of his paper is on combining concepts from algorithmic probability
theory and more traditional approaches for assigning modified probabilities to subprograms appearing
in successful programs). Program compression algorithms could help to deal with a related problem
observed in the simulations: in general, the programs found by incremental search were not as short,
efficient, and elegant as the ones found by non-incremental search. The reason is that incremental search
tends to generate programs that incorporate non-optimal code from previous runs.

5. Future research. Much remains to be done to become clear about the mutual advantages and
disadvantages of different "incremental" extensions of universal search. At t he moment, nobody knows
the best general algorithm for learning from previous experiences. Is there a strategy for incremental
learning that is optimal in the same sense universal search is optimal for a broad class of non-incremental
situations? This may be one of the most important questions in machine learning.

17

6 CONCLUDING REMARKS

It was shown that basic concepts from the theory of algorithmic complexity are of interest for machine
learning purposes. At least with certain toy problems where it is computationally feasible, search with
preference for solutions computable by short and fast programs may lead to excellent generalization
performance unmatchable by more traditional algorithms. Although the focus of the experiments was
on perceptron-like neural nets, the presented methods are general enough to be applied to a wide variety
of problems. For instance, in work done in collaboration with Norbert Jankowski, variants of universal
search were successfully applied to path finding problems in mazes (Schmidhuber and Jankowski, 1994).
Much work on "incremental" learning in real world applications remains to be done, however .

The bias towards algorithmic simplicity is a very general one. It is weaker than most kinds of problem
specific inductive bias, e.g. (Utgoff, 1986; Haussler, 1988). If a solution is indeed simple, the bias is
justified (it does not require us to know "the way in which the solution is simple"). If the solution is not
simple, the bias towards algorithmic simplicity won't do much damage: even in case of algorithmically
complex solutions we cannot lose much if we focus on simple candidates first, before looking at more
complex candidates. T his is because in general the complex candidates greatly outnumber the simple
ones. The few simple ones don 't significantly affect total search time of an optimal search algorithm.

When will a general bias towards algorithmic simplicity not only cause no harm but also be useful for
problem solving? How many solutions are indeed simple? The next paragraph appears to support the
answer "hardly any". But the final part of this section argues that the expression "hardly any" actually
refers to a worst case that is atypical for real world problems.

In general, generalization is impossible . To be more specific, let the task be to learn some
relation between finite bitstrings and finite bitstrings. A training set is chosen randomly. In almost all
cases, the shortest algorithm computing a (non-overlapping) test set essentially will have the size of the
whole test set (recall from section 2 that most computable objects are incompressible). The shortest
algorithm computing the test set, given the training set, won't be any shorter. In other words, the
"mutual algorithmic information" (e.g. (Chaitin , 1987)) between test set and training set will be zero in
almost all cases (ignoring an additive constant independent of the problem). Therefore, in the general
case, (1) knowledge of the training set does not provide any clues about the test set, (2) there is no
hope for generalization, and (3) obviously there is no reason why a "simple" (or any other kind of)
solution should be preferred a priori over complex ones (related observations are discussed at length e.g.
in (Dietterich, 1989; Schaffer, 1993; Wolpert, 1993)). This may be viewed as the reason why certain
worst-case results of PAC-learning theory (initiated by Valiant, 1984) appear discouraging. Similarly
for problem solving in general: a "problem" is usually defined by a search space of solution candidates,
and a computable criterion for the solution. Most solutions to problems from the set of all possible well­
defined problems are algorithmically complex (random, incompressible). Most such problems cannot be
efficiently solved ("efficient" means faster than by exhaustive search), neither by Levin's universal search
algorithm, nor by a hypothetical "optimal" incremental learning scheme, nor by any other method.

Apparently, however, many typical problems we are confronted with in the "real world" are simple!
Simple in the sense that their solutions do not require as much information to be specified as most
solution candidates. Problems that humans consider to be typical are atypical when compared to the
general set of all well-defined problems (see also (Li and Vitanyi, 1989)) . Indeed, for all "interesting"
problems, the bias towards algorithmic simplicity seems justified!

