
FORSCI-IUNGSBERICHTE
..

KUNSTLICHE INTELLIGENZ

Networks adjusting networks

Jiirgen H. Schmidhuber

Report FKI-125-90 (revised)

November 1990

TECHNISCHE UNIVERSlT AT MUNCH EN
Institut fiir Jnformatik, Arcisstr. 21, 8000 Miinchcn 2, \Vest Gcunany

Net\iVorks Adjusting Networks

Jiirgen Schmidhuber*
Institut fi.ir Informatik

Technische Universitiit Mi.inchen
Arcistr. 21, 8000 Miinchen 2, Germany

schmidhu@tumult.informatik.tu-muenchen.de

Abstract

This paper describes extensions of previous 'adaptive critics' which have been one­
dimensional, acyclic, and suited only for feed-forward controllers. The extensions address
the following issues :

1. Feed-forward adaptive critics for fully recurrent probabilistic control nets.
2. Recurrent adaptive critics.
3. Vector-valued adaptive critics based on a system identification component.
Furthermore an idea is described for approximating recurrent back propagation v,·ith

a 3-network method which is local in time.
In one experiment a linear adaptive critic adjusts a recurrent network such that it solves

a non-linear task (a 'delayed XOR'-problem). In another experiment a four-dimensional
adaptive critic quickly learns to solve a complicated pole balancing task.

Introduction

Note: This is the revised and expanded version of an earlier report from February 1990.

Reinforcement learning can be applied in cases for which supervised learning is not de­
signed, namely, when there is no well-informed instructive teacher to provide target outputs
for each time tick, but only an evaluative teacher who sometimes states whether a system
controlled by the network is in a desireable st ate or not.

A few methods are designed for reinforcement lea.rning with recurrent neural networks,
including 'extended REINFORCE' algorithms (20], the 'Neural Bucket Brigade Algorithm'
[10], and model-building recurrent neural controllers based on system identification (e.g. [9]).
None of these algorithms includes an adaptive cdtic component, although adaptive critics ha.ve
proven to be very useful in the case of feed-forward networks [3][14](1]. Adaptive critics are
based on 'Temporal Difference (TD-) Methods' [15] and are closely related to concepts from
dynamic progmmming. TD-methods use diil'erences of successive predictions about future
events to generate error signals for the predictor . Thus TD-methods are an example of 'self­
supervi sed' learning. \~'ith adaptive critics, the TD-error signals also serve as reinforcement
signals for a neural controller.

• Research support.ecl by <t scholarship from SIEMENS AG

1

Networks adjusting networks 2

One of the adaptive critic extensions below may be viewed as an application of TD­
methods [15] to the temporal evolution of recurrent networks. Another extension of the
adaptive critic principle combines 'gradient descent through a fmzen model network' with a
vecto1·-valued adaptive critic. (Previous adaptive critics have been sca.lw·). The scheme is in­
tended to provide better scaling for multi-dimensional actions and sensory 'pain' or 'pleasure'
perceptions (e.g. for robot control).

It must be noted that no theory of adaptive cri tics exist s so far. (The existing theory of
TD-methods does not address the on-line learning problems of reinforcement learning systems
based on TD-methods.) Thus it remains unclear under which conditions on-line algorithms
based on the adaptive cri tic principle actually converge to the desired solutions. However,
first steps towards a theory of on-line learning actor/ critic systems have been made recently
[21] .

Locality in Space and Time

An important aspect of the algorithms described in this paper is their applicability to on-line
learning tasks. There is no need for storing past activations except for the most recent ones.
Yet the credit assignment process during training can in principle bridge arbitrary time lags.

Locality in Space and Time. In this paper a learning algorithm for dynamic neural net­
works is said to be local in time if for given network size (measured in number of connections)
during on-line learning the peak computation complexity at every time step is 0(1) , for
a1·bitrary durations of sequences to be learned.

A learning algorithm for dynamic neural networks is said to be local in space if during
on-line learning for limited durations of learned sequences and for arbitrary network sizes
(measured in number of connections) and for arbitrary network topologies the peak compu­
tation complexity per connection at every time step is 0(1).

A learning algorithm for dynamic neural networks is said to be local if during on-line
learning for arbitrary durations of sequences to be learned and for a1·bitrary network sizes
(measured in number of connections) and w·bitmry network topologies the peak computation
complexity per connection at every time step is 0(1).

For example, the 'unfolding in time' method (e.g. [7]) is not local in time. T he liD­
Algorithm [6] (also called the RTRL-Algorithm in [22]) is local in time but not in space.

The first algorithm to be considered below performs only computations local in space and
time. The second algorithm employs a supervised learning algorithm for recurrent networks
and is local in t ime, but not in space. The approach to supervised learning in recurrent
networks aga.in is local in space and time.

A TD-a lgoritlun for Reinforcen1ent Learning in Dyna1nic Re­
curre nt Networks

Here we describe the discrete time version of an algorithm for a.djusting a recurrent network
in order to let it solve tasks by delayed reinforcement learning (i. e. tasks where an external
teacher indicates only once in a while whether the system is in a desireable state or not,
without pmviding detailed knowledge about the desired outpttis at each lime tick).

