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[Insects, Social Insects, and Ants |

» 10%living insects (rough estimate)
* ~2% of all insects are social
* Social insects are:

— Allants

— All termites

— Somebees

— Somewasps

» 50% of all social insects are ants
* Avgweight of one ant between 1 and 5 mg
» Tot weight ants ~ Tot weight humans

Luca Maria Gambardella, IDSIA, 2005

How Do Ants Coordinate their
Activities?

Ants do not directly communicate.
The basic principle is stigmergy, a
particular kind of indirect
communication based on
environmental modification

Stimulation of workers by the
performance they have achieved
GrasséP. P., 1959

Foraging behavior: searching for
food by parallel exploration of the
environment

Luca Maria Gambardella, IDSIA, 2005

Shortest paths: an emerging
behavior from stigmergy

Foraging ant colonies can synergistically find shortest paths
in distributed /dynamic environments:

— While moving back and forth between nest and food ants mark
their path by pheromone laying

— Step-by-step routing decisions are biased by the local intensity
of pheromone field (stigmergy)

— Pheromone is the colony’s collective and distributed memory: it
encodes the collectively learned quality of local routing choices
toward destination target

R. Beckers, J. L. Deneubourg and S. Goss, Trails and U-turns in the selection of the
shortest path by the ant Lasius Niger, J. of Theoretical Biology, 159, 1992
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How Ants Find Food |

Social insects, following simple, individual ru
colony activities through: flexibility, robustne:

| Ants Foraging Behavior |

Luca Maria

1DS1A, 2005
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| Pheromone Trail Following |

Ants and termites follow pheromone trails

Luca Maria IDSIA, 2005

| Simple Bridge Experiment |

Goss et al., 1989, Deneubourg et al., 1990

9% ants in upper and lover branches
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[ Asymmetric Bridge Experiment |

Goss etal., 1989 Dorigo & Bertolissi, 1998

Luca Maria IDSIA, 2005

| From ants to agents |

+ Reverse-engineering of ant colony mechanisms: Ant Colony
Optimization (ACO) metaheuristic:
— Combinatorial optimization
— Adaptive routing

* Multiple autonomous/concurrent agents (ants): solution
construction as sequential decision process:

— Model: a network of decision points where the quality of the
choices is expressed by pheromone variables

— Building Solutions = constructing a path in the network
according to a stochastic decision policy

— Use of solution outcomes to iteratively update pheromone
(generalized policy iteration based on Monte Carlo sampling)

— No explicit solutions representation. The collectively learned
knowledge is distributed in the pheromone

Dorigo M., Di Caro G., Gambardella L.M., “Ant Algorithms for Distributed Discrete
Optlmlzatlon ‘Arificial Life, Vol. 5, N. 2, 1999.
Luca Maria Gambardella, IDSIA, 2005

- ACO algorithms are multi-agent systems that exploit
artificial stigmergy for the solution of combinatorial
optimization problems.

- Artificial ants live in a discrete world. They construct
solutions making stochastic transition from state to state.

- They deposit artificial pheromone to modify some aspects
of their environment (search space). Pheromone is used
to dynamically store past history of the colony.

- Artificial Ants are sometime “augmented” with extra
capabilities like local optimization or backtracking

Luca Maria IDSIA, 2005

| Similarities with Real Ants |

« Colony of simple cooperative individuals.

« an artificial pheromone trail is used for local stigmergetic

communication
« a sequence of local moves to find shortest path

* a stochastic construction policy (exploration and
exploitation) based on local information

Luca Maria Gambardella, IDSIA, 2005




| Differences with real ants |

Artificial ants use a discrete world
Avrtificial ants have internal state and memory

The deposited pheromone is proportional to the quality of
the solution (some real ants have a similar behavior)

extra capabilities (lookahead, local optimization,
backtracking)

Luca Maria 1DS1A, 2005

Travelling Salesman Problem (TSP)

Problem: given N cities, and a distance function d
between cities, find a tour that:

