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In this paper we consider the problem of computing a minimum-weight vertex-cover in an n-node,
weighted, undirected graph G = (V, E). We present a fully distributed algorithm for computing
vertex covers of weight at most twice the optimum, in the case of integer weights. Our algorithm
runs in an expected number of O(log n + log Ŵ ) communication rounds, where Ŵ is the average

vertex-weight. The previous best algorithm for this problem requires O(log n(log n + log Ŵ ))
rounds and it is not fully distributed.

For a maximal matching M in G it is a well-known fact that any vertex-cover in G needs
to have at least |M | vertices. Our algorithm is based on a generalization of this combinatorial
lower-bound to the weighted setting.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Approximation algorithms, distributed algorithms, maximal
matching, vertex cover

1. INTRODUCTION

We are given an undirected graph G = (V, E) and non-negative integer vertex
weights wv for all vertices v ∈ V . A vertex cover is a subset C ⊆ V such that each
edge e ∈ E has at least one end-point in C. In the minimum-weight vertex-cover

problem we want to compute a vertex-cover of smallest total weight.
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Computing minimum-weight vertex-covers is NP-hard [Garey and Johnson 1979].
Papadimitriou and Yannakakis [1991] show that the problem is APX-hard. Recently,
Dinur and Safra [2002] showed that it is NP -hard to approximate the vertex-cover
problem to within any factor smaller than 10

√
5 − 21 > 1.36, improving on the

previous best 7/6 lower bound by H̊astad [2001].
On the positive side, the best known approximation algorithm for the vertex-

cover problem is due to Karakostas [2005] who presented a (2 − Θ(1/
√

log(n))
approximation for the problem. This improves upon earlier (2−o(1)) approximation
algorithms due to Bar-Yehuda and Even [1981], Hochbaum [1982], Monien and
Speckenmeyer [1985], and Halperin [2002].

In the distributed setting, it is known how to compute a 2-approximate ver-
tex cover in the unweighted case. This can be achieved by computing a maximal
matching in the graph and by including the matched nodes in the cover. A maximal
matching can be computed in O(log4 n) rounds via the algorithm of Hanckowiack
et al. [2001], and in O(∆+ log∗ n) rounds via the algorithm of Panconesi and Rizzi
[2001]. Both algorithms are deterministic. Maximal matchings can also be com-
puted in an expected number of O(log n) rounds via the randomized algorithm of
Israeli and Itai [1986].

For the weighted case a (2+ ε)-approximation can be computed deterministically
in O(log n log 1

ε ) many rounds by using the algorithm of Khuller et al. [1994].
Their algorithm is stated as a PRAM algorithm, but it is readily seen to be a
bona fide distributed algorithm. Let Ŵ be the average weight. Then, by setting
ε = 1/(nŴ + 1), the latter algorithm computes a 2-approximate vertex cover in
O(log n(log n + log Ŵ )) communication rounds. Note that the above choice of ε
requires global knowledge of the quantity nŴ . This assumption may not be realistic
in all scenarios.

In this paper we present an improved fully-distributed algorithm to compute a
2-approximate weighted vertex cover. Our main result can be stated as follows. Let
W and ∆ denote the largest weight and degree of a node, respectively. We recall
that Ŵ is the average weight of a node.

Theorem 1.1. There is a fully distributed algorithm which computes a 2-approximate

weighted vertex cover in an expected number of O(log n + log Ŵ ) communication

rounds. The message size is O(log W ) and the local computation done in each

round is O(∆ log(∆W )) in expectation.

For a maximal matching M in G it is a well-known fact that any vertex cover in G
needs to have at least |M | vertices. Our algorithm is based on a generalization of
this property to the weighted setting.

The basic idea is to expand each node v of weight wv into wv micro-nodes

v(1), v(2) . . . , v(wv), and connect each v(i) to every u(j) whenever vu is an edge
of the network. Then a maximal matching in the auxiliary graph is computed.
The vertex cover is given by the nodes for which all corresponding micro-nodes are
matched. If the maximal matching is computed via the fully-distributed algorithm
of Israeli and Itai, the algorithm halts in an expected number of O(log n + log Ŵ )
rounds.

