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Abstract In the classical facility location problem we are given a set of facil-
ities, with associated opening costs, and a set of clients. The goal is to open
a subset of facilities, and to connect each client to the closest open facility,
so that the total connection and opening cost is minimized. In some ap-
plications, however, open facilities need to be connected via an infrastruc-
ture. Furthermore, connecting two facilities among them is typically more
expensive than connecting a client to a facility (for a given path length).
This scenario motivated the study of the connected facility location problem
(CFL). Here we are also given a parameter M > 1. A feasible solution
consists of a subset of open facilities and a Steiner tree connecting them.
The cost of the solution is now the opening cost, plus the connection cost,
plus M times the cost of the Steiner tree.

In this paper we investigate the approximability of CFL and related prob-
lems. More precisely, we achieve the following results:

e We present a new, simple 3.19 approximation algorithm for CFL. The
previous best approximation factor is 3.92 [Eisenbrand, Grandoni, Rothvof3,
Schifer-"10].

e We show that SROB, i.e. the special case of CFL where all opening costs
are 0, is hard to approximate within 1.28. The previous best lower bound
for SROB is 1.01, and derives trivially from Steiner tree inapproximability
[Chlebik, Chlebikova-'08]. The same inapproximability result extends to
other well-studied problems, such as virtual private network and single-sink
buy-at-bulk.

e We introduce and study a natural multi-commodity generalization MCFL
of CFL. In MCFL we are given source-sink pairs (rather than clients) that
we wish to connect. A feasible solution consists of a subset of open fa-
cilities, and a forest (rather than a tree) spanning them. Source-sink con-
nection paths can use several trees in the forest, but must enter and leave
each tree at open facilities. We present the first constant approximation
for MCFL.

1 Introduction

In the classical metric facility location problem (FL), we are given an undirected
graph G = (V, E), with edge costs (or weights) ¢ : E — QT, a set of clients
C C V, and a set of facilities I C V, with opening costs 0 : F' — Q. A
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feasible solution is given by a subset F' C F of open facilities. The goal is to
minimize the opening cost of F’, plus the shortest path distance from each client
to the closest open facility. More formally, let c(v, u) denote the shortest path
distance between u and v, and ¢(v,U) := min,ep c(v,u) for any U C V. Then
the objective function to be minimized is 3 ;- o(f) + >, ¢ c(v, F).

In several applications one needs to connect open facilities via an infrastruc-
ture. Typically, connecting facilities among them is more expensive than con-
necting clients to facilities. This scenario motivated the introduction of the fol-
lowing problem. Let ¢(E’) := 3 . c(e) forany E' C E, and ¢(G") = c(E(G"))
for any subgraph G’ of G.

CONNECTED FACILITY LOCATION (CFL). Given an undirected graph
G = (V, E), with edge costs ¢ : E — Q, a set of clients C' C V, a set of
facilities F' C V, with opening costs 0 : F' — QT, and a parameter M >
1. Compute a subset F’ C F' of open facilities, and a tree 7" spanning
F’, in order to minimize } ;. p o(f) + X2, cc (v, F') + M - c(T").

CFL is well-studied in the literature [9,18,21,28]. The current best approxima-
tion for it is 3.92 [9]. A very well-studied [9,18,20,23,28] special case of CFL is
the single-sink rent-or-buy problem (SROB), where F' = V' and opening costs are
zero. In this context, we can think of edges of 7" as bought edges (for which we
pay a fixed, large cost), and edges outside T” as rented edges (for which we pay
a cost proportional to the number of paths using them).

Another way to interpret CFL is as follows. Clients are users who want to
reach a public transportation network 7" each day to get to their office. Com-
muting has a social cost which is shared on 7", and payed on an individual basis
outside T”. Here open facilities are stations at which users can access 7”. This
view of CFL suggests a natural multi-commodity generalization of the problem.
Replace clients with origin-destination pairs, and imagine that you can con-
struct several, possibly disconnected, transportation networks. Each network
can be reached and left at stations. More formally, one can define the following
problem. For a forest 77 and a subset of nodes V’, let ¢y 1/ (u, v) be the short-
est path distance between nodes « and v after adding one edge of cost zero
between each pair of nodes in V' belonging to the same tree of 7”.

