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Abstract 

Many machine learning algorithms aim at finding "simple" rules to explain training data. The 
expectation is: the "simpler" the rules, the better the generalization on test data (-+ Occam 's 
razor). Most practical implementations, however, use measures for "simplicity" that lack the power, 
universality and elegance of those based on Kolmogorov complexity and Solomonoff's algorithmic 
probability. Likewise, most previous approaches (especially those of the "Bayesian" kind) suffer 
from the problem of choosing appropriate priors. This paper addresses both issues. It first reviews 
some basic concepts of algorithmic complexity theory relevant to machine learning, and how the 
Solomonoff-Levin distribution (or universal prior) deals with the prior problem. The universal prior 
leads to a probabilistic method for finding "algorithmically simple" problem solutions with high 
generalization capability. The method is based on Levin complexity (a time-bounded generalization 
of Kolmogorov complexity) and inspired by Levin's optimal universal search algorithm. With a given 
problem, solution candidates are computed by efficient "self-sizing" programs that influence their own 
runtime and storage size. The probabilistic search algorithm finds the "good" programs (the ones 
quickly computing algorithmically probable solutions fitting the training data). Simulations focus 
on the task of discovering "algorithmically simple" neural networks with low Kolmogorov complexity 
and high generalization capability. It is demonstrated that the method, at least with certain toy 
problems where it is computationally feasible, can lead to generalization results unmatchable by 
previous neural net algorithms. Much remains do be done, however, to make large scale applications 
and "incremental learning" feasible. 

Keywords: Generalized K olmogorov complexity, Solomonoff-Levin distribution, generalization, univer­
sal search, self-sizing programs, neural networks. 
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1 INTRODUCTION 

The first number is 2. The second number is 4. The third number is 6. The fourth number is 8. What 
is the fifth number? The answer is 34. The reason is the following law. The nth number is 

n 4 
- 10n3 + 35n2

- 48n + 24. 

But an IQ test requires you to answer "10" instead of "34". Why not "34"? The reasons are: (1) 
"simple" solutions are preferred over "complex" ones. This idea is often referred to as "Occam's razor". 
(2) It is assumed that the "simpler" the rules, the better the generalization on test data. (3) The makers 
of the IQ test assume that everybody agrees on what "simple" means. 

Similarly, many researchers agree1 that learning algorithms ought to extract "simple" rules to explain 
training data. But what exactly does "simple" mean? The only theory providing a convincing objective 
criterion for "simplicity" is the theory of Kolmogorov complexity (or algorithmic complexity). Contrary 
to a popular myth, the incomputability of Kolmogorov complexity (due to the halting problem) does 
not prevent machine learning applications, because there are tractable yet very general extensions of 
Kolmogorov complexity. Few machine learning researchers, however, make use of the powerful tools 
provided by the theory. 

Purpose of paper. This work and the experiments to be presented herein are intended (1) to 
demonstrate that basic concepts from the theory of Kolmogorov complexity are indeed of interest for 
machine learning purposes, (2) to encourage machine learning researchers to study this theory, and (3) 
to point to some limitations of the current state of the art and to important open problems. 

Outline. Section 2 briefly reviews the following basic concepts of algorithmic complexity theory 
relevant to machine learning: (1) Kolmogorov complexity, (2) The universal prior (or Solomonoff-Levin 
distribution), under which the probability of a computable object (like the solution to a problem) is essen­
tially equal to the probability of guessing its shortest program on a universal computer, (3) Solomonoff's 
theory of inductive inference, and how it justifies Occam's razor, ( 4) The principle of minimal description 
length (MDL) in its general form, (5) Levin complexity (a generalization of Kolmogorov complexity) and 
Levin's universal optimal search algorithm. For a given computable solution to a problem, consider the 
negative log of the probability of guessing a program that computes it, plus the log of its runtime. The 
Levin complexity of the solution is the minimal possible value of this. Levin's universal search algorithm 
essentially generates and tests solution candidates (from a set of possible computable candidates) in order 
of their Levin complexity, until a solution is found. For a broad class of problems, universal search can 
be shown to be optimal with respect to total expected search time, leaving aside a constant factor which 
does not depend on the problem. To my knowledge, section 3 presents the first general implementation 
of (a probabilistic variant of) universal search on a conventional digital machine. It is based on efficient 
"self-sizing" programs which influence their own runtime and storage size. Simulations in section 4 focus 
on the task of finding "simple" neural nets with high generalization capability. Experiments with toy 
problems demonstrate that the method, at least in certain cases where it is computationally feasible, 
can lead to generalization results that seem to be impossible to obtain by more traditional neural net 
algorithms (also briefly reviewed in section 4). To end this paper with a promising outlook, section 5 
presents preliminary experiments with extensions designed for incremental learning. There, the "best" 
solution candidate found so far serves as a basis for additional improvements. Although their theoretical 
foundations are not yet well-developed, incremental extensions appear to be promising for improving 
neural net algorithms, evolutionary and genetic algorithms, and other learning paradigms. Section 6 
concludes with general remarks on problem solving and Occam's razor. 

2 BASIC CONCEPTS RELEVANT TO LEARNING 

This section briefly reviews a few basic concepts from the theories of algorithmic probability and Kol­
mogorov complexity (a.k.a. "algorithmic complexity"). Selected references and a very brief and incom-

1The final section provides some remarks for those who don't agree. 

2 



plete history of the subject can be found at the end of the section. 
Algorithmic complexity theory provides various different but closely related measures for the com­

plexity (or simplicity) of objects. We will focus on the one that appears to be the most useful for 
machine learning. Informally speaking, the complexity of a computable object is the length of the 
shortest program that computes it and halts, where the set of possible programs forms a prefix code. 

To make this more precise, consider a Turing machine (TM) with 3 tapes: the program tape, the 
work tape, and the output tape. All three are finite but may grow indefinitely. For simplicity, but 
without loss of generality, let us focus on binary tape alphabets {0, 1}. Initially, the work tape and the 
output tape consist of a single square filled with a zero. The program tape consists of finitely many 
squares, each filled with a zero or a one. Each tape has a scanning head. Initially, the scanning head 
of each tape points to its first square. The program tape is "read only", the output tape is "write 
only", their scanning heads may be shifted only to the right (one square at a time). The work tape is 
"read/write", its scanning head may move in both directions. Whenever the scanning heads of work 
tape or output tape shift beyond the current tape boundary, an additional square is appended and filled 
with a zero. The case of the program tape's scanning head shifting beyond the program tape boundary 
will be considered later. For the moment we assume that this does never happen. The TM has a finite 
number of internal states (one of them being the initial state). Its behavior is specified by a function 
F (implemented as a look-up table). F maps the current state and the contents of the square above 
the scanning head of the work tape to a new state and an action. There are 8 actions: shift worktape 
left/right, write 1/0 on worktape, write 1/0 on output tape and shift its scanning head right, copy 
contents above scanning head of program tape onto square above scanning head of work tape and shift 
program tape's scanning head right, and halt. 

Self-delimiting programs. Let I s I denote the number of bits in the bitstring s. Consider a 
nonempty bitstring p written onto the program tape such that the scanning head points to the first bit 
of p. p is a program for some TM T, iff T reads all I p I bits and halts. In other words, during the 
(eventually terminating) computation process the head ofT's program tape incrementally moves from 
its start position to the end of p, but not any further. One may say that p carries in itself the information 
about when to stop, and about its own length. Obviously, no program can be the prefix of another one. 

Compiler theorem. Each TM C, mapping bitstrings (written onto the program tape) to outputs 
(written onto the output tape) computes a partial function fe : {0, 1}* --... {0, 1}• (le is undefined 
where C does not halt). It is well known that there is a universal TM U with the following property: 
for every TM C there exists a constant prefix J.le such that fe(P) = fu(J.leP) for all bitstrings P· . J.le is 
the compiler that compiles programs for C into equivalent programs for U. 