(1) goes through every city once and only once
Seat

(2) minimizes the total distance

= Problem is NP-complete Boson
Faniho

= Classical combinatorial

optimization problem

to test algorithms

New York
Okehoma
LosAngebs Sy

San Diegp Abuguerue

First ACO application, Ant System, Dorigo et al. 1992
Fouston
iani
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Search Space

Discrete Graph

To each edge is associated a 8
static value returned by an 9
heuristic function h(r,s) based
on the edge-cost

Each edge of the graph is
augmented with a pheromone
trail t(r,s) deposited by ants.
Pheromone is dynamic and it is
learned at run-time

Luca Maria Gambardella, IDSIA, 2005

[ ACS: Ant Colony System for TSP |

Loop
Randomly position m artificial ants on n cities
For city=1ton
Forant=1tom
{Each ant builds a solution by adding one city after
the other}
Select probabilistically the next city according to
exploration and exploitation mechanism
Apply thelocal trail updating rule
End for
calculate the length Lmof the tour generated by antm
End for
Apply the global trail updating rule using the best ant
Until End_condition
Dorigo M., Gambardella L.M, Ant Colony System: A Cooperative Learning Approach to

the Traveling Salesman Problem , IEEE Transactions on Evolutionary Computation Vol.
1,No. 1,pp. 53-66, 1997

Luca Maria Gambardella, IDSIA, 2005

[ ACS State Transition rule |

Next city is chosen between the not visited cities
according to a probabilistic rule

Exploitation: the best edge is chosen

Exploration: one of the edge in proportion to its value

probabilistic rule

Luca Maria Gambardella, IDSIA, 2005

| ACS state transition rule: formulae |

: arguin}'ixz){t (r.9)]fh (r,u)]b} if €do (Exploitation

s=i
i S otherwise (Exploral
T

where
. Sis a stochastic variable distributed as follows:

i b
: ! (¢ SIpfntr ] o ifsT 3 (0

pers) =i A [t(ru)h(r,u]

LRI

t is the trail N
his the inverse of the distance ' ° othe
J.(n) is the set of cities still to be visited by ant k positioned on city r
b‘and q,are parameters
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[ACS state transition rule: example |

nextstate: S

3
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with probability g, exploitation

with probability (14,) biased
exploration
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ACS local trail updating
... Similar to evaporation

If an edge (r,s) is visited by an ant

t(r,s)= (- r )t (r,s) +r>Ct(r,s)

with DX (r,s) =t,

Luca Maria Gambardella, IDSIA, 2005

|[ACS global trail updating |

At the end of each iteration, the best ant so far, is allowed
to reinforce its tour by depositing additional pheromone
proportional to the length of the tour

t(r,s)~ (@- a)st(r,s)+a Dt (r,9giopal
where

Dt (1, 9lobal = Lows
L=

Luca Maria Gambardella, IDSIA, 2005

Best solutions structures emerge step by step from the computation

Among the state of the art algorithms for TSP and ATSP problems

Luca Maria Gambardella, IDSIA, 2005

Pheromone is useful? |
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Effectiveness of distributed
pheromone learning

525 Test problem: CCA0

—— pheromone

— No pheromone

100 200 300 400 500 600 700 800
PuTime (ms ec)

Best tour length as a function of elapsed CPU time (avg on 100 runs)

Luca Maria Gambardella, IDSIA, 2005




Comparison of ACS
with other heuristics on random TSPs

Prot@n name ACS A =) S
(average) | (average | (average) | (average

Qtyset1 5.88 5.88 598 6.06

Qtyset2 605 6.01 6.03 6.25

Qtyset3 558 5.65 570 5.83

Qtyset4 574 5.81 586 5.87

dtyset5 6.18 6.33 649 6.70

Comparisons on average (25 trids) tour length
obtained on five random 50-city symmetric TSP