This may be a· miracle. Or perhaps a consequence of the possibility that our universe is run by a
short algorithm (every electron behaves the same way) . Or (at least in some cases) just a consequence
of the fact that we select only problems we can solve (we would not exist if we could not survive by
doing so- but this is an anthropocentric argument). Anyway, our learning machines should try to make
use of the enormous amount of algorithmic redundancy in our "friendly" universe. The most general
way of doing so appears to be to use the tools provided by the theory of algorithmic probability and
Kolmogorov complexity.

18

7 ACKNOWLEDGEMENTS

Thanks to Martin Eldracher, Sepp Hochreiter, Margit Kinder, Daniel Prelinger, Mark Ring, Jan Storck,
Gerhard WeiB, and especially to Ray Solomonoff for useful comments on earlier drafts of this paper.

References

Adleman, L. (1979) . Time, space, and randomness. Technical Report MIT/LCS/79/TM-131, Laboratory
for Computer Science, MIT.

Allender, A. (1992). Application of time-bounded Kolmogorov complexity in complexity theory. In
Watanabe, 0., editor, Kolmogorov complexity and computational complexity, pages 6-22. EATCS
Monographs on Theoretical Computer Science, Springer.

Amari, S. and Murata, N. (1993). Statistical theory of learning curves under entropic loss criterion.
Neural Computation, 5(1):140- 153.

Atick, J. J ., Li, Z., and Redlich, A. N. (1992). Understanding retinal color coding from first prinicples.
Neural Computation, 4:559- 572.

Barlow, H. B. (1989). Unsupervised learning. Neural Computation, 1(3):295-311.

Barron, A. R. (1988). Complexity regularization with application to artificial neural networks. In Non­
parametric Functional Estimation and Related Topics, pages 561- 576. Kluwer Academic Publishers.

Barto, A. G. (1989). Connectionist approaches for control. Technical Report COINS Technical Report
89-89, University of Massachusetts, Amherst MA 01003.

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983) . Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics,
SMC-13:834-846.

Barzdin, Y. M. (1988). Algorithmic information theory. In Reidel, D., editor, Encyclopaedia of Mathe­
matics, volume 1, pages 140- 142. Kluwer Academic Publishers.

Baum, E. B. and Haussler, D. (1989). What size net gives valid generalization? Neural Computation,
1(1):151- 160.

Becker, S. (1991). Unsupervised learning procedures for neural networks. Int ernational Journal of Neural
Systems, 2(1 & 2):17- 33.

Bennett, C. H. (1988) . Logical depth and physical complexity. In The Universal Turing Machine: A
Half Century Survey, volume 1, pages 227-258. Oxford University Press, Oxford and Kammerer &
Unverzagt, Hamburg.

Blumer, A., Ehrenfeucht, A., Haussler, D., and VVarmuth, M. K. (1987). Occam's razor. Information
Processing Letters, 24:377-380.

Chaitin, G. (1966). On the length of programs for computing finite binary sequences. Journal of the
AGM, 13:547-569.

Chaitin, G. (1969). On the length of programs for computing finite binary sequences: statistical consid­
erations. Journal of the AGM, 16:145-159.

Chaitin, G. (1975). A theory of program size formally identical to information theory. Journal of the
AGM, 22:329-340.

19

Chaitin, G. (1987). Algorithmic Information Theory. Cambridge University Press, Cambridge.

Cover, T. M., Gacs, P., and Gray, R. M. (1989). Kolmogorov's contributions to information theory and
algorithmic complexity. Annals of Probability Theory, 17:840- 865.

Dayan, P. and Sejnowski, T. (1994). TD(>.): Convergence with probability 1. Machine Learning. In
press.

Deco, G., Finnoff, W., and Zimmermann, H. G. (1993). Elimination of overtraining by a mutual in­
formation network. In Proceedings of the International Conference on Artificial Neural Networks,
Amsterdam, pages 744-749. Springer.

Dickmanns, D., Schmidhuber, J., and Winklhofer, A. (1986). Der genetische Algorithmus: Eine Imple­
mentierung in Prolog. Fortgeschrittenenpraktikum, Institut fiir Informatik, Lehrstuhl Prof. Radig,
Technische Universitat Miinchen.

