
.,

_,

FORSCHUNGSBEJRICHTJE
..

KUNSTLICHE INTEJLLIGENZ

ADAPTIVE CONFIDENCE AND ADAPTIVE CURI OSITY

Jiirgen Schmidhuber

Report FKI-149-91

April 1991

TECH NISCHE UNIVERSIT AT MUNCHEN

Institut fiir Informatik, Arcisstr. 21, 8000 Mtinchen 2, Germany

ADAPTIVE CONFIDENCE AND ADAPTIVE CURIOSITY

Jiirgen Schmidhuber
Institut fiir Informatik

Technische Universitat Miinchen
Arcisstr. 21, 8000 Miinchen 2, Germany
schmidhu@informatik.tu-muenchen.de

Technical Report FKI-149-91, April, 30, 1991

Abstract

Much of the recent research on adaptive neuro-control and reinforcement learning focusses on
systems with adaptive 'world models'. Previous approaches, however, do not address the problem of
modelling the reliability of the world model's predictions in uncertain environments. Furthermore,
with previous approaches usually some ad-hoc method (like random search) is used to t rain the world
model to predict future environmental inputs from previous inputs and control outputs of the system.
This paper introduces ways for modelling the reliabili ty of the outputs of adaptive predictors, and it
describes more sophisticated and sometimes more efficient methods for their adaptive construction by
on-line state space exploration: For instance, a 4-network reinforcement learning system is described
which tries to maximize the expectation of the temporal derivative of the adaptive assumed reliability
of future predictions. The system is 'curious' in the sense that it actively tries to provoke situations
for which it learned to expect to learn something about the environment. An experiment with
an artificial non-deterministic environment demonstrates that the method can be faster than the
conventional model-building strategy.

1 THE PROBLEM

Much of the recent research on adaptive neuro-control and reinforcement learning focusses on systems
with sub-modules that learn to predict inputs from the environment. These sub-modules often are called
'adaptive world models'; they are useful for a whole variety of control tasks. For instance, Werbos' and
Jordan's architectures for neuro-control (1 6][3) contain an adaptive world model in form of a back­
propagation module (the model network) which is trained to predict the next input, given the current
input and the current output of an adaptive control network. The model network allows to compute error
gradients for the controller outputs. This is essential, since with typical adaptive neuro-control tasks
there is no teacher who provides desired controller outputs . There is only a desired environmental input.
Extensions of this approach (e.g. (11]) rely on the same basic principles. Sutton's 'DYNA-systems' (13)
use adaptive world models for limiting the number of 'real-world experiences' necessary to solve certain
reinforcement learning tasks.

There are at least two important problems with all of these approaches that have not been addressed
so far:

1. Previous model-building control systems are not well-suited fo1· uncertain non-dete1·ministic en­
vironments. In particular, they do not model the reliability of the predictions of the adaptive world
models. Therefore, if credit assignment for the controller is based on the assumption of a correct world
model, unexpected results may be obtained.

2. Previous model-building control systems employ some ad-hoc method for establishing the world
model. For instance, Jordan [3], Jameson (2), Nguyen and Widrow (5], Schmidhuber and Huber (12), and
others use random search to train the world model. Sutton (13) uses a local input/output representation

1

and makes the probability of making a certain training experiment dependent on the time that went
by since the system made the last experiment of the same type. These methods work fine for certain
problems, but they do not address the challenges of real world tasks in uncertain environments. T here
are at least two (related) sources of efficiency which are neglected by these approaches:

2A. Not much additional training -time should be wasted on exploring those parts of the world which
are already well-modelled. 2B. Not much additional training time should be wasted on exploring those
parts of the world where the expectati,on of future improvement of the world model is low.

The first contribution of this paper (section 2) is to show how one can adaptively model the reliability
of a predictor's predictions, and how

1
adaptive controllers can profit from this additional knowledge.

The second (and most important) contribution of this paper (section 3) is to show how reinforcement
learning can be used for teaching a model-building controller to actively generate training examples for
increasing the reliability of the predictions of its world model. This is relevant for the problem of 'on-line
state space exploration'. T he approach is based on learning to estimate the effects of further learning.

