
A Refined Approximation for

Euclidean k-Means

Fabrizio Grandoni∗ Rafail Ostrovsky† Yuval Rabani‡ Leonard J. Schulman§

Rakesh Venkat¶

Abstract

In the Euclidean k-Means problem we are given a collection of n points D in an Euclidean
space and a positive integer k. Our goal is to identify a collection of k points in the same
space (centers) so as to minimize the sum of the squared Euclidean distances between each
point in D and the closest center. This problem is known to be APX-hard and the current
best approximation ratio is a primal-dual 6.357 approximation based on a standard LP for the
problem [Ahmadian et al. FOCS’17, SICOMP’20].

In this note we show how a minor modification of Ahmadian et al.’s analysis leads to a
slightly improved 6.12903 approximation. As a related result, we also show that the mentioned

LP has integrality gap at least 16+
√
5

15 > 1.2157.

1 Introduction

Clustering is a central problem in Computer Science, with many applications in data science,
machine learning etc. One of the most famous and best-studied problems in this area is Euclidean
k-Means: given a set D of n points (or demands) in R` and an integer k ∈ [1, n], select k points
S (centers) so as to minimize

∑
j∈D d

2(j, S). Here d(j, i) is the Euclidean distance between points
j and i and for a set of points I, d(j, I) = mini∈I d(j, i). In other words, we wish to select k
centers so as to minimize the sum of the squared Euclidean distances between each demand and
the closest center. Equivalently, a feasible solution is given by a partition of the demands into k
subsets (clusters). The cost wC of a cluster C ⊂ D is

∑
j∈C d

2(c, µ), where µ is the center of mass

of C. We recall that wC can also be expressed as 1
2|C|

∑
j∈C

∑
j′∈C d

2(j, j′). Our goal is to minimize
the total cost of these clusters.

Euclidean k-Means is well-studied in terms of approximation algorithms. It is known to be APX-
hard. More precisely, it is hard to approximate k-Means below a factor 1.0013 in polynomial time
unless P = NP [6, 16]. The hardness was improved to 1.07 under the Unique Games Conjecture
[9]. Some heuristics are known to perform very well in practice, however their approximation factor
is O(log k) or worse on general instances [3, 4, 17, 21]. Constant approximation algorithms are
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known. A local-search algorithm by Kanugo et al. [15] provides a 9 + ε approximation1. The
authors also show that natural local-search based algorithms cannot perform better than this. This
ratio was improved to 6.357 by Ahmadian et al. [1, 2] using a primal-dual approach. They also
prove a 9 + ε approximation for general (possibly non-Euclidean) metrics. Better approximation
factors are known under reasonable restrictions on the input [5, 7, 10, 20]. A PTAS is known for
constant k [19] or for constant dimension ` [10, 12]. Notice that ` can be always assumed to be
O(log n) by a standard application of the Johnson-Lindenstrauss transform [14]. This was recently
improved to O(log k + log log n) [8] and finally to O(log k) [18].

In this paper we describe a simple modification of the analysis of Ahmadian et al. [2] which
leads to a slightly improved approximation for Euclidean k-Means (see Section 2).

Theorem 1. There exists a deterministic polynomial-time algorithm for Euclidean k-Means with
approximation ratio ρ+ ε for any positive constant ε > 0, where

ρ :=

(
1 +

√
1

2
(2 +

3

√
3− 2

√
2 +

3

√
3 + 2

√
2)

)2

< 6.12903.

The above approximation ratio is w.r.t. the optimal fractional solution to a standard LP relax-
ation LPk-Means for the problem (defined later). As a side result (see Section 3), we prove a lower
bound on the integrality gap of this relaxation (we are not aware of any explicit such lower bound
in the literature).

Theorem 2. The integrality gap of LPk-Means, even in the Euclidean plane (i.e., for ` = 2), is at

least 16+
√

5
15 > 1.2157.

