
J?ORSCHUNGSBERliCHTE 
.. 

-KUNSTLICHE-INTELLIG1ENZ 

Learning to Control Fast-Weight Memories: 
An Alternative to Dynamic Recurrent Networks 

Jiirgen Schmidhuber 

Report FKI-147-91 

Marz 1991 

TECHNISCHE UNIVERSIT AT MUNCHEN 

Institut fUr Informatik, Arcisstr. 21, 8000 Mtinchen 2, Germany 



LEARNING TO CONTROL FAST-WEIGHT MEMORIES: AN 
ALTERNATIVE TO DYNAMIC RECURRENT NETWORKS 

Jiirgen Schmidhuber 
Institut fur Informatik 

Technische Universitat Miinchen 
Arcisstr. 21, 8000 Miinchen 2, Germany 

schmidhu@tumult.informatik.tu-muenchen.de 

Technical Report FKI-147-91, March 26, 1991 

Abstract 

Previous algorithms for supervised sequence learning are based on dynamic recurrent networks. 
This paper describes alternative gradient-based systems consisting of two f eed-forwm·d nets which 
learn to deal with temporal sequences by using f ast weights: The first net learns to produce context 
dependent weight changes for th~ second net whose weights may vary very quickly. T he method 
offers a potential for STM storage 'efficiency: A simple weight (instead of a fu ll-fledged unit) may be 
sufficient for storing temporal information. Various learning methods are derived. Two experiments 
with unknown t ime delays illustrate the approach. O ne experiment shows how the system can be 
used for adaptive temporary variable binding. 

1 The Task 

A training sequence p with np discrete time steps (called an episode) consists of np ordered pairs 
(xP(t),dP(t)) E RnxRm , 0 < t ::; np. At t imet of episode p a learning system receives xP(t) as an 
input and produces the output yP(t). The goal of the learning system is to minimize 

E = ~ L L L(df(t)- yf(t)) 2
' 

p I i 

where df(t) is t he ith of the m components of dP(t), and yf(t) is the ith of the m components of yP(t). 
In general this task requires to memorize input events in short term memory. Previous approaches 

to solving this problem employed dynamic recurrent nets (e.g. [2), [12], [1], [13], [6]). In the next section 
an alternative gradient-based approach is described. For convenience, in what follows we will drop the 
indices p which stand for various episodes: T he gradient of the error sum over all episodes is equal to 
the sum of the corresponding gradients. T hus we are interested in a method for minimizing t he error 
observed during one particular episode 

E = LE(t), 

where E(t) = ~ l:i(di(t)- Yi(t))2 . (In the practical on-line version of the algorithm below we will not. 
have any episode boundaries at all ; all episodes will 'blend into each other' [13).) 



2 The Architecture and the Algorithm 

The basic idea is to use a slowly learning feed-forward network S (with a set of randomly initialized 
weights Ws) whose input at time t is the vector x(t) and whose output is transformed into immediate 
(potentially very significant) weight changes for a second 'fast-weight' network F. F's input at time t is 
x(t), its m-dimensional output is y(t), and the set of its weight variables is Wp . F serves as a short term 
memory: At different time steps, the same input event may be processed in different ways depending on 
the time-varying state of Wp . 

One potent ial advantage of the method over the more conventional recurrent net algorithms is the 
following: It does not necessarily occupy full-fledged units (experiencing some sort of feedback) for storing 
information over time. A simple weight may be sufficient for storing temporal information. Since with 
most networks there are many more weights than units, this property represents a potential for storage 
efficiency. 

For initialization reasons we introduce an additional time step 0 at the beginning of an episode. At 
time ::;tep 0 each w-eight va.;:ic.b1e Wab E 'Wp of a Jireded connection from unit a to unit b is set to 
Dwab(O) (to be computed by S' outputs as described below). At time step t > 0, the Wab(t- 1) are 
used to compute the output ofF according to the usual activation spreading rules for back-propagation 
networks (e.g. (1 0]). After t his, each weight variable Wab E Wp is altered according to 

Wab(t) = u(wab(t - 1), Dwab(t)) , (1) 

where u (e.g. a sum-and-squash function) is differentiable with respect to all its parameters and where 
the activations of S' output units (again computed according to the usual activation spreading rules for 
back-propagation networks) serve to compute Dwab(t) by a mechanism to be specified below (we will 
consider two alternatives). Dwab(t) is S' contribution to the modification of Wab at time step t. 