2 ADAPTIVE CONFIDENCE

Consider an adaptive discrete time 'predictor' M (not necessarily a neural network) whose input at
timet is the real vector iM(t) and whose output at timet is the real vector oM(t) = fM(iM(t), hM(t)),
where the real vector hM(t) represents the internal state of M. Meaningful internal states are required
if the prediction task requires to memorize past events. At timet there is a target output dM(t). The
predictor 's goal is to make oM(t) = dM(t) ,for all t.

After having provided a number of training examples for M, M usually will still make some errors,
particularily if the training environment is noisy. How can we model the reliability of M's predictions?

We introduce an additional 'confidence module' C (not necessarily a neural network) whose input
at time t is the real vector ic (t) = iM(t) and whose output at time t is the real vector oc(t) =
f c (ic(t), hc(t)), where the real vector hc(t) is the internal state of C . At time t there is a target output
dc (t) for the confidence module. dc (t) should provide information about how reliable M 's prediction
oM(t) can be expected to be (10) [8] [9].

In what follows, vi is the jth component of a vector v, E denotes the expectation operator, dim(x)
denotes the dimensionality of vector x, I c I denotes the. absolute value of scalar c, P(A I B) denotes
the conditional probability of A given B, and E(A I B) denotes the conditional expectation of A given
B. For simplicity, we will concentrate on the case of hc (t) = hM(t) = 0 for all t. This means that
M's and C's current outputs are based only on the current input. There is a variety of simple ways of
representing reliability in dc (t):

1. M ode/ling probabilities of global prediction failures. Let dc (t) be one-dimensional. Let de (t) =
P(oM(t) f= dM(t) I iM(t)). dc(t) can be estimated by ~~where n2 is the number of those times k :::; t
with iM(k) = iM(t) and where n1 is the number of those times k with iM(k) = iM(t), OM (k) f= dM(k).

2. Modelling probabilities of local prediction failures. Let dc(t) be dim(dM(t))-dimensional. Let
d~(t) = P(dM(t) f= dk(t) I iM(t)) for all appropriate j. d~(t) can be estimated by~ ~ where n2 is the
number of those. times k :5 t with i,M(k) = iM(t) and where n1 is· the number of those times k with
iM(k) = iM(t), dM(k) f= d~(k). .

Variations of method 1 and method 2 would not measure the probabilities of exact matches between
predictions and reality but the: prob~bility of 'near-matches' within a certain (e.g. euclidian) tolerance.

!J. Modelling global expected error. Let dc (t) be one-dimensional. Let

dc(t) = E { ~(dM(t)- oM(t))T(dM(t)- oM(t)) I iM(t)}.

If C is a back-propagation net, an approximation of dc (t) can be obtained by using gradient descent (with
a small learning rate) for training Cat timet to emit M's error t(dM(t) - OM (t))T(dM(t) -oM(t)). This

2

is a special case of the method described in [10] (there a fully recurrent net was employed). Of course,
other error functions are possible. For instance, with the experiments described below the confidence
network predicted the the absolute value of the difference between M's (one-dimensional) output and
the current target value.

4. Modelling local expected error. Let dc(t) be dim(dM(t))-dimensional. Let

db(t) = E{(d~(t)- dM(t)) 2 I iM(t)}

for all appropriate j. If C is a back-propagation net, an approximation of dc (t) can be obtained by
using gradient desce~t (with a small learning rate) for training C at timet to emit M's local prediction
errors

where m= dim(oM(t)).
If M is u:::ed as a. 'world model' , then with many applications iM(t) = oA(t)ox(t) and dM(t) = x(t -1-1),

where oA(t) is the output vector of a controller A at t imet, 'o' is the concatenation operator, and x(t) is
the environmental input at timet. In general, OA(t) influences the state of the environment. T herefore
it may have an influence on x(t + 1).

In [9] confidence modules have been successfully applied to the problem of meaningful hierarchical
sequence chunking. The next subsection describes how they can be used for supporting controller
learning. The next subsection is not essential for the central contribution of this paper (which can be
found in section 3).