The algorithm can be viewed as an a.pplication of 'Temporal Di:fTerence Methods' (TD­
methods) [15] to the temporal evolution of recurrent networks. The fully recurrent control

Networks adjusting networks 3

network consists of linear input units and binary probabilistic non-input units. Its st ate
vector at timet is called x(t). \11/e consider the case where the learning phase is dividable into
'episodes'. An episode starts with the initiali zation of the system's activations and is fini shed
when the final reinforcement , R, becomes known. Here is a description of the algorithm:

First all weights are randomly initialized with real values.
For all episodes:
In the beginning of each episode, at the first time tick, the activations of input units of the

recurrent control network are initialized with values determined by sensory perceptions from
the environment, and the activations of hidden and output units are initialized with 0. For all
following time ticks, until there is external reinforcement R (a real number) indicating fa ilure
or success :

At a given time tick t:
1. The critic (a static network with one output) receives as input the complete activation

vector x(t - 1) of all units of the control network. The dimensionality of the input vector of
the critic is the1·efore equal to the number of units in the control network. Its one-dimensional
output, r, is interpreted as a prediction of the final reinforcement to be received in the future
{3}[14}[1}. In the case of a linear critic, its output is given by r = xT(t- 1)v(t), where v(t) is
the c1·itic 's current weight vector.

2. The control network pe1jorms one update-step: Each probabilistic non-input unit i
sums its weighted inputs. This sum is passed to the logistic function l (x) = 1+!-'" which
gives the probability that the activation x,(t) becomes 1 or 0. Each unit i also stores its last
activation x,(t - 1). Output units may cause an action in the environment, this may lead to
new activations for the input units. So besides the internal feedback, there may exist external
feedback through the environment.

3. If there is external reinforcement R {which indicates the end of the current episode)
then the va1·iable r' is set equal to R.

Othe1·wise r' is defined to be a new estimation of final reinforcement, obtained by letting the
critic evaluate the new state of the control network. In case of a linear critic r' = xT(t)v(t).

Using its static learning algorithm (e.g. the genemlizecl delta rule) the critic associates the
last activation vector x(t -1) of the Tecu1·rent network with r', thus (tmnsporting expectation
back in time' for one time step. So the c1·itic 's error is given by 1.1 - r. Its weight vector is
updated according to the rules of gradient descent; the result is the new weight vector v(t + 1).

4. Each directed weight Wij(t) from unit i to unit j of the recu?Tent network is immediately
altered according to b..wij (t) = .-\(r'- T)xi(t - 1)xj(t) (with.-\ being a positive constant), tlttts
encouraging (or discouraging) the last transition.

T he differences computed by the critic determine the learning rate for a Hebb-like rule [12].
Stat e transitions from states associated with low expectation of reinforcement leading to states
with a higher evaluation are encouraged. State transitions from states associated with high
expecta tion of reinforcement leading to states with a lower evaluation are discoura.ged. So the
learning algorithm implements Samuel's principle for delayed reinforcement , as described in
the context of learning to play checkers [8] : ((\iVe a.re a.ttempting to make the score, calculated
for the current board position , look like that calculated for t he terminal board position of the
chain of moves which most probably will occur during actual play."

Networks adjusting networks 4

To use the terminology of continuous time: The temporal derivative of the e:cpectation of
futw·e reinforcement is the actual reinforcement.

It should be noted that the learning rule of step 4 is only the most simple representative
of a set of appli cable reinforcement learning rules. For instance, the learning rule may be
modified such that unlikely transitions are credited more strongly [1) :

6wij(t) = .A(r'- r)xi(t -1)(xj(t)- P(xj = 11 x(t- 1),w(t- 1))),

where w(t - 1) is the last weight vector. Another candidate for the learning rule in step 4 is
Barto and Anandan's AR-P rule [2) .

An Experiment: Delayed XOR with Stationary Inputs

In a simple experiment we wanted a completely recurrent network to solve a delayed XOR
task with st atic inputs. The critic consisted of a single linear unit adapted by the delta-rule.
For the duration of one episode, two of three input units of the control network were clamped
with randomly chosen stationary binary values, the third input unit was set to 1, thus serving
as a threshold provider. The task for the control network was to run for a predefined number,
k, of time ticks and then to emit the XOR of the two random inputs in a single output unit .
The learning scheme depicted above led to successful learning of this task, for various numbers
of hidden units and for various time delays . For instance, test runs were conducted with a
random weight initialization between - 0.1 and 0.1 , k = 3, 3 hidden units, and with both the
learning rate for the critic and A set equal to 0.2. In some test runs, about 2000 training
episodes per pattern led to about 99 percent correct classifications. In these cases, by making
a deterministic network out of the stochastic network (i.e. by modifying the activation rule
after t he learning phase such that always the most likely activations were selected) 100 percent
correct classifications were obtained.