For all weights Wij E Ws (from unit i to unit j) we are interested in the increment 

~W;. = -TJ 8E = - TJ '""' 8E(t) = _77 '""' '""' 8E(t) OWab(t- 1). 
) 8w·· L.J ow·· L.J L.J 8w b(t- 1) OW" 

') t>O ' 3 t >O Wob EWp 
4 

IJ 

.At each time step t > 0, the factor 

8E(t) 
Cab(t) = OWab(t - 1) 

can be computed by conventional back-propagation (e.g. [10]). Fort > 0 we obtain the recursion 

OWab(t) 8u(wab(t- 1), Dwab(t)) OWab(t- 1) 8u(wab(t- 1), Dwab(t)) 8Dwab(t) 
OWij = OWab(t- 1) OW;j + 8Dwab(t) OW;j · 

(2) 

We can employ a method similar to the one described in [2] and [13]: For each Wab E Wp and each 
w;j E Ws we introduce a variable pfj (initialized to zero at the beginning of an episode) which can be 
updated a t each time step t > 0: 

(3) 

8 0
8
":,;;:(t) depends on the interface between S and F. With a given interface (two possibilities are given 

below) an appropriate back-propagation procedure for each Wab E Wp gives us 80
8":,;;:(t) for all W;j E Ws. 

After having updated the pfJ-variables, for solving (2) we compute 

L Oab(t)pfj(t - 1). 
WobEWp 

2 



A simple interface between S and F would provide one output unit Sab E S for each weight variable 
Wab E Wp, where the output unit's activation Sab(t) at timet;:::: 0 would define 

Dwab(t ) = Sab(t) . (4) 

A disadvantage of ( 4) is that the number of output units in S grows in proportion to the number of 
weights in F. An alternative is the following: Provide an output unit in S for each unit in F from which 
at least one fast weight is originating. Call the set of these output units FRO M . Provide an output 
unit in S for each unit in F to which at least one fast weight is leading. Call the set of these outpu L 
units TO. For each weight variable Wab E Wp we now have a unit sa E F ROM and a unit Sb E TO. At 
timet, define Dwab(t) = g(sa(t), sb(t)), where g is difl'erentiable with respect to all its parameters. As a 
representative example we will focus on the special case of g being the multiplication operator: 

(5) 

Here the faet weights in F are rnanipnlated by th~ outputs of Sin a Hebb- like manner, a~suming Lhat 
a is just a sum-and-squash function as employed in the experiments described below. 

(4) and (5) differ in the way that error signals are obtained at S' output units: If (4) is employed , 
then we use conventional back-propagation to compute 8~;:;(;t) in (3). If (5) is employed, note that 

oDwab(t) _ ( )osa(t) ( )osb(t) ----'--'-- Sb t --+Sa t --. 
OWij OWjj OWjj 

(6) 

Conventional back-propagation can be used to compute 8;~~:) for each output unit a and for all Wij . 

The results can be kept in I Ws I *C variables (here c is the number of units in FROM U TO ). This 
makes it easy to solve (6) in a second pass. 

T he algorithm is local in time , its update-complexity per time step is 0(1 Wp 11 Ws 1). But, it is not 
local in space (see [5] for a definition of locality in space and time). 

2.1 On-Line Versus Off-Line Learning 

The off-line version of the algorithm would wait for the end of an episode to compute the final change 
of T!Vs as the sum of all changes computed at each time step. T he on- line version changes Ws at every 
time step, assuming that 1J is small enough to avoid instabilities [13]. An interesting property of t he 
on-line version is that we do not have to specify episode boundaries ('all episodes blend into each other' 
[13]) . 

