
' ..
I ' '

IFORSCHUNGSBJERJICJHITJE
••

KUNSTJLICHJE JINTJElLlLiGJENZ

NEURALSEQUENCECHUNKERS

Jiirgen Schmidhuber

Report FKI-148-91

April 1991

TUM
TECHNISCHE UNIVERSIT AT MUNCHEN

Institut ftir Informatik, Arcisstr. 21, 8000 Mtinchen 2, Germany

NEURAL SEQUENCE CHUNKERS

Jiirgen Schmidhuber
Institut fiir Informatik

Technische Universitiit Miinchen
Arcistr. 21, 8000 Miinchen 2, Germany
schmidhu @informatik. tu-muenchen.de

Technical Report FKI-148-91, April 30, 1991

Abstract

This paper addresses the problem of learning to 'divide and conquer' by meaningful hierar­
chical adaptive decomposition of temporal sequences. This problem is relevant for time-series
analysis as well as for goal-directed learning, particularily if event sequences tend to have hi­
erarchical temporal structure. The first neural systems for recursively chunking sequences are
described. These systems are based on a principle called the 'principle of history compression' .
T his principle essentially sayl As long as a predictor is able to predict future environmental
inputs from previous ones, no additional knowledge can be obtained by observing these in­
puts in reality. Only unexpected inputs deserve attention. A focus is on a class of 2-network
systems which try to collapse a self-organizing (possibly multi-level) hierarchy of temporal
predictors into a single recurrent network. Only those input events that were not expected by
the first recurrent net are transferred to the second recurrent net. T herefore the second net
receives a reduced discription of the input history. It tries to develop internal representations
for ' higher-level' t emporal structure. These internal representations in turn serve to create
additional training signals for the first net , t hus helping the first net to create longer a nd
longer 'chunks' for the second net. Experiments show that chunking systems can be superior
to the conventional t raining algorithms for recurrent nets.

1 OUTLINE

Section 2 motivates the search for sequence-composing systems by describing major drawbacks of
' conventional' learning algorithms for recurrent networks with time-varying inputs and outputs.
Section 3 describes a simple observation which is essential for the rest of this paper: It describes the
'principle of history compression '. This principle essentially says: As long as a predictor is able to
predict future environmental inputs from previous ones, no additional knowledge can be obtained
by observing these inputs in reality. Only unexpected inputs deserve attention. T his principle
is of particular interest if typical event sequences have hierarchical temporal structure. Basic
schemes for constructing sequence chunking systems based on the principle of history compression
are described. Section 4 then describes on-line and off-line versions of a particular 2-network
chunking system which tries to collapse a self-organizing (possibly multi-level) predictor hierarchy
into a single recurrent network (the aut.omatizer). The idea is to feed everything that is unexpected
into a 'higher-level' recurrent net (the chunker). Since the expected things can be derived from the
unexpected things by the automatizer, the chunker is fed with a reduced description of the input
history. The chunker has a comparatively easy job in finding possibilities for additional reductions,
since it typically works on a slower time scale and receives less inputs than the automatizer. Useful
internal representations of the chunker in turn are taught to the automatizer. This leads to even
more reduced input descriptions for the chunker , and so on . Section 5 describes modifications and
extensions of the particular system described in section 4. Section 6 experimentally demonstrates
that chunking systems can be superior to conventional recurrent net algorithms in two respects:

1

Chunking systems may require less computation per time step, and in addition they may require
fewer training sequences. Section 7 bri~fly mentions a possible extension for reinforcement learning
and adaptive control. Section 8 draws an analogy between the behavior of the chunking systems
and the apparent behavior of humans.

2 DRAWBACKS OF PREVIOUS METHODS

In what follows t he ith component of a vector v(t) will be called v;(t) . dim(v) denotes the
dimension of the vector v. A discrete time training sequence (called an episode) consists of n
ordered pairs ((x(t), d(t)) E R1 xRm , 0 < t $ n, each x(t) being called an input event. At time
t of an episode a learning system receives x(t) as an input and produces output y(t) E nm. The
goal of the learning system is to minimize

1
E = 2 :L L(d;(t)- y;(t))2

•

t i

In general the learner experiences many different episodes during training. Since the gradient of
the error sum over all episodes is equal to the sum of the corresponding gradients, for convenience
we renounce on indices for different episodes.

In general the task above requires to memorize past events., Previous approaches to solving
this problem employed either (approximations of) gradient descent in recurrent nets [5] [17] [33]
[14] [34] (12] [36), 'adaptive critic'-like methods (21] (23], or (more recently) adaptive 'fast weights'
[28]. :

Definition [20]: A learning algorithm for dynamic neural networks is local in time if for given
network sizes (measured in number of connections) during on-line learning the peak computation
complexity at every time step is 0(1), for arbitrary durations of sequences to be learned. A
learning algorithm for dynamic neural networks is local in space if during on-line learning for
limited durations of sequences to be learned and for arbitrary network sizes (measured in number of
connections) and for arbitrary network topologies the peak computation complexity per connection
at every time step is 0(1).

In what follows we will focus on the gradient-based methods for supervised learning. These
can be classified into two major categories: The 'forward-backward ' methods [17] [33] [1 2] are
based on the 'unfolding in time' principle which requires to store all time-varying activations of
all units at all times of the activation spreading phase of each episode. In general, this requires
an unknown amount of storage. At the end of each episode the desired error derivatives can be
computed by 'back-propagation through time' (which is of the same computational complexity as
the forward pass). The 'forward-backward' methods are not local in time.

The 'forward-only' methods [14] [36] [28] use a fixed number of special variables for computing
derivatives of time-varying activations in an on-line fashion. No 'back-propagation through time'
is necessary. But, the 'forward-only' methods are not local in space.

Neither the 'forward-backward' methods nor t he 'forward-only' methods are local. Both are
too expensive for large scale applications.

With many applications, a second drawback of both methods is the following: The longer
the time lag between an event and the occurrence of a corresponding error signal the less the
corresponding back-propagated error signals are significant: Long time lags tend to lead to uniform
(and therefore uninformed) distributions of error signals1 .

1It should be mentioned, however, that Hochreite r recently found a method for carefully designing recurrent
connections such that the error distribution problem becomes less severe (4]. Furthermore it should be mentioned
that recently Rohwer's (non-compositionul) moving target algorithm (15] h as been successfully tested on a simple
task with long time lags (16). Mozer's recent approach for discovering global temporal structure [9) should be
mentioned, too. Mozer uses a predefined non-a.da.ptive distribution of decay rates for the hidden units of his
recurrent net. With his approach, units with h igh decay rates tend to become sensitive for 'more local' structure
while units with small decay ra tes tend to become sensitive for 'more global ' structure. With the approaches
described in sections 4 and 5 there is nothing like a pre-wired decay rate. T h e systems incrementally leam to define
appropriate slower and slower t ime scales on their own.