Note that a linear critic was sufficient to achieve this result, even though the task to be
solved was of the 'non-linearly separable' type. This is possible because the t ask of the critic
is somewhat easier than the task of the recurrent non-linear network. The non-linear network
has to implement the XOR-mapping, while the critic only has to implement the mapping
from network states to future reinforcement. In general the mapping from network states to
r einforcement can be a non-linearly separable function by itself. However, if the recurrent
network already has learned to produce the correct responses to a subset of t he possible input
patterns, the cri tic's task becomes easier. In fact, after a perfect solution has been found,
the cri tic's output becomes trivial: In that case, as long as the recurrent network runs, the
critic's output always equals the final reinforcement, which is 1. This final trivial mapping
can be implemented with simply a heavy-weighted connection from the unit that is always
on to the critic. In fact, this kind of connection was exactly what was observed in some ca.ses
after the training phase.

Differences to Anderson's system.

It is worth noting some differences to Anderson's system [1). In contrast to Anderson we did
not use a back-propagation network but a single linear unit for the criti c. Vle also did not
use a static feed-forward network for computing output actions, but a continually running
recurrent network. vVe also did not use different learnin g rules for hidden a.nd output units.

Networks adjusting networks 5

Finally, while Anderson's time ticks involve multi-layer activation spreading and back
propagation of errors, t he system described above performs only one-layer operations within
one tick. (Here we view the update of the recurrent network as a one-layer operation.) So
the basic operations performed by our system are much simpler than the basic operations
of Anderson's. Note that there is a delay of at least 2 time ticks between inputs that have
to be transformed in a non-linear fashion, and the corresponding actions. \iVith reactive
environments this means that a new input can be available before the response to the last
one is computed.

Recurrent Critics

There are tasks where a linear or a static feed-forward critic is not sufficient. But why should
not the critic's own output directly depend on past states of the recurrent reinforcement learn­
ing system? Although the control network is able to memorize information about past states
by means of i ts recurrent links, one should expect advantages by introducing a continually
running, self-supervised recurrent critic. We now describe one scenario for such a system
consisting of two interacting recurrent networks. The basic principle is similar to the one of
the algorithm described in the first section. However, the algorithm aims at maximizing the
cumulative sum of reinforcement to be received at all future times [14).

There is a continually running recurrent control network with external and internal feed­
back, and a critic whose task is to predict the cumulative sum of (discounted) reinforcement
to be received in the future. However, now the critic itself is a continually running recurrent
network whose input at a giv~n time is the complete current state of the control network
(including the current environmental input) . One of the cri tic's non-input units is interpreted
as the predictive output.

The critic again learns in a 'self-supervised' manner. Its learning algorithm should be
local in time, so the on-line version (22] of the liD-Algorithm (6) can be applied. According
to TD-methods, the desired value for the critic's output unit at a given time tick is given by
the sum of the external reinforcement and its own (discounted) output at the next time tick.

The critic's error is also the reinforcement for the reinforcement learning algorithm of the
control network. The latter needs to consider only the last and the present state, as a.bove,
but i t also might be an on-line version of Williams' 'extended REINFORCE' algorithms [20) .

Here is the description of the algorithm:

First, all weights are randomly initialized with real values.
For all episodes:
In the beginning of each episode, at the first time tick, the activations of input units of

the reinfo1·cement learning control network are initialized to values detem~ined by sensory
pe1·ceptions from the environment, and the activations of the probabilistic hidden and output
units a.1·e initialized to 0. All unit activations of the recurrent c1·itic also are initialized with
0. The dirnensiona.lity of the input vector of the c1·itic is eqtta.l to the number of units in the
control network. The critic receives as input the complete activation vector of all vnits of
the recm-rent network, and pe1jonns one initializing vpdate step: Each non-input unit svms
the weighted activa.tions of its sou1·ce units and passes the sum through a sigmoid funct ion to
obtain its activation. One of the cTitic 's units is called its outp1lt unit. The vw·iab fe 7' is set

Networks adjusting networks 6

equal to the activation of this output unit and is interpreted as a p1·ediction of the cumulative
discounted reinforcement to be received in the future.

For all following time ticks:
At a given time tick t:
1. The control network performs one update-step: Each probabilistic non-input unit i sums

its weighted inputs, this sum is passed to the logistic function which gives the probability that
the activation Xi(t) becomes 1 or 0. Each unit i also stores all information needed by the
reinfo?·cement learning algorithm to be applied in step 3. Output units may cause an action
in the environment, this m ay lead to new activations for the input units.

2. The critic performs one update step. Its new activations depend on x(t) and on past
activations of its hidden and output units.

The variable r' is defined to be the sum of the current external reinfo1·cement R(t) and the
new estimation of final reinforcement, obtained by multiplying the value P(t) of the critic's
output unit with a discount factor 0 < 1 < 1: r' := 1P(t) + R(t).

The error for the c1·itic 's output at time t - 1 is given by r1
- r. Credit assignment for the

critic takes tJlace im.mediately according to Williams and Zipser's version {22} of Robinson's
supervised learning algorithm {6}.

3. The critic's error at the same time is the reinforcement for the reinforcement learning
algorithm of the reinforcem ent learning netwo1·k.

4. r is set equal to P(t).