2.1 USING CONFIDENCE MODULES FOR SUPPORTING CONTROLLER
LEARNING

The general principle behind the ideas described below is: Any adaptive controller whose credit as­
signment process is based on a world model should be modified only if the predictor's predictions are
reliable.

Among the most radical implementations of this principle are the ones described next. These are
independent of the precise nature of t he credit assignment process of the controller:

1. If method 1 or method 3 of section 2 is employed, use the model for training the controller at time
t only if dc(t) ~ {J = const. 2: 0. .

2. If method 2 or method 4 is employed, use a'M(t) for training the controller at time t only if

db(t) ~ {J = const. 2: 0.

by

For instance, let us assume that M is used to approximate

8[(x(t + 1)- y(t + 1)?(x(t + 1)- y(t + 1))]
8oA(t)

8((oM(t)- y(t + 1))T(oM(t) - y(t + 1)))
8oA(t)

where y(t) is a desired state of the environment at timet. This is a common principle of the approaches
described in [16], [3] and [11], where the gradient computed with the help of M is propagated down into
the controller where it causes weight. changes according to the rules of gradient descent.

If method 2 or method 4 is employed, compute only

I:
j :(otr(t)-xi (t+l))2 SfJ ,d~(t)SfJ

a(dM(t)- yi (t + 1))2

8oA(t)

and use this value for training the controller (here {J is a small non-negative constant).

3

A less radical ·strategy is to weight highly reliable predictions more heavily than less reliable ones.
For instance, if method 2 or method 4 is employed , compute

and use this value for training the controller. Here u is a monotonically decreasing function whose output
values are in [0, .. . , 1] .

The effect of all these strategies is that the controller is preferrably trained with respect to those
predictions of M that are assumed to be· reliable.

3 ADAPTIVE CURIOSITY

This section provides the major contribution of this paper. We define curiosity ;u; the desire to improve
a predictor of the reactions of an environment (a 'world model'). In [10], [6] and [7] the following bar
sic idea for 'on-line state space exploration by implementing dynamic curiosity and boredom' has been
formulated: Spend reinforcement for a model-building controller whenever there is a mismatch between
the expectations of the adaptive world model and reality. Any sensible reinforcement learning algorithm
can be used to encourage the controller to generate action sequences that provoke situations where the
world model tends to make bad predictions . Since the model is adaptive, its predictions often will im­
prove. This in turn will lead to less reinforcement for the controller. Therefore the corresponding action
sequences will become discouraged. The controller will get 'bored'with the corresponding situations and
will start to focus on yet unpredictable parts of t he environment.

The particular implementation described in [10] and [7] employed a recurrent confidence network
with a one-dimensional output for modelling the expected error of the model network (this error was
called the 'vuriosi~y reinforcement')'. The confidence network was not called so: It was part of the model
network (which predicted the next state of the environment plus a reinforcement vector including all
kinds of reinforcement, not just 'curiosity reinforcement '). The target activation of the single output
unit of the confidence net was a function of the current error of the model network. In the simplest
case this function was linear. The controller 's goal was to activate the error-predicting unit by creating
action sequences for provoking mismatches between expectations and reality. The gradient computed
for the error predictor also served to change the internal representations of the whole network (whose
error function simply contained an additional term). Recently Thrun and Moller described related ideas
[14] (they use the term 'competence network ' instead of the term 'confidence network' as used in [9) and
[8]) .

One problem with the idea above is that in non-deterministic environments the controller will focus
on parts of the environmental dynamics which are inherently unpredictable. This is because the adaptive
model usually will produce incorrect predictions for the uncertain parts of the environment. Therefore
the controller will receive reinforcement although it cannot be expected that the world model wi/1 improve.

A related problem is that often certain parts of the environment can be represented only by a complex
mapping which is difficult to learn while other parts are 'easy to learn'. If we want a system which first
tries to solve the easy tasks before focussing on the harder tasks then the system will need an (adaptive)
internal representation of something like the expectation of how difficult certain learning tasks wi/1 be.