2.2 Unfolding in time 

An alternative of the method above would be to employ a method similar to the 'unfolding in time'­
algorithm for recurrent nets [3] [11]. It is convenient to keep an activation stack for each unit in S . At 
each time step of an episode, some unit's new activation should be pushed onto its stack. S' output 
units should have an additional stack for storing sums of error signals received over time. With both ( 4) 
and (5), at each time step we essentially propagate the error signals obtained at S' output units down 
to the input units. The final weight change of Ws is proportional to the sum of all contributions of all 
errors observed during one episode. The complete gradient for S is computed at the end of each episode 
by successively popping of the stacks of error signals and activations analogously to the 'unfold ing in 
time'-algorithm for recurrent networks. A disadvantage of the method is that it is not local in space. 

2.3 Recurrent Slow-Weight and Fast-Weight Networks 

It is straight-forward to extend the system above to the case where both S and F are recurrent. In the 
experiment below S and F are non-recurrent, mainly to demonstrate that even a feed-forward system 
employing the principles above can solve a task that only recurrent nets were supposed to solve. 

3 



,I 

' ' 

3 Experiments 

The following experiments were conducted by Klaus Bergner, a student at TUM. 

3.1 An Experiment With Unknown Time Delays 

F had to learn to behave like a flip-flop as described in (13]. F saw a continuous stream of input events. 
T he task was to switch on the single output unit whenever an event 'B' occurred for the first time after 
the last event 'A' had happened. In all other cases the output unit had to be switched off. 

One difficulty with the problem was that there could be arbitrary time lags between relevant events. 
An additional difficulty was that no information about 'episode boundaries' was given (the on-line method 
was employed). The activations of the networks were never reset. Thus, activations caused by events 
from past 'episodes' could have a disturbing influence on activations and weights appearing during later 
episodes. 

Both F and S had the topology of standard feedforw:\rd perccptrons. F had 3 input units for 3 
possible events 'A', 'B', and 'C'. Events were represented in a local manner: At a given time, a randomly 
chosen normal input unit was activated with a value of 1.0, the others were de-activated. F's output was 
one-dimensional. S also had 3 input units for the possible events 'A', 'B', and 'C', as well as 3 output 
units, one for each fast weight of F. None of the networks needed any hidden units for this task. The 
activation function of all output units was the identity function. The weight-modification function (1) 
for the fast weights was given by 

(7) 

Here T determines the maximal steepness of the logistic function used to bound the fast weights between 
0 and 1. 

The weights of S were randomly initialized between -0.1 and 0.1. T he task was considered to be 
solved if for 100 time steps in a row F's error did not exceed 0.05. With fast-weight changes based on 
( 4), T = 10 and 7J = 1.0 the system learned to solve the task within 300 time steps. With fast-weight 
changes based on the FRO M /TO-architecture and (5), T = 10 and 77 = 0.5 the system learned to solve 
the task within 800 time steps. 

3.2 Learning Temporary Variable Binding 

When connectionism was young some people have claimed that neural nets are not capable of variable 
binding. Others, however, have argued for the potential usefulness of 'dynamic links' (e.g. [9]), which 
may be useful for variable binding. With the method above it is possible to train an appropriate system 
to use its dynamic links(= fast weights) for temporarily binding variable contents to variable names (or 
'fillers' to 'slots') as long as it is necessary for solving a particular task. 

In the simple experiment described next the system learned to bind a variable for storing the position 
of a car to time-varying parking slots. 

Neither F nor S needed any hidden units for this task. The activation function of all output units 
was the identity function . All inputs to the system were binary, and so were F's desired outputs. F 
had one input unit which stood for the name of the variable WHERE-IS-MY-CAR?. In addition , F had 
three output units for the names of three possible parking slots P1 , P2 , and P3 (the possible contents of 
WHERE-IS-MY-CAR?) . Shad three output units, one for each fast weight, and six input units (here 
we note that S need not always have the same input as F). Three of the 6 input units were called 
the parking-slot-detectors I 1 , I 2 , I 3 , the remaining three were randomly activated with binary values at 
each time step. These random activations were interpreted as distracting time varying inputs from the 
environment of a car owner whose life looks like this: He drives his car around for zero or more time steps 
(at each time step the probability that he stops driving is 0.25). Then he parks his car in one of three 
possible slots. He notices the name I; of the parking slot (this takes him one time step, during which 
input unit I; is briefly activated, while the other slot-detectors remain switched off). T hen he makes 

4 



business outside the car for zero or more time steps during which all parking-slot-detectors are switched 
off again (at each time step the probability that he finishes business is 0.25) . Then he remembers where 
he has parked his car, goes to the corresponding slot, enters his car and star ts driving again etc. 