Luca Maria 1DS1A, 2005

Comparison of ACS with other natural
algorithms on geometric TSPs

Problem name ACS €} EP EN Optimum
150 425 28 4% 443 425
(50-city problem) (427.%6) (N A) (427.86) (NA) (N A)
[1.830] [25000]  [100,000] | [68,512]
HI75 535 55 52 580 535
(75-city problem) | (542.37) (N A) (549.18) (NA) (N A)
[3.480] [80.000]  [325,000] | [173250]
KroA 100 21,282 21,761 NA NA 21,282
(100-city pr ol em) | (21, 285.44) (N A) o~ A) (NA) (N A
[4,820] [103,00] [V Al [N Al

Best integer tour length, best redl tour length (in parentheses) and number of tours
required to find the best integer tour length (in square brackets)
Optimdl length is available only for integer tour lengths ACS resultson 25 trids

Luca Maria Gambardella, IDSIA, 2005

Problem name AGS cs A Standerd | Quimm  Rlative error|  GUsecto
best integer  num ber of average deviation| 2 generatea
lengh  tows imeger o o
(1)  generated to lengh @ e
best
508 585000 16051 71 | 5780 068 % 00
(se-city probiem)
51268 595000 5169 188 | 50779 0.96% 0o
(a42-city probiem)
a2 Bie  swess wsm  zs | 26w LeT% 007
(32-city problem)
rare s015  9mze  90s 2 | see  237% 01
(783-city prodiem)
fis7r 297 9000 i@ 16 |[220i- 327:348%| o048
(1577 -ciy probiem) 2 249]

Integer length of the shortest tour found, number of toursto find it, axg integer length
(over 15 trids), its std dev, optimal solution, and the relativ e error of ACS

Luca Maria Gambardella, IDSIA, 2005

| ACS Extension |

Current wisdom says that a very good strategy for the
approximate solution of combinatorial optimization
problems is the coupling of:

constructive heuristic, and
local search

The problem is to find good couplings:

ACO (and other derived algorithms) seems (as shown by
experimental evidence) to provide such a good coupling

Luca Maria Gambardella, IDSIA, 2005

[ACS plus local searchl]

Loop
Randomly position m agents on n cities
For step=1ton
For ant=1to m
Apply the state transition rule
Apply the local trail updating rule
Apply local searcheach solution is optimized by a problem specific heuristic
Apply the global trail updating rule using the best optimized solution
Until End_condition

Luca Maria Gambardella, IDSIA, 2005

[ Local Search |

[ ] (] [ (] [

A 2-exchange always inverts a path.

Luca Maria Gambardella, IDSIA, 2005




[ Local Search |

A 3-exchange without (b) and with (c) path inversion

Luca Maria 1DS1A, 2005

[ ACS-3-opt applied to TSP |

Protlemrame  AGS-3 ot | ACS3aqx  ACS3pt| ACS 3ot Qrimum | SErar
bestresult | testresit  amage | wexp @ | (0-2
(legth) (se0) (egh) (se0) e
[¢)]
a8 15,780 16 15,7817 28 15,780 001 %
(198dy podem
finG 18 2,9 101 4202 537 202 | 000%
(& padem
ase 27,693 133 z7,m82 | &0 2768 | 011%
(832:city problem)
rare 8818 137 88¥9 | 1280 86 | 036%
(B3ciy potien)

Results obtained by ACS3-opt on TSP problems taken from the First International
Contest on Evolutionary Optimization, |EEE-EC 96, May 2022, 1996, Nagoya, Jepan

Luca Maria Gambardella, IDSIA, 2005

Comparison of ACS-3-opt and GA+local
search on TSPs

Aolen e AG-30l AGS3-fi| AG3-of SSRG\  STP-G\  SSRGA  Opimum
weap weap | %era  aeap aeae  Y%era [€)
Gy (se9 | DB (egy o)  (2-@)
A e
@) 3 2 3
dios B78L7 B8 | 001% 15780 23 0% 1578
(198-city problem)
. 420 W=7 | 000% 4202 204  00% 4200
(318-city problem)
ase 277182 810 Q1% 27687 1180 008% 27686
(532-city problem)
rams 8879 180 | 0%% 88073 21210 001% 8805
783 -city problem)