2

In section 6 (experiments) a system will be tested which is local in both space and time while
still being able to bridge arbitrary time lags and to generate weight matrices like the ones one
would expect from the conventional methods. This system can work if there are 'local' temporal
regularities in the input stream. It tries to detect these regularities and use t hem as building-blocks
for 'higher-level' regularities. The next section describes the basic principles.

3 THE PRINCIPLE OF HISTORY COMPRESSION

Consider a discrete time predictor (not necessarily a neural network) whose state at time t is
described by an environmental input vector i(t), an internal state vector h(t), and an output
vector o(t). At time 0, the predictor starts with i(O) and an internal start state h(O). At time
t 2: 0, the predictor computes

o(t) = f(i(t), h(t)).

At timet > 0, the predictor furthermore computes

' h(t) = g(i(t - 1), h(t- 1)).

If o(t) = i(t + 1) at a given timet, then the predictor was able to predict the input i(t + 1) from
the previous inputs. The new input was derivable by means off and g.

All information about a particular n1-step input sequence observed by the predictor is contained
in the I+ 5-tuple

(n1, /, g, i(O), h(O), (tt, i(tl)), (t2, i(t2)), . . . , (t,, i(t,))),

where the t, > 0 are those time steps where o(t,- 1) =f:. i(t,). The input at a given timet., can
be reconstructed from the knowledge about t., , /, g, i(O), h(O), and the pairs (t 3 , i(t 3)),0 < t3 ~
t., , o(t 3 - 1) =f:. i(t3).

The information about the observed input sequence can be even more compressed: There is
no need to store all the i(tk), k = 1, . .. , I, it suffices to store only those components of the i(tk)
that were not correctly predicted.

The above principle will be referred to as 'the principle of history compression'. In an informal
manner, it has been formulated in [25], [24], (19], and [27).

Now consider a second 'higher-level' discrete t ime predictor whose state at time tk, k E {I , . .. , /}
is described by an environmental input vector ic(tk) = tk o i(tk), an internal state vector hc(tk),
and an output vector oc (tk)· (Here 'o ' is the concatenation operator.) At time to = 0, the higher­
level predictor starts with too i(to) and an internal start state hc(O). At time tk, k = 0, . . . , I, the
higher-level predictor computes

At time t k, k = 1, .. . , I, the higher-level predictor furthermore computes

hc(t) = gc(ic(tk_t) , hc(tk- t)).

If oc(tk) = tk+l o i(tk+l) at a given l;ime tk, then the higher-level predictor was able to predict
ic(tk+l) from its previous input:>. The new higher-level input was derivable by means of fc and
gc.

Now all information about a 'particular input sequence with n 1 time steps can be derived from
n1 , /, g, fc, gc, i(O), h(6), hc.(O) and the unpredicted higher-level inputs together with their
corresponding t ime steps. In an 'analoguous manner, we can recursively introduce new prediction
levels .

3.1 History Compression and Temporal Invariances

Consider a trivial predictor which always emits o(t) = i(t) at a given t imet. With such a predictor,
all information about a particular input sequence is contained in the length of the sequence, t he

3

initial input, and those pairs (t, i(t)) of time steps and inputs where i(t + 1) i i(t). This may be
one reason for the fact tha~ many neurons in biological systems respond only to changes in input
activity. The next subsection considers less trivial adaptive predictors and adopts a more general
view on the advantages of histor:y compression.

3.2 H istory Compression and Chunking

An implication of the principle of history compression is that in a certain sense only unexpected
inputs deserve attention. The principle of history compression is central for the current paper,
which demonstrates that it can be efficient to focus on unexpected inputs and ignore expected
ones.

In the context of learning, /, g, fe, ge, ... will be parameterized, and the parameters will be
adaptive. Previous algorithms for sequence prediction show drawbacks if they receive too many
inputs at too many different time steps. Therefore we are looking for a possibility to reduce the
number of inputs and time steps. This can be possible if the temporal structure of the incoming
input sequences tends to be organized hierarchically.

3.2.1 A Multi-Level Predictor Hierarchy

A straight-forward solution is to create a new higher-level adaptive predictor P8 +1 as described
above whenever a lower-level adaptive predictor P, stops to continue improving. Each predictor is
trained to predict its own next input. P•+l receives as inputs concatenations of unexpected inputs
of P. plus unique representations of the corresponding time steps. Therefore P,+l is fed with a
reduced description of the input sequence observed by P,. In general, P,+1 will receive fewer
inputs over time than P,. With the known learning algorithms, the higher-level predictor will
have less difficulties in learning to predict the critical inputs than the lower-level predictor. This
method will lead to a hierarchy of predictors and is related to the method described in (27]. There
are at least two important differences between the approach described in (27] and the approach
described herein. One difference is the criterion for creating a new level in the hierarchy: With
(27] this criterion is based on measuring the reliability of the predictor's predictions. The other
difference is that the method described in (27] does not care for unique representations of 'critical'
time steps.

With supervised learning tasks one wants the system to emit certain pre-defined target vectors
at certain times. This can be achieved by simply treating each target vector as part of the input
to be predicted. If one is not interested in having a 'single network representation' of past events
then the 'multi-level method' can be the method of choice.

3.2.2 Collapsing a Predictor Hierarchy into a Single Net
I

One disadvantage of a predictor hierarchy as described in the last subsection is that it is not
known in advance how many levels there will be needed. Another disadvantage is that levels are
explicitly separated from each other. But, in theory it is possible to collapse the hierarchy into a
single network. The basic idea behind the chunking systems described in the next sections can be
expressed in the following loop:

1. Train a lower-level adaptive predictor to adjust the parameters of f and g to reduce the
number of incorrect predictions. This can be possible if if the environmental inputs at least
sometimes obey some local temporal laws. 2. Train a higher-level adaptive predictor to adjust the
parameters of fe and ge such that the number of incorrect predictions of higher-level inputs is
reduced. With the known learning algorithms, the higher-level predictor will have less difficulties
in learning to predict the critical inputs than the lower-level predictor. 3. Train the lower-level
predictor to reproduce the meaningful internal states of the higher-level predictor. The ability to
reproduce these internal states will help the lower-level predictor to improve f and g in step 1.
Go to 1.

4

Most of the remainder of this paper (sections 4 and 5) is dedicated to the description of various
implementations of this basic idea.

4 A 2-NET CHUNKING SYSTEM

We use the principle of history compression to build a particular recursive neural sequence chunking
system . A main advantage of this system is that in certain (quite realistic) environments it can
incrementally learn to focus on (or 'shift attention to') those points in time which are relevant for
solving certain tasks, even if these points are separated by long time lags. This property can make
the system superior to previous learning algorithms for dynamic recurrent nets which treat every
time step equally.

