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Abstract 

This paper describes extensions of previous 'adaptive critics' which have been one­
dimensional, acyclic, and suited only for feed-forward controllers. The extensions address 
the following issues : 

1. Feed-forward adaptive critics for fully recurrent probabilistic control nets. 
2. Recurrent adaptive critics. 
3. Vector-valued adaptive critics based on a system identification component. 
Furthermore an idea is described for approximating recurrent back propagation v,·ith 

a 3-network method which is local in time. 
In one experiment a linear adaptive critic adjusts a recurrent network such that it solves 

a non-linear task (a 'delayed XOR'-problem). In another experiment a four-dimensional 
adaptive critic quickly learns to solve a complicated pole balancing task. 

Introduction 

Note: This is the revised and expanded version of an earlier report from February 1990. 

Reinforcement learning can be applied in cases for which supervised learning is not de­
signed, namely, when there is no well-informed instructive teacher to provide target outputs 
for each time tick, but only an evaluative teacher who sometimes states whether a system 
controlled by the network is in a desireable st ate or not. 

A few methods are designed for reinforcement lea.rning with recurrent neural networks, 
including 'extended REINFORCE' algorithms (20], the 'Neural Bucket Brigade Algorithm' 
[10], and model-building recurrent neural controllers based on system identification (e.g. [9]). 
None of these algorithms includes an adaptive cdtic component, although adaptive critics ha.ve 
proven to be very useful in the case of feed-forward networks [3][14](1]. Adaptive critics are 
based on 'Temporal Difference (TD-) Methods' [15] and are closely related to concepts from 
dynamic progmmming. TD-methods use diil'erences of successive predictions about future 
events to generate error signals for the predictor . Thus TD-methods are an example of 'self­
supervi sed' learning. \~'ith adaptive critics, the TD-error signals also serve as reinforcement 
signals for a neural controller. 

• Research support.ecl by <t scholarship from SIEMENS AG 
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One of the adaptive critic extensions below may be viewed as an application of TD­
methods [15] to the temporal evolution of recurrent networks. Another extension of the 
adaptive critic principle combines 'gradient descent through a fmzen model network' with a 
vecto1·-valued adaptive critic. (Previous adaptive critics have been sca.lw·). The scheme is in­
tended to provide better scaling for multi-dimensional actions and sensory 'pain' or 'pleasure' 
perceptions (e.g. for robot control). 

It must be noted that no theory of adaptive cri tics exist s so far. (The existing theory of 
TD-methods does not address the on-line learning problems of reinforcement learning systems 
based on TD-methods.) Thus it remains unclear under which conditions on-line algorithms 
based on the adaptive cri tic principle actually converge to the desired solutions. However, 
first steps towards a theory of on-line learning actor/ critic systems have been made recently 
[21] . 

Locality in Space and Time 

An important aspect of the algorithms described in this paper is their applicability to on-line 
learning tasks. There is no need for storing past activations except for the most recent ones. 
Yet the credit assignment process during training can in principle bridge arbitrary time lags. 

Locality in Space and Time. In this paper a learning algorithm for dynamic neural net­
works is said to be local in time if for given network size (measured in number of connections) 
during on-line learning the peak computation complexity at every time step is 0(1) , for 
a1·bitrary durations of sequences to be learned. 

A learning algorithm for dynamic neural networks is said to be local in space if during 
on-line learning for limited durations of learned sequences and for arbitrary network sizes 
(measured in number of connections) and for arbitrary network topologies the peak compu­
tation complexity per connection at every time step is 0(1). 

A learning algorithm for dynamic neural networks is said to be local if during on-line 
learning for arbitrary durations of sequences to be learned and for a1·bitrary network sizes 
(measured in number of connections) and w·bitmry network topologies the peak computation 
complexity per connection at every time step is 0(1). 

For example, the 'unfolding in time' method (e.g. [7]) is not local in time. T he liD­
Algorithm [6] (also called the RTRL-Algorithm in [22]) is local in time but not in space. 

The first algorithm to be considered below performs only computations local in space and 
time. The second algorithm employs a supervised learning algorithm for recurrent networks 
and is local in t ime, but not in space. The approach to supervised learning in recurrent 
networks aga.in is local in space and time. 