MULTI-COMMODITY CONNECTED FACILITY LOCATION (MCFL). Given
an undirected graph G = (V, E), with edge costs ¢ : E — QT, a set of
source-sink pairs® P = {(s1,71),..., (k,7k)}, si,7: € V, a set of facili-
ties FF C V, with opening costs 0 : F — Q¥, and a parameter M > 1.
Compute a subset F’ C F of open facilities, and a forest 7", in order to
minimize 3 ;. 0(f) + 325 yep ¢ (s,r) + M- c(T7).

To the best of our knowledge, MCFL was not addressed before (at least, from
the point of view of approximation algorithms). However, there is a special
case of the problem which is well-studied in the literature: the multi-commodity

3 For notational convenience, we will consider P as a multi-set of pairs.
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rent-or-buy problem (MROB) is the special case of MCFL where F' = V and
opening costs are zero [2,3,12,20,24]. A solution to an MROB instance consists
of a forest 7" of bought edges. The cost of the solution is given by M - ¢(T") +
Z(M) cp cr'(s,1), where cr (u, v) denotes the shortest path distance between u
and v, after contracting the connected components of 7”. In other terms, MROB
is the multi-commodity version of SROB.

1.1 Our Results and Techniques

In this paper we study the approximability of CFL and related problems. In
particular, we obtain the following three main results.

(1) An Improved Approximation for CFL. We present a 3.19 approximation algo-
rithm for CFL, improving on the previous best 3.92 approximation [9]. The
approximation algorithms for CFL by Gupta, Srinivasan and Tardos [21] and
Eisenbrand, Grandoni, Rothvof, and Schifer [9] are both based on simple ran-
dom sampling steps (more details in Section 1.2). Here we present a third, sim-
ple random sampling algorithm. We first randomly sample clients, and buy a
Steiner tree T' over them. Then we define a facility location instance (on all the
clients), where the opening cost of each facility f is increased by the cost of aug-
menting T to include f. This way, the modified opening cost encodes both the
real opening cost, and the cost of connecting f to the other open facilities via T'.

Like in [9], our technique can be extended to the connected version of some
variants of facility location. However, our approach is more flexible. For exam-
ple, differently from [9], it gives a constant approximation for connected facility
location with hard capacities. Due to space limits, extensions will be discussed
in the full version of the paper.

From the analytical point of view, we exploit the core-detouring technique in
[9], which was already successfully applied in the analysis of CFL [9] and re-
lated problems [15]. The basic idea is bounding the cost of connecting a set of
clients to a random subset of them. This bound is based on detouring connec-
tion paths through a proper connected core graph. We cannot directly apply (as
a black box) the core-detouring theorem in [9], since we need to connect clients
to facilities rather than clients among them. However, the connection scheme
used in the proof of the theorem has some particular properties that we can ex-
ploit for our purposes.

(2) A Constant Approximation for MCFL. We present the first constant approxi-
mation for MCFL: the approximation factor is 16.2. Our result is based on two
main ingredients. The first ingredient is a reduction to the prize-collecting ver-
sion of facility location, where we are allowed not to connect all the clients, but
we have to pay a penalty for each disconnected client. More formally:

PRIZE-COLLECTING FACILITY LOCATION (PFL). Given an undirected
graph G = (V, E), with edge costs ¢ : E — QT, a set of clients C C V,
with penalties p : C' — QT, and a set of facilities F' C V, with opening
costs 0 : F — Qt. Compute a subset F’ C F of open facilities and a
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subset C" C C of disconnected clients, in order to minimize }_ ;. - o(f) +
ZveC—C’ c(v, F') + ZveC’ p(v).

In a MCFL solution there might be pairs which are connected directly via a
shortest path (without using edges of the forest T”): intuitively, prizes are used
to get rid of those pairs. In particular, each source and sink will define a client,
and each pair containing at least one disconnected client in the PFL solution
will be connected directly via a shortest path.