A naive implementation of the matching algorithm by Israeli and Itai leads to
pseudo-polynomial message and time complexity in each round. The main insight
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leading to the bounds on message-size and local computation time in Theorem 1.1
is to keep an implicit representation of the auxiliary graph and a maximal matching
in it.

The rest of this paper is organized as follows. In Section 2 we introduce some pre-
liminaries. Our algorithm relies on a careful adaptation of the matching algorithm
by Israeli and Itai. We present this adaptation in Section 3. Finally, Sections 4 and
5 deal with the naive and refined versions of our weighted vertex cover algorithm,
respectively.

2. PRELIMINARIES

The minimum-weight vertex cover problem can be formulated as an integer linear

program (ILP):

min
∑

v∈V wvxv

s.t.
xv + xu ≥ 1, ∀vu ∈ E;
xv ∈ {0, 1}, ∀v ∈ V .

Each assignment of the variables which satisfies the constraints (feasible solution)
corresponds to a vertex cover containing exactly the nodes v with xv = 1. By (LP)
we denote the natural linear programming relaxation of (ILP).

Let N(v) be the set of neighbors of v. The linear programming dual (D) of (LP)
is:

max
∑

vu∈E yvu

s.t.∑
u∈N(v) yvu ≤ wv , ∀v ∈ V ;

yvu ≥ 0, ∀vu ∈ E.

By weak duality (e.g., see [Chvátal 1983]), the value of each feasible solution of (D)
is a lower bound for the value of every feasible solution of (LP) and hence (ILP).

In this paper we consider the standard synchronous message-passing model of
computation. The computation proceeds in rounds. In each round, a node can
send/receive a message (of unbounded size) to/from each one of its neighbors, and
execute an unbounded amount of computation. No global knowledge is available
(including the number n of nodes in the graph). The algorithms presented can be
easily modified so as to work in a (non-faulty) asynchronous system also.

We use B(p), p ∈ [0, 1], to denote a Bernoulli random variable, which takes value
1 with probability p and 0 otherwise. A random bit is a Bernoulli variable B(0.5).

3. DISTRIBUTED MAXIMAL MATCHING

A matching of a graph G = (V, E) is a subset M ⊆ E such that no two edges of
M are incident to the same node. The results of the next sections are based on the
following simplified version M of the distributed maximal-matching algorithm of
Israeli and Itai [Israeli and Itai 1986].
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Algorithm M works in phases, each one consisting of a constant number of
rounds. In each phase, a matching is computed and the edges incident on matched
nodes are removed. The algorithm halts when no edge is left. The maximal match-
ing is given by the union of the matchings found in the different phases.

In a given phase a matching is computed in the following way. Let G′ = (V ′, E′)
be the current graph. By N ′(v) and δ′v we denote the set of neighbors of v and the
degree of v in G′, respectively. Each node v randomly decides to be a sender or a
receiver with probability one half. Note that the same node may play a different
role in different phases. Each sender u selects one neighbor v ∈ N ′(u) uniformly
at random and makes a proposal to v. Each receiver v which receives at least one
proposal, selects one of the proponents (arbitrarily) and accepts its proposal. The
matching is given by the edges corresponding to accepted proposals.

Let a node v be good if at least one third of its neighbors u have degree δu ≤ δv. To
prove the bound on the number of rounds, we use the following simple combinatorial
result [Israeli and Itai 1986]:

Lemma 3.1. At least one half of the edges of a graph are incident to good nodes.

Theorem 3.2. Algorithm M computes a maximal matching in O(log n) expected

rounds.

Proof. The correctness of the algorithm is trivial.
We show that in each phase at least a constant fraction of the edges is removed

in expectation. This implies that the expected number of rounds is O(log(n2)) =
O(log n). Consider a good node v of G′ in a given phase. The probability P ′

v that
v accepts a proposal is lower bounded by:

P ′
v ≥ 1

2


1 −

∏

u∈N ′(v)

(
1 − 1

2δ′u

)
 .

From the definition of good nodes:

∏

u∈N ′(v)

(
1 − 1

2δ′u

)
≤

∏

u∈N ′(v):δ′
u
≤δ′

v

(
1− 1

2δ′v

)
≤
(

1 − 1

2δ′v

) δ
′
v

3

≤ e−
1
6 .