In what follows, let p denote a (self-delimiting) program. 
Kolmogorov complexity. Given U, the Kolmogorov complexity ( a.k.a. "algorithmic complexity," 

"algorithmic information," or occasionally "Kolmogorov-Chaitin complexity") of an arbitrary bitstring 
s is denoted as Ku ( s) and is defined as the length of a shortest program producing s on U: 

Ku(s) = min{l p 1: /u(p) = s }. 
p 

Ku(s) is noncomputable, otherwise the halting problem could be solved. However, by comparing the 
number of possible programs with less than n bits ( < 2n) and the number of possible bitstrings with 
greater than n bits ( > > 2n), one observes: most strings s are complex (or "random", or "incompressible") 
in the sense that they cannot be computed by a program much shorter than s. 

Invariance theorem. Due to the compiler theorem, Ku1 (s) = Ku,(s) + 0(1) for two universal 
machines U1 and U2. Therefore we may choose one particular universal machine U and henceforth write 
K(s) = Ku(s). 

Machine learning, MDL, and the prior problem. In machine learning applications, we are 
often concerned with the following problem: given training data D, we would like to select the most 
probable hypothesis H generating the data. Bayes formula yields 

P(H I D)= P(D I H)P(H) 
P(D) . (1) 
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We would like to select H such that P(H I D) is maximal. This is equivalent to minimizing 

-logP(H I D) = -logP(D I H)- logP(H) + logP(D). (2) 

Let us interprete these equations. Since D is given, P(D) may be viewed as a normalizing constant. 
P(DIH) can usually be measured or at least approximated. According to classical information theory, 
-log P(DIH) is the "optimal" (minimal, most efficient) code length or description length forD, given 
H. - log P(H) is the minimal code length for H. This leads to the minimum description length (MDL) 
principle: The best hypothesis for explaining the data is the one that minimizes the sum of the description 
length of the hypothesis and the description length of the data when encoded by the hypothesis. But where 
does the prior P(H) come from? How does one define an a priori probability distribution on the set of 
possible hypotheses without introducing arbitrariness? This is often perceived as the prior problem of 
Bayesian approaches. The theory of algorithmic probability, however, provides a solution. 

Universal prior. Define Pu(s), the a priori probability of a bitstring s, as the probability of guessing 
a (halting) program that computes s on U. Here, the way of guessing is defined by the following 
procedure: initially, the program tape consists of a single square. Whenever the scanning head of the 
program tape shifts to the right , do: (1) Append a new square. (2) With probability ! fill it with a 0; 
with probability ! fill it with a 1. We obtain 

Pu(s) = L (~)IPI. 
p:Ju(p)=& 

Clearly, the sum of all probabilities of all halting programs cannot exceed 1 (no halting program can be 
the prefix of another one). But certain program tape contents may lead to non-halting computations. 

Under different universal priors (based on different universal machines), probabilities of a given string 
differ by not more than a constant factor independent of the string size, due to the invariance theorem 
(the constant factor corresponds to the probability of guessing a compiler). Therefore we may drop 
the index U and write P instead of Pu. This justifies the name "universal prior", also known as the 
Solomonoff-Levin distribution. Universal priors appear to be the only convincing method for assigning 
probabilities to hypotheses (or other computable objects) in advance. 

Algorithmic entropy. -logP(s) is denoted by H(s), the algorithmic entropy of s. 
Dominance of shortest programs. It can be shown (the proof is non-trivial) that 

I<(s) = H(s) + 0(1). 

Since H(s) = -logP(s), this implies 

P(s) = ( ~ )K(•)-0(1) = 2o(1) 2-K(•) = 0(2-K(•>) . 
2 

(3) 

The probability of guessing any of the programs computing some string and the probability of guessing 
its shortest program are essentially equal. The probability of a string is dominated by the probabilities 
of its shortest programs. 

Inductive inference and Occam's razor. Occam's razor prefers solutions whose minimal descrip­
tions are short over solutions whose minimal descriptions are longer. The "modern" prefix-based version 
of Solomonoff's theory of inductive inference justifies Occam's razor in the following way. Suppose the 
problem is to extrapolate a sequence of symbols (bits, without loss of generality). We have already 
observed a bitstring s and would like to predict the next bit. Let si denote the event "s is followed by 
symbol i" fori E {0, 1}. Bayes tells us 

P( 0 I ) = P(s I sO)P(sO) = P(sO) P( 1 I ) _ P(s1) 
8 8 

P(s) P(s) ' 
8 8 

- P(s) · 

We are going to predict "the next bit will be 0" if P(sO) > P(s1), and vice versa. Since P(si) = 
0((! )K(•i)) for i E { 0, 1}, the continuation with lower Kolmogorov complexity will (in general) be the 
more likely one. 
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Since Kolmogorov complexity is incomputable in general, the universal prior is so, too. A popular 
myth states that this fact renders useless the concepts of Kolmogorov complexity, as far as practical 
machine learning is concerned. But this is not so, as will be seen next. There we focus on a natural, 
computable, yet very general extension of Kolmogorov complexity. 

Levin complexity. Let us slightly extend the notion of a program. In what follows, a program 
is a string on the program tape which can be scanned completely by U. The same program may lead 
to different results, depending on the runtime. For a given computable string, consider the log of the 
probability of guessing a program that computes it, plus the log of the corresponding runtime. The 
Levin complexity of the string is the minimal possible value of this. More formally, let U scan a program 
q (a program in the extended sense) written onto the program tape before it finishes printing s onto the 
work tape. Let t(q, s) be the number of steps taken before s is printed. Then 

I<t(s) = min{l q I +log t(q, s)}. 
q 

An invariance theorem similar to the one for I< holds for Kt as well. 
Universal search. Suppose we have got a problem whose solution can be represented as a (bit)string. 

Levin's universal optimal search algorithm essentially generates and evaluates all strings (solution can­
didates) in order of their Kt complexity, until a solution is found . This is essentially equivalent to 
enumerating all programs in order of decreasing probabilities, divided by their runtimes. Each program 
computes a string that is tested to see whether it is a solution to the given problem. If so, the search 
is stopped. To get some intuition for universal search, let P(s I p) denote the probability of computing 
a solution s from a halting program p on the program tape. For each p there is a given runtime t(p). 
Now suppose the following gambling scenario. You bet on the success of some p. The bid is t(p). To 
minimize your expected losses, you are going to bet on the p with maximal Pt(~y). If you fail to hit 
a solution, you may bet again, but not on a p you already bet on. Continuing this procedure, you 
are going to list hal ting programs pin order of decreasing Pt((~f). Of course, neither P(s I p) nor t(p) 
are usually known in advance . Still, for a broad class of problems, including P and N P problems and 
time-limited optimization problems, universal search can be shown to be optimal with respect to total 
expected search time, leaving aside a constant factor independent of the problem size: if string s can be 
computed within t time steps by a program p, and the probability of guessing p (as above) is P, then 
within 0( j ) time steps, systematic enumeration according to Levin will generate p, run it for t time 
steps, and output s. In the experiments below, a probabilistic algorithm strongly inspired by universal 
search will be used. 

Conditional a lgorithmic complexity. The complexity measures above are actually simplifications 
of slightly more general measures . Suppose the universal machine U starts the computation process with 
a nonempty string x already written on its work tape. Conditional Kolmogorov complexity K(s I x) is 
defined as 

K(s I x) = minp{l p 1: U computes s from p, given x on the worktape}. 

Kt(s I x) is defined analoguously. Variants of conditional complexity are used to determine how much 
information some string conveys about another one. In the context of machine learning, conditional 
complexity measures how much additional information has to be acquired, given what is already known. 