A TD-a lgoritlun for Reinforcen1ent Learning in Dyna1nic Re­
curre nt Networks 

Here we describe the discrete time version of an algorithm for a.djusting a recurrent network 
in order to let it solve tasks by delayed reinforcement learning (i. e. tasks where an external 
teacher indicates only once in a while whether the system is in a desireable state or not, 
without pmviding detailed knowledge about the desired outpttis at each lime tick). 

The algorithm can be viewed as an a.pplication of 'Temporal Di:fTerence Methods' (TD­
methods) [15] to the temporal evolution of recurrent networks. The fully recurrent control 
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network consists of linear input units and binary probabilistic non-input units. Its st ate 
vector at timet is called x(t). \11/e consider the case where the learning phase is dividable into 
'episodes'. An episode starts with the initiali zation of the system's activations and is fini shed 
when the final reinforcement , R, becomes known. Here is a description of the algorithm: 

First all weights are randomly initialized with real values. 
For all episodes: 
In the beginning of each episode, at the first time tick, the activations of input units of the 

recurrent control network are initialized with values determined by sensory perceptions from 
the environment, and the activations of hidden and output units are initialized with 0. For all 
following time ticks, until there is external reinforcement R (a real number) indicating fa ilure 
or success : 

At a given time tick t: 
1. The critic (a static network with one output) receives as input the complete activation 

vector x(t - 1) of all units of the control network. The dimensionality of the input vector of 
the critic is the1·efore equal to the number of units in the control network. Its one-dimensional 
output, r, is interpreted as a prediction of the final reinforcement to be received in the future 
{3}[14}[1}. In the case of a linear critic, its output is given by r = xT(t- 1)v(t), where v(t) is 
the c1·itic 's current weight vector. 

2. The control network pe1jorms one update-step: Each probabilistic non-input unit i 
sums its weighted inputs. This sum is passed to the logistic function l ( x) = 1+!-'" which 
gives the probability that the activation x,(t) becomes 1 or 0. Each unit i also stores its last 
activation x,(t - 1). Output units may cause an action in the environment, this may lead to 
new activations for the input units. So besides the internal feedback, there may exist external 
feedback through the environment. 

3. If there is external reinforcement R {which indicates the end of the current episode) 
then the va1·iable r' is set equal to R. 

Othe1·wise r' is defined to be a new estimation of final reinforcement, obtained by letting the 
critic evaluate the new state of the control network. In case of a linear critic r' = xT(t)v(t). 

Using its static learning algorithm (e.g. the genemlizecl delta rule) the critic associates the 
last activation vector x(t -1) of the Tecu1·rent network with r', thus (tmnsporting expectation 
back in time' for one time step. So the c1·itic 's error is given by 1.1 - r. Its weight vector is 
updated according to the rules of gradient descent; the result is the new weight vector v(t + 1). 

4. Each directed weight Wij(t) from unit i to unit j of the recu?Tent network is immediately 
altered according to b..wij (t) = .-\(r'- T)xi(t - 1)xj(t) (with.-\ being a positive constant), tlttts 
encouraging (or discouraging) the last transition. 

T he differences computed by the critic determine the learning rate for a Hebb-like rule [12]. 
Stat e transitions from states associated with low expectation of reinforcement leading to states 
with a higher evaluation are encouraged. State transitions from states associated with high 
expecta tion of reinforcement leading to states with a lower evaluation are discoura.ged. So the 
learning algorithm implements Samuel's principle for delayed reinforcement , as described in 
the context of learning to play checkers [8] : (( \iVe a.re a.ttempting to make the score, calculated 
for the current board position , look like that calculated for t he terminal board position of the 
chain of moves which most probably will occur during actual play." 
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To use the terminology of continuous time: The temporal derivative of the e:cpectation of 
futw·e reinforcement is the actual reinforcement. 

It should be noted that the learning rule of step 4 is only the most simple representative 
of a set of appli cable reinforcement learning rules. For instance, the learning rule may be 
modified such that unlikely transitions are credited more strongly [1) : 

6wij(t) = .A(r'- r)xi(t -1)(xj(t)- P(xj = 11 x(t- 1),w(t- 1))), 

where w(t - 1) is the last weight vector. Another candidate for the learning rule in step 4 is 
Barto and Anandan's AR-P rule [2) . 