Thus P ′
v ≥ (1 − e−1/6)/2. Hence, by Lemma 3.1, the expected number of edges

removed is at least a fraction (1 − e−1/6)/4 of the total.

4. DISTRIBUTED VERTEX COVER VIA MAXIMAL MATCHINGS

In this section we show how the problem of computing an approximate vertex cover
can be reduced to that of computing a maximal matching in an auxiliary graph.
Using this reduction, we show how to compute a 2-approximate vertex cover in
O(log n + log Ŵ ) expected rounds via algorithm M of section 3.

Consider the following auxiliary graph G̃. For each node v of G, G̃ contains wv

micro-nodes v(1), v(2) . . . v(wv). Two micro-nodes v(i) and u(j) are adjacent if and
only if vu is an edge of G. In Figure 1 an example of the reduction is given.

Let M be a maximal matching in G̃. By V (M) we denote the set of nodes v of
G such that all the corresponding micro-nodes v(i) are matched by M .

ACM Journal Name, Vol. V, No. N, Month 20YY.
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3

2 1

Fig. 1. A weighted graph G (on the left) with the corresponding auxiliary graph G̃. A maximal
matching M of G̃ is indicated via dashed lines. The dashed nodes of G form a vertex cover.

Lemma 4.1. Set V (M) is a 2-approximate vertex cover of G.

Proof. Assume by contradiction that V (M) is not a vertex cover. Thus there
are two adjacent nodes v and u in G which do not belong to V (M). This implies

that there are two adjacent micro-nodes v(i) and u(j) in G̃ which are not matched
by M . Then the set M ′ = M ∪ {v(i)u(j)} is a matching, which contradicts the
maximality of M .

Let apx and opt denote the weight of the vertex cover found and that of a
minimum weight vertex cover, respectively. Moreover, let zv be the number of
micro-nodes in {v(1), v(2) . . . v(wv)} that are matched by M . A feasible solution of
(D) is obtained by assigning to each dual variable yvu the number of edges of the
kind v(i)u(j) ∈ M . This solution is feasible since, for every v ∈ V :

∑

u∈N(v)

yvu = zv ≤ wv .

By weak duality we obtain

apx ≤
∑

v∈V

zv ≤ 2
∑

vu∈E

yvu ≤ 2 opt

and hence V (M) is 2-approximate.

Lemma 4.1 suggests a strategy to compute a 2-approximate vertex cover distribu-
tively. The idea is to simulate the behavior of algorithm M on a virtual auxiliary
graph G̃, and then to select the nodes in the vertex cover as suggested by Lemma
4.1.

Specifically, each node simulates the execution of the algorithm on the corre-
sponding micro-nodes v(i) in G̃. Whenever two micro-nodes v(i) and u(j) of G̃
need to communicate, nodes v and u are responsible for allowing such communi-
cation. The vertex cover is given by the nodes v such that all the corresponding
micro-nodes v(i) are matched by the maximal matching computed.

Since the virtual auxiliary graph contains O(nŴ ) nodes, the total number of
rounds is O(log(nŴ )) = O(log n + log Ŵ ).

This naive application of Lemma 4.1 has two major drawbacks. The first problem
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is the large message size. In fact, in each phase all the (remaining) micro-nodes of
v may send a proposal to some micro-node of u. Thus the message size is Ω(W ).

A second problem is the time complexity of the algorithm: consider a node v
in a given phase. Each micro-node v(i) of v, with probability one half, needs to
select one neighbor out of Θ(∆W ) uniformly at random. This random selection can
be performed in Θ(log(∆W )) expected time, assuming that the cost of generating
a random bit is O(1) (e.g., see [Cormen et al. 1992]). Thus the expected time
complexity of each phase is Ω(W log(∆W )).

In next section we show how to solve both problems by creating the matchings
implicitly.

5. AN IMPROVED ALGORITHM

In this section we present an improved fully distributed algorithm A for computing
a 2-approximate vertex cover. Algorithm A still requires O(log n+log Ŵ ) expected
rounds, but it reduces the size of the messages to O(log W ) and the expected time
complexity of each phase to O(∆ log(∆W )).