History spotlights / Selected references 

In 1965, A. N. Kolmogorov (1903-1987), founder of modern axiomatic probability theory (Kolmogorov, 
1933), was the first to introduce a variant of the complexity measure [( for its own sake (Kolmogorov, 
1965). Levin (1984) cites announcements of Kolmogorov's lectures on this subject dating back to 1961. In 
independent and even earlier work, R. J. Solomonoff (1964) had already come up with the same measure 
as a by-product of his work on algorithmic probability and inductive inference (a preliminary version of 
his paper is dated 1960) . Both Solomonoff and Kolmogorov observed J('s machine independence. Today, 
even Solomonoff himself refers to J( as "Kolmogorov complexity", e.g. (Solomonoff, 1986). In 1969, G. 
J. Chaitin independently also published the essential concepts (Chaitin, 1969) (some hints were already 

5 



provided at the end of his 1966 paper). Important related early work is described in (Martin-Lof, 1966; 
Gacs, 1974; Schnorr, 1971). Apparently, L. A. Levin was the first to introduce and analyze today's 
"standard form" of Kolmogorov complexity based on halting programs and prefix codes (Levin, 1974), 
see also (Gacs, 1974; Levin, 1973a; Levin, 1976; Zvonkin and Levin, 1970). Levin proved equation (3): 
I<(s) = H(s)+0(1). The importance of prefix codes was independently seen by Chaitin (1975), who also 
proved (3) and attributes part of the argument to N. Pippenger. Levin introduced Kt complexity and 
the universal optimal search algorithm (see e.g. (Levin, 1973b) and (Levin, 1984), where related ideas 
are attributed to Adleman- see also (Adleman, 1979)). Other generalizations of Kolmogorov complexity 
have been proposed, e.g. (Hartmanis, 1983), but see the contributions in (Watanabe, 1992) for more. 
Easily computable approximations of the MDL principle were formulated by Wallace and Boulton (1968) 
and Rissanen (1978, 1983, 1986). Such approximations build the basis of most if not all current machine 
learning applications, e.g. (Quinlan and Rivest, 1989; Gao and Li, 1989; Milosavljevic and Jurka, 1993; 
Pednault, 1989). Barzdin, referred to in (Zvonkin and Levin, 1970), related Kolmogorov complexity 
to a variant of Godel's incompleteness theorem, a subject which became a central theme of Chaitin's 
research (Chaitin, 1987). Meanwhile, the theory of Kolmogorov complexity has split into many subfields. 
An excellent overview and many additional details on the history are given in Li and Vitanyi's book 
(1993). See also (Cover et al., 1989). See (Schmidhuber, 1994) for an application to fine arts. The 
presentation above is partly inspired by presentations found in (Chaitin, 1987), (Li and Vitanyi, 1993), 
and (Solomonoff, 1986). 

3 PROBABILISTIC SEARCH FOR USEFUL SELF-SIZING 
PROGRAMS WITH LOW LEVIN COMPLEXITY 

Levin's universal search algorithm was considered of interest for theoretical purposes (see e.g. (Allender, 
1992) and (Li and Vitanyi, 1993)). However, it seems that nobody implemented it for experimental 
applications, perhaps in fear of the ominous "constant factor" which may be large. To my knowledge, 
general universal search was implemented for the first time during the project that led to this paper 
(Solomonoff (1986) himself apparently implemented restricted versions). In what follows, however, I 
will focus on the implementation of a slightly different probabilistic algorithm (also based on Levin 
complexity and strongly inspired by universal search). The experimental results obtained with the 
probabilistic algorithm (see section 4) are very similar to those obtained by the original universal search 
procedure (Schmidhuber and Jankowski, 1994). 

Overview. The method described in this section searches and finds algorithms that compute so­
lutions to a given problem specified by possibly very limited "training data". The goal is to discover 
solutions with high generalization performance on "test data" unavailable during the search phase. To­
wards this purpose, the probabilistic search algorithm randomly generates programs written in a general 
assembler-like programming language based on sequences of integers. Programs may influence their own 
storage size and runtime. Each program computes a solution candidate which is tested on the training 
data. The probability of generating a program p and an upper bound tmax for its runtime essentially 
equals the quotient of the probability of guessing p, and tmax. This implies that candidates with low 
Levin complexity are preferred over candidates with high Levin complexity. To measure generalization 
performance, candidates fitting the training data are evaluated on test data. In the experiments (section 
4), solution candidates will be weight matrices for a neural net supposed to solve certain generalization 
tasks that are difficult or impossible to solve by conventional neural net algorithms. 

"Universal" programming language. First we need a "universal" set of primitive instructions 
(called "primitives") that may be composed to form arbitrary algorithms for computing arbitrary (partial 
recursive) functions. The only limitation we are willing to accept is the storage size of our machine. 

It is easy to devise "universal" sets of primitives. Which ones do we prefer? Informally, there is one 
general constraint to obey: whatever is computable on the used hardware, should be computable just 
as efficiently (up to a small constant factor) by a program composed from primitives. For instance, on 
a typical serial digital machine we would like to use primitives exploiting the fast storage addressing 
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mechanisms. We would not want to limit ourselves to the simulation of, say, a slow one tape 'lUring 
machine. Likewise, on a machine with many parallel processors we would like to use a set of primitives 
allowing for programs with maximal parallelism. In what follows, the focus will be on conventional 
digital machines. Here is a description of the set-up used in the experiments to be described later: 

Storage. Programs are sequences of integers. They are stored in the storage, consisting of a single 
array of cells. Each cell has an integer address in the interval [-sw,sp] · Both Sw and Spare positive 
integers. The program tape is the set of cells with addresses in [0, sp]· The work tape is the set of 
cells with addresses in [-sw, -1]. Cells with non-negative addresses belong to the program tape. Cells 
with negative addresses belong to the work tape. The contents of the cell with address i is denoted by 
Ci E [-maxint, maxint], and is of type integer as well (in the implemented version, maxint equals 10000). 
During execution of a program, the used portion of the program tape may increase. The used portion 
of the work tape may increase or decrease. At any time step, the variable M ax ( -1 ~ M ax ~ sp) 
denotes the topmost address of the used storage. The variable M in ( -sw ~ M in ~ 0) denotes its 
smallest address. At any given time, legal addresses are in the dynamic range [M in, OracleAddress], 
where OracleAdd7·ess = M ax + 1, by definition. At any given time, the integer sequence on the program 
tape (up to address Max) is called the current program. Max = -1 implies the "empty" program. 

Instructions. At any given time, the variable InstructionPointer may equal the address of one 
of the cells, whose contents may be interpretable as an instruction. There are nop• different possible 
instructions (in the implemented version, nop• = 13). Each instruction is uniquely represented by an 
instruction number from the set {0, ... , n0p3 -1}. An instruction may have up to three arguments (of type 
integer), or none. Arguments are stored in the addresses following the address of the instruction. For 
each argument of each instruction, there is a legal argument range (a set of integer values the argument 
is allowed to take on). Within certain limits, legal argument ranges can be dynamically modified by 
programs, as will be seen shortly. 

Initialization, time limits, time probability. In the beginning of the execution of a "program" 
or "run", the variables OracleAddress, InstructionPointer, M in, and CurrentRuntime are all set to zero. 
The variable CurrentTimeLimit is used to define an upper bound for the runtime of the current program. 
To obtain a probabilistic variant of universal search, CurrentTimeLimit is chosen randomly as follows: 
elements from the set {0, 1} are drawn with equal probability until the first "1" is drawn. Let n1 denote 
the number of trials. CurrentTimeLimit is set to U nitTime x 2n,, where U nitTime equals 16 time steps 
(each program will be allowed to execute at least 16 instructions- but it may choose to halt earlier). If 
CurrentTimeLimit exceeds M axTimeLimit, then it is replaced by MaxTimeLimit = 224 = 16,777,216. 
The time probability of the current program is defined by max((~)n', Ma~~ii~~'I:tmit). Short runtimes are 
more likely than long runtimes. 