Again the computation of error signals for t he critic's output is very much inspired by
Sutton's T D-methods. TD methods, however , require two successive predictions during the
same time tick in order to remove dependencies on weight changes . Since the recurrent critic's
output already depends on past states (by means of its internal feedback) and also on past
weights, t he scheme described above makes only one critic update at a time. In (11] (in the
section on 'useful extensions') a more complicat ed recurrent critic based on 'gradient descent
t hrough a frozen model network' is described (see also the next section).

Vector-Valued Adaptive Critics and Syste1n Identification

The criti c above as well as adaptive critics described by other authors are one-dimensional.
Their prediction refers to a single scalar value, namely, the cumulative future reinforcement .
One single internal reinforcement signal is used to modify all controller weights in an unspecific
fashion. There are no (individually tailored reinforcement signals ' (20] .

No difference is m ade between different kinds of reinforcement. T his seems to contrast
wit h the reinforcement signals of biological systems. The latter usually make use of a wide
variety of 'pain' and ' pleasure' sensors . \Ve will now introduce a vecto1·-valtted adaptive critic
syst em which includes an adaptive model of the dependency of in ternal reinforcement vectors
on (possibly multi-dimensional) ouput actions.

\ iVhi ch are the advantages to be expected by such a system? To spea.k intuitively: A
detailed model of the expected consequences of cer tain actions should allow t heir info1·med
modification. If one knows how much influence a particular output node had on which com­
ponents of the internal reinforcement vector , one can use thi s knowledge for 'individually
t ailored' modifications of the cont roller weights . Furthermore, i t may be easie1· to learn a.

Networks adjusting networks 7

mapping from states/actions to vector-valued reinforcement than to learn a mapping from
sta.tesjactions to the corresponding scalar reinforcement.

Three Interacting Networks

One possibility for implementing a detailed model of actions and corresponding internal rein­
forcement is the following one: Y.le introduce a third feed-forward network lvf (13] which at a
given time step sees the input vector and the output vector of the controller C. The system
to be identified by }.1[is the process which maps state/action pairs to internal reinforcement
vectors. At a given time M is trained to predict the difference between the current and the
next prediction of the critic. This difference is equal to the current internal reinforcement
vector. Using back-propagation, the difference between the desired and the actual internal re­
inforcement vector is propagated back through M and through C's output units down into C.
C's output units a.re thereby considered to be the hidden units of the model/controller com­
bination (C's outputs are identified with the corresponding inputs of M.) Only C's .weights
change, M's weights remain fixed. (This is the approach of 'gradient descent through frozen
model networks', see e.g. (4] and (18]). However, to be able to use the back-propagation
method we have to get rid of the 'all-or-nothing'-character of the probabilistic units used
above, so we make C a feed-forward back-propagation network with semilinear units. Con­
ventional back-propagation networks are deterministic. Since we need explorative capabilities,
we introduce a differentiable probability distribution for C's outputs: Each output unit is re­
placed by two units, one computing the mean and the other computing the va.riance of a
random number generator which provides the final output of the corresponding probabilistic
unit. Now we may apply Williams' method of 'back-propagation through random number
generators' [19].

Note that both C and }.1[may be replaced by recurrent networks.

Making Two Networks out of Three

To simplify the whole system we may collapse the three-network system above into a similar
two-network system. We introduce a network MAC which at the same time fulfills the task
of the of the Model network and the Adaptive CJ:itic above. }.1[AC receives as an input
the current input and output of C. Instead of predicting differences between successive
critic predictions, }.1[AC learns to predict the critic output itself, by looking at its own next
prediction (as feed-forward adaptive critics always should do): }.1[AC's error function at time
t is

Pt,v(t) -!Pt+l,v(t)- R(t + 1),

where Pt,v(s) is }.1[AC's prediction based on the controller input and output at t ime t and
JII[AC's weight-vector v(s) at times, R(t) is the external reinforcement vector at timet, and
0 < 1 < 1 is the discount factor for avoiding predictions of infinite sums. (Thus MAC takes
over the function of the critic). Errors for the controller are generated analogously to the
three-network system described in the last subsection. Since }.1[AC does not evaluate just a
state but a state/action pa.ir, it is similar to the approaches described in [16] and [5].

MAC and C may be recurrent: Here is the point where the current report and [11]
converge. In [11] (in the section on 'useful extensions') a cleta.ilcd description of an extension
of the C /111 AC approach is given which is based on two interacting fully recurrent networks.

Networks adjusting net'lvorks 8

One of these networks is used partly for predicting the next controller inputs and pa.rtly for
predicting the sum of future cumulative reinforcement vectors.

Pole Balancing with a Vector-Valued Adaptive Critic

The task we chose was to test the ideas of the preceeding section to a pole balancing task
described in [1) . Programming and tests were conducted by Klaus Bergner, a student at
TU:tvi.

The outputs of the control network served to control forces applied to a cart to which
a rigid pole was hinged. The cart was able to move on a one-dimensional track. The cart
pole system was modeled by the equations given in the appendix. The task was to learn to
balance the pole as long as possible without hitting the edges of the track.

Unlike with many other pole balancing tasks, there was no teacher to give the desi1·ed
outputs at given time ticks. The only goal information available to the system was negative
reinforcement whenever one of the critical conditions above was violated, which also meant
the end of the current 'episode'. VVithin an episode the external reinforcement vector was
equal to 0, so the system faced a spatia-temporal credit assignment task.