The basic structure of algorithm A is analogous to the structure of the naive
algorithm described in previous section: in each phase, a matching in the current
auxiliary graph G̃′ is computed, and the matched nodes are removed from G̃′ (to-
gether with all the edges incident to them). The algorithm halts when no edge
is left. The vertex cover is given by the nodes v such that all the corresponding
micro-nodes v(i) are matched by one of the matchings computed.

The main novelty in Algorithm A is that matchings are created implicitly : in
each phase each node only knows the number of the corresponding matched micro-
nodes. Intuitively, this simplification is allowed by the symmetry properties of G̃:
all the remaining micro-nodes corresponding to a node v have the same degree and
share the same neighborhood. This invariant is kept by all the induced subgraphs
of G̃.

Algorithm A, which is described in Figure 2, works in phases. Each phase consists
of a constant number of communication rounds. Each node v has an associated state

sv, which is initially active. In each phase, some of the active nodes switch to the
state inside or outside, and the algorithm terminates when no active node is left.
When a node leaves the active state, it halts. At the end of the algorithm, the
inside nodes form a vertex cover.

In more details, each node v has an associated residual weight w′
v , which is

initially wv. The residual weight w′
v can be interpreted as the number of micro-

nodes v(i) of v in the current auxiliary graph G̃′. Note that all the micro-nodes
v(i) have the same degree W ′

v :

W ′
v =

∑

u∈N(v)

w′
u.

In each phase, the expected residual weight of active nodes decreases. The decrease
of w′

v in a given phase reflects the number of micro-nodes of v that have been
matched in that phase.

At the beginning of each phase, each active node v sends w′
v to all its currently

active neighbors N ′(v). The neighbors with w′
u = 0 are removed from N ′(v). If

ACM Journal Name, Vol. V, No. N, Month 20YY.
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w′

v
= wv ; N ′(v) = N(v), sv = active;

while (sv = active) {
send w′

v
and receive w′

u
to/ from all u ∈ N ′(v);

N ′(v) = {u ∈ N(v) : w′

u
> 0};

if (|N ′(v)| = 0)
sv = outside;

else {
compute the proposals pv(u);
send pv(u) and receive pu(v) to/ from all u ∈ N ′(v);
compute the counter-proposals cv(u);
send cv(u) and receive cu(v) to/ from all u ∈ N ′(v);
for (all u ∈ N ′(v))

w′

v
= w′

v
− cv(u) − cu(v);

if (w′

v
= 0) {

send w′

v
to all u ∈ N ′(v);

sv = inside;
}

}
}

Fig. 2. Protocol for node v for 2-approximate vertex cover.

N ′(v) becomes empty, node v switches to the outside state. In fact, in this case the
degree W ′

v of the micro-nodes v(i) is zero, and thus they will never be matched.
Otherwise, v sends a proposal pv(u) to each active neighbor u ∈ N ′(v). The

value of pv(u) can be interpreted as the number of proposals directed from the
micro-nodes of v to the micro-nodes of u. Let p′

v be the sum of the proposals pv(u):

p′v =
∑

u∈N ′(v)

pv(u).

This quantity can be viewed as the number of micro-senders among v(1), v(2),. . . ,
v(wv). We postpone a detailed description of how proposals are fixed until later.

For each proposal pu(v) received, node v replies with a counter-proposal cv(u).
The counter-proposal cv(u) can be interpreted as the number of micro-nodes of v
which accept proposals of micro-nodes of u. Let c′v = w′

v − p′v be the number of
micro-receivers of v. The sum of the counter-proposals for node v then needs to be
at most c′v (there cannot be more accepted proposals than micro-receivers in v).
At the same time each counter-proposal cv(u) must not exceed the corresponding
proposal pu(v) (micro-receivers of v cannot accept more proposals from the micro-

senders of u than the proposals actually received). Given these restrictions, we
choose a feasible set of counter-proposals {cv(u)}u∈N ′(v) arbitrarily, such that their
sum is maximum. For example, let N ′(v) = {u1, u2, . . . , u|N ′(v)|}. For increasing

values of i, i = 1, 2, . . . , |N ′(v)|, we can set cv(ui) = min{pu(v), c′v −
∑i−1

j=1 cv(uj)}.
Observe that, at the end of the process,

∑

u∈N ′(v)

cv(u) = min{c′v,
∑

u∈N ′(v)

pu(v)}.

