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1 Dipartimento di Informatica, Università di Roma “La Sapienza”, via Salaria 113,
00198 Roma, Italy. grandoni@di.uniroma1.it

2 Dipartimento di Informatica, Sistemi e Produzione, Università di Roma “Tor
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Abstract. Constraint Programming is a powerful programming paradigm
with a great impact on a number of important areas such as logic pro-
gramming [45], concurrent programming [42], artificial intelligence [12],
and combinatorial optimization [46]. We believe that constraint program-
ming is also a rich source of many challenging algorithmic problems, and
cooperations between the constraint programming and the algorithms
communities could be beneficial to both areas.

1 Introduction

Given a set of variables X , and a set of constraints C forbidding some par-
tial assignments of variables, the NP-hard Constraint Satisfaction Prob-
lem (CSP) is to find an assignment of all the variables which satisfies all
the constraints [37].

One of the most common ways to solve CSPs is via backtracking : given
a partial assignment of variables, extend it by instantiating some other
variable in a way compatible with the previous assignments. If this is not
possible, backtrack and try a different partial assignment. This standard
approach can be improved in several ways:

• (improved search) instead of backtracking to the previously instan-
tiated variable, one can backtrack to the variable generating the con-
flict (backjumping), and try to avoid such conflict later (backchecking
and backmarking).

• (domain filtering) consistency properties which feasible assignments
need to satisfy can be used to filter out part of the values in the do-
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mains, thus reducing the search space. This can be done in a prepro-
cessing step, or during the search, both for specific and for arbitrary
sets of constraints.

• (variables/values ordering) The order in which variables and val-
ues are considered during the search can heavily affect the time needed
to find a solution. There are several heuristics to find a convenient,
static or dynamic, ordering of variables and values (fail-first, succeed-
first, most-constrained, etc.).

In this paper we focus on the last two strategies, and we show how al-
gorithmic techniques can be helpful. In Section 3 we will describe two
polynomial-time filtering algorithms. The first one, which is based on
matching, can be used for filtering of the well-known alldifferent con-
straint. The second one uses techniques from dynamic algorithms to
speed up the filtering based on inverse-consistency, a consistency prop-
erty which can be applied to arbitrary sets of binary constraints.

In Section 4 we will present an exact (exponential-time) algorithm to
solve any CSP asymptotically faster than with trivial enumeration. As we
will see, the improved running time is heavily based on the way variables
and values are instantiated. However, in this case the approach is not
heuristic: the running time is guaranteed on any instance.

2 Preliminaries

Let X = {x1, x2, . . . , xn} be a set of n variables. Given x ∈ X , by D(x) we
denote the domain of x. From now on we will assume that each domain
is discrete and finite.

An assignment of a variable x ∈ X is a pair (x, a), with a ∈ D(x),
whose meaning is that x is assigned value a. A constraint C is a set of
assignments of different variables:

C = {(xi(1), a1), (xi(2), a2) . . . (xi(h), ah)}.

Constraint C is said to be satisfied by an assignment of the variables if
there exists one variable xi(j) such that xi(j) 6= aj , and it is said to be
violated otherwise.

Remark 1. For ease of presentation, in this paper we use the explicit
representation of constraints above. However, implicit representations are
more common in practice.

Given X and a set C of constraints, the Constraint Satisfaction Prob-
lem (CSP) is to find an assignment of values to variables (solution) such



that all the constraints are satisfied. We only mention that there are two
relevant variants of this problem:

• list all the solutions;

• find the best solution according to some objective function.

Some of the techniques we are going to describe partially extend to such
cases.

A (d, p)-CSP is a CSP where each domain contains at most d values,
and each constraint involves at most p variables. Without loss of gener-
ality, we can consider (d, 2)-CSPs only (also called binary CSPs), as the
following simple lemma shows.

Lemma 1. Each (d, p)-CSP instance can be transformed into an equiv-
alent (max{d, p}, 2)-CSP instance in polynomial time.

Proof. Duplicate the variables X and add a variable c for each constraint
C = {(xi(1), a1), (xi(2), a2), . . . , (xi(h), ah)}, h ≤ p. The domain of c is

D(c) = {(xi(1) 6= a1), (xi(2) 6= a2), . . . , (xi(h) 6= ah)}.

Intuitively, assigning the value (xi(j) 6= aj) to c means that constraint C
is satisfied thanks to the fact that xi(j) 6= aj . For each such c we also add
h constraints C1, C2, . . . , Ch of the following form:

Cj = {(c, (xi(j) 6= aj)), (xi(j), aj)}.

The intuitive explanation of Cj is that it cannot happen that xi(j) = aj

and, at the same time, constraint C is satisfied thanks to the fact that
xi(j) 6= aj. It is not hard to see that the new problem is satisfiable if and
only if the original problem is. �

Remark 2. Dealing with non-binary constraints directly, without passing
through their binary equivalent, might be convenient in some applications
[44].

It is also worth to mention that there is a nice duality between vari-
ables and constraints.

Lemma 2. Each (d, p)-CSP on n variables and m constraints can be
transformed in polynomial-time into an equivalent (p, d)-CSP on m vari-
ables and n constraints.