The second ingredient is a reduction to MROB. For each residual pair, we
consider the associated pair of facilities in the PFL solution. This defines an
MROB instance. On this instance, we run the MROB algorithm r and by Fleis-
cher, Kénemann, Leonardi, and Schéfer [12] (see also [20]). Here, we crucially
exploit some properties of r and which are implicitly proved in [12]. In par-
ticular, using a different (possibly better) approximation algorithm for MROB
might lead to a worse approximation for MCFL.

(3) A Stronger Inapproximability Result for SROB. Observe that CFL is not a gener-
alization of FL, since its definition excludes M = 0. However, the techniques in
[16] can be adapted to prove the same 1.463-inapproximability bound for CFL
as for FL (we omit the proof for lack of space).

Theorem 1. Unless NP C DTIME (n®U°8™), there is no polynomial time 1.463-
approximation for CFL.

Here we show that SROB, a very special case of CFL, is hard to approximate
within 1.278. This greatly improves over the previously known approximation
hardness of 1.01, which is based on the Steiner tree hardness result in [6] com-
bined with a trivial reduction. The same hardness result extends immediately
to other well-studied generalizations of SROB, as MROB and single-sink buy-at-
bulk (SSBB). It also applies to virtual private network (VPN). (See Section 1.2 for
omitted definitions). We remark that CFL is not a special case of the latter prob-
lems (hence, the results in [16] do not extend to them). Our result is based on a
reduction to a special case of facility location, where facility costs are uniform,
and client-facility distances are either 1 or 2. We show that the latter problem
is hard via a reduction to a set-cover-like problem whose hardness was proved
by Guha and Khuller [16].

1.2 Related Work

CFL is well-studied in the literature. Gupta, Kleinberg, Kumar, Rastogi, and
Yener [18] obtain a 10.66-approximation for this problem, based on rounding
an exponential size LP. Gupta, Srinivasan and Tardos [21] describe a random
sampling algorithm for CFL, leading to a 9.01-approximation. Their algorithm
randomly samples clients, and then runs an (unconnected) facility location ap-
proximation algorithm on the sampled clients: the corresponding open facilities
form the set of open facilities in the final CFL solution. Swamy and Kumar [28]
later improved the approximation to 8.55, using a primal-dual algorithm. The
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best-known result prior to our work is the 4.00-approximation by Eisenbrand,
Grandoni, Rothvof3, and Schéfer [9]. They use a random-sampling approach
subtly different from the one in [21]. In particular, they first solve an uncon-
nected facility location problem on all the clients (not only on the sampled ones),
and then randomly select a subset of the resulting (deterministic) pool of open
facilities. Using the improved Steiner tree approximation algorithm by Byrka,
Grandoni, Rothvof3, and Sanita [5], the approximation factor reduces to 3.92. In
this paper we present a third, still simple random-sampling algorithm for CFL.

A lot of research was devoted to a special case of CFL, namely SROB. The
first constant approximation for SROB is given by Karger and Minkoff [23].
Gupta et al. [18] give a 9.01-approximation algorithm. Swamy and Kumar [28]
describe a primal-dual 4.55-approximation algorithm for the same problem.
Gupta, Kumar, Pal, and Roughgarden [20] propose a simple random sampling
algorithm which gives a 3.55-approximation. Based on a refinement of the anal-
ysis in [20] via the core-detouring technique, the current best 2.80 approxima-
tion is given in [9].

Single-sink buy-at-bulk (SSBB) is the generalization of SROB, where we are
given a set of cable types, each one with a cost and a capacity. Capacity on
edges has to be reserved by installing zero or more copies of each cable type.
The goal is sending one unit of flow from each source node to a sink. SROB
can be seen as the special case of SSBB with two cable types: one of very small
capacity and unit cost per unit capacity (corresponding to rented edges) and
one of fixed cost and very large capacity (corresponding to bought edges). After
a long sequence of improvements [13,14,17,20,22,26,29], the current best 20.41
approximation was recently given in [15].

The virtual private network problem (VPN), despite its rather different for-
mulation, is intimately related to the other mentioned problems (see, e.g., [15]).
Here, we are given upper and lower bounds on the amount of traffic that each
node can send and receive. A solution is given by a capacity reservation and
one path for each source-sink pair. The goal is minimizing the cost of the ca-
pacity reservation so that every traffic matrix which satisfies the upper bounds
can be routed along the specified paths without exceeding edge capacities. Also
this problem is well-studied [7,8,18,20]. The current best approximation is 2.80
[15].