1.1 Preliminaries

As mentioned earlier, one can formulate Euclidean k-Means in term of the selection of k centers.
In this case, it is convenient to discretize the possible choices for the centers, hence obtaining a
polynomial-size set F of candidate centers, at the cost of an extra factor 1+ε in the approximation
ratio (we will neglect this factor in the approximation ratios since it is absorbed by analogous
factors in the rest of the analysis). In particular we will use the construction in [11] (Lemma 24)
that chooses as F the centers of mass of any collection of up to 16/ε2 points with repetitions. In
particular |F| = O(n16/ε2) in this case.

Let c(j, i) be an abbreviation for d2(j, i). Then a standard LP-relaxation for k-Means is as
follows:

min
∑

i∈F ,j∈D
xij · c(j, i) LPk-Means

s.t.
∑
i∈F

xij ≥ 1 ∀j ∈ D

xij ≤ yi ∀j ∈ D, ∀i ∈ F∑
i∈F

yi ≤ k ∀j ∈ D, ∀i ∈ F

xij , yi ≥ 0 ∀j ∈ D, ∀i ∈ F
1Throughout this paper by ε we mean an arbitrarily small positive constant. W.l.o.g. we assume ε ≤ 1.
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In an integral solution, we interpret yi = 1 as i being a selected center in S (i is open), and xij = 1
as demand j being assigned to center i2. The first family of constraints states that each demand
has to be assigned to some center, the second one that a demand can only be assigned to an open
center, and the third one that we can open at most k centers.

For any parameter λ > 0 (Lagrangian multiplier), the Lagrangian relaxation LP (λ) of LPk-Means

(w.r.t. the last matrix constraint) and its dual DP (λ) are as follows:

min
∑

i∈F ,j∈D
xij · c(j, i) + λ ·

∑
i∈F

yi − λ k LP (λ)

s.t.
∑
i∈F

xij ≥ 1 ∀j ∈ D

xij ≤ yi ∀j ∈ D,∀i ∈ F
xij , yi ≥ 0 ∀j ∈ D,∀i ∈ F

max
∑
j∈D

αj − λk DP (λ)

s.t.
∑
j∈D

max{0, αj − c(j, i)} ≤ λ ∀i ∈ F (1)

αj ≥ 0 ∀j ∈ D

Above max{0, αj − c(j, i)} replaces the dual variable βij corresponding to the second constraint in
the primal in the standard formulation of the dual LP. Notice that, by removing the fixed term −λk
in the objective functions of LP (λ) and DP (λ), one obtains the standard LP relaxation LPFL(λ)
for the Facility Location problem (FL) with uniform facility cost λ and its dual DPFL(λ).

We say that a ρ-approximation algorithm for a FL instance of the above type is Lagrangian
Multiplier Preserving (LMP) if it returns a set of facilities S that satisfies:∑

j∈D
c(j, S) ≤ ρ(OPT (λ)− λ|S|),

where OPT (λ) is the value of the optimal solution to LPFL(λ).

2 A Refined Approximation for Euclidean k-Means

In this section we present our refined approximation for Euclidean k-Means. We start by presenting
the LMP approximation algorithm for the FL instances arising from k-Means described in [2] in
Section 2.1. We then present the analysis of that algorithm as in [2] in Section 2.2. In Section 2.3
we describe our refined analysis of the same algorithm. Finally, in Section 2.4 we sketch how to
use this to approximate k-Means.

2Technically each demand is automatically assigned to the closest open center. However it is convenient to allow
also sub-optimal assignments in the LP relaxation.
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2.1 A Primal-Dual LMP Algorithm for Euclidean Facility Location

We consider an instance of Euclidean FL induced by a k-Means instance in the mentioned way, for
a given Lagrangian multiplier λ > 0.