Both problems are related in the sense that both require to leam something about the effects of
f1trth er learning. In what follows an approach for coping with these problems will be described. Instead
of simply learning to predict errors as the approach described in [10] the new approach learns to predict
cumulative error changes.

3.1 THE BASIC PRINCIPLE

This subsection discusses a rather general principle of adaptive ru riosity. Here we do not have to care
whether the adaptive world model is implemented as a back-propagation network, as a lookup table,

4

,.

or as something else. There are certain natural implementations of the ideas; they are discussed in the
following subsections.

The basic principle can be formulated as follows: Learn a mapping from actions (or action sequences)
to the expectation of future performance improvement of the world model. Encourage action sequences
where this expectation is high.

One way to do this is the following (section 4 will describe alternatives): Model the reliability of the
predictions of the adaptive predictor as described in section 2. At t ime t, spend t·einforcement for the
model-building control system in proportion to the current change of reliability of th e adaptive predictor.
T he 'curiosity goal' of the controller (it might have additional 'pre-wired' goals) is to maximize the
expectation of the cumulative sum of futurt posit ive or negative changes in prediction reliabi lity.

More formally: The controller's curiosity goal at time t 0 is to maximize

E{L -~1 -10 6.oc (t + 1)} .
t~to

Here 0 :::; 1 < 1 is a discount factor for avoiding infinite sums, and 6.oc (t) is the (positive or negative)
change of assumed reliability caused by the observation of iM(t), oM(t), and x(t + 1).

For instance, if method 1 or method 3 from section 2 is employed, then 6.oc(t) = oc(t) - oc-(t),
where oc-(t) is C's response to iM(t) after having adjusted Cat timet .

So far the discussion did not have to refer to a particular reinforcement learning algorithm. Every sen­
sible reinforcement learning algorithm ought to be useful (e.g [1][17][15][11]) . T he following subsections
focus on two particular methods, namely, adaptive cri tics and Q-learning.

3.2 CRITIC-BASED MODEL-BUILDING CONTROLLERS FOR ON-LINE
STATE SPACE EXPLORATION

A straight-forward way to build a 'curious ' model-building control system based on the principle de­
scribed above is the following:

Use a controller A, a predictor M (the world model) and a confidence module C as described in
section 2. In addition , train an adaptive critic [1][16][15) P whose output at timet is op(t) to predict

at time to by training it to predict

Use

L _,t - to6.oc (t + 1)
t~ to

6.oc (to + 1) + /Op(to + 1).

1·(t) = 6.oc(t + 1) + / Op(t + 1)- op(t)

as reinforcement for the reinforcement learning algorithm of the controller at time t .
T he method considers only 'curiosity reinforcement ' . If there is additional external reinforcement,

then the adaptive critic simply will have to be trained to predict the (discounted) sum of curiosity
reinforcement and external reinforcement [7][10] .

3.3 A CURIOUS SYSTEM BASED ON Q-LEARNING

Here we describe how a reinforcement learning method called Q-learning can be used to build a 'curious'
model builder. The notation is the same as above. Following [15] we introduce an adaptive function Q
for evaluating pairs of inputs x(t) and actions a(t) as well as an utility fun ction U for evaluating inputs
x(t) .

After random initialization of C, M, A, U, and Q, at each time step t the following algorithm is
performed:

5

. .,

1. Randomly select p E [0, . .. , 1]. If p ~ J1. E [0, . . . , 1] then a(t) = oA(t) else a(t) is chosen
randomly.
2. Compute oM(t) , execute a(t), obtain x(t + 1) ,· and adjust M to improve its prediction in
similar situations. Adjust C according to one of the methods described in section 2. Obtain
r (t) :::::: 7'ext(t)+ 6 oc (t)_, where rext(t) is the current externally defined reinforcement (if there
is any) and where b.oc (t) is the current change of confidence in M 's current predictions.
3. Set Q(x(t) , a(t)) +- (1 - a)Q(x(t), a(t)) + a(1·(t) + rU(x(t + 1)) - Q(x(t), a(t))) , where a
is a learning rate and 0 ~ r ~ 1.
4. Adjust A to emit a in response to x(t) such that Q(x(t) , a) = maxbQ(x(t) , b).
5. U(x(t)) +- Q(x(t), a).