As mentioned before, MCFL was not addressed before to the best of our
knowledge. However, its special case MROB is a well-known problem. A O(log n)-
approximation for MROB is obtained by combining the approach by Awer-
buch and Azar [2] with the refined Bartal trees in [11]. The first constant ap-
proximation is given by Kumar, Gupta, and Roughgarden [24] via the primal-
dual method. A better and simpler random sampling algorithm is presented by
Gupta et al. [20]. Based on a similar approach, the constant was later improved
to 6.83 by Becchetti, Kénemann, Leonardi, and P4l [3], and eventually to 5 by
Fleischer, Kbnemann, Leonardi, and Schifer [12].

In [24] the term MCFL is used to define a variant of MROB, where each con-
nection path can use at most one tree in the forest 7”: let us call this problem



6 Approximation Algorithms for Connected Facility Location

Algorithm 1 Approximation algorithm for CFL.

1. Guess a facility r from the optimum solution. Sample each client with probability
. Let C' be the sampled clients.

2. Compute a ps-approximate Steiner tree T' on terminals C' U {r}.

3. Define a FL instance with clients C, facilities F' and opening costs o’ (f) := o(f)+M-
c(f,C" U {r}). Compute a (Ar, Ac)-approximate solution F’ C F to this instance.

4. Augment T with shortest paths from each f € F’ to T. Let T' be the augmented
tree.

5. Return (F',T")

1-MROB. (A generalization of this problem, where subsets of pairs are grouped
together, is discussed in [19]). The authors show that any § approximation for
1-MROB gives a 2 approximation for MROB, and present a constant approxi-
mation for the first problem. Indeed, essentially the same reduction works also
in the opposite direction (giving a 10 approximation for 1-MROB based on the
result in [12]). We can define the 1-MCFL problem analogously: this problem
models natural scenarios (e.g., a person might want to use at most one public
transportation network to commute). Using the same reduction as in [24], we
obtain a 2-16.2 = 32.4 approximation for 1-MCFL: details are postponed to the
full version of the paper.

2 An Improved Approximation for CFL

Let us consider Algorithm 1 in the figure. Here @ € (0, 1] is a constant to be fixed
later. A bifactor (Ap, Ac)-approximation for FL is an algorithm which produces
a solution to a FL instance of cost at most A\r - O + A\¢ - C, where O and C are
the opening and connection cost of any given feasible solution. We will exploit
the following result by Byrka [4].

Lemma 1. [4] For any Ap > 1.67, there is a (Ar, 1 + 2e~*F)-approximation algo-
rithm for FL.

We remark that we would obtain an improved approximation also using a stan-
dard facility location algorithm. However, the approximation ratio would be
slightly higher. A second tool that we need is the following Lemma which is
implicitly proved in [9].

Lemma 2. [9] Given an undirected graph G = (V, E), with edge costs ¢ : E — Q% , a
set of clients C C 'V, a subtree T’ (core) containing a root node r, a mapping o : C' —
V(T"), and a probability p € (0, 1]. Mark each client independently with probability p,
and denote marked clients by C'. Let 0(C") := Uyecro(v). Then E[) ] . c(v,o(C")U

{r})] < 80e(T") + X e clv, o(v)).

We let OPT = (F*,T*) denote the optimal solution to the considered CFL
instance, where F™* is the set of facilities and T the Steiner tree connecting
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them. We also let 0*(v) € F™* be the facility serving v € C'in OPT. By OPT =
O*+C*+5* we denote the optimal cost, where O* := o(F™*) is the opening cost,
C* =) ccc(v, F’¥) the connection cost, and S* := M - ¢(T*) the Steiner cost.
Let O =3 e ' (f) = 2 epi (o(f) + M - c(f,C" U{r})) be the opening cost
of the facility location solution computed in Step 3, and Cy; := >°, . c(v, F')
be the connection cost in the same solution. We need a few, simple intermediate
results.

Lemma 3. The cost of the returned solution is at most M - ¢(T') + O + Cjy.