Following [1] we made the task more difficult than the similar task described in [3], where
a prewired decoder was used to provide binary 162-dimensional input to a single-unit 'net­
work', with all components being zero except for one. Instead the input was real-valued, and
additionally scaled in an asymmetric manner (see appendix), in order to force the system to
discover a non-trivial internal representation by itself. (Using the input variables directly,
without scaling, makes the task easier [1). Anderson identifies the reason as a symmetry of
optimal actions referring to positive and negative values of the state variables.)

Both C and MAC were standard 3-lay~ feed-forward networks. Chad 4 input units for
the 4 'visible' scaled state variables x, ±, 0, iJ (defined in the appendix). In addition, C had 5
logistic hidden units and one output unit. C's output unit was probabilistic and consisted of
one linear unit (with slope 1) for mean generation, one linear unit (with slope 1) for variance
generation, and a random number generator. At a given time, the contribution of the variance
generator to the final output was its current activation multiplied by

1
-in(- - 1),

Tnd

where nul was a random variable uniformly distributed between ~ and 1. At a given time,
the activation of the output unit was interpreted as the force (measured in Newtons) to be
applied to the cart.

MAC had 5 input units (one for C's output, 4 for the scaled state variables), 5 logistic
hidden units and 4 linea.r output units (with slope 1) for predicting four different kinds of
'pain': 'cart bumps against left edge', 'cart bumps against right edge', 'pole angle exceeds
maximal value', and 'pole angle below minimal value'. In case of failure the 'pain contribution'
for the corresponding prediction was 1.0. An additional 'true' unit which was always on was
connected to all non-input-units of the C /111 AC-system in order to provide a modifiable bias .
For scaling reasons there was a connection with a fixed weight of 0.1 between C's output unit
and 111 AC's corresponding input unit. Of course, tllis fixed weight was taken care of during
the error-propagation phases from 111 AC down into C.

At the beginning of each episode, x was randomly initialized between -2.4m and +2.4m, (}
was r andomly initialized between -0.21 and 0.21, x was randomly initialized between -1.5m/s

Networks adjusting networks 9

and +1.5m/s, and iJ was randomly initialized between -2.0/s and +2.0/s. Between two time
steps C's input changed according to a simulation of the cart-pole system by Euler 's method
with a time step of 0.02s.

C's learning rate was equal to 100, J..t[AC's learning rate was equal to 0.2, the discount
factor 1 was equal to 0.95. Weights were randomly initialized between -0.05 and 0.05. Five
test runs were conducted. The episodes needed to achieve the first episode of more than
30000 time ticks were counted. (If output actions were selected randomly, then the average
time until failure was less than 20 time steps. The longest run reported by Anderson [1] took
28407 time steps , more than 7000 failures had to be experienced to achieve that result.)

The results of the five test runs were 713, 486, 536, 614, and 513.
VVithin less than 800 failures the system always produced an episode with more than

30000 time steps balancing time. Similar results with a one-dimensional critic could not be
obtained.

Using the input variables directly (without scaling) led to even better results : Here the
corresponding five numbers were 174, 180, 144, 119, and 155.

It is expected that the concept of multi-dimensional J..t[AC's will prove to be superior,
particularily when it comes to complex tasks where t here are multi-dimensional action vectors
and multi-dimensional 'pain' or 'pleasure' vectors. V<le have started to apply vector-valued
MAC's to industrial robot control.

An Approach to Local Supervised Learning in Recurrent N et­
works

In this section we propose a local lea.rning scheme for supervised learning in continually
running recurrent networks, where each unit at each time receives an individual error signal.
The method is based on back-propagation (BP) [17] in recurrent networks unfolding in time
[7]. The global error measure to be minimized is the sum of all errors received at the output
units over time. The important difference will be that the method is local in space and time,
while conventional BP is not. In conventional BP each unit needs a stack for remembering
past activations which are used to compute contributions to weight changes during the error
propagation phase. Starts and ends of sequences have to be indicated by an external teacher.

Instead of allowing unlimited storage capacities in the form of stacks, we introduce a
second adaptive but static network (again termed the 'critic'). Its task is to associate st ates
of the recurrent (primary) network with error-vectors.

The behavior of both interacting networks can be described like this: Activations spread
through the primary network in the same manner as with conventional BP. At each discrete
time tick the critic receives as input the state vector of the non-input units of the primary
network. The sum of the critic's output and the error observed at certain output-units is used
as an error-vector. This error-vector is propagated backwards through the prima.ry network,
but only one step 'back into time'. (So each unit of the primary network has to store its
last activation.) The involved weights are changed immediately afterwards, assuming that
the learning rate is sufficiently small to avoid instabilities . (Immediate weight changes are
also employed by 'i\' illiams and Zipser [22] who tested another learning algorithm for fully
recurrent networks- first described by Robinson and Fallside [6]- which is local in time but
not in space.) Immediate weight changes at the expense of deviating from t rue gradient
descent make it unnecessary to accumulate a sum of weight changes for each weight,

Networks adjusting networks 10

The new error-vector received at the non-input units after the one-step back-propagation
phase, becomes associated with the last state of the primary network. This association has
to be done by the static learning algorithm of the critic, which can be a Boltzmann machine,
or a. feed-forward BP network, or something else.