An Experiment: Delayed XOR with Stationary Inputs 

In a simple experiment we wanted a completely recurrent network to solve a delayed XOR 
task with st atic inputs. The critic consisted of a single linear unit adapted by the delta-rule. 
For the duration of one episode, two of three input units of the control network were clamped 
with randomly chosen stationary binary values, the third input unit was set to 1, thus serving 
as a threshold provider. The task for the control network was to run for a predefined number, 
k, of time ticks and then to emit the XOR of the two random inputs in a single output unit . 
The learning scheme depicted above led to successful learning of this task, for various numbers 
of hidden units and for various time delays . For instance, test runs were conducted with a 
random weight initialization between - 0.1 and 0.1 , k = 3, 3 hidden units, and with both the 
learning rate for the critic and A set equal to 0.2. In some test runs, about 2000 training 
episodes per pattern led to about 99 percent correct classifications. In these cases, by making 
a deterministic network out of the stochastic network (i.e. by modifying the activation rule 
after t he learning phase such that always the most likely activations were selected) 100 percent 
correct classifications were obtained. 

Note that a linear critic was sufficient to achieve this result, even though the task to be 
solved was of the 'non-linearly separable' type. This is possible because the t ask of the critic 
is somewhat easier than the task of the recurrent non-linear network. The non-linear network 
has to implement the XOR-mapping, while the critic only has to implement the mapping 
from network states to future reinforcement. In general the mapping from network states to 
r einforcement can be a non-linearly separable function by itself. However, if the recurrent 
network already has learned to produce the correct responses to a subset of t he possible input 
patterns, the cri tic's task becomes easier. In fact, after a perfect solution has been found, 
the cri tic's output becomes trivial: In that case, as long as the recurrent network runs, the 
critic's output always equals the final reinforcement, which is 1. This final trivial mapping 
can be implemented with simply a heavy-weighted connection from the unit that is always 
on to the critic. In fact, this kind of connection was exactly what was observed in some ca.ses 
after the training phase. 

Differences to Anderson's system. 

It is worth noting some differences to Anderson's system [1). In contrast to Anderson we did 
not use a back-propagation network but a single linear unit for the criti c. Vle also did not 
use a static feed-forward network for computing output actions, but a continually running 
recurrent network. vVe also did not use different learnin g rules for hidden a.nd output units. 
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Finally, while Anderson's time ticks involve multi-layer activation spreading and back 
propagation of errors, t he system described above performs only one-layer operations within 
one tick. (Here we view the update of the recurrent network as a one-layer operation.) So 
the basic operations performed by our system are much simpler than the basic operations 
of Anderson's. Note that there is a delay of at least 2 time ticks between inputs that have 
to be transformed in a non-linear fashion, and the corresponding actions. \iVith reactive 
environments this means that a new input can be available before the response to the last 
one is computed. 

Recurrent Critics 

There are tasks where a linear or a static feed-forward critic is not sufficient. But why should 
not the critic's own output directly depend on past states of the recurrent reinforcement learn­
ing system? Although the control network is able to memorize information about past states 
by means of i ts recurrent links, one should expect advantages by introducing a continually 
running, self-supervised recurrent critic. We now describe one scenario for such a system 
consisting of two interacting recurrent networks. The basic principle is similar to the one of 
the algorithm described in the first section. However, the algorithm aims at maximizing the 
cumulative sum of reinforcement to be received at all future times [14). 

There is a continually running recurrent control network with external and internal feed­
back, and a critic whose task is to predict the cumulative sum of (discounted) reinforcement 
to be received in the future. However, now the critic itself is a continually running recurrent 
network whose input at a giv~n time is the complete current state of the control network 
(including the current environmental input) . One of the cri tic's non-input units is interpreted 
as the predictive output. 

The critic again learns in a 'self-supervised' manner. Its learning algorithm should be 
local in time, so the on-line version (22] of the liD-Algorithm (6) can be applied. According 
to TD-methods, the desired value for the critic's output unit at a given time tick is given by 
the sum of the external reinforcement and its own (discounted) output at the next time tick. 

The critic's error is also the reinforcement for the reinforcement learning algorithm of the 
control network. The latter needs to consider only the last and the present state, as a.bove, 
but i t also might be an on-line version of Williams' 'extended REINFORCE' algorithms [20) . 