Proof. The connection cost in the FL and CFL solutions are the same. Recall that
o (f)=o(f)+ M -c(f,C"U{r}). Thus the modified opening costs o’ pay fully
for both opening F’ and for augmenting 7" to 7".

Lemma 4. One has E[M - ¢(T)] < pst - (S* + a- C*).

Proof. A feasible Steiner tree on C’ U {r}, of expected cost ¢(T*) 4+ £ C*, is ob-
tained by augmenting 7 with the shortest paths between each v € C’ and
o*(v). Multiplying by ps, - M then gives the claim.

Lemma 5. One has E[Of; + Cpi) < Ap(O* 4+ aC*) + Ao (C* + 2807 6%),

Proof. We provide a FL solution, whose expected opening cost is O* + « C* and

whose expected connection cost is C* + 2897 §* Choose facilities o*(C') U {r},
with 0*(C") := Uyecro*(v). Then the expected opening cost is

Bl Y o] B[ X o]+ M B[ Y ctw.0" )]
feo*(CU{r} fEF™* veC’
=0"+M- % ~Uezcc(v,cr*(v)) =0"+aC".

The crucial argument here is that we need to account for the extra term M -
c(v,0*(v)) only if v € C', which happens with probability 1.

In order to bound the expected connection cost, we apply Lemma 2, with
clients C, core T*, mapping ¢ = ¢*, root r, and probability o//M:

. 0.807 , . . 0.807 ., .,
< _ = — .
E[;ec: (v, 0"(C) U {r})] < e )+U§€C: (v,0"(v) = =" +C
Theorem 2. Algorithm 1 is an expected 3.19-approximation algorithm for CFL.

Proof. Recall that ps: < In(4) + ¢ for every fixed € > 0 [5]. From Lemmas 1, 3, 4,
and 5, the total expected cost of the approximate solution is upper bounded by

0.807

0.807
o

= O*/\F+S* (pst+)\C )‘i‘C*(PstOé‘i‘/\FOé‘F)\C)

a=0.539
Ap=2.294>1.67
Ao<142e  F

< 2.30-0* +3.19-5"+3.19-C* <3.19-OPT.
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Algorithm 2 Approximation algorithm for MCFL.

1. Define a PFL instance on the input instance with clients C' = {s1,7r1,..., 8%, 7k}
(as multiset), and p(s) = p(r) = c(s,r)/2 for any (s,r) € P. Compute a ppyi-
approximate solution (F’, C") for this problem. Let o(v) € F’ be the open facility
which is closest to v € C — C’, Py := {(s,7) € P : {s,r} N C" # 0}, and
Ping = P — Pyir.

2. Sample each pair (o(s),o(r)), with (s,r) € Pjnq4, independently with probability
1/M. Let P’ be the sampled pairs of facilities.

3. Compute a 2-approximate Steiner forest 7" over P’ using the primal-dual algorithm
in [1].

4. Output (P',T").

3 A Constant Approximation for MCFL

Let us consider Algorithm 2 in the figure. With a slight notational abuse, for a
set of pairs P, we use P also to denote the corresponding set of nodes. In the
first step, we define and (approximately) solve a proper PFL instance, whose
clients C' are given by the nodes in the input pairs P. Currently, p,;; < 1.86
[30]. Let C’ be discarded clients, and o(v) be the facility serving v € C' — C’.
Intuitively, the pairs Py;, with at least one endpoint in C” are connected directly
via a shortest path. For the remaining pairs (s,r) € Pj,q, we consider the asso-
ciated pairs of facilities (o(s), o(r)). The latter pairs define an MROB instance
nr ob. To this instance we essentially apply the MROB algorithm r and in [12].
In particular, we sample each pair independently with probability 1/M, and
compute a Steiner forest T on the sampled pairs P’ with the 2-approximation
algorithm in [1]. The output solution is given by facilities P’ and forest 7”.

We need the following result in [12,25]. We recall that, for a set of nodes
V'’ and a forest T, ¢y defines distances after contracting the connected com-
ponents of 7", while ¢y 7 defines distances after contracting the nodes in V'
belonging to same tree of 7”. In particular, in general ¢y 7 (u,v) > cp/ (u, v).