A critical assumption of this scheme is that the state of the non-input units at a given
time uniquely represents the history which led to this state. Two different histories leading
to the same internal state cannot be distinguished by the critic. In such cases it is likely that
incorrect error vectors are one-step-back-propagated during further training. A self-healing
effect could be that weight modifications caused by this process lead to new errors which
in turn split (critical' states into two or more distinguishable states representing different
histories. However, the precise nature of the interactions between two networks like those
des cri bed above is currently unclear.

The advantage of the scheme is that it is both local in space and local in time: At
every time tick the system in principle performs the same local operations, there is no need
for storing past acti vations (except for the last ones), and there is no such thing as epoch
boundaries.

For several reasons t he method does not implement exact gradient descent. Two of t hem
have been mentioned above: There are continuous weight changes, and different hi stories
leading to the same state will cause incorrect error vectors. Another (pragmatic) reason is
that the critic often will not exactly mirror the relations between primary states and error
vectors, since its learning algorithm will not be perfect either . (Similar' primary states will
produce csimila.r ' error-vectors, where the measure of similarity depends on the complexity of
the critic. It remains to be verified whether such a learning scheme will face serious problems
or whether the inertia of the static network could even lead to beneficial effects , comparable to
the effects induced by momentum terms in conventional BP. In some preliminary experiments
with a constrained linear critic (modified with the delta-rule) the system sometimes learned,
but more often failed to learn a dynamic task (the dynamic delayed XOR problem as described
in [22]). An interesting point is, again, t hat the linearity of the critic did not necessarily
prevent the recurrent network from eventually solving its task. Yet it is expected that a
non-linear critic will lead to better performance, since in general the error is a non-linearily
separable function of the primary system's states.

Conclusion

The common aspect of the methods described above is that t hey a.ll include a component
which learns to associate states of a control network with appropriate error information, in
order to allow goal directed weight changes in the control network.

A main motivation behind the presented ideas was the desire for learning algorithms
local in space and time. A related step in that direction was undertaken in [10), where a
completely local learning method for neural networks based on Holland's bucket brigade was
described. Unlike the methods described above, the cNeura.l Bucket Brigade' does not depend
on explicit eva.lua.tion of complete activation states at any time. A potential drawback of thi s
cwea.ker' approach was a. great sensibility to fluctuations of activation at t he unit level. The
introduction of a. network which judges the whole state of a recurrent network was partly
motivated by the desire to escape the instabilities caused by such unit-level fluctuations.

I beli eve that the concept of network-adjusting networks can be helpful in a variety of

Networks adjusting networks 11

contexts. The main idea is: A system which has to learn to perform some task should build a
model of what is wrong with its current performance. It should use the hypotheses generated
by the model to change its behavior. A model which does not lead to improved performance
has to be di scarded or at least modified such that it generates better hypotheses concerning
the successes or failures to be expected.

Acknowledge1nents

Thanks to Klaus Bergner for conducting the pole balancing experiments. Thanks to Mark
Ring for providing useful comments on a draft of the paper.

Appendix: Details of Cart-Pole Shnulation

The cart-pole system, taken from [3) , (14), and [1) , was modeled by the equations

· n + n - F-ml02 sin0+p.csgn(z) f!:JJ_
.. gs~nu casu mc+m - m /
B = -------:----"-=~----­t(1 _ mcos28)

3 mc+m

.. F + ml(B2sinB - BcosB)- f.Lcsgn(z) z = ---'----------'--'--.......::...---'---'-
mc+m

where -0.21 < B < 0.21 (angle of pole with the vertical), -2.4m < z < 2.4m (position of
cart on track), g = 9.8~ (gravitational acceleration), me = 1kg (mass of cart), m = 0.1kg
(mass of pole), l = 0.5m (half pole length), f.Lc = 0.0005 (coefficient of friction of cart on
track), fl'P = 0.000002 (coefficient of friction of pole on cart), FE [-25N, 25N) (force applied
to cart's center of mass, parallel to track) . (Note that there is a typing error in the equations
given in [3), [14), and [1) : There the gravitational constant is given as g = -9.8~).

The scaled input variables were z = z!14
, z = Z+]·5

, 0 = 8t~i1 , B = 0t .

R efe rences

[1) C. W. Anderson. Learning and Problem Solving with Multilayer Connectionist Systems.
PhD thesis, University of Massachuset ts, Dept. of Camp. and Inf. Sci., 1986.

[2) A. G. Barto and P. Anandan. Pattern recognizing stochastic learning automata. IEEE
Transactions on Systems) ManJ and Cybemetics, 15:360- 375, 1985.

[3) A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that
can solve difficult learning control problems. IEEE Tmnsactions on Systems) li1anJ and
Cybemetics, SMC-13:834-846, 1983.

[4) M. I. Jordan. Supervised learning and systems with excess degrees offreedom. Technical
Report COINS TR 88-27, Massachusetts Institute of Technology, 1988.