Results obtained by ACS3-opt and by STSP-GA on ATSP problemstaken fromthe
First International Contest on Evolutionary Optimization, |EEE-EC 96, May 20-22,
1996, Nagoya, Jepan

Luca Maria Gambardella, IDSIA, 2005

| ACS-3-opt applied to ATSP |

Problemname  ACS-3-opt ACS-3-opt ACS 3 ox  ACS 3-opt [ Optimum | % Error
bestresut bestresut  average  average @) 1)-2
(ength) (seq) (lengeh) seq) oy
&)
P43 2,810 1 2,810 2 2,810 0.00 %
(43-city problem)
rv48p 14,422 2 14422 19 14422 | 000%

(48-city problem)
70
(70-city problem)

krol24p 36,230 3 36,230 25 36,230 | 000%
(100-city problem)

8.673 3 38679.8 6

002%

2.755 17 2,755 68 2,7% | 000%

(170-city problem;

Resultsobtained by ACS3-opt on ATSP problems taken from the First International
Contest on Evolutionary Optimization, |EEE-EC 96, May 2022, 1996, Nagoya, Japan

Luca Maria Gambardella, IDSIA, 2005

Comparison of ACS-3-opt and
GA+local search on ATSPs

Froblemname  ACS-3-0pt ACS-3-0pt ACS-3-opt| ATSP-GA ATSRGA  ATS-GA
average  average % error | average  average % error
(ength) (seq) 1y @) (length) (sec) @y e)
o T @ T
G) G)
p3 2810 2 0.00% 2,810 1 0.00%
@3-city provlem)
ry4ep 14,422 19 0.00% 14440 0 012%
@8-city problem)
70 386798 6 002% | 386838 639 003%
(70-city problem)
krot24p 3,230 £ 000% | 362353 115 001%
(100-city problem)
2755 6 000% | 27661 211 0.40%
(170-city problem

Resultsobtained by ACS3-opt and by ATSP-GA on ATSP problemstaken from the
First International Contest on Evolutionary Optimization, IEEE-EC 96, May 20-22,
1996, Nagoya, Japan

Luca Maria 1DS1A, 2005

| Sequential Ordering Problem |

It consists of finding a minimum weight Hamiltonian path on a directed
graph subject to multiple precedence constraints among nodes.

Star O e O End
T—O—0 ﬁ/
o ®)

SOP models real -world problems like production planning, single-vehicle
pick-up and delivery and transportation problems

GambardellaL.M, Dorigo M., An Ant Colony System Hybridized with a New Local Search for the
Sequential Ordering Problem,INFORMS Journal on Computing, vol.12(3), pp. 237-255, 2000

Luca Maria Gambardella, IDSIA, 2005




| Sequential Ordering Problem |

« Escudero (1988)

* General ATSP Problem

— Precedence Constrained ATSP Polytope (Balas, Fischetti,
Pulleyblank, 1995).

— Branch and Cut (Ascheuer, 1996)

— Maximum Partial Order/Arbitrary Insertion GA (Chen and Smith,
1996)

* Pick-Up and Delivery

— Lexicographic search with labeling Procedure (Savelsbergh,
1990).

Luca Maria 1DS1A, 2005

[HAS-SOP: Hybrid Ant System for SOP |

« Costructive phase based on ACS
* Trail updating as ACS
« New local search strategy based on a combination

between lexicographic search and a new labeling
procedure.

» New data structure to drive the search

« First in literature that uses a local search edge-exhange
strategy to directly handle multiple constraints without any
increase in computational time.

Luca Maria Gambardella, IDSIA, 2005

Ants for SOP

« Each ant iteratively starts from node 0 and adds new
nodes until all nodes have been visited and node nis
reached.

* Whenin node i, an ant chooses probabilistically the next
node jfrom the set F(i) of feasible nodes.