Eventually, node v decrements w′
v by the sum of all the counter-proposals cv(u)
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and cu(v) which have been sent and received by v, respectively:

w′
v = w′

v −
∑

u∈N ′(v)

(cv(u) + cu(v)) .

This decrement reflects the number of micro-nodes of v which are matched in the
considered phase.

If w′
v becomes zero, node v sends w′

v to all its neighbors (for the last time) and
switches to the inside state (since all the corresponding micro-nodes are matched).

Observe that the value of any feasible proposal (and thus of any counter-proposal)
is at most W . Hence, the message size decreases to O(log W ). It remains to show
how to compute the proposals efficiently, without increasing the expected number
of communication rounds.

A feasible set of proposals for a given node v is obviously obtained by simulating
Algorithm M: the proposals pv(u) are initially set to zero. Then, for w′

v times, an
active neighbor u ∈ N ′(v) is selected at random with probability proportional to w′

u,
and the corresponding proposal pv(u) is incremented by one with probability one
half. Note that each pv(u), considered separately, is the sum of w′

v i.i.d. Bernoulli

variables B(
w′

u

2W ′
v

):

pv(u) =

w′

v∑

i=1

B

(
w′

u

2W ′
v

)
. (1)

However, this approach is too expensive for large value of w′
v. The idea is then

to approximate the behavior of the proposals above. A natural choice is as follows:

pv(u) =

⌊
w′

vw′
u

2W ′
v

⌋
+ B

(
w′

vw
′
u

2W ′
v

−
⌊

w′
vw′

u

2W ′
v

⌋)
. (2)

We observe that, with both (1) and (2), E[pv(u)] =
w′

v
w′

u

2W ′
v

. However, the computa-

tion of (2) is faster.
There is a technical problem: for the proposals to be feasible, it must be (de-

terministically), p′v :=
∑

u∈N ′(v) pv(u) ≤ w′
v (there cannot be more micro-senders

than micro-nodes). This is guaranteed for w′
v ≥ 2δ′v, where δ′v = |N ′(v)| ≥ 1 is the

number of currently active neighbors of v:

∑

u∈N ′(v)

pv(u) ≤
∑

u∈N ′(v)

(
w′

vw′
u

2W ′
v

+ 1

)
=

w′
v

2
+ δ′v ≤ w′

v .

For w′
v < 2δ′v ≤ 2∆, we just simulate Algorithm M as described before.

Summarizing, proposals are set in the following way:

pv(u) =






∑w′

v

i=1 B
(

w′

u

2W ′
v

)
if w′

v < 2δ′v;⌊
w′

v
w′

u

2W ′
v

⌋
+ B

(
w′

v
w′

u

2W ′
v

−
⌊

w′

v
w′

u

2W ′
v

⌋)
otherwise.

The following technical property of the proposals will be useful in later parts of
the analysis.
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Lemma 5.1. For fixed {w′
u}u∈V , and for any two given active nodes v and u ∈

N ′(v),

Eu,v := E

[(
1 − 1

w′
v

)pu(v)
]
≤ e

−
w

′
u

4W ′
u .

Proof. Recall that, for x ≥ 1, (1 − 1
x )x ≤ e−1 and bxc ≥ x/2. We also remark

that W ′
u ≥ w′

v ≥ 1. If w′
u < 2δ′u,

Eu,v = E




(

1 − 1

w′
v

)∑w
′
u

i=1 B

(
w

′
v

2W ′
u

)

 =



E




(

1 − 1

w′
v

)B

(
w

′
v

2W ′
u

)






w′

u

=

(
1 − w′

v

2W ′
u

+
w′

v

2W ′
u

(
1 − 1

w′
v

))w′

u

=

(
1 − 1

2W ′
u

)w′

u

≤ e
−

w
′
u

2W ′
u .