Instruction cycle and oracles. A single step of the program interpreter works as follows: if the 
InstructionPointer equals 01·acleAddress (= Max + 1), then this is interpreted as the request for an 
oracle. A primitive and the corresponding arguments are chosen randomly from the set oflegal options (to 
be described below). They are sequentially written onto the program tape, starting from OracleAddress. 
M ax and OracleAddress are increased accordingly, to reflect the growth of used program tape. Then 
the new primitive gets executed (except when growth beyond Sp halts the program). If there is no oracle 
request: if the InstructionPointer equals i, then if the content Ci E [0, nop• - 1], the corresponding 
number of arguments ni and the corresponding legal argument ranges are looked up and checked against 
the contents of the ni addresses following the current address. If the instruction is "syntactically correct", 
it gets executed. Otherwise the current program is halted. If the executed primitive did not change the 
value of the InstructionPointer (e.g. by causing a jump), the InstructionPointer is set to point to the 
address following the address of (the last argument of) the current instruction. If an instruction was 
executed, CurrentRuntime is incremented. If the CurrentTimeLimit is reached, the program is halted. 

Runs, programs, and space probability. After initialization, the instruction cycle is repeated 
until a halt situation is encountered. The space probability of a program is defined as the product of the 
probabilities of all parameters and primitives requested and executed during its runtime. Essentially, 
the space probability is the probability of guessing the executed content of the program tape. 

Probabilistic search. Programs are generated randomly and executed as described above, and 
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their results are evaluated until some problem-specific performance criterion is met. Obviously, results 
with low Levin complexity are preferred over results with high Levin complexity. (In an alternative 
implementation, the original universal search algorithm was used to systematically generate all solution 
candidates in order of their Levin complexities). 

Used primitives. The instruction numbers and the semantics of the primitives used in the ex­
periments are listed below. An expression of the form "addressi" denotes the value (interpreted as an 
address) found in the ith cell following the one containing the current instruction (indirect addressing is 
used throughout). The following list assumes syntactical correctness of the instructions. Rules for legal 
argument ranges and syntactical correctness will be given shortly. 

0 Jumpleq(addressl, address2, address3). If the contents of addressl is less than or equal 
to the contents of address2, the InstructionPointer is set equal to address3. 

1 Output( .. .). A primitive for interaction with an external environment. It corresponds 
to the TM action of "writing the output t ape" (see section 2). In the experiments, 
<<output" will be called ((Write Weight". It will be used to generate weights for a neural 
network. Variants of it will be specified where needed. 

2 Jump{addressl). The InstructionPointer is set equal to addressl. 

3 Stop(). Halt the current program. 
4 Add{addressl, address2, address3). The contents of addressl is added to the contents 

of address2, the result is written into address3. 

5 Getlnput( address I, address2). Another primitive for interaction with an external envi­
ronment. It requires n1 separate "input fields" that may be modified by the environment 
(in the experiments, n 1 will equal 20) . Getlnput reads the current value of the ith input 
field into address2, where i is the value found in addressl. In conjunction with primi­
tives changing the environmental state, Getlnput provides an opportunity for exploiting 
the computing resources of the "outside world". In the applications below, however , 
Getlnput will be pretty useless - all the input fields will remain zero all the time. 

6 Move(addressl, address2). T he contents of addressl is copied to address2. 

7 Allocate{ address I). The size of the work tape is increased by the value found in address I, 
the new cells are initialized with zeros. M in is updated accordingly (growth beyond 
-sw halts the program). No variable can be written before enough space has been 
Allocated on the work t ape. As will be explained below, Allocate is essential for self­
sizing programs. 

8 Increment(addressl). The contents of addressl is incremented. 

9 Decrement(addressl). The contents of addressl is decremented. 

10 Subtract{addressl , address2, address3). The contents of addressl is subtracted from the 
contents of address2, the result is written into address3. 

11 Multiply( addressl , address2, address3 ). The contents of addressl is multiplied by the 
contents of address2, the result is written into address3. 

12 Free(addressl). The size of the work tape is decreased by the value found in addressl. 
M in is updated accordingly. This primitive complements Allocate. 

Rules for legal argument ranges and syntactical correctness. Jumps may lead to any ad­
dress in the dynamic range [M in, M ax + 1) (recall that M ax + 1 always equals the current value of 
OracleAddress). Operations that read the contents of certain cells (like add, move, jumpleq etc.) may 
read only from addresses in [M in, M ax]. Operations that change the contents of certain cells may write 
only into work tape addresses in [M in, -1). Thus, the program tape is "read/execute" only, except for 
random writes requested by moves of the InstructionPointer to OracleAddress. This makes reruns 
easy, as will be seen below. T he work tape is "read/write/execute". Results of arithmetic operations 
leading to underflow or overflow are replaced by -maxint or maxint, respectively. No more than 5 work 
tape cells may be Allocated or Freed at a time. 
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COMMENTS 

1. Universality. It is not difficult to show that the above primitives form a universal set in the following 
sense: they can be composed to form programs writing any computable integer sequence onto the work 
tape (within the given size and range limitations). Note that the primitives make it easy to create 
programs for handling stacks, recursion, etc. A program may create executable code (or sub-programs) 
on the work tape. Since executable code is represented as a sequence of numbers, the code may modify 
itself. The scheme allows for very general sequential interaction with the environment (given appropriate 
problem-specific actions translating storage contents into output actions and environmental changes). 

2. Self-sizing programs. The whole set-up is an adaptation of the Thring machine from section 
2. It is designed to be more efficient in the sense that programs may exploit what conventional digital 
machines are good at: fast storage addressing, jumping, etc.2 Using a single array of cells with negative 
addresses for the work tape and positive addresses for the program tape considerably simplifies the 
primitives. At first glance, there seems to be a price to pay for the general addressing capabilities: 
random jumps are unlikely to contribute to successful programs if there are many possible legal addresses 
to jump to. However, since programs may influence their own size and thus the number of available legal 
addresses, they have the potential to remain small and "likely", as will be seen next. 

How do programs influence their own size? They can keep small by (1) avoiding requests for new 
oracles (e.g. by avoiding jumps to the current OracleAddress), and (2) by using Allocate and Free in 
a balanced way. Oracle requests, Allocate and Free provide the only ways of influencing the number of 
"visible" legal addresses available in used storage. The oracle requests are the only source of randomness, 
however. If the current program does not request many oracles, its space probability will tend to remain 
low, although the program may perform extensive computations. The bigger the used storage, however, 
the smaller the probability of guessing a particular "visible" address, and the less likely the arguments 
of instructions (like "Jumleq") generated by future oracle requests. Small is beautiful. 

3. Reruns. Since the program tape is "read/execute" only, we can rerun a randomly chosen halting 
program written onto the program t ape by erasing the work tape, making the InstructionPointer equal 
to 0, and starting the execution loop. The contents of the program tape completely determine the 
contents of the work tape at any given time (unless the environment reacts in a non-deterministic way) . 
The desire for being able to rerun programs also is the reason for the way oracle requests are handled. 
One might have introduced an extra primitive "Request Oracle" calling for a random instruction to appear 
in some location, say, at the end of the used program tape. But then different reruns would have led to 
different oracles, in general. The way it is done, oracle requests are generated by any operation moving 
the InstructionPointer to the top of the used program tape (the OracleAddress), and any oracle is 
executed immediately. (Thus, any legal instruction appearing on the program tape out of the blue is 
executed at least once. One might say that "randomness is not wasted" but handled efficiently.) During 
reruns, the same moves of the InstructionPointer will not provoke oracle requests. This is because what 
used to be the OracleAddress at some point of guessing the program, now isn't any more. During reruns, 
there is absolute determinism (unless the environment reacts in a non-deterministic way, of course). 