« F(i) contains all the nodes jstill to be visited and such that
all nodes that have to precede j, according to precedence
constraints, have already been inserted in the sequence

Luca Maria Gambardella, IDSIA, 2005

| Local Search |

N
path-left path-right

0 h }'Hl 1 i i+ 1 n

path-right path-left

Luca Maria Gambardella, IDSIA, 2005

th_left and path_right are initially composed of
S e dame o s

n

j walks through the sequence until a
ol

peth left=()and path_right=(+1..., )

node - 1isreached
path left=(1+1...1) and path right=()

Luca Maria Gambardella, IDSIA, 2005

TSPLIB  MPO/Al MPOAI MPO/AI HASSOP HASSOP HAS-SOP
PROB Bounds Best Ag  Tme  Best Avg Time

(sec) Sec;
t70.1.s0p 39313 39545 39615 120 39313 393130 298
t70.2.50p [39730,40422] 40422 40435 120 40419 404335 1141
t70.3.50p [4130542535] 42535 42558 120 42535 425350 64.4
t70.4.50p [52269,53562 53562 53583 120 53530 535665 382
kiol24plsop [3772240186] 40186 40996 240 30420 394200 1152
kiol24p2.sop  [3853441677) 41667 42576 240 41336 413360 1193
kiol24p3sop  [4096750876] 50876 51085 240 49499 496488 2628
kiol24p4sop [6485876103] 76103 76103 240 76103 761030 574
hg323asop  [31363157] 3157 316l 2760 3141 31460 16855
thg34lasop  [25432507] 2597 2608 3840 2580 25019 21496
thg3seasop  [25182599] 2599 2636 6120 2555 25612 21603
thg378asop  [27612833] 2833 2843 8820 2817 28343 26403

We tested and compare our adgorithms on a set of problemsin TSPLIB
using aSUN UltraSPARC 1 (167Mhz)

Luca Maria Gambardella, IDSIA, 2005




TSPLB  NEW  NEW  HASSOP A SuDev.  Am
PROB Bounds  Lower  Upper  AlBest Resut Time
Bounds  Bounds (sec)
E5C63.50p & & 620 o o1
ESC78.50 18230 18230 182300 0 69
#531.50p [7438.7570) 7531 7531 75310 o 99
153250 [7630,8335] 8026 802 80260 0 184
533500 947310935 10262 10262 102620 0o 29
53.4.50p 14425 14425 144250 o o4
70.1.50p 39313 39313 393130 0 298
f70250p  [39739.40422] 39803 40419 40419 404335 246 1141
f703s0p  [4130542535 41305 42535 425350 0 64
f04s0p  [5226953562] 53072 53530 53530 535665 76 382
kro124p.1.50p [37722,40186] 37761 39420 39420 394200 0 152
kio124p.2.50p [38534,41677) 38719 41336 41336 413360 0 1193
ki0124p.3.50p [40967,50876] 41578 49499 49499 496488 2497 2628
Kr0124p.4.50p _[64858,76103] 76103 761030 o 514
prob100sop  [1024.1385] 1027 1100 1190 13024 394 19187
1bg109a.50p 1038 1038 10380 0 146
tbglsoasop  [1748,1750] 1750 17500 0 s
rbg174a.50p 2033 2033 20347 14 993
rbg253asop 29282987 2940 2050 2950  2950.0 0 s
rbg3zdasop (31363157 3137 3141 3141 31460 14 16855
rbg3slasop  [25432597] 2543 2574 2574 25019 118 21496
fbg3ssasop 25182599 2529 2545 2545 25612 52 21693
fg3tasop (27612833 2817 2817 2817 28343 107 26403

The best-known resultsfor many test problemsfrom
TSPLIB hasbeenimproved by using HAS SOP

PROB. RND MPO ACS-SOP RND+LS MPO:/AHL HAS-SOP
prob.100  ||1440.1% 134.9% 40.62% 50.07% 47.58% 17.46%
rbg109a 64.57% 0.33% 1.93% 0.08% 0.06% 0.00%
rbg150a 37.85% 0.19% 2.54% 0.08% 0.13% 0.00%
rbgl74a 40.86% 0.01% 2.16% 0.15% 0.00% 0.08%
rbg253a 45.85% 0.03% 2.68% 0.21% 0.00% 0.00%
rbg323a 80.14% 1.08% 9.60% 1.27% 0.08% 0.21%
rbg3ala 125.46% 3.02% 12.64% 4.41% 0.96% 1.54%
rbg358a 151.92% 7.83% 20.20% 4.98% 2.51% 1.37%
rbg378a 131.58% 5.95% 22.02% 4.17% 1.40% 0.88%
avg 235.38% 17.0% 12.71% 7.27% 5.86% 2.39%