Our system focussed on the problem of memorizing the position of the car. It was trained by 
activating the WHERE-IS-MY-CAR?-unit at randomly chosen time steps in the life of the car owner 
and by providing the desired output for F (which was the activation of the unit corresponding to the 
current slot Pi, as long as the car stood in one of the three slots). 

The weights of S were randomly initialized between -0. 1 and 0.1. The task was considered to be 
solved if for 100 time steps in a row F 's error did not exceed 0.05. The on-line version (without episode 
boundaries) was employed. With the weight-modification fun ction (7), fast-weight changes based on ( 4), 
T = 10 and TJ = 0.02 the system learned to solve the task within 6000 time steps. As it was expected , 
S learned to 'bind' parking slot units to the WHERE-IS-MY-CAR?-unit by means of strong temporary 
fast-weight connections. 

4 Concluding Remarks 

The system described above is a special case of a more general class of adaptive systems (which also 
includes conventional recurrent nets) which employ some parameterized memory function (differentiable 
with respect to all its parameters) for changing a vector-valued memory structure and which employ some 
parameterized retrieval function (again differentiable with respect to all its parameters) for processing 
the content of the memory structure and the current input. 

Such systems can work because of the existence of the chain rule. Results as above (as well as 
other novel applications of the chain rule [7](8][4]) indicate that there may be additional interesting (yet 
undiscovered) ways of applying the chain rule for temporal credit assignment in adaptive systems. 

References 

(1] B. A. Pearlmutter. Learning state space trajectories in recurrent neural networks. Neural Compu­
t ation, 1:263-269, 1989. 

[2] A. J. Robinson and F . Fallside. The utility driven dynamic error propagation network. Technical 
Report CUED/F-INFENG/TR.1, Cambridge University Engineering Department, 1987. 

[3] D. E. Rumelhart, G. E. Hinton, and R. J . Williams. Learning internal representations by error 
propagation. In D. E. Rumelhart and J . L. McCielland, editors, Parallel Distributed P rocessing, 
volume 1, pages 318- 362. MIT Press, 1986. 

(4] J . H. Schmidhuber. Dynamische neuronale Netze und das fundamentale raumzeitliche Lernproblem. 
Dissertation, lnstitut fiir Informatik, Technische Universitiit Miinchen, 1990. 

[5] J . H. Schmidhuber. Learning algorithms for networks with internal and external feedback. In Proc. 
of the 1990 Connectionist Models Summer School, pages 52- 61. San Mateo, CA: Morgan Kaufmann , 
1990. 

[6] J. H. Schmidhuber. A local learning algorithm for dynamic feedforward and recurrent networks. 
Connect ion Science, 1(4):403- 412, 1990. 

[7] J. H. Schmidhuber. Towards ~ompositional learning with dynamic neural networks. Technical 
Report FKI-129-90, Institut fiir Informatik, Technische Universitiit Miinchen, 1990. 

[8] J. H. Schmidhuber. Learning to generate sub-goals for action sequences. In 0. Simula, editor, 
Pr·oceedings of the Int ernational Conference on Artificial Neural Networks ICANN 91. Elsevier 
Science Publishers B.V., 1991. 

5 



(9] C. v.d. Malsburg. Technical Report Internal Report 81-2, Abteilung fiir Neurobiologie, Max-Planck 
lnstitut fiir Biophysik und Chemie, Gottingen, 1981. 

(10] P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. 
PhD thesis, Harvard University, 1974. 

(11] P. J. Werbos. Generalization ofbackpropagation with application to a recurrent gas market model. 
Neural Networks, 1, 1988. 

(12] R. J. Williams. Toward a theory' of reinforcement-learning connectionist systems. Technical Report 
NU-CCS-88-3, College of Comp. Sci., Northeastern University, Boston, MA, 1988. 

(13] R. J. Williams and D. Zipser. Experimental analysis of the real-time recurrent learning algorithm. 
Connection Science, 1(1):87- 111, 1989. 

6 