Dietterich, T. G. (1989). Limitations of inductive learning. In Proceedings of the Sixth International
Workshop on Machine Learning, Jthaca, NY, pages 124-128. San Francisco, CA: Morgan Kaufmann.

Gacs, P. (1974). On the symmetry of algorithmic information. Soviet Math. Dokl., 15:1477- 1480.

Gao, Q. and Li, M. (1989). The minimum description length principle and its application to online
learning of hand printed characters. In Proc. 11th IEEE International Joint Conference on Artificial
Intelligence, Detroit, Mi, pages 843- 848.

Guyon, 1., Vapnik, V., Boser, B., Bottou, L., and Solla, S. A. (1992). Structural risk minimization for
character recognition. In Lippman, D. S., Moody, J. E., and Touretzky, D. S., editors, Advances in
Neural Information Processing Systems 4, pages 471- 479. San Mateo, CA: Morgan Kaufmann.

Hartmanis, J. (1983). Generalized Kolmogorov complexity and the structure of feasible computations.
In Proc. 24th IEEE Symposium on Foundations of Computer Science, pages 439- 445.

Hassibi, B. and Stork, D. G. (1993). Second order derivatives for network pruning: Optimal brain
surgeon. In Lippman, D. S., Moody, J. E., and Touretzky, D. S., editors, Advances in Neural
Information Processing Systems 5, pages 164- 171. San Mateo, CA: Morgan Kaufmann.

Haussler, D. (1988). Quantifying inductive bias: AI learning algorithms and Valiant's learning frame­
work. Artificial Intelligence, 36:177-221.

Hinton, G. E. and van Camp, D. (1993). Keeping neural networks simple. In Proceedings of the Inter­
national Conference on Artificial Neural Networks, Amsterdam, pages 11- 18. Springer.

Hochreiter, S. and Schmidhuber, J. {1994). Simplifying networks by discovering "flat" minima. Technical
Report FKI- -94, Fakultat fiir lnformatik, Technische Universitii.t Miinchen. To be presented at
NIPS'94.

Hoffmeister, F. and Back, T. (1991). Genetic algorithms and evolution strategies: Similarities and
differences. In Manner, R. and Schwefel, H. P., editors, Proc. of 1st International Conference on
Parallel Problem Solving from Nature, Berlin. Springer.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann
Arbor.

Kolmogorov, A. (1965). Three approaches to the quantitative definition of information. Problems of
Information Transmission, 1:1-11.

Kolmogorov, A. N. (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin.

20

1..

..

Koza, J. R. (1992). Genetic evolution and eo-evolution of computer programs. In Langton, C., Taylor,
C., Farmer, J. D., and Rasmussen, S., editors, Artificial Life If, pages 313-324. Addison Wesley
Publishing Company.

Krogh, A. and Hertz, J. A. (1992). A simple weight decay can improve generalization. In Lippman, D. S.,
Moody, J. E., and Touretzky, D. S., editors, Advances in Neural Information Processing Systems 4,
pages 950-957. San Mateo, CA: Morgan Kaufmann .

LeCun, Y. (1985). Une procedure d'apprentissage pour reseau a seuil asymetrique. Proceedings of
Cognitiva 85, Paris, pages 599-604.

LeCun, Y., Kanter, I., and Solla, S. A. (1991). Second order properties of error surfaces: Learning time
and generalization. In Lippman, D. S., Moody, J. E., and Touretzky, D. S., editors, Advances in
Neural Information Processing Systems 3, pages 918-924. San Mateo, CA: Morgan Kaufmann.

Levin, L. A. (1973a). On the notion of a random sequence. Soviet Math. Dokl., 14(5):1413-1416.

Levin, L. A. (1973b). Universal sequential search problems. Problems of Information Transmission,
9(3):265- 266.

Levin, L. A. (1974). Laws of information (nongrowth) and aspects of the foundation of probability
theory. Problems of Information Transmission, 10(3):206-210.