Here is the description of the algorithm: 

First, all weights are randomly initialized with real values. 
For all episodes: 
In the beginning of each episode, at the first time tick, the activations of input units of 

the reinfo1·cement learning control network are initialized to values detem~ined by sensory 
pe1·ceptions from the environment, and the activations of the probabilistic hidden and output 
units a.1·e initialized to 0. All unit activations of the recurrent c1·itic also are initialized with 
0. The dirnensiona.lity of the input vector of the c1·itic is eqtta.l to the number of units in the 
control network. The critic receives as input the complete activation vector of all vnits of 
the recm-rent network, and pe1jonns one initializing vpdate step: Each non-input unit svms 
the weighted activa.tions of its sou1·ce units and passes the sum through a sigmoid funct ion to 
obtain its activation. One of the cTitic 's units is called its outp1lt unit. The vw·iab fe 7' is set 
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equal to the activation of this output unit and is interpreted as a p1·ediction of the cumulative 
discounted reinforcement to be received in the future. 

For all following time ticks: 
At a given time tick t: 
1. The control network performs one update-step: Each probabilistic non-input unit i sums 

its weighted inputs, this sum is passed to the logistic function which gives the probability that 
the activation Xi( t) becomes 1 or 0. Each unit i also stores all information needed by the 
reinfo?·cement learning algorithm to be applied in step 3. Output units may cause an action 
in the environment, this m ay lead to new activations for the input units. 

2. The critic performs one update step. Its new activations depend on x(t) and on past 
activations of its hidden and output units. 

The variable r' is defined to be the sum of the current external reinfo1·cement R(t) and the 
new estimation of final reinforcement, obtained by multiplying the value P(t) of the critic's 
output unit with a discount factor 0 < 1 < 1: r' := 1P(t) + R(t). 

The error for the c1·itic 's output at time t - 1 is given by r1 
- r. Credit assignment for the 

critic takes tJlace im.mediately according to Williams and Zipser's version {22} of Robinson's 
supervised learning algorithm {6}. 

3. The critic's error at the same time is the reinforcement for the reinforcement learning 
algorithm of the reinforcem ent learning netwo1·k. 

4. r is set equal to P(t). 

Again the computation of error signals for t he critic's output is very much inspired by 
Sutton's T D-methods. TD methods, however , require two successive predictions during the 
same time tick in order to remove dependencies on weight changes . Since the recurrent critic's 
output already depends on past states (by means of its internal feedback) and also on past 
weights, t he scheme described above makes only one critic update at a time. In (11] (in the 
section on 'useful extensions') a more complicat ed recurrent critic based on 'gradient descent 
t hrough a frozen model network' is described (see also the next section). 

Vector-Valued Adaptive Critics and Syste1n Identification 

The criti c above as well as adaptive critics described by other authors are one-dimensional. 
Their prediction refers to a single scalar value, namely, the cumulative future reinforcement . 
One single internal reinforcement signal is used to modify all controller weights in an unspecific 
fashion. There are no (individually tailored reinforcement signals ' (20] . 

No difference is m ade between different kinds of reinforcement. T his seems to contrast 
wit h the reinforcement signals of biological systems. The latter usually make use of a wide 
variety of 'pain' and ' pleasure' sensors . \Ve will now introduce a vecto1·-valtted adaptive critic 
syst em which includes an adaptive model of the dependency of in ternal reinforcement vectors 
on (possibly multi-dimensional ) ouput actions. 

\ iVhi ch are the advantages to be expected by such a system? To spea.k intuitively: A 
detailed model of the expected consequences of cer tain actions should allow t heir info1·med 
modification. If one knows how much influence a particular output node had on which com­
ponents of the internal reinforcement vector , one can use thi s knowledge for 'individually 
t ailored' modifications of the cont roller weights . Furthermore, i t may be easie1· to learn a. 
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mapping from states/actions to vector-valued reinforcement than to learn a mapping from 
sta.tesjactions to the corresponding scalar reinforcement. 