T he particular system described below consists of two recurrent dynamic networks. It tries to
collapse a self-organizing (possibly multi-level) predictor hierarchy into a single recurrent network.
T he second net, called the chunker, tries to develop internal representations for 'higher-level'
temporal structure which currently is not preJictable by t.he first. network (the attiomatizer). The
higher-level internal representations of the chunker in t urn serve to generate additional training
signals for the automatizer, thus teaching the automatizer to create internal representations that
carry the same relevant information as the internal representations of the chunker. This, in
turn, makes the higher-level temporal structure discovered by the chunker predictable by the
automatizer. T herefore the automatizer recursively can learn to bridge longer and longer time
spans, thus creating longer and longer 'chunks' for the chunker.

Subsection 4. 1 describes the ~ovel architecture and on-line and off-line variants of the algorithm.
Subsection 4.2 gives comments on the behavior of the system. To get a feeling of what the algorithm
does, the reader might wish to read subsection 4.2 before reading 4.1. Section 5 describes a number
of useful modifications of the method.

4.1 T he Chunking Architecture and the Algorithm

Again it must be mentioned that the algorithms described below are only representatives of a
number of variations of the same basic principle. Section 5 lists a few of the possible modifications.
The notation below is not intended to be consistent with section 3.

With the versions described below, the automatizer has n1 +no input units, nH A hidden units,
and n oA output units . T he chunker has nHc hidden units, and noc output units. All input units
and all hidden units of the automatizer have directed forward connections to all non-input units
of the automatizer. All input units of the automatizer have directed forward connections to all
non-input units of the chunker. This is because the input units of the automatizer serve as input
units for the chunker at certain time steps. There are additional ns input units for the chunker
for providing unique representations of time steps. These additional input units also have directed
forward connections to all non-input units of the chunker. All hidden units of the chunker have
directed forward connections to all non-input units of the chunker. (With this version recurrence
obviously is limited to the hidden units. This is not a necessary condition. In fact, the algorithm
below is fairly independent of the network topology. We need some sort of internal feedback,
however.)

With the variant described below, at timet the environment provides a n1 +no-dimensional
real input vector d(t) o x(t) to the sy~tem. (Again, 'o' is the concatenation operator). d(t) is a
nv-dimensional teacher-defined target. vector. With pure prediction tasks there never is a target
vector (nv = 0). For convenience we define 6d(t) = 1 if at time t the teacher provides such a
target d(t) and od(t) = 1 otherwise. 1f 6d(t) = 0 then d(t) takes on some default value, e.g. the
zero vector. The n1 + nv-dimenslonal real input vector of the automatizer at timet is iA(t). The
nHA-dimensional real activation vector of the hidden units of the automatizer at timet is hA(t).
The real noA -dimensional output vector of the automatizer at time t is oA(t). hA(t) and oA(t) are
based on previous inputs and are computed without knowledge about d(t) and x(t). oA(t) is the
con catenation dA(t) o PA (t) o qA(t) of the nv-dimensional vector dA (t), the n1-dimensional vector

5

PA(t) and the nHc + no0 -dimensional vector qA(t). Therefore, noA = nv + nr + nHc + no0 .

As we will see, the automatizer will try to make dA(t) equal to d(t) if 6d(t) = 1, and it will try
to make PA(t) equal to x(t) (thus trying to predict x(t)). Here we define the target prediction
problem as a special case of an input prediction problem. (Since the desired output becomes part
of the next input, this method provid~s an alternative to the teacher forcing method described in
[36].) Finally, and most importantly, the automatizer will try to make qA(t) equal to hc(t)ooc(t),
thus trying to predict the internal state of the chunker.

The real nH0 -dimensional activation vector of the hidden units of the chunker at time t is
hc(t). The real no0 = ;,D + nr + ns-dimensional output vector of the chunker at time t is
oc(t). oc(t) is the concatenation dc(t) o pc(t) o sc(t) of the nv-dimensional vector dc(t), the
nr-dimensional vector Pc(t), and the ns-dimensional vector sc(t). As we will see, the chunker
will try to make dc(t) equal to the externally provided teaching vector d(t) if 6d(t) = 1 and if the
automatizer failed to emit d(t). Furthermore, it will always try to make pc(t) o sc(t) equal to
the next non-teaching input to be processed by the chunker. This input may be many time steps
ahead.

Both chunker and automatizer are trained by a conventional algorithm for recurrent networks.
Both the liD-Algorithm [14][36] and back-propagation ([32][7][11][17]) in networks 'unfolded in
time' [8] are appropriate. In particular, a computationally inexpensive variant of the 'unfolding in
time' method can be very interesting: With many tasks, only a few iterations of 'back-propagation
through time' per time step are sufficient to bridge arbitrary time lags (see the experiments in
section 6).

We describe two versions of the algorithm: A safer off-line version and an esthetically more
pleasing on-line version. With the off-line version, the chunker and the automatizer are trained in
alternating phases. A phase ends if it seems that further training will not significantly improve
performance in the near future. Weights are changed at the end of 'training episodes' (examples of
sequences of inputs and desired outputs) . With the on-line version, the chunker and the automa­
tizer are trained simultaneously, and weights are changed immediately at each time step (the time
s teps may occur on two different' time scales, however). Here the assumption is that the learning
rates are small enough to avoid instabilities (36] .

T he algorithms described below refer to the procedure of 'updating a network N '. Such an
update is based on an activation spreading phase which (in the simplest case) can look as follows:

Repeat for a constant number of iterations (typically one or two):
1. For each non-input unit j of N compute ai = f;('L_; a;w;j), where ai is the current
activation of unit j, !; is a semilinear differentiable function and w;i is the weight on the
directed connection from unit i to unit j.
2. For all non-input units j: Set ai equal to ai.

By performing more than one iteration of activation spreading at each time tick, one can adjust
the algorithm to environments that change in a manner which is not predictable by semilinear
operations (theoretically three additional iterations are sufficient for any environment (6]). With
different network architectures, the appropriate update procedures have to be employed (e.g.
(5](3]).

For the specification of our method it suffices to specify the input-output behavior of the
chunker and the automatizer as well as the details of error injection. First we will write down an
off-line variant, then an on-line variant.

6

4.1.1 An Off-Line Version

After random weight initialization the off-line version described herein alternates between PASS
1 and PASS 2 (to be described below) until being externally interrupted.

PASS 1:
REPEAT UNTIL the automatizer has not improved significantly for some time:
1. Select a training episode ((x(O), d(O))((x(1), d(1)), .. . , ((x(k), d(k)). Make iA(O) equal to
d(O) o x(O). Represent time step 0 in s(O). Initialize the activations of all non-input units
with zero. Update the chunker to obtain hc(1) and oc(1).

2. FOR ALL TIMES 0 < t < k DO:
2.1. Update the automatizer to obtain hA(t) and oA(t). The automatizer's error eA(t) is
defined as

2eA(t) = (PA(t) o qA(t)- x(t) o hc(t) o oc(t))T (PA(t) o qA(t)- x(t) o hc(t) o oc(t))+
Ud(i)(dA(l)- d(i)]T(dA(i) - d(t)).