Local Search Contribution (+LS): Average Percentages of Deviation from the
BestKnown Solution. Resultsare Obtained over Five Runs of 600 Seconds. Best
Results are in Boldface. RND=Random Restart, MPO/AI=

Luca Maria 1Ds1A, 2005 Luca Maria Gambardella, IDS1A, 2005
[Local Search Contribution | | MACO: Multiple Ant Colony Optimization |
No local search With SOP-3-eXCEangelocal In ACO each colony is dedicated to single function
searc

Random MPO/AI ACS-SOP | Random | MPOJAT HAS-SOP

169.26% 7.59% 13.44% 3.55% 2.51% 1.01%

Local Search Contribution (+L S): Average Percentages of Deviation from the
Best-Known Solution. Results are Obtained over Five Runs of 600 Seconds on23
problems . Best Resullts are inRED. RND=Random Restart, MPO/Al=Maximum
Partial Order/Arbitrary Insertion, a GA based agorithm by Chen and Smith (1996)

Luca Maria Gambardella, IDSIA, 2005

optimization.

- In ACO the colony is composed by a set of simple agents
which collaborate by communicating.

- We generalize this concept to solve multiple objective
function minimization.

MACO is defined by a colony of ant colonies each one
dedicated to minimize a different objective function.

- Colonies (like ants) communicate by exchanging
pheromone information.

Luca Maria Gambardella, IDSIA, 2005

[ Vehicle Routing with time Windows |

Problem : to serve a set of
customers (with time window
constraints) with a fleet of
vehicles (with capacity
constraints)

Goal (multiple objective
function): minimize the
number of vehicles and
minimize the travelling
distance

Luca Maria 1DS1A, 2005

[ Vehicle Routing with time Windows |

- Goal: minimize the number of vehicles and minimize the
travelling distance

MACS-VRPTW: A Multiple Ant Colony System for Vehicle
Routing Problems with Time Windows

- One colony is dedicated to vehicles minimization
- The other colony is dedicated to distance minimization.

- The MACO colony is dedicated to synchronize the two
colonies.
Gambardella L.M, Taillard E., AgazziG., MACS-VRPTW: A Multiple Ant Colony System
for Vehicle Routing Problems with Time Windows , In D. Come, M. Dorigo and F. Glover,
editors, New Ideas in Optimization. McGraw-Hill, London, UK, pp. 63-76, 1999

Luca Maria Gambardella, IDSIA, 2005




Multiple Objectives

Single Objective

Single Solution

/

Aviicd Ants Artiicd Arts

Luca Maria 1DS1A, 2005

MACS-VRPTW Pheromone
Updating

AcsVei Acs-Time

Pheromone l | Pheromone Time

Vehicles

Cross Pheromone UpdatingIncreases Performances

Luca Maria Gambardella, IDSIA, 2005

| MACS-VRPTW: some details |

Unfeasible solutions are

repaired by insertion
procedures
4
d
o

Feasible solutions are
improved with local search

| Local search exchanges |

procedures
| Benchmark problems | | Benchmark problems |
With Time Windows (TSPLIB)
56 problems (Solomon, 1987) of six different types RL cL RCL R e RC2

(C1,C2,R1,R2,RC1,RC2).
Each data set contains between eight to twelve 100-node
problems. A )

«C = clustered customers with easy TW.

*R = customers location generated uniformly
randomly over a square. !
*RC = a combination of randomly placed
and clustered customers. -
«Sets of type 1 have narrow time windows and small vehicle
capacity.

«Sets of type 2 have large time windows and large vehicle
capacity.