[5) M. I. J ordan and R. A. J acobs . Learning to control an unstable system with forward
mo cleling. In Pmc. of the 1990 Connectionist Models Su.mmer School) in Jn'ess. Sa.n
Ma.tco, CA: :tviorga.n Ka.ufma.nn, 1990.

Networks adjusting networks 12

[6) A. J. Robinson and F. Fallside. The utility driven dynamic error propagation network.
Technical Report CUED/F-INFENG/TR.1, Cambridge University Engineering Depart­
ment, 1987.

[7) D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by
error propagation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed
Processing, volume 1, pages 318- 362. MIT Press, 1986.

[8] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal
on Research and Development, 3:210- 229, 1959.

[9] J. H. Schmidhuber. Learning algorithms for networks with internal and external feedback.
In Proc. of the 1990 Connectionist Models Summer School, in press. San Mateo, CA:
Morgan Kaufmann, 1990.

[10) J. H. Schmidhuber. A local learning algorithm for dynamic feedforward and recurrent
networks. Connection Science, 1(4):403-412, 1990.

[11] J. H. Schmidhuber. Making the world differentiable: On using fully recurrent self­
supervised neural networks for dynamic reinforcement learning and planning in non­
stationary environments. Technical Report FKI-126-90 (revised), Institut fiir Informatik ,
Technische Universitat Miinchen, November 1990. (Revised version of an earlier report
from February.).

[12] J. H. Schmidhuber. Recurrent networks adjusted by adaptive critics. In Proc.
IEEE/INNS International Joint Conference on Neural Networks, Washington, D. C.,
volume 1, pages 719- 722, 1990.

[13] J. H. Schmidhuber. Response to G. Lukes' review of 'Recurrent networks adjusted by
adaptive critics'. Neural Network Review, in press, 1990.

[14] R. S. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD thesis,
University of Massachusetts, Dept. of Comp. and Inf. Sci., 1984.

[15) R. S. Sutton. Learning to predict by the methods of temporal differences. Machine
Learning, 3:9- 44, 1988.

[16) C. 'iVatkins. Learning from Delayed Rewm·ds. PhD thesis, King's College, 1989.

[17) P. J. Werbos. Beyond Regression: New Tools for Pr·ediction and Analysis in the Behav­
ioml Sciences. PhD thesis, Harvard University, 1974.

[18) P. J. VVerbos. Building and understanding adaptive systems: A statistical/numerical
approach to factory automation and brain research. IEEE Tr·ansactions on Systems,
Man, and Cybernetics, 17, 1987.

[19] R. J. Willia.ms. On the use of backpropagation in associative reinforcement learning. In
IEEE International Confer·ence on Neural Networks, San Diego, volume 2, pages 263-
270, 1988.

[20] R. J. Williams. Toward a theory of reinforcement-learning connectionist sys tems. Tech­
nical Report NU-CCS-88-3, College of Comp. Sci ., Northeastern University, Doston, :tvfA,
1988.

Networks adjusting networks 13

[21] R. J. Williams and Leemon C. Baird. Draft: A mathematical analysis of actor-critic
architectures for learning optimal controls through incremental dynamic programming.
College of Comp. Sci ., Northeastern University, Boston, MA, 1990.

[22] R. J. Williams and D. Zipser . Experimental analysis of the real-time recurrent learning
algorithm. Connection Science, 1(1):87- 111, 1989.

FKI-104-89

FKI-105-89

FKI-106-89

FKI-107-89
FKI-108-89
FKI-109-89

FKI-110-89

FKI-111-89

FKI-112-89
FKI-113-89

FKI-114-89
FKI-115-89
FKI-116-89

FKI-117-89

FKI-118-89

FKI-119-89

FKI-120-89
FKI-121-89
FKI-122-89

FKI-123-89
FKI-124-90
FKI-125-90(revised)

FKI-126-90(revised)