Note tha t the algorithm does not specify the implementation of C, M, and A. All t hree can be
implemented as lookup tables or (in hope for useful 'generalizations') as back-propagation networks,
Boltzmann-machines, etc. Q and U may be replaced by back-propagation networks, too (see the exper­
imentt: d~:;crib:.::d i:1 s~cticn 5) .

4 PRED ICTIN G ERROR CHAN GES DIRECTLY

The reinforcement generating mechai)ism for the reinforcement learning systems described above can be
modified in various ways. For instance, define oAi(t) as M 's response to iM(t) after having adjusted M
at time t . We can replace t he confidence network by a network H which at every time step receives the
current input iM(t) and whose target output is the current change of M's output 6oM(t) = oM(t)-oJ.i(t)
caused by M 's learning algorithm (H should have a small learning rate). H will learn approximations
of the expecta tions

E {b.oM(t) I iM(t)}

of the changes of M's responses to given inputs. The absolute value I on(t) I of If's output on(t) (an
approximation of I E {b.oM(t) I iM(t)} I) should be t aken as the reinforcement for the adaptive critic
or the Q-learning algorithm (the reinforcement learning algorithm does not have to be specified here):
T he controller 's curiosity goal at time to is to maximize

E {L -rt- to I on (t) 1} ,
t~ t o

where 0 ~ r < 1 is a discount rate.
An alternative would be to make predictions about the (discounted) sum of fu ture changes of M's

weight vector and use these predictions in an analoguous manner.

5 EXPERIMENTS

The following experiments with a method based on the 'curious' model-building Q-learner above were
conducted by Reiner Wahnsiedler, a student at TUM. ·

An uncertain and only partly deterministic environment for an artificial agent was defined. It was
a square consisting of 10 rows or columns with 10 slots each. At a given time step the agent occupied
one out of the 100 slots. It was able to execute one out of 4 possible act ions: 1. Move to the slot to t he
left of t he current slot if such a slot exists. Otherwise move to the rightmost slot of the same row. 2.
Move to the slot above t he current slot if such a slot exists. Otherwise move to the slot at the bottom
of the same column. 3. Move to the slot below the current slot if such a slot exists. Otherwise move to
the slot at the top of the same column. 4. Move to the slot to the right of the current slot if such a slot
exists. Otherwise move to the leftmost slot of the same row.

A predictor network M , a confidence module C and a module for evaluating pairs of positions and
actions Q were implemented as general back-propagation networks. With these particular experiments,

6

however, the networks had no hidden layers. Therefore the networks degenerated to look-up tables, due
to the local input representation to be described below.

At time t the agent 's input i(t) was a representation of the current position. Each possible position
was represented by a lOO-dimensional bitvector with only one non-zero component (local input represen­
tation) . Whenever the agent entered a slot it observed one out of two possible 'reactions' s(t) E {0, 1}.
There were three classes of slots: With members of class 1 s(t) was always 1. With members of class 2
s(t) was always 0. With members of class 3 s(t) was selected randomly; the probability that the reaction
was 1 was equal to t.

Between two successive time steps t - 1 and t the following operations were executed: At t ime
t - 1 Q received four different 400-dimensional bit-vectors with only one non-zero component as inputs
(local input representation). There was one input vector for each combination of i(t - 1) and the fou r
possible actions. Q emitted a one-dimensional output in response to each of the four inputs [4]. These
four outputs were interpreted as evaluations of the corresponding input/action pairs. Q's output unit

employed the logistic activation function l+~•q - / 0 , where z was the current weight of the connection
from Q's currently actrve input unit · to the output unit and q was the current activation of this input
unit. T he controller was not implemented as a separate module: It was implemented as the simple
mechanism which chose the action corresponding to the highest of the four current evaluations of Q.
This action was executed to obtain i(t). Q's input vector corresponding to the chosen action was called
iQ(t- 1).