Use a gradient descent algorithm for dynamic recurrent nets to compute (or approximate)
-

8;~~;) for each weight Wij of the automatizer. Make iA (t) equal to d(t) o x(t). Uniquely
represent t in s(t).
2.2. If the 'low-level error' of the automatizer

is less or equal to a small constant {3 ~ 0, then set hc(t + 1) = hc(t), oc(t + 1) = oc(t).
Else update the chunker to obtain hc (t + 1) and oc(t + 1).
9. Change each weight W i j of the automatizer in proportion to (the approximation of)

" ~ L.JO<t$1:- IJW;j •

PASS 2:
REPEAT UNTIL the chunker has not improved significantly for some time:
1. Select a training episode ((x(O),d(O))((x(1), d(1)), ... , ((x(k), d(k)). Make iA(O) equal to
d(O) o x(O). Represent time step 0 in s(O). Initialize the activations of all non-input units
with zero. Update the chunker to obtain hc (1) and oc(1).

2. FOR ALL TIMES 0 < t :::; k DO:
2.1. Update the automatizer to obtain hA(t) and OA(t). Make iA(t) equal to d(t) o x(t).
Uniquely represent t in s(t).
2.2. If the low-level error of the automatizer (see PASS 1} ep(t):::; {3 = const. ~ 0, then set
hc(t + 1) = hc(t), oc(t + 1) = oc(t).
Else define the chunker's prediction error ec(t) as

2ec(t) = (Pc(t)- x(t))T(Pc(t)- x(t)) + od(t)(dc(t)- d(t))T(dc(t) - d(t))+
(sc(t)- s(t))T(sc(t)- s(t)),

use a gradient descent algorithm for dynamic recurrent nets to compute (or approximate)
- 8;~ f;2 for each weight Wij of the chunker, and update the chunker to obtain hc(t + 1) and

oc(t + 1).
9. Change each weight Wij of the chunker in proportion to {the approximation of)
" _ 8ec(t)
L.Jt,ep(t)>fJ /Jw;i • '(

7

4.1.2 An On-Line Ver sion

INITIALIZA TION: All weights are initialized mndomly. In the beginning, at time step 0,
make hc(O) and hA(O) equal to zero, and make iA(O) equal d(O) o x (O). R epresent time step
0 in s (O). Update the chunker to obtain hc (l) and oc (l) .

FOR ALL TIMES t > 0 UNTIL IN TERRUPTION DO:
1. Update the automatizer to obtain hA(t) and oA(t). The automatizer's error eA(t) is
defined as

Use a gradient descen·t algorithm for dynamic recurrent nets to change each weight W i j of the

autom atizer in proportion to {the approximation of) - 8;,~~~). Make iA (t) equal to d(t) ox(t) .

Uniquely represent t in s(t). '
2. If the low-level error of the automatizer

is less or equal to a small constant {3 2:: 0, then set hc (t + 1) = hc (t) , oc(t + 1) = oc(t) .
Else define the chunker's prediction error ec (t) as

2ec(t) = (Pc(t)- x(t)f(pc (t) - x (t)) + od(t)(dc (t) - d(t)f(dc (t) - d(t))+
(sc (t) - s(t))T(sc (t) - s(t)) ,

use a gradient des cent algori thm for dynamic recurrent nets to change each weight Wij of the

chunker in proportion to (the approximation of) - 8;~f:) , and update the chunker to obtain

hc (t + 1) and oc(t + 1).

4.2 The Behavior of the 2-Net Chunkin g System

Let us have a look at how the chunking systems described in section 4.1 works. The gradient
descent algorithm to be applied to the automatizer is a conventional one based on the assumption
that the chunker 's state does not depend on the automatizer 's weights. One term of the autom­
atizer 's error function (the one defined by d(t) and d A(t)) forces it to behave like a conventional
supervised learning dynamic recurrent network . (Since the desired output becomes part of the
next input, this method provides an alternative to the teacher forcing method described in [36].
The last paragraph of section 5.3 describes a trivial modification where the desired output is not
part of the next input.) The corresponding errors will be called errors of the first kind. Another
term of the error function of the automat izer (the one defined by x (t) and PA (t)) forces it to
predict its next non-teaching input. The corresponding errors will be called errors of the second
kind. Both errors of the second kind and errors of the first kind are called low-level errors . The
better the automatizer, the fewer low-level errors it will make. Only if it makes a low-level error,
the unpredicted input (including the potentially available teaching vector) plus a unique represen­
tation of the current time step are tmnsferred to the chunking level, where they contribute to a
higher level internal representation of -;he input history. T herefore it is possible that the chunker is
updated at a low rate compared to the automatizer : The chunker may work on a much slower time
scale. T he beginning of an episode usually is not predictable, therefore it is fed to the chunking
level, too.

Whenever the automatizer makes a low-level error, the unpredicted input (including the poten­
tially available teaching ve"ctor) is used to train the chunker (whose last input may have occurred
way back in time). Again , the gradient descent algorithm to be applied to the chunker is a con-

8

ventional one which is based on the assumption that the chunker's inputs do not depend on the
chunker's weights.

Let us now assume that the chunker in certain situations learns to predict its next environ­
mental input. The chunker currently might be able to learn this rather quickly although the
automatizer currently is not. This is because the 'credit assignment paths' of the chunker often
will be short in comparison to those of the automatizer. Such situations may occur if the incoming
inputs obey some global te~poral structure which has not yet been discovered by the automatizer.
Due to the principle of history compression the chunker receives a reduced description of the past
input history (modulo loss of information caused by a non-zero error threshold (J): The information
deducable by means of the predictions of the automatizer can be considered as redundant.

Given the assumption above, the chunker will develop internal representations of previous
unexpected input events that allow to make good predictions. Due to the final term of the autom­
atizer's error function, the automatizer will be trained to reproduce these internal representations,
by predicting the internal state of the clwnker. These additional training signals can be available
long before the automatizer receives error signals from its own low-level learninr, p~"ocess. There­
fore the automatizer might be able to create useful internal representations by itself in an early
stage of input processing. After some time, the automatizer will be able to use these internal
representations for improving on its own prediction tasks, simply because they must carry the
relevant information. Therefore the ch'lnker will receive less and less inputs, since more and more
inputs become predictable by the automatizer. This is the collapsing operation. In a way, the
chunker builds bridges through time for the automatizer. It tries to detect additional redundancy
in those inputs that are currently not considered to be redundant by the automatizer. Ideally, in
deterministic environments the chunker will become obsolete after some time.

Noise will be treated as an unexpected input. It does not pose a fundamental problem. Noise
may reduce learning speed, however, since in a 'regular' environment with hierarchical temporal
structure noise tends to shorten 1the time-bridges established by the chunker. See section 5.4 for
an important comment on this issue.