4 . Probabilistic setting. Why use a probabilistic search algorithm instead of the original universal 
search procedure? Why create time limits and programs randomly instead of systematically enumerating 
them? One reason is to avoid unintended bias. For instance, unintended bias may be introduced by 
imposing a systematic (say, alphabetic) order among programs with equal quotients of probability and 
runtime. A drawoack of the probabilistic version above, however , is that programs with low Levin 
complexity (in general) will be tested more than once. 

When speed is an issue, then we will prefer systematic enumeration, or a slightly more complicated 
probabilistic variant whose expected search time equals the one of systematic enumeration. Variants 
of systematic universal search based on the primitives above were implemented in collaboration with 
Norbert Jankowski (Schmidhuber and Jankowski, 1994). With the examples below, however, total 

2Jn principle, it is possible to run a variant of universal search on a neural net architecture instead of a conventional 
digital machine. In earlier work, it was shown (in a different context) how neural nets may "talk about their own weights in 
terms of activations" and modify their own weight matrix (Schmidhuber, 1993b; Sclunidhuber, 1993a). Such self-modifying 
capabilities can be used to form the basis of a universal set of primitives. 
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search time is not the main issue: the simulations in the next section (based on probabilistic search) 
are intended to highlight generalization performance, not speed. Very similar results were obtained by 
systematic search, however. 

4 APPLICATION: FINDING "SIMPLE" NEURAL NETS 

Neural networks are particularly well-studied instances of "generalizers", see e.g. (Maass, 1994; Baum 
and Haussler, 1989; Amari and Murata, 1993; Wolpert, 1993; Moody, 1992; Pearlmutter and Rosenfeld, 
1991; Barren, 1988; Mozer and Smolensky, 1989) and the numerous references given below. For this 
reason, the simulations presented in this section focus on the task of finding algorithmically simple neural 
networks with high generalization capability. Let us first briefly look at a few rather recent definitions of 
"simplicity" used in supervised neural net training algorithms. In what follows, "solutions" are weight 
vectors of neural nets. 

4.1 PREVIOUS ALGORITHMS FOR MAKING NETS "SIMPLE" 

• Weight decay. A special error term (in addition to the standard term enforcing matches between 
desired outputs and actual outputs) encourages weights close to zero. The idea is that a zero 
weight does not cost many bits to be specified, thus being "simple" (Hinton and van Camp, 
1993). Pearlmutter and Hinton were probably the first to propose weight decay, while Rumelhart 
was perhaps the first to suggest its use for reducing overfitting. Variants of weight decay were 
successfully applied by Weigend et al. (1990), Krogh and Hertz (1992), and others. 

• Soft weight sharing. Nowlan and Hinton (1992) introduce an additional objective function en­
couraging groups of weights with nearly equal values. The weights are taken to be generated by 
mixtures of Gaussians. The fewer the number of Gaussians and the closer some weight is to the 
center of some Gaussian, the higher its probability, and the fewer bits are needed to encode it 
(according to classical information theory (Shannon, 1948)). 

• Bayesian strategies for backprop nets. MacKay evaluates hyper-parameters (such as weight-decay 
rates) with respect to their probabilities of generating the observed data (MacKay, 1992). Estimates 
of the probabilities are computed on the basis of Gaussian assumptions. 

• Optimal Brain Surgeon. Hassibi and Storck (1993) use second order information to obtain "simple" 
nets by pruning weights whose influence on the error is minimal,_and changing other weights to 
compensate. See (LeCun et al., 1991) for a related approach. See (Vapnik, 1992) and (Guyon 
et al., 1992) for some theoretical analysis. 

• "Non-algorithmic" MDL methods based on Gaussian priors. To minimize the sum of the description 
lengths of a neural net and its errors, Hinton and van Camp (1993) assume Gaussian weight priors 
and Gaussian error distributions, and minimize the asymmetric divergence (or Kullback-Leiber 
distance) between prior and posterior after training. 

• Methods for finding "flat" minima. Hochreiter and Schmidhuber (1994) use efficient second order 
methods to search for large connected regions of "acceptable" error minima. This corresponds to 
"simple" networks with low description length and low expected overfitting. 

• "Mutual information networks". Deco et al. (1993) measure network complexity with respect 
to given data by measuring the mutual information between inputs and internal representations 
extracted by the hidden units. 

• Methods for removing redundant information from input data. If the input data can be com­
pressed, the networks processing the data can be made smaller (and simpler), in general. From 
the standpoint of classical information theory, an optimal compression algorithm is one that builds 
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a factorial code of the input data (a code with statistically independent components, e.g. (Bar­
low, 1989)). Various "neural" methods for compressing input data are known. See (Schmidhuber, 
1992b) for a "neural" method designed to generate factorial codes. See (Atick et al. , 1992) for a 
focus on visual inputs. See (Schmidhuber, 1992a) for loss-free sequence compression. See (Becker, 
1991) for numerous additional references. 

There are also numerous heuristic constructive m ethods, where network size grows in case of un­
derfitting the training data. MDL approaches in other areas of machine learning include (Quinlan and 
Rivest, 1989; Gao and Li, 1989; Milosavljevic and Jurka, 1993; Pednault, 1989). Among the implemented 
methods, neither the neural net approaches nor the other ones are general in the sense of Solomonoff, 
Kolmogorov, and Levin. All the previous implementations use measures for "simplicity" that lack the 
universality and elegance of those based on Kolmogorov complexity and algorithmic information theory. 
Many previous approaches are based on ad-hoc (usually Gaussian) priors. 

The remainder of this paper is mostly devoted to simulations of the more general method based on the 
universal prior, self-sizing programs, and the probabilistic search algorithm preferring candidates with 
low Levin complexity over candidates with high Levin complexity. With certain seemingly trivial but 
actually non-trivial toy problems it will be demonstrated that the approach can lead to generalization 
results unmatchable by more traditional neural net algorithms. It should be mentioned , however, that 
this does not say much about the applicability of the method to real world tasks. 

4.2 GENERALIZATION TASKS: SIMULATIONS 

In the experiments, the following values were used for maximal program tape size and work tape size: 
sp = 100, Sw = 1000. The current implementation (which is not optimized for speed) tests about 3,000 
programs per second on a SUN SPARC ELC. On average, a program runs for not many more than 10 
time steps before halting or being halted. But there are programs running for millions of time steps, of 
course. 

4.3 A PERCEPTRON FOR COUNTING INPUTS 

The following pattern association t ask may seem trivial but will be made difficult (for traditional ap­
proaches) by providing only very few training examples. 

The task. A linear (perceptron-like) network with 100 input units, one output unit, and 100 weights, 
is fed with lOO-dimensional binary input vectors. xP denotes the p-th input vector. x~ denotes the ith 
component of xP, where i ranges from 0 to 99. Each input vector has exactly three bits set to one, all the 
other bits are set to zero. Obviously, there are (1~0) = 161,700 possible inputs. The network 's output 
in response to xP is 

yP = LWiX~, 
where Wi is the i-th weight. Each weight may t ake on integer values between -10000 and 10000. The 
task is to find weights such that yP equals the number of on-bits in xP , for all 161,700 possible xP. The 
number of solution candidates in the search space of possible weight vectors is huge: 20001100• This is 
too much for exhaustive search. 

The solution: The only solution to the problem is: make all Wi equal to 1. The Kolmogorov 
complexity of this solution is small, since there is a short program that computes it. Its Levin complexity 
is small, too, since its "logical depth" (the runtime of its shortest program (Bennett, 1988)) is less than 
400 time steps. 