Consider now the case w′
u ≥ 2δ′u. We further distinguish two subcases. If

w′

u
w′

v

2W ′
u

≥
1,

Eu,v = E



(

1 − 1

w′
v

)b
w

′
u

w
′
v

2W ′
u

c+B

(
w

′
v

w
′
u

2W ′
v

−

⌊
w

′
v

w
′
u

2W ′
v

⌋)
 ≤ E



(

1 − 1

w′
v

)b
w

′
u

w
′
v

2W ′
u

c



=

(
1 − 1

w′
v

)b
w

′
u

w
′
v

2W ′
u

c

≤
(

1 − 1

w′
v

)w
′
u

w
′
v

4W ′
u ≤ e

−
w

′
u

4W ′
u .

Otherwise (
w′

u
w′

v

2W ′
u

< 1):

Eu,v = E




(

1 − 1

w′
v

)b
w

′
u

w
′
v

2W ′
u

c+B

(
w

′
v

w
′
u

2W ′
v

−

⌊
w

′
v

w
′
u

2W ′
v

⌋)

 = E




(

1 − 1

w′
v

)B

(
w

′
u

w
′
v

2W ′
u

)



= 1 − w′
uw′

v

2W ′
u

+
w′

uw′
v

2W ′
u

(
1 − 1

w′
v

)
= 1 − w′

u

2W ′
u

≤ e
−

w
′
u

2W ′
u .

Lemma 5.2. Algorithm A computes a 2-approximate vertex cover.

Proof. The algorithm halts. In fact, the residual weight of each active node
decreases by at least one in each round with positive probability. It follows that
the nodes which do not switch to the outside state, switch to the inside state in a
finite expected number of rounds.

Assume by contradiction that, at the end of the algorithm, the inside nodes do
not form a vertex cover. This implies that there is an outside node v which has at
least one outside neighbor. Let v switch to the state outside in phase p. At the
beginning of phase (p − 1), all the neighbors of v are either inside or active nodes.
Consider the active neighbors of v in phase (p− 1). These nodes are not active any
more when phase p starts. But they cannot switch to the state outside in phase
(p − 1), since their active degree is greater than zero in that phase. Thus they all
switch to the state inside, which is a contradiction.
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Let zv be the difference between wv and the final residual weight w′
v . A feasible

solution of (D) is obtained by assigning to each dual variable yvu the sum of all the
counter-proposals of the kind cv(u) and cu(v). Let apx and opt be the weight of
the vertex cover found and that of a minimum vertex cover, respectively. By weak
duality:

apx ≤
∑

v∈V

zv ≤ 2
∑

vu∈E

yvu ≤ 2 opt.

Thus the vertex cover found is 2-approximate.

Lemma 5.3. Algorithm A sends messages of size O(log W ). Each phase of al-

gorithm A has time complexity O(∆ log(∆W )) in expectation.

Proof. Both proposals and counter-proposals can be packed in messages of size
O(log W ).

The time complexity of each phase is upper bounded by the cost of computing
the proposals. Computing the proposals is as expensive as selecting O(∆) times an
element out of O(∆W ) ones uniformly at random. Each random selection can be
performed by generating O(log(∆W )) random bits in expectation. By assuming
a O(1) cost for generating a random bit, the total expected cost of each phase is
O(∆ log(∆W )).

Recall that a node is good if at least one third of its neighbors have degree
smaller or equal than its own degree. Consider a node v in G. The degree of all
the micro-nodes corresponding to v in G̃ is:

Wv =
∑

u∈N(v)

wu.

Thus a micro-node v(i) is good if and only if:

∑

u∈N(v):Wu≤Wv

wu ≥ Wv

3
.

Note that, if a micro-node v(i) is good, all the micro-nodes v(j), j ∈ {1, 2 . . .wv},
are good and vice-versa. We call a node of G heavy if all its micro-nodes in G̃ are
good. The next observation can be seen as the weighted analogue of Lemma 3.1.

Lemma 5.4. Let EH ⊆ E be the subset of edges incident to heavy nodes. Then:

∑

vu∈EH

wvwu ≥ 1

2

∑

vu∈E

wvwu.

Proof. Consider the auxiliary graph G̃. The number of edges of G̃ that are
incident to good nodes is:

∑
{v,u}∈EH

wvwu. Since the number of edges of G̃ is∑
{v,u}∈E wvwu, the claim follows from Lemma 3.1.