Of course, there is no need for strict temporal hierarchies to make the system advantageous.
For instance, heterarchies also can provide possibilities for greatly reducing the description of the
input history. This is the point: Every temporal environmental regularity which allows reduced
descriptions of the external dynamics might be helpful for shortening 'credit assignment paths' for
improving predictions and for making goal-directed learning easier.

The chunking system aims at learning 'abstractions' of event sequences, without sacrificing the
advantages of so-called 'sub-symbolic' neural information processing in favor of so-called 'symbolic'
processing. The chunker does more than just putting beginnings and endings of sub-programs
together (like the sub-goal generating systems described in [25], (19], and [29]). All levels of
the abstraction hierarchy are represented in the same network. Potentially, each level is directly
accessible from each other level. This makes this 'neural' solution attractive.

With a chunking system based on on-line weight modification we currently cannot prove that
it will always work as desired. This is due to the potential for instabilities introduced by on­
line weight changing. Theoretica.lly, a.1 input which has been predictable by the automatizer can
become unpredictable again because of on-line interactions between chunker and automatizer.
However , in the simulation described in section 6 some satisfactory results were obtained with an
on-line version.

5 MODIFICATIONS OF THE CHUNKING SYSTEM

At the beginning of section 4.1 it was mentioned that the algorithms described in 4.1 are only
representatives of a number of variations on the same basic principle. In what follows, a few of
the possible modifications are listed.

9

(,

5.1 Various Representations of Time Steps and Critical Moments

The consequent transformation of the principle of history compression requires to feed unique
representations of 'critical' time steps to the chunker, and let it predict a unique representation of
the next 'critical' time step. With training sequences of indefinite length, how can we represent
time steps uniquely? One possibility for doing this is to make s(t) one-dimensional and set s(t) = +·
In the context of neural nets, a problem with this unique time representation is that it probably
will not work very well if there are long time lags, because very different time steps will have very
similar representations.

With many problems precise knowledge about critical time steps is not at all neccessary to
profit from the properties of the chunking system (see the experiments described in section 6).
Instead, it may be beneficial to have an explicit representation of the particular situation which
occurred at the time of a particular prediction error. In many cases the situation in which the
error occured will carry more easily accessible information than a simple-minded representation
of the corresponding time step.

Thus , in addition tq .s(t) (or even iastc:::.d of :.(t)) v1c can feed the whole cunent state of the
automatizer to a chunker in case of low-level errors. Then we have to train the chunker not only
to predict the next unpredicted input of the automatizer but also the next critical automatizer
state (of course, the chunker then will need more input and output units). Here one assumption is
that the state of the automatizer,contains all relevant information. But, this assumption need not
always be true: The current time step need not be uniquely defined by the state of the automatizer.

A similar alternative would be to use the last correctly predicted input as an additional input
for the chunker, as proposed by J osef Hochreiter (personal communication).

5.2 Alternative Error Criteria

Instead of using the global low-level error ep(t) as a criterion for deciding about the chunker input
at timet, chunker updates can be triggered by other criteria. For instance, the chunker can be
updated whenever the maximal error observed at one of the automatizer's low-level output units
exceeds a certain threshold. (This method has been applied in the experiments described below.)
Section 5.3 describes a more selective strategy which is based on local errors instead of global ones.

In practical applications we often do not want to insist on]Jerfect automatizer predictions. For
instance, with the variant described in 4.1 we would like to set {3 > 0. If there are non-zero error
thresholds then a simple practical modification concerning the error propagation strategy is the
following: We can introduce a second error threshold 1r for defining acceptable errors. At a given
time the automatizer receives error signals only from those units whose local error currently is > 1r

(1r should be smaller than the error threshold which determines whether the chunker is updated
or not). Why can this be useful? In typical applications the automatizer soon will be updated
more often than the chunker. If we changed the automatizer's weights at each time step then
low-level erros could start to dominate the whole error function of the automatizer: The simple
modification described above can be useful for preventing the automatizer from always receiving
error signals from all of its output units.

Of course, other error functions than mean-squared error (e.g. entropy measures etc.) are
possible.

5.3 Strategies that are .Selective in Space

This important modification is hased on the comment in section 3: It suffices to memorize only
those components of the input vectors that were not correctly predicted.

Define dpA(t) = dA(t) o PA(t), dvc(t) = dc(t) o Pc(t). Instead of using the global low­
level error ep(t) as a criterion for deciding about the chunker input at time t, we can employ a
more selective strategy: If the automatizer's local prediction errors exceed a certain low threshold
only for the k components dpA

11
(t), ... , dpA,k (t) of dpA(t) then the chunker's input consists of a

representation of the current time step and a vector whose components are all set to zero except

10

for those corresponding to the local mismatches. The training signal for the chunker has to be
modified correspondingly: The output activation dpc,. (t) is trained to be equal to dpA,. (t) for all

J J

li E {/1, ... , lk}. The remaining dim(dpc(t))- k output units need not be trained. This selective
strategy still preserves the ·mpredicted (noteworthy) information. It is assumed that this method
will speed up learning because it focusses not only on relevant points in time but also on relevant
points in space.

If the chunker has many more output units than hidden units then it makes sense to let the
automatizer predict only those outpm units of the chunker that recently have received an error
signal. The weight changing algorithm has to be adapted correspondingly.

A related modification is the following: At time t we need not feed the target vector to be
predicted back to the next input iA(t). Instead, we can set iA(t) = x(t). Suppose that the
automatizer has made an error of the first kind but not of the second kind: When updating the
chunker, we need not transfer the correctly predicted 'next input' of the automatizer, we just have
to transfer the representation of the current time step.

5.4 Variants of Predicting Chunker States

1. Instead of letting the automatizer predict only the hidden and output units of the chunker, it
sometimes can speed up learning to train it to emit the last environmental chunker input, too.
In noisy environments, this might be a less clever idea: If the chunker learns to recognize noise
as what it is, it will build internal representations that ignore noise. If the automatizer is not
forced to emit the last input of the chunker, then it will not have to corrupt its weights in favour
of unpredictable things.

2. Instead of letting the automatizer predict all the output units of the chunker, it sometimes
can speed up learning to let it predict only the hidden units. This makes sense if the chunker has
no chance to transport input informa.tion directly to its output units. This can be achieved by
constructing a 'hidden units bottleneck' by removing all direct· connections from input units to
output units.

5.5 Using a Confidenct; Network

Instead of providing the chunker with a new input whenever the automatizer makes a prediction
error, we can introduce a 'confidence network' as in [27] and [26] for modelling the reliability of
the automatizer's predictions. A confidence network is a network whose input i(t) is equal to the
input of a predictor, and whose output c(t) is interpreted as a measure of the system's confidence
in the predictor's predictions. One implementation of this principle would be to let dim(c(t)) = 1,
and to let the confidence network's error be

1
Ec = 2 2:)m(t)- c(t))2

,

t

where m(t) is 1 if the predictors output matches the desired output (within a certain tolerance),
and 0 otherwise. C's one-dimensional output is trained to be high (interpreted as high confidence)
for situations where the predictor usually works and to be low (interpreted as low confidence)
for situations where the predictor usually fails. There are many variations of this principle. For
instance, a confidence network can be trained to emit the probability that the predictor does not
fail [26].