Lemma 6. [12,25] Consider an MROB instance on pairs P, with optimal cost O PT ,rop.
Sample each pair in P independently with probability 1/M , and compute a 2-approximate
Steiner forest T' on the sampled pairs P’ with the algorithm in [1]. Then E[M -c(T")+
Z(“)ep cri(s,7)] < 5-OPT b The same claim holds by replacing cpr with cpr 1.

The last claim of Lemma 6 is not relevant for MROB (it just comes out as a
byproduct of the analysis in [12]). However, it is crucial for our analysis. In
particular, since P’ is a subset of facilities in our case, the connection path for
(0(s),0(r)) in the MROB solution as given by Lemma 6 enters and leaves trees
in T" at facilities. Henceforth, we can extend such connection path with shortest
paths (s,0(s)) and (o(r), ) to obtain a feasible connection path for pair (s, 7).
With a notation analogous to Section 2, we let OPT = (F*,T*) denote the
optimum solution, where F'* is the set of open facilities and T* a Steiner forest.
We also let OPT = O* 4+ C* + S* be the optimal cost, where O*, C*, and S*
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are the opening, connection, and Steiner cost, respectively. By O,;, Ppr;, and
Cpr1 we denote, respectively, the opening, penalty, and connection cost of the
PFL solution computed in Step 1. We also let Syrop = M - ¢(T”) and Crrop =
Z(s,r)e p,.. cp1(0(s),0(r)) be the Steiner and connection cost, respectively, of
the MROB solution computed in Step 3, as suggested by Lemma 6. Eventually,
APX = Ogpz + Sapz + Cops is the cost of the approximate solution, where Ogp,,
Sapz, and Cqp, are the opening, Steiner, and connection cost, respectively.

Lemma?7. APX < Ops1t + Smrob + 2P 11 + Cpp1 + Crarob.

Proof. By definition, APX = Ogpe+Sapz+Cape- Trivially, Oupe < Opp1 (We open
a subset P’ of the facilities F’ in the PFL solution). Moreover, Sgpe = Smrob bY
construction.

In order to prove the claim, it is then sufficient to describe connection paths
of total cost 2P, ¢; + Cpp1 + Cirob. Let us connect all the pairs in Py, directly
via a shortest path. Since by definition at least one endpoint of each pair in Py,
belongs to the discarded clients C’, 3~ )cp,. c(s,7) < 2P,p. Consider now
the remaining pairs P;,4. For each (s, r) € P4, we connect s to o(s) and o(r) to
r via a shortest path. Then we connect o(s) to o(r) using a shortest path with re-
spect to cp/ 7. Observe that this is a feasible connection path for (s, 7). The total
cost of these paths is 3, . cp, , (c(s,0(s)) + cprai(a(s), o(r)) + c(o(r), 7)) =
Crrob + Zverd c(v,0(v)) = Crrop + Cpyi. The claim follows.

Lemma 8. Opfl + Cpfl + Py < ppfl(O* + C*)

Proof. 1t is sufficient to show that there exists a PFL solution of cost at most
O* 4+ C*. Let P};. C P be the pairs whose connection path in OPT = (F*,T*)
does not use any edge of 7%, and P}, = P — Pj,.. By CJ, (resp., C} ;) we
denote the connection cost of OPT restricted to Pj;. (resp., P ;).

Consider the PFL solution (F*, Pj;,.). This solution has opening cost O* and

penalty cost Z(s,r)eP;iT (p(s) +p(r) = Z(S)T)epgir 2# = C%,.. Moreover, its
connection cost is } - ¢ p- d(c(s, F*) 4+ c(r, F7)) < 325 meps | CFeT* (s,7) =
C# .- Altogether, the cost of this PFL solution is upper bounded by O* + C5;. +

K2

Ciy =0 +C".

m

Lemma9. E[S,. 00 + Crrob) < 5(Opﬂ +C* + 5*).

Proof. Let P := {(0(s),0(r)) : (s,7) € Pina} (considered as a multiset). The
triple (15, P’ T’) satisfies the conditions of Lemma 6. Hence, E[S,r0b+ Cinrob] =
E[M . C(T/) + Z(s’,r’)eﬁ cpr T (S/, 7’/)] < 5 OPTmrob/ where OPTmTOb is the Opﬁ—
mum solution to the MROB instance nt ob induced by pairs P.