Then, at timet, M received i(t) as an input and produced a one-dimensional output oM(t). With this
particular exper:iment M's task was not to learn to predict i(t + 1) but to predict s(t). The apparently
rather simple task is sufficient to illustrate the basic problem: Obviously only slots from class 1 or
class 2 allowed to learn 'good' predictions. But, the system was not told in advance which parts of the
environment were deterministic and which were not.

M 's output unit employed the activation function l+e: .. m - t. where w was the current weight of
the connection from M's currently active input unit to the output unit and m was t he current activation
of this input unit .

At timet the confidence network C received i(t) as an input. Its one-dimensional output oc (t) was
interpreted as a prediction of E {I oM(t)- s(t) 11 i(t)} (a variant of method 3 of section 2). C's output
unit employed the activation function 1+?-uc - t, where v was the current weight of ~he connection from
C's currently active input unit to th,e output uni t and c was the current activation of this input unit.
To obtain the current increase or decrease in confidence ~oc(t) the following procedure was employed :
After having computed oc (t), I OM(t) - s(t) I served as the_ desired output for C. C's weights were
adjusted according to the rules of gradient descent. Then oc(t) (C's response to i(t) after the current
weight modification, see section 3.1) was computed.

~oc (t) = oc (t) - oc-(t) served as the current 'curiosity reinforcement' (there was no external re­
inforcement besides the 'curiosity reinforcement'). Q was updated according to the rules of gradient
descent: At time t - 1, Q's desired target output in response to iQ(t - 1) was ~oc (t) + 1U(t), where
U(t) was the evaluation of the best action proposed by Q at time t.

With one experiment the world contained a 3 times 3 slots subsection of9 slots which always produced
deterministic reactions. The other 91 slots always produced random reactions. The 'curious' system was
tested against the conventional random search method. In both cases M 's learning rate was 0.1, and all
weights were initialized between -0.1 and 0.1. With the 'curious' system, in the beginning of the training
phase the agent was placed at a randomly chosen position. C's learning rate was 1.0, the learnin g rate of
the Q-function was 40.0, and 1 was 0.9. Actions were chosen deterministically (this corresponds top. = 1
in the algorithm of section 3.3). With both methods, at timet the sum E(t) of the squared differences
between the values of the reactions of the deterministic slots and the corresponding predictions of M
was used as a criterion for judging the quality of M.

It turned out that with guidance by the principle of adaptive curiosity E(t) decreased clearly fa ster
than with random search. For instance, with random search about 2700 training examples for M were
needed to make E(t) smaller than 0.3. With the 'curious' system only about 1000 training examples
were needed to make E(t) smaller than 0.15. Similar results were obtained with the strategy described

7

in section 4.
Of course, the reason for this superior performance was the following one: The 'curious' system

soon detected that there were certain slots where further improvement of the world model could be
expected. It started to focus on these particular slots. The random search method was not selective at
all , t herefore it wasted a lot of time on senseless exploration of parts of the environment that did not
allow performance improvement. (Note that the method described in (10] will perform even worse in
this partly non-deterministic environment: Soon it will prefer to lead the agent to the non-deterministic
slots, simply because there the expected error is highest.)

The task described above certainly is a toy problem. But, the more complex the environment the
more benefits should be expected from the principle of adaptive curiosity. Ongoing experiments focus on
increasingly complex worlds, non-local input/output representations and on the expected 'generalization
capabilities' of non-trivial networks with hidden units.

n CONCLUSION

The central idea of this paper is to construct an adaptive system which learns to predict the effects of
further learning. T his is done by training an adaptive sub-module to predict (the expect ation of the sum
of) future error changes caused by a particular learning algorithm. Here one adaptive module learns to
make estimates about the effects of the learning procedure of another adaptive module. In other words,
there is a module which learns to make a statement about learning itself. This is related to the concept
of 'meta-learning' briefly touched upon in a different context in (7]. In a very limited sense the system
learns how to learn .