Luca Maria Gambardella, IDSIA, 2005

VEI _DIST { VEI DIST | VB DIST {VEl DIST { VEI DIST { VEI DIST

MACS- 112,00 1217.74 10.00 82838f 11.63 138243273 967.79 300 589.86f 3.25 1129.19
VRPTW
RT 12.251208.50 10.00 82838} 11.88 1377.332.91 961.74 300 589.86§ 3.38 1119.59
B 12.17 1209.3§ 10.00 828383 11.50 1389.232.82 980.274 300 589.86; 3.38 1117.44
CR 12.42 1289.99 10.00 88586) 12.38 1455.84291 1135.14 300 658.88; 3.38 1361.14
PB 12,58 1296.8] 10.00 83801} 12.13 1446.2(43.00 1117.7q 300 589.93j 3.38 1360.57

IH 12,33 1238 10.00 83200} 12.00 1284.003.00 1005.04 300 650.00f 3.38 1229.00

Average of the best solutions computed by different VRPTW algorithms.
Best results are in boldface. RT=Rochat and Taillard (1995), TB= Taillard
et a. (1997), CR=Chiang and Russel (1993), PB=Potvin and Bengio (1996),
TH= Thangiah et al. (1994)

Luca Maria Gambardella, IDSIA, 2005




[ Old Best I New Best
Problem | source | vehicles| length | vehicla length
r112.dat RT 10 953.63 9 982.14
r201.dat S 4 1254.09 4 1253.23f
r202.dat B 3 1214.28 3 1202.52f
r204.dat S 2 867.33 2 856.36:
r207.dat RT 3 814.78 2 894.88
r208.dat RT 2 738.6 2 726.82
r209.dat S 3 923.96 3 921.65
r210.dat S 3 963.37 3 958.24:
rc202.dat S 4 1162.8 3 1377.08
rc203.dat S 3 1068.07 3 1062.30]
rc204.dat S 3 803.9 3 798.46:
rc207.dat S 3 1075.25 3 1068.85]
rc208.dat RT 3 833.97 3 833.40
tai100a.dat RT 11 2047.90 11 2041.33
tai 100c.dat RT 11 1406.86 11 1406.20}
tai100d.dat RT 11 1581.25 11 1581.244
tai 150b.dat RT 14 2727.77 14 2656.474

New best solution values computed by MACS-VRPTW.
RT=Rochat and Taillard (1995), S =Shaw (1998) TB=Taillard etal. (1997)

Luca Maria 1DS1A, 2005

AntNet Applied to
Routing in Internet-like Networks

Di Caroand Dorigo, 1997

Pheromone trail

depositing
Source! ’)
Probabilistic rule to
choose the path
Destination

Luca Maria Gambardella, IDSIA, 2005

[The Routing Problem |

« The practical goal of routing algorithms is to build routing tables

4 Routing table of node k

- Destination

. Y e T ] el
. Ll Nextnode | i | o | i | o | ]be ] | i

* Routing is difficult because costs are dynamic

« Adaptive routing is difficult because changes in the control
policy determine changes in the costs and vice versa

Luca Maria Gambardella, IDSIA, 2005

|[AntNet: The Algorithm |

Ants are launched at regular instants from each node to
randomly chosen destinations
Ants are routed probabilistically with a probability function of:
(i) some artificial pheromone values, and
(i) some heuristic values , maintained on the nodes

Ants memorize visited nodes and elapsed times
Once reached their destination nodes, ants retrace their
paths backwards, and update the routing tables

AntNetis distributed and not synchronized

Luca Maria Gambardella, IDSIA, 2005

[Ants’ Pheromone Trail Depositing |

th(t+1)~ @- 1)t} (0)+ Dt (1)
where the (i,j)’'s are the links visited by ant k, Bourcd

and

Dt () =quality“ “
N,
[Destination]

Luca Maria 1DS1A, 2005

where quality® is set proportionalto
the inverse of the time it took antk
to build the path from i to dvia j

[AntNet: Experimental setup]

+ Realistic simulator (though not industrial)

+ Many topologies

* Many traffic patterns

* Comparison with many state-of-the-art algorithms
(Open Shortest Path First, SPF, Adaptive Bellman-Ford, Qrouting,
Predictive Q-routing)