A bound on OPT,,,q is given by the following feasible solution to nr ob.
Buy the edges of the optimal forest T of OPT'. This costs S*. For each pair
(0(s),0(r)) € P, connect o(s) to s and o(r) to r via a shortest path, and then
connect s to r via the connection path between s and r in OPT'. The cost of this
solutionis 3, ,ycp, (c(s,0(s)) + c(r,o(r)) + cp 1+ (s,7)) < Cppi + C*. Then
OPTprop < Cppi + C* 4 S*. The claim follows.
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Theorem 3. Algorithm 2 is an expected 16.2-approximation algorithm for MCFL.
Proof. One has

Lem7
E[APX] S Opfl + 2prl + Cpfl + E[Smrob + Cmrob]
Lem9
< Oppi+2Pys1 + Copi + 5 (Cppr + C* + 5%)

<6 (Opsi + Pposi + Cpp1) +5(C* 4+ S7)

Lem 8
276 pppi(OF + CF) + 5(C* + §%)
< (6 pps1 +5)(O* +C* +5%) <16.20PT.

4 On the Approximability of SROB

Recall that SROB is the special case of CFL where every node is a facility with
opening cost zero. Without loss of generality, we can assume that we are also
given a root node r € V which belongs to the tree T* in the optimum solution.
In this section we show that SROB cannot be approximated within a factor of
1.278, unless NP C DTIME (n®(°g!°e™)) This heavily improves over the pre-
viously known approximation hardness of 1.01 (due to hardness of Steiner tree
[6]).

As an intermediate step, we consider a reduction to the uniform facility loca-
tion problem (UnifFL), i.e. the special case of metric facility location where all fa-
cilities have uniform opening cost o. Indeed, we consider an even more restric-
tive case. For a set V of non-negative numbers, let N-UnifFL denote the special
case of UnifFL where, for any client v € C and facility f € F, ¢(v, f) € N. Given
a solution F’ C F, we let o(v) denote the facility in F’ which is closest to client
v € C. We also say that v is assigned to o(v) and that o(v) serves v.

Guha and Khuller [16] showed that, unless NP C DTIME (n©(oglogn)),
{1, 3}-UnifFL cannot be approximated within a factor of 1.463. While this case
seems hard to reduce to SROB, we are able to prove a similar reduction for
{1, 2}-UnifFL.

Lemma 10. Given an a-approximation algorithm for SROB, there is an a-approximation
algorithm for {1, 2}-UnifFL.

Proof. Consider a given {1, 2}-UnifFL instance on clients C' and facilities F'. First
suppose that the uniform opening cost is 0 > 1. We define an SROB instance
as follows. Consider the complete graph G on nodes C' U F' U {r}, with clients
C, root r, and M = o > 1. Edges (r, f) and (v, f), with f € F, v € C, and
c(v, f) = 1, have unit costs. All other edges have cost 2. Let the degree d(f) =
{v e C : c(v, f) = 1}| of a facility f € F be the number of clients at distance
1 from that facility. We remark that, if d(f) < M for all f € F, then there is an
optimum solution of {1, 2}-UnifFL where only one facility f* is opened. In fact,
suppose f # f* is opened as well, where f serves 2’ < M clients at distance
1 and z” clients at distance 2. By closing f and assigning its clients to f*, one
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saves at least (o + 2/ + 22") — (22/ + 22”") = M — 2’ > 0. The best solution
with one open facility can be computed in polynomial time. So we can assume
without loss of generality that there is at least one facility f with d(f) > M.

Observe that any solution F” to an {1, 2}-UnifFL instance induces an SROB
solution of the same cost. In fact, it is sufficient to consider the tree 7" induced
by edges {r, f}, f € F': this solution costs [F'| - 0 + > . ¢(v, F'). Hence, the
cost of an a-approximate solution to SROB costs at most « times the cost of the
optimum solution to {1, 2}-UnifFL.