Three Interacting Networks 

One possibility for implementing a detailed model of actions and corresponding internal rein­
forcement is the following one: Y.le introduce a third feed-forward network lvf (13] which at a 
given time step sees the input vector and the output vector of the controller C. The system 
to be identified by }.1[ is the process which maps state/action pairs to internal reinforcement 
vectors. At a given time M is trained to predict the difference between the current and the 
next prediction of the critic. This difference is equal to the current internal reinforcement 
vector. Using back-propagation, the difference between the desired and the actual internal re­
inforcement vector is propagated back through M and through C's output units down into C. 
C's output units a.re thereby considered to be the hidden units of the model/controller com­
bination (C's outputs are identified with the corresponding inputs of M.) Only C's .weights 
change, M's weights remain fixed. (This is the approach of 'gradient descent through frozen 
model networks', see e.g. (4] and (18]). However, to be able to use the back-propagation 
method we have to get rid of the 'all-or-nothing'-character of the probabilistic units used 
above, so we make C a feed-forward back-propagation network with semilinear units. Con­
ventional back-propagation networks are deterministic. Since we need explorative capabilities, 
we introduce a differentiable probability distribution for C's outputs: Each output unit is re­
placed by two units, one computing the mean and the other computing the va.riance of a 
random number generator which provides the final output of the corresponding probabilistic 
unit. Now we may apply Williams' method of 'back-propagation through random number 
generators' [19]. 

Note that both C and }.1[ may be replaced by recurrent networks. 

Making Two Networks out of Three 

To simplify the whole system we may collapse the three-network system above into a similar 
two-network system. We introduce a network MAC which at the same time fulfills the task 
of the of the Model network and the Adaptive CJ:itic above. }.1[ AC receives as an input 
the current input and output of C. Instead of predicting differences between successive 
critic predictions, }.1[ AC learns to predict the critic output itself, by looking at its own next 
prediction (as feed-forward adaptive critics always should do): }.1[ AC's error function at time 
t is 

Pt,v(t) -!Pt+l,v(t)- R(t + 1), 

where Pt,v(s) is }.1[ AC's prediction based on the controller input and output at t ime t and 
JII[AC's weight-vector v(s) at times, R(t) is the external reinforcement vector at timet, and 
0 < 1 < 1 is the discount factor for avoiding predictions of infinite sums. (Thus MAC takes 
over the function of the critic). Errors for the controller are generated analogously to the 
three-network system described in the last subsection. Since }.1[ AC does not evaluate just a 
state but a state/action pa.ir, it is similar to the approaches described in [16] and [5]. 

MAC and C may be recurrent: Here is the point where the current report and [11] 
converge. In [11] (in the section on 'useful extensions') a cleta.ilcd description of an extension 
of the C /111 AC approach is given which is based on two interacting fully recurrent networks. 
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One of these networks is used partly for predicting the next controller inputs and pa.rtly for 
predicting the sum of future cumulative reinforcement vectors. 

Pole Balancing with a Vector-Valued Adaptive Critic 

The task we chose was to test the ideas of the preceeding section to a pole balancing task 
described in [1) . Programming and tests were conducted by Klaus Bergner, a student at 
TU:tvi. 

The outputs of the control network served to control forces applied to a cart to which 
a rigid pole was hinged. The cart was able to move on a one-dimensional track. The cart 
pole system was modeled by the equations given in the appendix. The task was to learn to 
balance the pole as long as possible without hitting the edges of the track. 

Unlike with many other pole balancing tasks, there was no teacher to give the desi1·ed 
outputs at given time ticks. The only goal information available to the system was negative 
reinforcement whenever one of the critical conditions above was violated, which also meant 
the end of the current 'episode'. VVithin an episode the external reinforcement vector was 
equal to 0, so the system faced a spatia-temporal credit assignment task. 

Following [1] we made the task more difficult than the similar task described in [3], where 
a prewired decoder was used to provide binary 162-dimensional input to a single-unit 'net­
work', with all components being zero except for one. Instead the input was real-valued, and 
additionally scaled in an asymmetric manner (see appendix), in order to force the system to 
discover a non-trivial internal representation by itself. (Using the input variables directly, 
without scaling, makes the task easier [1). Anderson identifies the reason as a symmetry of 
optimal actions referring to positive and negative values of the state variables.) 

Both C and MAC were standard 3-lay~ feed-forward networks. Chad 4 input units for 
the 4 'visible' scaled state variables x, ±, 0, iJ (defined in the appendix). In addition, C had 5 
logistic hidden units and one output unit. C's output unit was probabilistic and consisted of 
one linear unit (with slope 1) for mean generation, one linear unit (with slope 1) for variance 
generation, and a random number generator. At a given time, the contribution of the variance 
generator to the final output was its current activation multiplied by 

1 
-in(- - 1), 

Tnd 

where nul was a random variable uniformly distributed between ~ and 1. At a given time, 
the activation of the output unit was interpreted as the force (measured in Newtons) to be 
applied to the cart. 