With this approach we want to provide the chunker with a new input whenever the output of the
confidence net is clearly below 1 (this means low confidence in the predictions of the automatizer).
An extension of this approach would be to use 'variation 2' described in section 3.1 of [27] and to
employ the selective strategy of section 5.3.

11

. .

..

5.6 Training the Chunker without the Automatizer

With the off-line version one can gain efficiency each t ime PASS 1 has been finished: For each
training episode we need to store only those pairs (x(t), d(t)) that are not predictable by the
automatizer. The ordered sequences of these pairs can be immediately used for t raining the
chunker. This is more efficient than always determining critical points in time with the help of
t he automatizer.

5. 7 Weight Elimination and Incremental Growing of the Automatizer

Experimentally it was found that chunking systems sometimes need comparatively few training
sequences for learning to emit the correct output through the output units of t he chunker (com­
parable results were obtained with the related multi-level chunking system described in (27]).
Sometimes many more training sequences are needed for 'teaching the knowledge of the chunker
to the automatizer'. In other words, sometimes most of the training time is needed for making
the automatizer solve the same ta::~k ns t.hc two-level system. T his indicates the.t if one is not
interested in having a collapsed representation of different levels in the prediction hierarchy, then
one might save time by working with a simple multi-network hierarchy as described in (27] and in
section 3.2.1.

One reason for the comparatively slow collapsing operation is that in the beginning of the
training phase the automatizer tends to activate its hidden units for sub-tasks that do not neces­
sarily require hidden units. For instance, unnecessary hidden units sometimes are used much like
t he bias unit. In later stages of 't raining, when the automatizer is forced to use its hidden units
for reproducing chunker sth.tes, it can take a long time to retrain the weights to the hidden units.
This is because the derivatives of the activation functions of the' hidden units tend to be small.

There are some domain dependent ad-hoc methods for improving performance with respect
to this problem (e.g. deviating from gradient descent by adding small numbers to derivatives of
activation functions before multiplying with error signals).

An interesting alternative is to apply a 'weight elimination procedure' to the automatizer. This
can be done by introducing an addit ional term for its error function which penalizes heavy weights
(e.g. (1]). T hen one would expect to obtain some hidden units with near-zero weights in the early
stages of learning. These hidden units may become useful later when the goal is to reproduce
meaningful chunker states.

An alternative is to start wit h an automatizer with only a few hidden units and to add more
and more hidden units whenever the automatizer stops to continue improving. T here are at least
two variants of this procedure: 1. Never stop training all weights. of the automatizer. 2. After
having added a new hidden unit to th~ automatizer, train only the weights from and to the new
unit and freeze the other weights.

5.8 Using Other Learning Algorithms for Automatizer and Chunker

Instead of implementing the churiker and the automatizer as supervised learning recurrent nets we
can implement them as networks with adaptive delays or as fast-weight systems as described in
(28]. But even reinforcement learning algorithms for recurrent nets (21](34] might be applied. In
general the activation spreading phase described in 4.1 has to be replaced by the method designed
for the particul ar architecture. ·

5.9 Other Modifications

1. Instead of applying PASS 1 for t he first time, we can start the off-line version by applying
gradient descent to the automatizer without ever providing teaching signals for changing qA (t) at
any timet.

2. Other variants of the scheme would slightly affect t he order of the computations performed
by the algorithm.

12

(.

3. Further variants can be generated by combining the methods described in the previous
subsections. For instance, it is expected that a combination of the modifications described in 5.2,
5.6, and 5.7 will turn out to be the method of choice.

6 EXPERIMENTS

Not e: This section describes preliminary results and is likely to grow in a future extended version
of this paper.

Josef Hochreiter (a student at TUM) implemented variants of the chunking algorithm and
tested them on a prediction task involving comparatively long time lags. He compared the results
to the results obtained with the conventional learning algorithm for recurrent nets. (Here both
the ' unfolding in t ime' method (17][33] and the 'Infinite Input Duration ' method (14][36] will be
referred to as 'the conventional algorithm '; their off-line versions compute the same gradient.) It
turned out that chunking systems can be superior to the conventional algorithm in two respects:
They may i'equirg b::.; computo.:.tion per time step, and in addition they may req,uii'e fewet trainiug
sequences.

A prediction t ask with a 20-step time lag was constructed. T here were 22 possible input
symbols a, x, b1, b2, ... , b2o. The learning systems observed one input symbol at a time. There
were only two possible input sequences: ab1 ... b2o and xb1 ... b20 . These were presented to the
learning systems in random order. At a given time step, one goal was to predict the next input
(note that in general it was not possible to predict the first symbol of each sequence due to the
random occurrence of x and a) . The second (and more difficult) goal was to make the activation
of a particular output unit (the 'target unit') equal to 1 whenever the last 21 processed input

' 0 symbols were a, b1, ... , b2C) and to make this activation 0 whenever the last 21 processed input
symbols were x, b1 , .. . , b20 · No episode boundaries were used: Input sequences were fed to the
learning systems without providing information about t heir beginnings and their ends. Therefore
there was a continuous stream of input events: On-line versions of the methods had to be used .
The task was considered to be solved if the local errors of all output units (including the target
unit) were always below 0.3 (with the exception of the errors caused by the occurrences of a and
x which were unpredictable)

With both the conventional and the novel approach, all non-input units employed the logistic
activation function f(x) = 1+!-~. Weights were initialized between -0.2 and 0.2. Local input
representations of 22 possible input symbols a, x , b1, .. . , b20 were employed: Each symbol was
represented by a bit-vector with only one non-zero component.

T he conventional recurrent net had one hidden unit, one input unit for each of the input
symbols a, x, b1, ... , b2o, one input unit for the last target, and one input unit whose activation
was always 1 for providing a modifiable bias for the non-input units. In addition, it had 23
output units for predicting the next input plus the target (if there was any) (the bias unit was not
predicted by the system). 21 iterations of error propagation 'back into the past' were performed
at each time step. T his is the minimai number required for 20-step time lags (in (35] this method
is referred to as 'truncated back-propagation through time'). Note that more iterations 'back into
the past' would just cause additi~nal confusion instead of being beneficial. T herefore one may say
that external knowledge about the nature of the task was given to the system.