We consider exactly the same Lagrangian Multiplier Preserving (LMP) primal-dual algorithm
JV (δ) as in [2]. In more detail, let δ ≥ 2 be a parameter to be fixed later. The algorithm consists
of a dual-growth phase and a pruning phase. The dual-growth phase is exactly as in the classical
primal-dual algorithm JV by Jain and Vazirani [13]. We start with all the dual variables set to 0
and an empty set Ot of tentatively open facilities. The clients such that αj ≥ c(j, i) for some i ∈ Ot
are frozen, and the other clients are active. We grow the dual variables of active clients at uniform
rate until one of the following two events happens. The first event is that some constraint of type
(1) becomes tight. At that point the corresponding facility i is added to Ot and all clients j with
αj ≥ c(j, i) are set to frozen. The second event is that αj = c(j, i) for some some i ∈ Ot. In that
case j is set to frozen. In any case, the facility w(j) that causes j to become frozen is called the
witness of j. The phase halts when all clients are frozen.

In the pruning phase we will close some facilities in Ot, hence obtaining the final set of open
facilities IS. Here JV (δ) deviates from JV . For each client j ∈ D, let N(j) = {i ∈ F : αj >
c(j, i)} be the set of facilities i such that j contributed with a positive amount to the opening of
i. Symmetrically, for i ∈ F , let N(i) = {j ∈ D : αj > c(j, i)} be the clients that contributed with
a positive amount to the opening of i. For i ∈ Ot, we let ti = maxj∈N(i) αj , where the values αj
are considered at the end of the dual-growth phase. We set conventionally ti = 0 for N(i) = ∅.
Intuitively, ti is the “time” when facility i is tentatively open (at which point all the dual variables
of contributing clients stop growing). We define a conflict graph H over tentatively open facilities
as follows. The node set of H is Ot. We place an edge between i, i′ ∈ Ot iff the following two
conditions hold: (1) for some client j, j ∈ N(i) ∩ N(i′) (in words, j contributes to the opening
of both i and i′) and (2) one has c(i, i′) ≤ δ · min{ti, ti′}. In this graph we compute a maximal
independent set IS, which provides the desired solution to the facility location problem (where
each client is assigned to the closest facility in IS).

We remark that the pruning phase of JV differs from the one of JV (δ) only in the definition
of H, where condition (2) is not required to hold (or, equivalently, JV behaves like JV (+∞) for
λ > 0).

2.2 The Analysis in [2]

The general goal is to show that ∑
j∈D

c(j, IS) ≤ ρ(
∑
j∈D

αj − λ|IS|),

for some ρ ≥ 1 as small as possible. This shows that the algorithm is an LMP ρ-approximation for
the problem. It is sufficient to prove that, for each client j, one has

c(j, IS)

ρ
≤ αj −

∑
i∈N(j)∩IS

(αj − c(j, i)) = αj −
∑
i∈IS

max{0, αj − c(j, i)}.

Let S = N(j) ∩ IS and s = |S|. We distinguish 3 cases depending on the value of s:
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Case A: s = 1. Let S = {i∗}. Then for any ρ ≥ 1,

c(j, IS)

ρ
≤ c(j, IS) = c(j, i∗) = αj − (αj − c(j, i∗)).

Case B: s > 1. Here we use the properties of Euclidean metrics. The sum
∑

i∈S c(j, i) is the
sum of the squared distances from j to the facilities in S. This quantity is lower bounded by
the sum of the squared distances from S to the centroid µ of S. Recall that

∑
i∈S c(µ, i) =

1
2s

∑
i∈S
∑

i′∈S c(i, i
′). We also observe that, by construction, for any two distinct i, i′ ∈ IS one has

c(i, i′) > δ ·min{ti, ti′} ≥ δ · αj ,

where the last inequality follows from the fact that j is contributing to the opening of both i and
i′. Altogether one obtains∑

i∈S
c(j, i) ≥

∑
i∈S

c(µ, i) =
1

2s

∑
i∈S

∑
i′∈S

c(i, i′) ≥ (s− 1)δαj
2

.

Thus ∑
i∈S

(αj − c(j, i)) ≤ (s− δ(s− 1)

2
)αj = (s(1− δ

2
) +

δ

2
)αj

δ≥2,s≥2
≤ (2− δ

2
)αj .

Using the fact that αj > c(j, i) for all i ∈ S, hence αj > c(j, IS), one gets

(
δ

2
− 1)c(j, IS)

δ≥2
≤ (

δ

2
− 1)αj .