MAC had 5 input units (one for C's output, 4 for the scaled state variables), 5 logistic 
hidden units and 4 linea.r output units (with slope 1) for predicting four different kinds of 
'pain': 'cart bumps against left edge', 'cart bumps against right edge', 'pole angle exceeds 
maximal value', and 'pole angle below minimal value'. In case of failure the 'pain contribution' 
for the corresponding prediction was 1.0. An additional 'true' unit which was always on was 
connected to all non-input-units of the C /111 AC-system in order to provide a modifiable bias . 
For scaling reasons there was a connection with a fixed weight of 0.1 between C's output unit 
and 111 AC's corresponding input unit. Of course, tllis fixed weight was taken care of during 
the error-propagation phases from 111 AC down into C. 

At the beginning of each episode, x was randomly initialized between -2.4m and +2.4m, (} 
was r andomly initialized between -0.21 and 0.21, x was randomly initialized between -1.5m/s 
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and +1.5m/s, and iJ was randomly initialized between -2.0/s and +2.0/s. Between two time 
steps C's input changed according to a simulation of the cart-pole system by Euler 's method 
with a time step of 0.02s. 

C's learning rate was equal to 100, J..t[ AC's learning rate was equal to 0.2, the discount 
factor 1 was equal to 0.95. Weights were randomly initialized between -0.05 and 0.05. Five 
test runs were conducted. The episodes needed to achieve the first episode of more than 
30000 time ticks were counted. (If output actions were selected randomly, then the average 
time until failure was less than 20 time steps. The longest run reported by Anderson [1] took 
28407 time steps , more than 7000 failures had to be experienced to achieve that result.) 

The results of the five test runs were 713, 486, 536, 614, and 513. 
VVithin less than 800 failures the system always produced an episode with more than 

30000 time steps balancing time. Similar results with a one-dimensional critic could not be 
obtained. 

Using the input variables directly (without scaling) led to even better results : Here the 
corresponding five numbers were 174, 180, 144, 119, and 155. 

It is expected that the concept of multi-dimensional J..t[ AC's will prove to be superior, 
particularily when it comes to complex tasks where t here are multi-dimensional action vectors 
and multi-dimensional 'pain' or 'pleasure' vectors. V<le have started to apply vector-valued 
MAC's to industrial robot control. 

An Approach to Local Supervised Learning in Recurrent N et­
works 

In this section we propose a local lea.rning scheme for supervised learning in continually 
running recurrent networks, where each unit at each time receives an individual error signal. 
The method is based on back-propagation (BP) [17] in recurrent networks unfolding in time 
[7]. The global error measure to be minimized is the sum of all errors received at the output 
units over time. The important difference will be that the method is local in space and time, 
while conventional BP is not. In conventional BP each unit needs a stack for remembering 
past activations which are used to compute contributions to weight changes during the error 
propagation phase. Starts and ends of sequences have to be indicated by an external teacher. 

Instead of allowing unlimited storage capacities in the form of stacks, we introduce a 
second adaptive but static network (again termed the 'critic'). Its task is to associate st ates 
of the recurrent (primary ) network with error-vectors. 

The behavior of both interacting networks can be described like this: Activations spread 
through the primary network in the same manner as with conventional BP. At each discrete 
time tick the critic receives as input the state vector of the non-input units of the primary 
network. The sum of the critic's output and the error observed at certain output-units is used 
as an error-vector. This error-vector is propagated backwards through the prima.ry network, 
but only one step 'back into time'. (So each unit of the primary network has to store its 
last activation. ) The involved weights are changed immediately afterwards, assuming that 
the learning rate is sufficiently small to avoid instabilities . (Immediate weight changes are 
also employed by 'i\' illiams and Zipser [22] who tested another learning algorithm for fully 
recurrent networks- first described by Robinson and Fallside [6]- which is local in time but 
not in space.) Immediate weight changes at the expense of deviating from t rue gradient 
descent make it unnecessary to accumulate a sum of weight changes for each weight, 
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The new error-vector received at the non-input units after the one-step back-propagation 
phase, becomes associated with the last state of the primary network. This association has 
to be done by the static learning algorithm of the critic, which can be a Boltzmann machine, 
or a. feed-forward BP network, or something else. 