FKI-127-90
FKI-128-90
FKI-129-90
FKI-130-90
FKI-131-90
FKI-132-90
FI<I-133-90

FKI-134-90

F I<I-135-90
FKI-136-90
FKI-137-90

FKI-138-90
F KI-139-90

Berlram FronhOfer, Uli Furbach: ESPRIT PROJECT 973 ALPES- A Programming Environment for
Logic Programming. In: Brauer W. Freksa C. (Hrsg.): Wissensbasierte Systeme, 3. Intemationaler GI­
Kongrel3. Berlin: Springer 1989 (Informatik Fachbcrichte 227)
Andreas SLrasser: Strukturierte Darstellung juristischen Wissens. In: Paul M. (Hrsg.): Proc. 19. GI­
J ahrestagung, Berlin: Springer 1989.
Wolf gang Bibcl, L. Farinas del Cerro, Bert.ram FronhOfer, Andreas Herzig: Plan Generation by Linear
Proofs: on Semantics. In: Metzing D. (Hrsg.): GWAI-89, 13th German Workshop on Artificial
Intelligence. Berlin: Springer 1989.
Stefan Lanser: NEOSIM Der Neocognitron Simulator.
Bertram Fronhofer: Default Connections in a Modal Planning Framework.
Gerhard SLrobl, Dieter DodenhOft: A Knowledge-Based Approach for Design Analysis in Mechanical
Engineering. In: Plander I. (ed): Proceedings of the 5th International Conference on Artificial Intelligence
and Information-Control Systems of Robots- 89. North-Holland, 1989
Uli Furbach, Steffen Holldobler: Equations, Order-Sortedness and Inheritance in Logic Programming. In:
Wilkerson (ed.): Advaces in Logic Programming and Automated Reasoning. Ablex Publishing
Corporation. 1989
Uli Furbach, Steffen Holldobler, Joachim Schreiber: Linear Paramodulation modulo Equality. In:
Metzing D. (Hrsg): Proceedings of the 13th German Workshop on Artificial Intelligence. Berlin:
Springer 1989 (Informatik Fachberichte 216)
Andreas Strasser, Gerhard Strobl, Dieter DodenhOft: Flexible Classification in ProObj.
Franz Kurfel3, Xaver Pandolfi, Zoubir Belmesk, Wolfgang Ertel, Reinhold Letz, Johannes Schumann:
P ARTHEO and FP2: Design of a Parallel Inference Machine. In: Treleaven P. (ed): Parallel Computers:
Object-Oriented, Functional and Logic, Chicester: Wikley, 1989
Wolfgang Ertel: Backpropagationwith Temperature Parameter and Random Pattern Presentation.
Christian Suttner, Wolf gang Ertel: Automatic Acquisition of Search Guiding Heuristics.
Reinhold Letz, Johannes Schumann, Stefan Bayed, Wolfgang Bibel: SETHEO: A High-Performance
Theorem Prover
Stefan Bayerl, Reinhold Letz, Johannes Schumann, Franz Kurfel3, Wolfgang Ertel: -ESPRIT- 415
Deliverable D16, PARTHE0/6: Full First order Logic Parallel Inference Machine
-Language and Design -.

Wolfgang Ertel, Johannes Schumann, Reinhold Letz, Stefan Bayed, Franz Kurfel3, M. van der Koelen,
Christian Suttner, N. Trapp:- ESPRIT- 415 Deliverable D15, PARTHE0/6: Parallel Automated
Theorem Prover based on the Connection Method for Full First order Logic- Implementation and
Performance- .
Stefan Bayed, Reinhold Letz, Johannes Schumann: PARTHEO: A Parallellnference Machine. In: Brauer
W. Freksa C. (Hrsg.): Wissensbasierte Systeme, 3. Intemationaler GI-Kongrel3. Berlin: Springer 1989
(Informatik Fachberichte 227)
Reinhold Letz, Johannes Schumann: PARTIIEO: A High Performance Parallel Theorem ?rover.
Johannes Schumann, N. Trapp, M. van der Koelen: SETHEO!PARTHEO, Users Manual.

Reinhold Letz, Stefan Bayerl, Johannes Schumann, Bertram FronhOfer: The Logic Programming
Language LOP.
Reinhold Letz: Classical Negation in Logic Programming.
Jiirgen H. Schmidhuber: A local learning algorithm for dynamicfeedfonvard and recurrent networks.
Jiirgen H. Schmidhuber: Networks adjusting networks. A revised and extended version of 'Networks
adjusting networks' in J. Kindermann and A. Linden (eds.), Proceedings of 'Distributed Adaptive Neural
Information Processing', St. Augustin, 24. - 25. 5. 1990, pp. 197-208, Oldenbourg, 1990
Jiirgen H. Schmidhuber: Making the World Differentiable: On Using Self-Supervised Fully Recurrent
Neural Networks for Dynamic Reinforcement Learning and Planning in Non-Stationary Environments
Gerhard Weiss: Artificial Neural Learning.
Jiirgen H. Schmidhuber, Rudolf Huber: Learning to generate focus trajectories for attentive vision.
Jiirgen H. Schmidhuber: Towards compositionallearning with dynamic neural networks.
Andreas SLrasscr: Consistency-checking of legal contracts using a temporal nwdel.
Peter Baumgartner: Combining horn clause logic with rewrite rules.
Gerhard Weiss: Combining neural and evolutionary learning: Aspects and approaches.
Peter Baumgartner, Siegfried Meggendorfer, Zong Yan Qiu: Software Specification Methods from the
Viewpoint of Reusability
Kai Zimmermann: Entwicklung einer bildorientierten Benutzungsoberfliiche fiir wissensbasierte Systeme,
In: K. Kansy, P. Wil3kirchen (Hrsg), Graphik und KI, Informatik-Fachbcrichte 239, Springer-Verlag,
Berlin, 1990
Daniel Hemandez: Relative Representation of Spatial Knoll'! edge: The 2-D Case
Christian Freksa: Qualitative Spatial Reasoning
Marco Dorigo, Bernhard Schtitz: Mapping a Generator for Neural Network Simulators to a Transputer
System
Pctra Briiunling, Clu·islian Frcksa, Kai Zimmermann (eds.): The SpaceGardcn Bibliography
Andrl':ts SLrasscr: Problcme regelbasicrtcr Repriiscntation \ 'Oil Wisscn in juristischcn Expcrtensystuncn