The difficulty. If the training set is very small (e.g. if there are just four or five training examples), 
then conventional perceptron algorithms will not solve this apparently simple problem. They will not 
achieve good generalization on unseen test data. One reason is that connections from units that are 
always off won't be changed at all by conventional gradient descent algorithms, e.g. (Werbos, 1974; 
LeCun, 1985; Parker, 1985; Rumelhart et al., 1986). Note, however, that scaling the inputs differently 
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Addresses: 0 1 2 3 4 5 
Contents: 1 1 0 1 1 0 

Interpretation: Write Weight 1 jumpleq 1 1 0 

Table 1: A program for the counting perceptron. 

is not going to improve matters. Nor is weight decay. Weight decay encourages weight matrices with 
many zero entries. For the current task, this is a bad strategy. 

The train ing data. To illustrate the generalization capability of search for solution candidates with 
low Levin complexity, only 3 training examples are used. They were randomly chosen from the 
161,700 possible inputs. The first training example is the binary vector x 1 with on-bits at the positions 
5, 17, and 86 (and off-bits everywhere else). The second one, x2

, has on-bits at the positions 13, 55, and 
58. The third one, x3 , has on-bits at the positions 40, 87, and 94. In all three cases, the desired output 
(target) is 3. Generalization results (to be described below) obtained with this particular training set are 
very similar to those obtained with different sets of 3 training examples (created by randomly permuting 
the input units that are never on). 

The search procedure is as follows: the probabilistic search algorithm (as described in section 3) lists 
and executes programs computing solution candidates (weight vectors). The primitive ((Write Weight" 
(replacing ((output", see section 3) is used for writing network weights. It has one argument and uses the 
variable WeightPointer taking on values from the set {0, 1, ... , 99}. In the beginning of a run, Weight­
Pointer and all weights are initialized to 0. The instruction number and the semantics of ((Write Weight " 
are as follows (compare the list of primitives given in section 3): 

1 Writ e Weight( address). WWeightPointer is set equal to the contents of address3 . The 
variable WeightPoint er is incremented. Halt if WeightPointer out of range. 

Only if the solution candidate fits the training data exactly is the solution tested on the 
test data. Note that this is like a "reward-only-at-goal" task: The measure of success is binary - either 
the network fits all the training data, or it doesn't. There is no teacher providing a more informative 
error signal (such as the distance to the desired outputs). 

RESULTS. Programs fitting the 3 training exemplars were found in 20 out of 100000 runs. Only 
2 of them did not lead to perfect generalization on the C~0) - 3 = 161,697 unseen test 
examples. 

The first weight vector fitting the training data was found after 904 runs. The corresponding program 
was a "wild" one, allocating a lot of space and executing many useless instructions, but still leading to 
perfect generalization on all the unseen test data. Before halting, the program used 702 out of 1024 
allocated time steps. Its time probability was 2- 6 (recall that the unit time is only 16 time steps). Its 
space probability was 2.8 * 10- 18. 

Another weight vector fitting the training data was computed during the 6038th run. The corre­
sponding program is given in table 1. Here is a more readable interpretation (each program instruction 
is preceded by its address): 

(0) Write the contents of address 1 (which is 1) onto the weight pointed to by 

WeightPointer and i ncrement weight pointer. Halt if WeightPointer out of range . 

(2) If the contents of address 1 is less or equal to the contents of address 1, 

goto address 0 . 

Since the condition tested in the second instruction is always true, this little program will write down 
a correct solution, given enough time. It requires 201 time steps. In the case above it got more than 
enough time: the randomly chosen time limit was 16 * 212 = 65536. 

3To allow for real-valued weights, set wweightPointer equal to the contents of addreu, divided by 1000, say. 
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Addresses: 0 1 2 3 4 5 6 7 
Contents: 1 0 1 0 0 5 5 0 

Interpretation: Write Weight 0 Write Weight 0 jumpleq 5 5 0 

Table 2: A faster program for the counting perceptron. 

After 351,168 runs, the system came up with a faster program. See table 2. The program does this: 

(0) Write the contents of address 0 (which happens to be 1, due to the code of 

''write'' being 1) onto the weight pointed to by WeightPointer and increment 

WeightPointer. Halt if WeightPointer out of range . 

(2) Write the contents of address 0 onto the weight pointed to by WeightPointer 

and increment WeightPointer. Halt if WeightPointer out of range. 

(4) If the contents of address 5 (which happens to be 5) is less than or equal 

to the contents of address 5 (this is always true), goto address 0 . 

This program writes two times before jumping, thus reducing runtime from 200 to 150 time steps 
(recall that the execution of each instruction, including jumps, takes one time step). Its space probability 
is 9.88* 10-9• Other successful programs with exactly the same runtime were found in 7 out 
of 106 runs. No faster programs were found . 

Comment. With the example above, probabilistic search among self-sizing programs leads to ex­
cellent generalization performance. At least in theory, however, it might be possible that an appropriate 
variant of Nowlan's and Hinton's approach (1992) might achieve good generalization performance on 
this task, too. Recall from section 3 that Nowlan and Hinton encourage groups of weights with equal 
values, which is a good strategy in the case above. For this reason, the following task requires that no 
two weights have equal values. The Kolmogorov complexity of the solution, however, will again be low. 

4.4 A PERCEPTRON FOR ADDING INPUT POSITIONS 

The task. We use the same perceptron-like network and the same input data as above. The goal is 
different, however. The task is to find weights such that yP equals the sum of the positions of on-bits 
in xP' for all (1~0) = 161,700 possible xP. Again, the task will be made difficult by providing only very 
limited training data. 

The solution. The only solution to the problem is: make all Wi equal to i. Like with the example 
above, there are short and fast programs for computing the solution. 

The training data. The 3 training inputs x1 , x2 , and x 3 from the previous task are used. The 
target values are different, however. Obviously, the target for input vector x1 is 108. The target for 
input vector x 2 is 126. The target for input vector x 3 is 221. Again, success is binary: only if the 
solution candidate fits the 3 training examples exactly, the solution is evaluated on the test data. Note 
that conventional perceptron algorithms cannot solve this generalization problem. 

RESULTS. Programs fitting the training data were found in 10 out of 5.5 * 107 runs, using up a 
total search time of 8.14 * 108 time steps. Only 2 of the 10 successful runs did not lead to perfect 
generalization on the 161,697 unseen test examples. 

The first weight vector fitting the training data was found after 6,902,963 runs. Again, the corre­
sponding program was a pretty wild one. But it led to perfect generalization on all the test data. Before 
halting, the program used 502 out of 8192 allocated time steps. Its time probability was 2-8 • Its space 
probability was 3.92 * 10-16• Table 3 shows the used part of the storage after execution. What the 
program does is this: 
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Addresses: 
Contents: 

Table 3: Used storage after execution of a program for the adding perceptron. 

Addresses: 
Contents: 

Table 4: Used storage after execution of a more elegant program for the adding perceptron. 

(0) Allocate 3 cells on the ~ork tape. Initialize ~ith zero. Set Min = Min - 3. 

(2) Get the contents of the input field (see list of instructions in section 3) 

at position 11 (~hich is 0), and ~rite it into address -2. 

(5) Write the contents of address -3 onto the ~eight pointed to by WeightPointer 

and increment WeightPointer. Halt if WeightPointer is out of range. 

(7) If the contents of address -3 is less or equal to the contents of address 9, 

goto address 11 . Other~ise goto address 11. 

(11) Increment the contents of address -3. 

(13) Goto address -1. 

(-1) If the contents of address 7 is less or equal to the contents of address 3 

(al~ays true), goto address 5. 

The instructions beginning at the addresses (2), (7), and (-1) are useless. But at least they are not 
catastrophic. Essentially, the program first allocates space for a variable (initially zero) on the work 
tape (recall that the program tape is "read/execute" only, and cannot be used for variables). Then it 
executes a loop for incrementing and writing the variable contents onto the network's weight vector. 

After 4.6 * 107 runs, a faster and rather elegant (nearly minimal) program was found. Table 4 shows 
the used storage after execution. The program ran for 302 out of 512 allocated time steps. Its space 
probability is 9.65 * 10-10 . Inspection will reveal the operation of the program. 