Thus, it is sufficient to show that any feasible solution to SROB can be turned
in polynomial time into a solution to {1, 2}-UnifFL of not larger cost. Consider
any such solution 7" to SROB. Suppose that 7" = (). Then, adding edge {r, f},
with f being the maximum degree facility (recall that d(f) > M), can only
decrease the cost. Next assume 7" # (). Suppose there is any client v connected
either to r or to another client in C. This connection costs 2, thus reconnecting
v to any node in F'N V(Z”) can only make the solution cheaper. Suppose now
that 7" contains one edge {v, f} with v € C and f € F, but not edge {r, f}.
Then replacing {v, f} by {r, f} leaves 7" connected and can only reduce the
cost. Finally we may still have edges {v, f} and {r, f}, withv € C'and f € F.
Then deleting {v, f} again can only decrease the cost, since M > 1 and no other
client (but v) is connected to v.

At the end of the process, 7" only contains edges of type {r, f}, f € F. Let
F':={f eF:{rf} €T} F induces a feasible solution to {1, 2}-UnifFL of
cost equal to the cost of the (modified) SROB solution. The claim follows.

A similar proof holds for the case o < 1, by letting M/ = 1 and setting edge
costs {r, f} too.

We need the following result by Guha and Khuller [16].

Lemma 11. [16] Suppose we have a set cover instance ({1,...,n},{S1,...,Sm})
with unit cost for sets and optimal cost OPT,. = k. If there is a polynomial time
algorithm that can pick Bk sets (for any constant 3 > 0) and cover ¢’ - n elements,
where ¢ > cg =1 — e ?, then NP C DTIME (nC(cglosn)),

To see why Lemma 11 holds, suppose for the sake of contradiction that such an
algorithm does exist. Then we can apply it iteratively to a set cover instance. Let
azn be the number of covered elements at iteration ¢, ¢ = 1,...,7T (in particular,

Zthl oy = 1). At iteration ¢ the algorithm uses only 8;k < ¢ - In(;=) many
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sets where § < 1 is a constant. Then we obtain a solution with 1, Gk <
Zthl §In(72-)k < 6 - In(n)k sets, contradicting the hardness result of [10].

1—aq

Lemma 12. There is no a-approximation algorithm with o < 1.278 for {1, 2}-UnifFL,
unless NP C DTIME (n©(lcglogn)),

Proof. Suppose for the sake of contradiction that we have an a-approximation
algorithm for {1, 2}-UnifFL and « < 1.278. Consider a set cover instance with
n elements, sets S1,...,.S,, of unit cost, and optimal value OPT,. = k. Define
a {1, 2}-UnifFL instance as follows. Introduce a facility f for each set S; and a
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client v for each element v. Set ¢(v, f) = 1 if v € Sy, and ¢(v, f) = 2 otherwise.
Let o = v be the uniform cost. Here 0 < v < 1 is a constant, that we will de-
termine later. Let OPT,, f; be the optimum solution to this instance. By opening
the & facilities which correspond to the k sets in the optimum set cover solution,
we obtain that OPTyp < k-o+1-n=k-y% +n=(1+7)n.

Using the a-approximation algorithm we get a {1, 2}-UnifFL solution F” of
cost at most a(1 + v)n. Let ¢ € [0, 1] be the fraction of demands, whose service
costs are 1 (the others are served at cost 2). Define (§ := |F’|/k > 0. Then

By+2—cn= Pk co+en+2-(1—c)n < a(l+v)n.
- —_—

=|F’| connection cost

This can be rearranged to

@<1.278,v:=0.278
c>pB-y+2—a(l+7) > 0.2786 + 0.3667 > 1 — e ?,

contradicting Lemma 11.

Theorem 4. There cannot be a factor 1.278-approximation algorithm for SROB, MROB,
CFL, MCFL, SSBB, and VPN, unless NP C DTIME (n©(oglogn)),

Proof. The claim for SROB follows from Lemmas 10 and 12. The same result
trivially extends to MROB, CFL, MCFL, and SSBB (which are all generalizations
of SROB). The hardness for VPN follows from the fact, that any SROB instance
is equivalent to a VPN instance with a single receiver of capacity M (see, e.g.,
[15,27]).

Acknowledgments. A special thank to J. Byrka, S. Leonardi, and M. Singh for
helpful discussions.
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