+ Performance measures:
throughput (bit/sec) measures the quantity of service, and average
packet delay (sec) measures the quality of service -

Japanese NTT net il |

American NSF net

Luca Maria Gambardella, IDSIA, 2005




AntNet: Some Results (1) mmasmmomm

Journal of Artificial Itelligence Research

NSF net NTT net
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Increasing UP traffic
UP traffic increased by reducing the mean session inter arrivaltime

Luca Maria 1DS1A, 2005

[AntNet: Adaptiveness |  Soumaor it maience

Journal of Artificial Intelligence

Research
NSF net NTT net
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Data averaged over a 5 seconds sliding window

Luca Maria IDSIA, 2005

[The ACO Metaheuristic |

Dorigo, Di Caro & Gambardella, Artificial Life, 1999

« Ant Colony System and AntNet have been extended so

that they can be applied to any shortest path problem on
graphs

The resulting extension is called
Ant Colony Optimization metaheuristic

Currently two major application classes:
— Routing in telecommunications networks

— NP-hard combinatorial optimization problems

Luca Maria 1DS1A, 2005

| The ACO-metaheuristic |

procedure ACO -metaheuristic()
while (not-termination-criterion)
schedule subprocedures
generate-&-manage -ants()
evaporate-pheromone()
execute-daemon-actions() {Optional}
end schedule subpracedures
end while
end procedure

These are problem specific actions,
like local search

DorigoM., G. O Caro and L. M. Gambardella. Ant Algonthms for Discrete
Opumlzanon Artificial Life, 5,2, pp. 137-172, 199

Luca Maria Gambardella, IDSIA, 2005

[ From research to Applications |
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Luca Maria 1DS1A, 2005

Dyvoil: Dynamic fleet optimization for fuel
BB distribution, Pina Petroli SA, Grancia, CH

Customers

Ask for fuel delivery at
home (house heating)

Multiple time windows

-
’-“ [
e o it

Combined delivery (e.g. 2 E==
families)

Stochastic quantity

Accessibility restrictions

Luca Maria Gambardella, IDSIA, 2005




AntRoute I

Running at MIGROS, the largest supermarket chain
in Switzerland (600 shops)

Tours optimisation for non-food palettes distribution with
150-200 vehicles per day

Non-homogeneous fleet hE _"--I7"
Shop Time Window restriction ST }ﬁf‘ = ¥

Shops accessibility restriction . T
Tour Minimization [ e .
Cost Minimization

Integration with CADIS and SAP

Luca Maria 1DS1A, 2005
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LOGISTICS GROUP

Barilla Group

«Around 700
routes x day

*The company
has no own trucks

Luca Maria Gambardella, IDSIA, 2005

[ Number1: the distribution problem |

« Pick-up & Delivery: there is not a central depot

« Every order has a source point and a destination point

« Every point of the distribution network has a time window
« Every point of the network has a constant service time

« Heterogeneous point typology: providers, depots, clients
* Homogeneous fleet of vehicles

Objective:
Maximization of the average tours efficiency.

This should implicitly have as a side effect the minimization of
the number of tours and of the total km.

Luca Maria Gambardella, IDSIA, 2005

Efficiency

| Numerical experiments |

Efficiency comparison

[=anTRoue — Realwith penalty ]
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| AntRoute as a strategic tool |

Average truck filling %

100

85

75 /

70

55

10 30 60 90 120 180 240 infinite
Time windows width (min)

Luca Maria 1DS1A, 2005

| Conclusion |

* ACO is a new metaheuristic to solve combinatorial
optimization inspired by the behavior of real colony of
ants.

« The main idea is to let a colony of simple agents
collaborate in the search of better and better problem
solutions.

« Search space is augmented by artificial pheromone
information, that is modified in real time.

* ACO has been able to competitively solve both academic
and industrial problems.

Luca Maria Gambardella, IDSIA, 2005




[Ant Colony Optimization Major Publications |
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Harvard Business Review
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