Using different sets of 3 training examples (obtained by randomly permuting the input units that are 
never on) led to very similar generalization results. 

4.5 INDEXING WRITE OPERATIONS 

Clearly, the choice of primitives affects the probabilities of solutions. Algorithmic information theory 
tells us that this delays optimal search by no more than a constant factor. As long as the primitives 
form a universal set, primitives from another set can be composed from them. Still, constant factors 
may be large. Thi·s subsection repeats the experiment from section 4.4 with a slightly different set of 
primitives increasing the constant factor. 

The primitive "Write Weight" is redefined and gets an additional argument. The primitive "Get!nput" 
is redefined and gets a new name: "Read Weight". There is no separate WeightPointer any more, and no 
automatic increment mechanism for WeightPointer's position. Instead, the new primitives may directly 
address, read and write the network's weights. The other primitives remain the same. Here are the two 
new ones, together with their instruction numbers (compare section 5): 

1 WriteWeight(addressJ, address2). Wi is set equal to the contents of addressl, where i is 
the value found in address2. 
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Addresses: 
Contents: 

Table 5: Used storage after execution of another program for the adding perceptron, using a different 
((Write Weight" primitive. 

5 ReadWeight{addressl, address2). w; is written into the address found at location ad­
dressl, where i is the value found in address2. 

Appropriate syntax checks halt programs whenever they attempt to do something impossible, like 
writing a non-existent weight. Since the new "Write Weight" primitive has an additional argument (to 
be guessed correctly), successful programs tend to be less likely. 

RESULTS. Out of 108 runs using up a total search time of 1.436 * 109 time steps, 3 runs generated 
weight vectors fitting the training data. All of them allowed for perfect generalization on all the 
test data. During execution, one of them filled the storage as seen in table 5. The program ran for 399 
out of 1024 allocated time steps. Its space probability was 9.95 * 10-9 . What it does is this: 

(0) Allocate one cell on the vork tape. Initialize vith zero. Set Min = Min-1 . 

(2) Increment the contents of address -1. 

(4) Make We_, equal to the contents of address -1. 

(7) Jump to address 0 . 

Repeated execution of the instruction at address 0 unnecessarily allocates 100 cells of the work tape 
but does not do any damage other than slightly slowing down the program. 

Using different sets of 3 training examples (obtained by randomly permuting the input units that are 
never on), led to very similar generalization results. 

5 INCREMENTALSEARCH 
As seen above, the probabilistic search algorithm inspired by universal search can lead to excellent 
generalization performance. However, the tasks above are not very typical in the sense that the learning 
system does not receive any feedback about its progress. The success criterion is binary: either the system 
solves the task, or it doesn't. In "cruel" environments providing nothing but such limited evaluative 
feedback , not much can be done. For such cases, Levin's algorithm is indeed opt imal. 

With many typical learning situations in the real world , however, there is more informative feedback. 
For instance, "supervised" gradient-based neural net algorithms like back-prop (Werbos, 1974; LeCun, 
1985; Parker, 1985; Rumelhart et al., 1986) make use of information provided by error signals (distances 
between actual network outputs and target values). Unlike universal search, these algorithms incre­
mentally adjust network weights in an iterative manner: solution candidates found in previous trials 
serve as a basis for additional improvements. Reinforcement learning algorithms (Watkins, 1989; Dayan 
and Sejnowski, 1994; Barto et al., 1983; Williams, 1988; Schmidhuber, 1989) (see Barto (1989) for an 
overview) receive less informative environmental feedback than supervised learning algorithms, but they 
are designed to work in an incremental fashion as well. For instance, they tend to make use of the 
information provided by the magnitude of the rewards, and by the amount of time between rewarding 
events. Again , "good" solutions build the basis for "better" solutions. The same is true for simple 
hill-climbing and for "evolutionary" and "genetic" algorithms (GAs) (Rechenberg, 1971; Schwefel, 1974; 
Holland, 1975; Hoffmeister and Back, 1991)(see e.g. (Dickmanns et al., 1986; Schmidhuber , 1987; Koza, 
1992) for applications of the GA paradigm to the evolution of computer programs). 

The original universal search procedure as formulated by Levin is not designed for incremental learn­
ing situations. Indeed, the current theory of incremental learning is not well-developed. However, there 
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appears to be more than one reasonable way of appropriately extending universal search. Some possi­
bilities are given in Solomonoff's and Paul's more recent work, see (Solomonoff, 1986; Solomonoff, 1990; 
Paul and Solomonoff, 1991). Apparently, however, nobody has implemented incremental extensions of 
universal search so far, although both Solomonoff and Paul emphasize the importance of experiments. 

An in-depth study of extensions designed for incremental learning is beyond the scope of this paper. 
To end it with a promising outlook, however, a few initial experimental results with certain probabilistic 
variants of the first implemented incremental extensions will be reported next. 

5.1 EXPERIMENTS WITH INCREMENTAL EXTENSIONS 

The basic set-up for the experiment with the network described in section 4.4 (the "adding" perceptron) 
is used again. However, to allow for "incremental learning" , the following modifications are introduced. 

Generation of "mutations" with low Levin complexity. To provide more informative feedback, 
weight vectors are evaluated in a non-binary fashion. The "fitness" of a weight vector is defined as its 
number of "correct" weights. Recall that the solution requires the ith weight to equal i. The weights 
(initially zero) are not re-initialized after each run. Instead, whenever there is an improvement (whenever 
some run leads to a weight vector with more correct weights than the best found so far), the weights of 
the modified weight vector are stored. Further runs try to generate further improvements of the modified 
weight vector. In other words, each run leads to a "mutation" of the best weight vector found so far. 
Essentially, weight vector mutations are listed in order of their Levin complexity, until an improvement 
is found. The improved weight vector goes into a new round of mutations. 

Mutations of mutation algorithms. With the problem from section 4.5, the above modification 
by itself did not lead to a significant reduction of total search time. Typical improvements led to 
at most one additional correct weight per run (with most runs, there was no improvement at all). 
However, by introducing another modification, search time sometimes was reduced dramatically. Let 
us define the "fitness" of an improvement as the difference between the fitness of the newly generated 
weight vector and the best found so far. The additional modification is this: whenever the fitness 
of an improvement exceeds both 2 and the fitness of the best improvement so far , the corresponding 
mutation program is kept on the program tape. The work tape is erased. The following trials start with 
InstructionPointer being equal to the address following the end of the successful program (M in +- 0, 
OracleAddress +- InstructionPointer) . This means: new mutation programs may build on earlier 
successful mutation programs. This makes the approach similar in spirit to the approaches proposed 
in (Solomonoff, 1986; Solomonoff, 1990; Paul and Solomonoff, 1991). Successful programs often will 
represent short descriptions of mutations of many different solution components. The probability of a 
new successful mutation may be higher if we may mutate successful mutation algorithms (instead of just 
mutating mutation results). Thus, additional improvements may be more likely. Think of this: most 
programmers prefer rewriting programs in a high level language instead of rewriting the microcode. 

RESULTS. With the first test, 25 of the first 1,356,777 runs led to 1-step improvements. This 
means that about one out of 54,271 runs led to a "better" weight vector (whose number of correct 
weights exceeded the one of the best found so far by exactly 1). In the end of this period, the network's 
weight vector had 25 correct weights. Then, at run number 1,356,777, there was a dramatic improvement 
leading to 57 correct weights. As described above, the corresponding mutation program was left on the 
program tape. It~ space probability was 1.47 * 10-2 1. Very briefly after this event, at run number 
1,357,193, the system generated an additional dramatic improvement. The additional code was just a 
jump to a useful position in the old code. Together with the old code, the new program led to 99 correct 
weights. The space probability of the additional code was high: 3.3 * 10- 3 (this is the reason why it 
was found so quickly). The only missing correct weight was generated shortly after that, at run number 
1,357,233. Thus, only 456 runs after the first dramatic improvement, the solution was completed. This 
corresponds to not more than a small fraction of a second of additional cpu time. 