We conclude that∑
i∈S

(αj − c(j, i)) + (
δ

2
− 1)c(j, IS) ≤ (2− δ

2
)αj + (

δ

2
− 1)αj = αj .

This gives the desired inequality assuming that ρ ≥ 1
δ/2−1 .

Case C: s = 0. Consider the witness i = w(j) of j. Notice that αj ≥ ti and αj ≥ c(j, i) = d2(j, i).
Hence

d(j, i) +
√
δti ≤ (1 +

√
δ)
√
αj .

If i ∈ IS, then d(j, IS) ≤ d(j, i). Otherwise there exists i′ ∈ IS such that d2(i, i′) ≤ δmin{ti, ti′} ≤
δti. Thus d(j, IS) ≤ d(j, i) + d(i, i′) ≤ d(j, i) +

√
δti. In both cases one has d(j, IS) ≤ (1 +

√
δ)
√
αj ,

hence
c(j, IS) ≤ (1 +

√
δ)2αj .

This gives the desired inequality for ρ ≥ (1 +
√
δ)2.

Fixing δ. Altogether we can set ρ = max{ 1
δ/2−1 , (1 +

√
δ)2}. The best choice for δ (namely, the

one that minimizes ρ) is the solution of 1
δ/2−1 = (1 +

√
δ)2. This is achieved for δ ' 2.3146 and

gives ρ ' 6.3574.
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2.3 A Refined Analysis

We refine the analysis in Case B as follows. Let ∆ =
∑

i∈S c(j, i). Our goal is to upper bound

c(j, S)

αj −
∑

i∈S(αj − c(j, i))
=

c(j, S)∑
i∈S c(j, i)− (s− 1)αj

=
c(j, S)

∆− (s− 1)αj
.

Instead of using the upper bound c(j, S) ≤ αj we use the average

c(j, S) ≤ 1

s

∑
i∈S

c(j, i) =
∆

s
.

Then it is sufficient to upper bound
1

s

∆

∆− (s− 1)αj
.

The derivative in ∆ of the above function is 1
s
−(s−1)αj

(∆−(s−1)αj)2
< 0. Hence the maximum is achieved

for the smallest possible value of ∆. Recall that we already showed that ∆ ≥ (s−1)δαj

2 . Hence a
valid upper bound is

1

s

(s−1)δαj

2
(s−1)δαj

2 − (s− 1)αj
=

1

s

δ/2

δ/2− 1

s≥2,δ≥2
≤ δ/4

δ/2− 1
.

This imposes ρ ≥ δ/4
δ/2−1 rather than ρ ≥ 1

δ/2−1 in Case B. Notice that this is an improvement

for δ < 4. The best choice of δ is now obtained by imposing δ/4
δ/2−1 = (1 +

√
δ)2. This gives

δ = 1
2(2 +

3
√

3− 2
√

2 +
3
√

3 + 2
√

2) ' 2.1777 and ρ =

(
1 +

√
1
2(2 +

3
√

3− 2
√

2 +
3
√

3 + 2
√

2)

)2

<

6.12903.

2.4 From Facility Location to k-Means

We can use the refined ρ :=

(
1 +

√
1
2(2 +

3
√

3− 2
√

2 +
3
√

3 + 2
√

2)

)2

approximation for Euclidean

Facility Location from previous section to derive a ρ+ ε approximation for Euclidean k-Means, for
any constant ε > 0. Here we follow the approach of [2] with only minor changes. In more detail, the
authors consider a variant of the FL algorithm described before, whose approximation factor is ρ+ε
rather than ρ. A careful use of this algorithm leads to a solution opening precisely k facilities, which
leads to the desired approximation factor. In their analysis the authors use slight modifications of
the inequality (1 +

√
δ)
√
αj ≥ d(j, i) +

√
δti (coming from Case C, which is the same in their and

our analysis). The goal is to prove that the modified algorithm is ρ + ε approximate. Here δ and
ρ are used as parameters. Therefore it is sufficient to replace their values of these parameters with
the ones coming from our refined analysis. The rest is identical.