A critical assumption of this scheme is that the state of the non-input units at a given 
time uniquely represents the history which led to this state. Two different histories leading 
to the same internal state cannot be distinguished by the critic. In such cases it is likely that 
incorrect error vectors are one-step-back-propagated during further training. A self-healing 
effect could be that weight modifications caused by this process lead to new errors which 
in turn split (critical' states into two or more distinguishable states representing different 
histories. However, the precise nature of the interactions between two networks like those 
des cri bed above is currently unclear. 

The advantage of the scheme is that it is both local in space and local in time: At 
every time tick the system in principle performs the same local operations, there is no need 
for storing past acti vations (except for the last ones), and there is no such thing as epoch 
boundaries. 

For several reasons t he method does not implement exact gradient descent. Two of t hem 
have been mentioned above: There are continuous weight changes, and different hi stories 
leading to the same state will cause incorrect error vectors. Another (pragmatic) reason is 
that the critic often will not exactly mirror the relations between primary states and error 
vectors, since its learning algorithm will not be perfect either . (Similar' primary states will 
produce csimila.r ' error-vectors, where the measure of similarity depends on the complexity of 
the critic. It remains to be verified whether such a learning scheme will face serious problems 
or whether the inertia of the static network could even lead to beneficial effects , comparable to 
the effects induced by momentum terms in conventional BP. In some preliminary experiments 
with a constrained linear critic (modified with the delta-rule) the system sometimes learned, 
but more often failed to learn a dynamic task (the dynamic delayed XOR problem as described 
in [22]). An interesting point is, again, t hat the linearity of the critic did not necessarily 
prevent the recurrent network from eventually solving its task. Yet it is expected that a 
non-linear critic will lead to better performance, since in general the error is a non-linearily 
separable function of the primary system's states. 

Conclusion 

The common aspect of the methods described above is that t hey a.ll include a component 
which learns to associate states of a control network with appropriate error information, in 
order to allow goal directed weight changes in the control network. 

A main motivation behind the presented ideas was the desire for learning algorithms 
local in space and time. A related step in that direction was undertaken in [10), where a 
completely local learning method for neural networks based on Holland's bucket brigade was 
described. Unlike the methods described above, the cNeura.l Bucket Brigade' does not depend 
on explicit eva.lua.tion of complete activation states at any time. A potential drawback of thi s 
cwea.ker' approach was a. great sensibility to fluctuations of activation at t he unit level. The 
introduction of a. network which judges the whole state of a recurrent network was partly 
motivated by the desire to escape the instabilities caused by such unit-level fluctuations. 

I beli eve that the concept of network-adjusting networks can be helpful in a variety of 
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contexts. The main idea is: A system which has to learn to perform some task should build a 
model of what is wrong with its current performance. It should use the hypotheses generated 
by the model to change its behavior. A model which does not lead to improved performance 
has to be di scarded or at least modified such that it generates better hypotheses concerning 
the successes or failures to be expected. 
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Appendix: Details of Cart-Pole Shnulation 

The cart-pole system, taken from [3) , (14), and [1) , was modeled by the equations 

· n + n - F-ml02 sin0+p.csgn(z) f!:JJ_ 
.. gs~nu casu mc+m - m / 
B = -------:----"-=~----­t(1 _ mcos28) 

3 mc+m 

.. F + ml(B2sinB - BcosB)- f.Lcsgn(z ) z = ---'----------'--'--.......::...---'---'-
mc+m 

where -0.21 < B < 0.21 (angle of pole with the vertical), -2.4m < z < 2.4m (position of 
cart on track), g = 9.8~ (gravitational acceleration), me = 1kg (mass of cart), m = 0.1kg 
(mass of pole), l = 0.5m (half pole length), f.Lc = 0.0005 (coefficient of friction of cart on 
track), fl'P = 0.000002 (coefficient of friction of pole on cart), FE [-25N, 25N) (force applied 
to cart's center of mass, parallel to track) . (Note that there is a typing error in the equations 
given in [3), [14), and [1) : There the gravitational constant is given as g = -9.8~ ). 

The scaled input variables were z = z!14
, z = Z+]·5

, 0 = 8t~i1 , B = 0t . 
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