With the second test, again there was a series of at most 1-step improvements. This time it lasted 
until the network's weight vector had 46 correct weights. Then, at run number 6,308,386 (after about 
half an hour of cpu time), there was an apparently minor improvement leading to 49 correct weights. 
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But the minor improvement was actually a major breakthrough. The corresponding mutation program 
became the building block for a flurry of additional improvements. Nearly immediately afterwards, after 
run number 6,308,631, there were 53 correct weights. After run number 6,308,812, there were 68 correct 
weights. After run number 6,310,125, there were 99 correct weights. After run number 6,310,280, there 
were 100 correct weights. Thus, within only 1894 runs (less than a second of cpu time) following the 
apparently minor improvement , the solution was completed. 

In additional experiments, the weight vector was reinitialized (with zeros) after each run. But 
programs leading to further improvements were not erased from the program tape, just as described 
above. On average, this led to equal or even better performance than the version keeping the best 
weight vector so far. Similar observations were made with other variants of incremental search. 

COMMENTS I PROBLEMS I FUTURE WORK 

1. Learning speed. The incremental extensions turned out to be faster than non-incremental search 
(compare section 4.5). Obviously, once a useful program is found, it may serve as a useful subprogram. 
This may dramatically increase the probability of further improvements, and thus reduce search time. 
In a way, the system may learn how to learn faster. 

2. On improving "evolutionary" algorithms. In theory, the strategy of listing parameter 
mutations in order of their Levin complexity appears to be a smarter mutation strategy than the trivial 
mutation strategies employed by conventional hill-climbing , evolut ionary and genetic algorithms, e.g. 
(Rechenberg, 1971; Schwefel, 1974; Holland , 1975; Hoffmeister and Back, 1991; Dickmanns et al., 1986; 
Koza, 1992). In general, the latter cannot be expected to come up (within reasonable t ime) with non­
trivial changes that require many simultaneous "correlated mutations" in quite different positions (at 
every 5th position , say). Universal search, however, soon will find useful "correlated mutations" if their 
Levin' complexities are low. Therefore, incremental extensions of universal search appear to be promising 
candidates for learning more complex tasks, and for replacing the less sophisticated strategies typically 
used for more traditional algorithms. 

3; Code explosion. In theoretical investigations, more complex strategies for handling "subpro­
grams" have been proposed. Solomonoff described methods for giving new names to successful programs, 
and using them as more complex primitives (Solomonoff, 1964; Solomonoff, 1986). This approach suf­
fers from the same obvious problem as the methods tested above: as the code continues to expand, 
there is more material with which to form new programs (this will be referred to as the "code explosion 
problem"). Sometimes, code explosion may have a negative influence on the probability of additional 
successful code. For such reasons, Paul and Solomonoff (1991) address theoretical advantages of grouping 
related programs into "directories" of subprograms. 

4 . Compressing successful programs. To a degree, the severeness of the code explosion problem 
might be diminishable by searching for programs compressing old successful code. Solomonoff (1986) 
proposed to spend about one half of total search time on trying to compress previous useful programs, but 
this idea was not pursued (the focus of his paper is on combining concepts from algorithmic probability 
theory and more traditional approaches for assigning modified probabilities to subprograms appearing 
in successful programs). Program compression algorithms could help to deal with a related problem 
observed in the simulations: in general, the programs found by incremental search were not as short, 
efficient, and elegant as the ones found by non-incremental search. The reason is that incremental search 
tends to generate programs that incorporate non-optimal code from previous runs. 

5. Future research. Much remains to be done to become clear about the mutual advantages and 
disadvantages of different "incremental" extensions of universal search. At t he moment, nobody knows 
the best general algorithm for learning from previous experiences. Is there a strategy for incremental 
learning that is optimal in the same sense universal search is optimal for a broad class of non-incremental 
situations? This may be one of the most important questions in machine learning. 
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6 CONCLUDING REMARKS 

It was shown that basic concepts from the theory of algorithmic complexity are of interest for machine 
learning purposes. At least with certain toy problems where it is computationally feasible, search with 
preference for solutions computable by short and fast programs may lead to excellent generalization 
performance unmatchable by more traditional algorithms. Although the focus of the experiments was 
on perceptron-like neural nets, the presented methods are general enough to be applied to a wide variety 
of problems. For instance, in work done in collaboration with Norbert Jankowski, variants of universal 
search were successfully applied to path finding problems in mazes (Schmidhuber and Jankowski, 1994). 
Much work on "incremental" learning in real world applications remains to be done, however . 

The bias towards algorithmic simplicity is a very general one. It is weaker than most kinds of problem 
specific inductive bias, e.g. (Utgoff, 1986; Haussler, 1988). If a solution is indeed simple, the bias is 
justified (it does not require us to know "the way in which the solution is simple"). If the solution is not 
simple, the bias towards algorithmic simplicity won't do much damage: even in case of algorithmically 
complex solutions we cannot lose much if we focus on simple candidates first, before looking at more 
complex candidates. T his is because in general the complex candidates greatly outnumber the simple 
ones. The few simple ones don 't significantly affect total search time of an optimal search algorithm. 

When will a general bias towards algorithmic simplicity not only cause no harm but also be useful for 
problem solving? How many solutions are indeed simple? The next paragraph appears to support the 
answer "hardly any". But the final part of this section argues that the expression "hardly any" actually 
refers to a worst case that is atypical for real world problems. 

In general, generalization is impossible . To be more specific, let the task be to learn some 
relation between finite bitstrings and finite bitstrings. A training set is chosen randomly. In almost all 
cases, the shortest algorithm computing a (non-overlapping) test set essentially will have the size of the 
whole test set (recall from section 2 that most computable objects are incompressible). The shortest 
algorithm computing the test set, given the training set, won't be any shorter. In other words, the 
"mutual algorithmic information" (e.g. (Chaitin , 1987)) between test set and training set will be zero in 
almost all cases (ignoring an additive constant independent of the problem). Therefore, in the general 
case, (1) knowledge of the training set does not provide any clues about the test set, (2) there is no 
hope for generalization, and (3) obviously there is no reason why a "simple" (or any other kind of) 
solution should be preferred a priori over complex ones (related observations are discussed at length e.g. 
in (Dietterich, 1989; Schaffer, 1993; Wolpert, 1993)). This may be viewed as the reason why certain 
worst-case results of PAC-learning theory (initiated by Valiant, 1984) appear discouraging. Similarly 
for problem solving in general: a "problem" is usually defined by a search space of solution candidates, 
and a computable criterion for the solution. Most solutions to problems from the set of all possible well­
defined problems are algorithmically complex (random, incompressible). Most such problems cannot be 
efficiently solved ("efficient" means faster than by exhaustive search), neither by Levin's universal search 
algorithm, nor by a hypothetical "optimal" incremental learning scheme, nor by any other method. 

Apparently, however, many typical problems we are confronted with in the "real world" are simple! 
Simple in the sense that their solutions do not require as much information to be specified as most 
solution candidates. Problems that humans consider to be typical are atypical when compared to the 
general set of all well-defined problems (see also (Li and Vitanyi, 1989)) . Indeed, for all "interesting" 
problems, the bias towards algorithmic simplicity seems justified! 

This may be a· miracle. Or perhaps a consequence of the possibility that our universe is run by a 
short algorithm (every electron behaves the same way) . Or (at least in some cases) just a consequence 
of the fact that we select only problems we can solve (we would not exist if we could not survive by 
doing so- but this is an anthropocentric argument). Anyway, our learning machines should try to make 
use of the enormous amount of algorithmic redundancy in our "friendly" universe. The most general 
way of doing so appears to be to use the tools provided by the theory of algorithmic probability and 
Kolmogorov complexity. 
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