With various learning rates the result was: Apparently it is not possible f or the conventional
algorithm to solve the task in reasonable time. Of course, the network quickly learned to predict
the occurrences of the symbols b1 , .•• , b2o, but the 20-step time lags seemed to pose insurmount­
able problems (the test runs were interrupted after 1.000.000 training sequences). (It should be
mentioned, however, that limited computer time did not allow a systematic test of all possible
parameters.) Note that in the context of speech processing 20 time frames are not at all a long
time.

To find out about the limits of the conventional algorithm (and to test whether something
was wrong with the implementation of the conventional algorithm) the prediction problem was
simplified such that an analoguous 5-step time Jag problem was obtained. With this simplified

13

..

task, in addition to a and x there were only 4 (instead of 20) more input symbols b1 , ... , b4 • With
4 test runs and a learning rate of 1.0, the following numbers of training sequences were necessary
to obtain satisfactory solutions: 1.900.000, 900.000, 3.500.000, 250.000.

In the light of these experiments one might ask: If there are tasks with only 5-step time
lags where the conventional method already seems to require hundreds of thousands of training
sequences, then why do conventional recurrent networks have a good reputation for being a general
tool for learning sequences, grammars etc.? I believe (but cannot prove) that the reason is: All
the reported examples for grammar learning work only because there are at least some training
sequences with very short time lags between relevant events. These 'easy' training sequences help
the system to generalize to sequences with longer time lags (see also [27]) .

How did the chunking system perform on the 20-step task? Like the conventional network, the
automatizer had one hidden unit , one input unit for each of the input symbols a, x , b1. ... , b20 , one
input unit for the last target, and one input unit which was always 1 for providing a modifiable
bias for the non- input units. The error criterion was the one proposed in 5.2: The chunker was
updated whenever the maximal error observed at one of the automatizer's low-level output. units
exceeded 0.2. The chunker nad 1 hidden unit and 23 output units for predicting its next input plus
the target (if there was any). With this experiment, the chunker did not need unique time step
representations s(t) . The automatizer had 23 output units for predicting the next environmental
input plus the target (if there was any) , and 23 output units for predicting the non-input units of
the chunker. One iteration per network update was performed. The 'unfolding in time' method
[17] was applied to both the chunker and the automatizer. Only 9 iterations of error propagation
'back into the past' were performed at each time step. Both learning rates were equal to 1.0.

The chunking system was able to solve the task. 17 test runs were conducted. With 13 test runs
the system needed less than 5000 training sequences to make the error of the automatizer's target
unit always smaller than 0.12. With the remaining 4 test runs the following numbers represent
upper bounds for the number of training sequences required to make the error of the automatizer's
target unit smaller t han 0.06: 30.000, 35.000, 25.000, 15.000.

The final weight matrix of the automatizer often looked like the one one would expect: Typically
the hidden unit turned on whenever thP. terminal a occurred. A strong recurrent connection from
that hidden unit to itself kept it aliYc for the following 21 time steps, then it became inhibited if
an x occurred (symmetrical solutions were observed, too). A major result is that this structure
evolved although only 3 iterations of error propagation ' back into the past' were performed at
each time step! The particular chunking system needed less computation per time step than the
conventional m ethod. It was local in both space and time. Still it required less training sequences
(due to limited computer time the experiments did not tell how many training sequences the
conventional algorithm needs).

Similar results were obtained• with different numbers of hidden units. It must be mentioned,
however, that limited computer time prevented a systematic examination of the effects of various
learning rates and various numbers of hidden units: No systematic attempt has been undertaken
to optimize performance.

Additional successful experiments with more complicated grammars, with variants of the ar­
chitecture (sections 5.4 and 5.7) and with up to lOO-step time lags were conducted. Much remains
to be done, however, to obtain heuristics for determining useful learning rates, error thresholds,
etc.

It is intended to apply both :multi-level chunking systems (section 3.2.1) and 2-net chunking
systems to real world tasks. For instance, with speech processing tasks there seems to be an
abundancy of multi-level temporal structure. Therefore chunking systems seem to be interesting
candidates for learning to process and predict speech. In [2] it is shown that conventional recurrent
nets can be successfully applied to predicting temporal structure below the phoneme level. But,
the same results indicate that conventional recurrent nets seem to perform poorly if the task is to
predict inter-phoneme structure.

14

. '

7 CHUNKING FOR ADAPTIVE CONTROL

There are a few rather obvious extensions of the chunking architectures described above which
allow the chunking of action sequences in the context of hierarchical reinforcement learning, hier­
archical adaptive control, and look-ahead planning. These extensions are based on two separate
chunking systems. One of them uses the chunking algorithm to construct an adaptive model of
the environmental dynamics of an agent controlled by a recurrent control network. The second
chunking system uses the first one to compute gradients for controller outputs. The whole archi­
tecture is an extension of the non-compositional architecture described in [30] and [22] . Together
with a few less obvious ideas, the details of these architectures will be described in a separate
paper [18].

It should be mentioned that Myers (10], Ring (13] and Watkins (31] also have described (quite
different) ideas for hierarchical reinforcement learning .

8 Jtl:'T .ANALOGY TO THE BEHAVIOR OF HUlVL~:NS

Observing himself the author can hatdly resist the impression that he tends to memorize and
focus on non-typical and unexpected events. It seems that expected events often do not even
call our attention. It seems that we ·;end to try to explain new unexpected events by previous
unexpected events, hoping to be able to learn to expect similar events in the future. In the light
of the principle of history compression this makes a lot of sense.

Once events become expected, they tend to become sub-conscious. The analogy to the chunk­
ing algorithm is rather obvious: · Consider the chunker as the 'concious' part of an information
processing system. Consider the automatizer as the 'sub-concious' part. The concious part at­
tends to the unexpected events and tries to create high-level explanations for them. Higher-level
attention is removed from events that become expected; they become 'sub-conscious' and give rise
to even higher-level 'abstractions' of the chunker's 'consciousness'.

9 CONCLUDING REMARKS

The basic ideas of this paper allow a variety of implementations. Currently it is not clear which
particular implementation will perform best within a given context. It has been shown, however,
t hat ' temporal chunking' and ' learning to divide and conquer' with neural networks to a certain
extent is possible. This may be considered as another step towards neural systems which learn
higher-level abstractions without loosing typical advantages of neural information processing. It
also may be viewed as an additional step towards bridging the gap between so-called sub-symbolic
and symbolic computation.

One reason for the superiority of ehunking systems over conventional learning algorithms for
non-stationary environments is probably a very general one which might be expressed as the fol­
lowing recommendation for any kind of adaptive system: If your environment contains regularities
of any kind, try to detect them and learn to use them for making your problems easier. A general
criticism of more conventibnal goal-directed (supervised and reinforcement learning) algorithms
can be formulated as follows: These algorithms do not try to selectively focus on relevant inputs,
they waste efficiency and ressources by focussing on every input.

Future research will concentrate on applying both multi-network chunking systems and 2-
network chunking systems to real world tasks (speech processing) and to t he ambitious tasks of
hierarchical reinforcement learning and adaptive neuro-control.