3 Lower Bound on the Integrality Gap

In this section we describe our lower bound instance for the integrality gap of LPk-Means. It is
convenient to consider first the following slightly different relaxation, based on clusters (with wC
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as defined in Section 1):

min
∑
C∈C

wCxC LP ′k-Means

s.t.
∑

C∈C:j∈C
xC ≥ 1 ∀j ∈ D

∑
C∈C

xC ≤ k

xC ≥ 0 ∀C ∈ C

Here C denotes the set of possible clusters, i.e. the possible subsets of points. In an integral solution
xC = 1 means that cluster C is part of our solution.

Our instance is on the Euclidean plane, and its points are the (10) vertices of two regular
pentagons of side length 1. These pentagons are placed so that any two vertices of distinct pentagons
are at large enough distance M to be fixed later. Here k = 5. We remark that our argument can
be easily extended to an arbitrary number of points by taking 2h such pentagons for any integer
h ≥ 1 so that the pairwise distance between vertices of distinct pentagons is at least M , and setting
k = 5h.

A feasible fractional solution is obtained by setting xC = 0.5 for every C consisting of a pair
of consecutive vertices in the same pentagon (so we are considering 10 fractional clusters in total).
Obviously this solution is feasible. The cost wC of each such cluster C is 2(0.5)2 = 0.5. Hence the
cost of this fractional solution is 10 · 0.5 · 0.5 = 5

2 .
Next consider the optimal integral solution, consisting of 5 clusters. Recall that the radius of

each pentagon (i.e. the distance from a vertex to its center) is r =
√

2
5−
√

5
' 0.851 and the distance

between two non-consecutive vertices in the same pentagon is d =
√

5+1
2 ' 1.618. A solution with

two clusters consisting of the vertices of each pentagon costs 10r2. Any cluster involving vertices
of distinct pentagons costs at least M2/2, hence for M large enough the optimal solution forms
clusters only with vertices of the same pentagon. In more detail the optimal solution consists of
x ∈ {1, 2, 3, 4} clusters containing the vertices of one pentagon and 5 − x clusters containing the
vertices of the remaining pentagon. Let w(x) be the minimum cost associated with one pentagon
assuming that we form x clusters with its vertices. Clearly w(1) = 5r2 = 10

5−
√

5
. Regarding w(4),

it is obviously convenient to choose two consecutive vertices in the unique cluster of size 2. Thus
w(4) = 1/2. For x ∈ {2, 3}, we note, as is easy to verify, that clusters with consecutive vertices are
less expensive than the alternatives. For w(2), one might form one cluster of size 1 and one of size

4. This would cost 3(1+d2)
4 = 15+3

√
5

8 . Alternatively, one might form one cluster of size 2 and one

of size 3, at smaller cost 1
2 + 2+d2

3 = 10+
√

5
6 . Thus w(2) = 10+

√
5

6 . For x = 3, one might form two
clusters of size 1 and one of size 3, or two clusters of size 2 and one of size 1. The associated cost
in the two cases is 2+d2

3 > 1 and 2 · 1
2 = 1, resp. Hence w(3) = 1. So the overall cost of the optimal

integral solution is min{w(1) + w(4), w(2) + w(3)} = w(2) + w(3) = 16+
√

5
6 . Thus the integrality

gap of LP ′k-Means is at least 16+
√

5
6 · 2

5 = 16+
√

5
15 .

Consider next LPk-Means. Here a technical complication comes from the definition of F which is
not part of the input instance of k-Means. The same construction as above works if we let F contain
the centers of mass of any set of 2 or 3 points. Notice that this is automatically guaranteed by
the construction in [11] for 16/ε2 ≥ 3. In this case the optimal integral solutions to LPk-Means and
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LP ′k-Means are the same in the considered example. Furthermore one obtains a feasible fractional
solution to LPk-Means of cost 5/2 by setting yi = 0.5 for the centers of mass of any two consecutive
vertices of the same pentagon, and setting xij = 0.5 for each point i and the two closest centers j
with positive yj . This concludes the proof of Theorem 2.
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