Levin, L. A. (1976). Various measures of complexity for finite objects (axiomatic description). Soviet
Math. Dokl., 17(2):522-526.

Levin, L. A. (1984). Randomness conservation inequalities: Information and independence in mathe­
matical theories. Information and Control, 61:15-37.

Li, M. and Vitanyi, P. M. B. (1989). A theory of learning simple concepts under simple distributions and
average case complexity for the universal distribution. In Proc. 30th American IEEE Symposium
on Foundations of Computer Science, pages 34-39.

Li, M. and Vitanyi, P. M. B. (1993). An Introduction to Kolmogorov Complexity and its Applications.
Springer.

Linsker, R. (1988). Self-organization in a perceptual network. IEEE Computer, 21:105- 117.

Maass, W. (1994). Perspectives of current research about the complexity of learning on neural nets.
In Roychowdhury, V. P., Siu, K. Y., and Orlitsky, A., editors, Theoretical Advances in Neural
Computation and Learning. Kluwer Academic Publishers.

MacKay, D. J. C. (1992). A practical Bayesian framework for backprop networks. Neural Computation,
4:448-472.

Martin-Lof, P. (1966). The definition of random sequences. Information and Control, 9:602-619.

Milosavljevic, A. and Jurka, J . (1993). Discovery by minimal length encoding: A case study in molecular
evolution. Machine Learning, 12:96- 87.

Moody, J. E. (1992). The effective number of parameters: An analysis of generalization and regularization
in nonlinear learning systems. In Lippman, D. S., Moody, J. E., and Touretzky, D. S., editors,
Advances in Neural Information Processing Systems 4, pages 847-854. San Mateo, CA: Morgan
Kaufmann.

Mozer, M. C. and Smolensky, P. (1989). Skeletonization: A technique for trimming the fat from a
network via relevance assessment. In Touretzky, D. S., editor, Advances in Neural Information
Processing Systems 1, pages 107-115. San Mateo, CA: Morgan Kaufmann .

21

Nowlan, S. J. and Hinton, G. E. (1992). Simplifying neural networks by soft weight sharing. Neural
Computation, 4:173-193.

Parker, D. B. (1985). Learning-logic. Technical Report TR-47, Center for Comp. Research in Economics
and Management Sci., MIT.

Paul, W. and Solomonoff, R. J. (1991). Autonomous theory building systems. Manuscript, revised 1994.

Pearlmutter, B. A. and Rosenfeld, R. (1991). Chaitin-Kolmogorov complexity and generalization in
neural networks. In Lippman, D. S., Moody, J. E., and Touretzky, D. S., editors, Advances in
Neural Information Processing Systems 9, pages 925- 931. San Mateo, CA: Morgan Kaufmann.

Pednault, E. P. D. (1989). Some experiments in applying inductive inference principles to surface
reconstruction. In 11th IJCAI, pages 1603- 1609. San Mateo, CA: Morgan Kaufmann.

Quinlan, J . R. and Rivest, R. L. (1989). Inferring decision trees using the minimum description length
principle. Information and Computation, 80:227- 248.

Rechenberg, I. (1971). Evolutionsstrategie- Optimierung technischer Systeme nach Prinzipien der biol­
ogischen Evolution. Dissertation. Published 1973 by Fromman-Holzboog.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14:465-471.

Rissanen, J. (1983). A universal prior for integers and estimation by minimum description length. The
Annals of Statistics, 11(2):416- 431.

Rissanen, J. (1986). Stochastic complexity and modeling. The Annals of Statistics, 14(3):1080- 1100.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal representations by error
propagation. In Parallel Distributed Processing, volume 1, pages 318- 362. MIT Press.

Schaffer, C. (1993). Overfitting avoidance as bias. Machine Learning, 10:153-178.

Schmidhuber, J. H. (1987). Evolutionary principles in self-referential learning, or on learning how to
learn: The meta-meta-... hook. Report, Institut fiir Informatik, Technische Universitat Miinchen.

Schmidhuber, J. H. (1989). A local learning algorithm for dynamic feedforward and recurrent networks.
Connection Science, 1(4):403-412.