The method represents a general strategy for learning to select training examples such that the
expected performance improvement is maximized. Therefore the usefulness of the approach is not
limited to model-building control systems. The principles above are general enough to be of interest
whenever the task is to select appropriate training examples for any kind of learning system.

7 ACKNOWLEDGEMENTS

I would like to thank Reiner Wahnsiedler who conducted the experiments.

References

(1] A. G . Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that can solve difficult
learning control problems. IEEE Transactions on Systems, M an, and Cybernetics, SMC-13:834-846,
1983:

(2] J . J ameson. A neurocontroller based on model feedback and the adaptive heuristic critic. In Pro c.
IEEE/INNS Internationai Joint Conference on Neural Networks, San Diego, volume 2, pages 37-43,
1990.

(3] M. I. Jordan and D. E. Rumelhart. Supervised learning with a distal teacher. Technical Report
Occasional Paper #40, Center for Cog. Sci., Massachusetts Institute of Technology, 1990.

(4] L. Lin. Self-improving reactive agents: Case studies of reinforcement learning frameworks. In J . A.
Meyer and S. W. Wilson, editors, Proc. of the International Conference on Simulation of Adaptive
B ehavior: From Animals to Animats, pages 297- 305. MIT Press/Bradford Books, 1991.

(5] Nguyen and B. Widrow. The truck backer-upper: An example of self learning in neural networks.
In IEEE/INNS International Joint Conference on Neural Networks, Washington, D.C., volume 1,
pages 357-364, 1989.

8

[6) J. H. Schmidhuber. Dynamische neuronale Netze und das fundamentale raumzeitliche Lernproblem.
Dissertation, Institut fii r Informatik , Technische Universitat Miinchen, 1990.

[7) J. H. Schmidhuber. Making the world differentiable: On using fully recurrent self-supervised neural
networks for dynamic reinforcement learning and planning in non-stationary environments. Techni­
cal Report FKI-126-90 (revised), Institut fiir lnformatik, Technische Universitat Miinchen, Novem­
ber 1990. (Revised and extended version of an earlier report from February.).

[8] J. H. Schmidhuber. Talk at the NIPS'90 workshop on dynamic networks led by R. Rohwer, 1990.

[9) J. H. Schmidhuber. Adaptive decomposition of time. In 0. Simula, editor, Proceedings of the
International Conference on Artificial Neura l Networks JCANN 91, to appear. Elsevier Science
Publishers B.V., 1991.

[10) J. H. Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural
controll0l'S. !1~ J. A. ~.1eyer :::.:1d S. W . VVilson, editors, Pro c. of, the International Conferertce urt
Simulation of Adaptive Behavior: From Animals to Animats, pages 222- 227. MIT Press/Bradford
Books, 1991.

[11) J. H. Schmidhuber. Reinforcement learning in markovian and non-markovian environments. In
D. Touretzky and D. S. Lippman, editors, Advances in Neural Information Processing Systems 3,
in press. San Mateo, CA: Morgan Kaufmann, 1991.

[12) J. H. Schmidhuber and R. Huber. Learning to generate artificial fovea trajectories for target detec­
tion. Internationa l Jov.1·nal of Neural Systems, to appear, 1991.

[13] R. S. Sutton. First results with DYNA, an integrated architecture for learning, planning and
reacting. In Proceedings of the AAA! Spring Symposium on Planning in Uncertain, Unpredictable,
or Changing Environments, 1990.

[14] S. Thrun and K. Moller. On planning and exploration in non-discrete environments. Technical
report, Gesellschaft fiir Mathematik und Datenverarbeit ung , D-5205 St. Augustin, Germany, March
1991.

[15) C. Watkins. Learning from Delayed R ewards. PhD thesis, King's College, 1989.

(16] P. J. Werbos. Building and understanding adaptive systems: A statistical/numerical approach to
factory automation and brain research. IEEE Transactions on Systems, Man, and Cybernetics, 17,
1987.

[17] R. J. Williarns. Toward a theory of reinforcement-learning connectionist systems. Technical Report
NU-CCS-88-3, College of Comp. Sci., Northeastern University, Boston, MA, 1988.

9