10 ACKNOWLEDGEMENTS

I would like to thank Josef Hochreiter for conducting the experiments and for providing useful
comments on a draft of this paper .

15

References

(1] Y. Chauvin. Generalization performance of overtrained networks. In L. B. Almeida and C. J.
Wellekens, editors, Proc. of the EURASIP'90 Workshop, Portugal, page 46. Springer, 1990.

[2] A. Doutriaux and D. Zipser. Unsupervised discovery of speech segments using recurrent
networks. In D. S. Touretzky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton, editors, Proc.
of the 1990 Connectionist Models Summer School, pages 52- 61. San Mateo, CA: Morgan
Kaufmann, 1990.

(3] J . L. Elman. Finding structure in time. Technical Report CRLTechnical Report 8801, Center
for Research in Language, University of California, San Diego, 1988.

(4] Josef Hochreiter . Diploma thes;.s, 1991. Institut fiir lnformatik, Technische Universitat
Miinchen.

(5] M. I. Jordan. Serial order: A parallel dis~ributeJ processing approach. Technical Report ICS
Report 8604, Institute for Cognitive Science, University of California, San Diego, 1986.

(6] A. Lapedes and R. Faber. How neural nets work. In D. Z. Anderson, editor, 'Neural Informa­
tion Processing Systems: N atural and Synthetic' (NIPS). NY, American Institute of Physics,
1987.

[7] Y. LeCun. Une procedure d'apprentissage pour reseau a seuil asymetrique. Proceedings of
Cognitiva 85, Paris, pages 599- 604, 1985.

[8) M. Minsky and S. Papert. P erceptrons. Cambridge, MA: MIT Press, 1969.

[9] M. C. Mozer. Connectionist music composition based on melodic, stylistic, and psychophysical
constraints. Technical Report CF-CS-495-90, University of Colorado at Boulder, 1990.

(10] C. Myers. Learning with delayed reinforcement through attention-driven buffering. Technical
report, Imperial College of Science, Technology and Medicine, 1990.

[11] D. B. Parker. Learning-logic. Technical Report TR-47, Center for Comp. Research in Eco­
nomics and Management Sci., MIT, 1985.

[12) B. A. Pearlmutter. Learning state space trajectories in recurrent neural networks. Neura l
Computation, 1:263- 269, 1989.

[13) M. A. Ring. PhD Proposal. Technical report, University of Texas at Austin, 1991.

(14) A. J . Robinson and F . Fallside. The uti lity driven dynamic error propagation network. Techni­
cal Report CUED/F-INFENG/TR.1, Cambridge University Engineering Department, 1987.

[15) R. Rohwer . The 'moving targets ' training method. In J . Kindermann and A. Linden, editors,
Proceedings of 'Distributed Adaptive Neural Information Processing', St.Augustin, 24 .-25.5,.
Oldenbourg, 1989.

[16) R. Rohwer . Personal communication, 1990.

(17) D. E. Rumelhart, G . E. Hinton, and R. J . Williams. Learning internal representations by
error propagation. In D. E. Rurr.elhart and J. L. McClelland, editors, Parallel Distributed
Processing, volume 1, pages 318- 362. MIT Press, 1986.

(18) J. H. Schmidhuber. Chunking for hierarchical reinforcement learning and adaptive control.
Technical Report in preparation, Institut fiir Informatik, Technische Universitat Miinchen.

(19) J. H. Schmidhuber. Dynamische neuronale Netze und das fundamentale raumzeitliche Lern­
problem. Dissertation, Institut fii r Informatik, Technische Universitat Miinchen, 1990.

16

[20] J. H. Schmidhuber. Learning algorithms for networks with internal and external feedback. In
D. S. Touretzky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton, editors, Proc. of the 1990
Connectionist Models Summer School, pages 52-61. San Mateo, CA: Morgan Kaufmann, 1990.

[21) J. H. Schrnidhuber. A local learning algorithm for dynamic feedforward and recurrent net­
works. Connection Science, 1(4)A03-412 , 1990.

[22) J. H. Schmidhuber. Making the world differentiable: On using fully recurrent self-supervised
neural networks for dynamic reinforcement learning and planning in non-stationary environ­
ments. Technical Report FKJ-126··90 (revised), Institut fiir Informatik, Technische Universitiit
Miinchen, November 1990. (Revised and extended version of an earlier report from February.).

[23) J. H. Schmidhuber. Recurrent networks adjusted by adaptive critics. In Proc. IEEE/INNS
International Joint Conference on Neural Networks, Washington, D. C., volume 1, pages
719- 722, 1990.

[21) J. H. Schmidhuber. Talk at the NIPS'90 workshop on dynamic uetwmks led by R. Rohwer,
1990.

[25) J. H. Schmidhuber. Towards compositionallearning with dynamic neural networks. Technical
Report FKI-129-90, Institut fiir Informatik, Technische Universitat Miinchen, 1990.

[26] J. H. Schmidhuber. Adaptive curiosity and adaptive confidence. Technical Report FKI-149-
91, Institut fiir Informatik, Technische Universitat Miinchen, April 1991.

[27) J. H. Schmidhuber. Adaptive decomposition of time. In 0. Simula, editor, Proceedings of
the International Conference on Artificial Neura l Networks ICANN 91, to appear. Elsevier
Science Publishers B.V., 1991.

[28) J. H. Schmidhuber. Learning to control fast-weight memories: An alternative to recurrent
nets. Technical Report FKI-147-91, Institut fiir Informatik, Technische Universitat Miinchen,
March 1991.

[29) J. H. Schmidhuber. L~arning to generate sub-goals for action sequences. In 0. Simula, editor,
Proceedings of the International Conference on Artificial Neural Networks ICANN 91, to
appear. Elsevier Science Publishers B.V., 1991.

[30) J . H. Schmidhuber. Reinforcement learning in markovian and non-markovian environments.
In D. Touretzky and D. S. Lippman, editors, Advances in Neur·al Information Processing
Systems 3, in press. San Mateo, CA: Morgan Kaufmann, 1991.

[31) C. Watkins. Learning from Delayed Rewards. PhD thesis, King's College, 1989.

[32) P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral
Sciences. PhD thesis, Harvard Uriversity, 1974.

[33] P. J. Werbos. Generalization of hackpropagation with application to a recurrent gas market
model. Neural Networks, 1, 1988

[34] R. J. Williams. Toward a theory of reinforcement-learning connectionist systems. Technical
Report NU-CCS-88-3, College of Comp. Sci., Northeastern University, Boston, MA, 1988.

(35] R. J. Williams and J. Peng. An efficient gradient-based algorithm for on-line training of
recurrent network trajectories. Neural Computation, 4:491-501, 1990.

[36) R . J . Williams and D. Zipser. Experimental analysis of the real- time recurrent learning
algorithm. Connection Science, 1(1):87-111, 1989.

17