Schmidhuber, J. H. (1992a). Learning complex, extended sequences using the principle of history com­
pression. Neural Computation, 4(2):234- 242.

Schmidhuber, J. H. (1992b). Learning factorial codes by predictability minimization. Neural Computa­
tion, 4(6):863- 879.

Schmidhuber, J. H. (1993a). On decreasing the ratio between learning complexity and number of time­
varying variables in fully recurrent nets. In Proceedings of the International Conference on Artificial
Neural Networks, Amsterdam, pages 460- 463. Springer.

Schmidhuber, J. H. (1993b). A self-referential weight matrix. In Proceedings of the International Con­
ference on Artificial Neural Networks, Amsterdam, pages 446-451. Springer.

Schmidhuber, J. H. (1994). Algorithmic art. Technical report, Fakultat fiir Informatik, Technische
Universitat Miinchen.

Schmidhuber, J. H. and J ankowski, N. (1994). Applications of Levin's optimal universal search algorithm.
Technical report, Fakultat fiir Informatik, Technische Universitat Miinchen. In preparation.

22

•

•

Schnorr, C. P. (1971). A unified approach to the definition of random sequences. Mathematical Systems
Theory, 5:246-258.

Schwefel, H. P. (1974). Numerische Optimierung von Computer-Modellen. Dissertation. Published 1977
by Birkhauser, Basel.

Shannon, C. E. (1948). A mathematical theory of communication (parts I and 11). Bell System Technical
Journal, XXVII:379-423.

Solomonoff, R. (1964). A formal theory of inductive inference. Part I. Information and Control, 7:1-22.

Solomonoff, R. (1986). An application of algorithmic probability to problems in artificial intelligence.
In Kanal, L. N. and Lemmer, J. F., editors, Uncertainty in Artificial Intelligence, pages 473- 491.
Elsevier Science Publishers.

, . .Solomonoff, R. (1990). A system for incremental learning based on algorithmic probability. In Pednault,
E. P. D., editor, The Theory and Application of Minimal-Length Encoding (Preprint of Symposium
papers of AAA! 1990 Spring Symposium).

17·-·:

Utgoff, P. (1986). Shift of bias for inductive concept learning. In Machine Learning, volume 2. Morgan
Kaufmann, Los Altos, CA.

Valiant, L. G. (1987). A theory of the learnable. Communications of the AGM, 27:1134-1142.

Vapnik, V. (1992). Principles of risk minimization for learning theory. In Lippman, D. S., Moody, J. E.,
and Touretzky, D. S., editors, Advances in Neural Information Processing Systems 4, pages 831- 838.
San Mateo, CA: Morgan Kaufmann.

Wallace, C. S. and Boulton, D. M. (1968). An information theoretic measure for classification. Computer
Journal, 11(2):185- 194.

Watanabe, 0. (1992). I<olmogorov complexity and computational complexity. EATCS Monographs on
Theoretical Computer Science, Springer.

Watkins, C. (1989). Learning from Delayed Rewards. PhD thesis, King's College.

Weigend, A. S., Huberman, B. A., and Rumelhart, D. E. (1990) . Predicting the future: A connectionist
approach. International Journal of Neural Systems, 1:193-209.

Werbos, P. J. (1974). Beyond Regression: New Tools for Prediction and Analysis in the Behavioral
Sciences. PhD thesis, Harvard University.

Williams, R. J. (1988). Toward a theory of reinforcement-learning connectionist systems. Technical
Report NU-CCS-88-3, College of Comp. Sci., Northeastern University, Boston, MA.

Wolpert, D. H. (1993). On overfitting avoidance as bias. Technical Report SFI TR 93-03-016, Santa Fe
Institute, NM 87501.

Zvonkin, A. K. and Levin, L. A. (1970). The complexity of finite objects and the algorithmic concepts
of information and randomness. Russian Math. Surveys, 25(6):83-124 .

23

..

•

I

" I
I
I

I
i

l
I
I

FKI-194-94 Jiirgen Schmidhuber: Discovering Problem Solutions with Low Kolmogorov Complexity and
High Generalization Capability

ISSN 0941-6358

•