We use the properties of heavy nodes to prove the following bound on the number
of rounds.

Lemma 5.5. Algorithm A halts in O(log n + log Ŵ ) expected rounds.
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Proof. We show that the residual weight of heavy nodes decreases by at least
a positive constant factor in expectation in each phase. It follows from Lemma 5.4
that the same holds for the potential function:

0 ≤
∑

vu∈E

w′
vw′

u < (nŴ )2,

thus implying the claim.
We condition on the values {w′

u}u∈V at the beginning of a given phase. Consider
a heavy node v in that phase. Let w′′

v be the value of w′
v at the end of the phase.

The residual weight of v decreases by at least the sum of the counter-proposals
cv(u) sent by v:

w′′
v ≤ w′

v −
∑

u∈N ′(v)

cv(u) = w′
v − min{c′v,

∑

u∈N ′(v)

pu(v)},

where, by definition, w′
v = p′v + c′v. Trivially,

E[w′′
v ] = Pr(c′v = 0)E[w′

v |c′v = 0] + Pr(c′v ≥ 1)E


w′

v −
∑

u∈N ′(v)

cv(u)
∣∣∣ c′v ≥ 1




= Pr(c′v = 0)E[p′v|c′v = 0] + Pr(c′v ≥ 1)E


p′v + c′v −

∑

u∈N ′(v)

cv(u)
∣∣∣ c′v ≥ 1




= E[p′v] + Pr(c′v ≥ 1)E


c′v −

∑

u∈N ′(v)

cv(u)
∣∣∣ c′v ≥ 1


 .

Now observe that, for c′v ≥ 1,

c′v −
∑

u∈N ′(v)

cv(u) = c′v − min{c′v,
∑

u∈N ′(v)

pu(v)}

= c′v

(
1 −

min{c′v,
∑

u∈N ′(v) pu(v)}
c′v

)

= c′v max

{
0, 1 −

∑
u∈N ′(v) pu(v)

c′v

}

≤ c′v

(
1 − 1

c′v

)∑
u∈N′(v) pu(v)

≤ c′v
∏

u∈N ′(v)

(
1− 1

w′
v

)pu(v)

.

Recall that we condition over the values {w′
u}u∈V . Under this condition, c′v and
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the pu(v)’s are independent. By this observation and the inequality above:

E


c′v −

∑

u∈N ′(v)

cv(u)
∣∣∣ c′v ≥ 1


 ≤ E


c′v

∏

u∈N ′(v)

(
1 − 1

w′
v

)pu(v) ∣∣∣ c′v ≥ 1




= E[c′v|c′v ≥ 1]
∏

u∈N ′(v)

E

[(
1 − 1

w′
v

)pu(v) ∣∣∣ c′v ≥ 1

]

= E [c′v|c′v ≥ 1]
∏

u∈N ′(v)

E

[(
1 − 1

w′
v

)pu(v)
]

.

By Lemma 5.1 and the definition of heavy nodes:

∏

u∈N ′(v)

E

[(
1 − 1

w′
v

)pu(v)
]
≤

∏

u∈N ′(v)

e
−

w
′
u

4W ′
u ≤

∏

u∈N ′(v):W ′
u
≤W ′

v

e
−

w
′
u

4W ′
v ≤ e−

1
12 .

We notice that E[p′v ] = E[c′v ] = w′
v/2. Moreover

E[c′v] = Pr(c′v = 0)E[c′v|c′v = 0] + Pr(c′v ≥ 1)E[c′v |c′v ≥ 1]

= Pr(c′v ≥ 1)E[c′v|c′v ≥ 1].

Altogether

E[w′′
v ] = E[p′v] + Pr(c′v ≥ 1)E


c′v −

∑

u∈N ′(v)

cv(u)
∣∣∣ c′v ≥ 1




≤ E[p′v] + Pr(c′v ≥ 1)E[c′v|c′v ≥ 1]e−
1
12

= E[p′v] + E[c′v]e
− 1

12 =
w′

v

2
+

w′
v

2
e−

1
12 < w′

v .

Lemmas 5.2, 5.3, and 5.5 together imply Theorem 1.1.
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