Figure 1 Example of consistency-graph. A solution is given by the assign-
ments {(x, 2), (y, 2), (z, 1), (w, 2)}. The assignment (x, 1) is arc consistent,
while it is not path-inverse consistent.

x,2

x,1

y,2 y,4

z,3

z,1

w,2 w,3

Proof. For each constraint C = {(xi(1), a1), (xi(2), a2) . . . (xi(h), ah)}, h ≤
p, create a variable c of domain:

D(c) = {(xi(1) 6= a1), (xi(2) 6= a2), . . . , (xi(h) 6= ah)}.

The interpretation of c is as in Lemma 1. Now consider any variable x of
the original problem. If there exists a ∈ D(x) such that the assignment
(x, a) does not conflict with any constraint, do not add any constraint for
x. Note that in such case, if there is a solution, there is a solution with
x = a. Otherwise, for each i ∈ D(x) = {1, 2, . . . , d(x)}, take a variable ci

such that (x 6= i) ∈ D(ci). Add the constraint

X = {(c1, (x 6= 1)), (c2, (x 6= 2)), . . . , (cd(x), (x 6= d(x)))}.

The intuitive explanation of X is that x must take some value in its
domain. It is not hard to see that the original problem is satisfiable if and
only if the original problem is. �

Note that each (d, 2)-CSP can be represented via a consistency graph
which has a node for each possible assignment (x, a) and an edge between
each pair of compatible assignments (anti-edges correspond to constraints
or to multiple assignments of the same variable). Any solution corresponds
to an n-clique in such graph (see Figure 1).



3 Polynomial algorithms and domain filtering

An assignment (x, a) is consistent if it belongs to some solution, and
inconsistent otherwise. Deciding whether an assignment is inconsistent
is an NP-hard problem (otherwise one could solve CSP in polynomial
time [37]). However, it is sometimes possible to filter out (part of the)
inconsistent assignments efficiently. In this section we give two examples of
how algorithmic techniques can be used in the filtering process. In Section
3.1 we discuss the filtering of the well-known (non-binary) alldifferent
constraint, which makes use of matching algorithms. In Section 3.2 we
consider the filtering based on `-inverse-consistent, suitable for any set of
binary constraints, and we present a faster algorithm employing standard
techniques from dynamic algorithms.

3.1 Alldifferent filtering via matching

In this paper we focus on binary constraints. However, there are families of
non-binary constraints which appear very frequently in the applications.
So it makes sense to design faster and more accurate filtering algorithms
for them.

A relevant example is the alldifferent constraint, which requires
that a set of variables take values different from each other. The alldifferent
constraint is very powerful. For example with only 3 such constraints on a
proper set of variables one can naturally model the well-known n-queens
problem: place n queens on a n × n chessboard such that no two queens
threaten each other (a queen threatens any other queen on the same row,
column, diagonal and anti-diagonal).

The alldifferent constraint has the great advantage that the con-
sistency of the assignments can be decided in polynomial time, with the
following procedure by Regin [40]. Consider the bipartite graph B, which
has the variables on the left side, the values on the right side, and one
edge between x and a for each possible assignment (x, a). Without loss
of generality, let us assume the values available are at least as many as
the variables (otherwise the problem has trivially no solution). Then any
feasible solution to the original problem corresponds to a perfect bipartite
matching in B, that is a matching where all the variables are matched.
Luckily, we do not need to compute explicitly all the perfect bipartite
matchings to determine whether a given assignment (x, a) belongs to any
one of them. In fact, let M be any perfect bipartite matching. Such match-
ing can be computed in time O(m′

√
n′), where n′ is the number of nodes

and m′ the number of edges of B [29]. Let us direct all the edges in M



from right to left, and all the other edges from left to right. Then an edge
(x, a) /∈ M belongs to some other perfect matching M ′ if and only if

• (x, a) belongs to an oriented cycle or

• it belongs to an even-length oriented path, starting in a free node on
the right side.

We can check the two properties above for all the edges in linear time
O(n′ + m′). Altogether, we can find the subset of consistent assignments
in time O(m′

√
n′).

In many applications the variables range over intervals. If such in-
tervals are very large, the approach above becomes unpractical. However,
there is a convenient alternative in such case: computing the largest subin-
terval for each variable such that both endpoints correspond to consistent
assignments (narrowing of the intervals). Puget [38] observed that the bi-
partite graph B corresponding to the alldifferent constraint is convex
if the variables range over intervals. Thus one can compute a perfect bi-
partite matching in O(n log n) time via the matching algorithm by Glover
[25] for convex bipartite graphs. Puget use this observation to narrow the
alldifferent constraint within the same time bound. Later Mehlhorn
and Thiel [34] described an algorithm which takes linear time plus the
time to sort the intervals endpoints. Their algorithm makes use of the
union-find data structure by Gabow and Tarjan [24]. This improves on
the result by Puget in all the cases where sorting can be done in linear
time.

3.2 Inverse consistency and decremental clique problem

Most of the filtering techniques designed for arbitrary binary constraints
are based on some kind of local consistency property P, which all the con-
sistent assignments need to satisfy. Enforcing P-consistency is a typical
dynamic process: an assignment (x, a) which is initially P-consistent may
become inconsistent because of the removal of some other assignment
(y, b). Thus the same (x, a) might be checked several times. Using the
information gathered during the previous consistency-checks can speed
up the following checks. This is typically what happens in dynamic algo-
rithms, and so it makes sense trying to apply the techniques developed
in that area to speed up the filtering process (for references on dynamic
algorithms, see e.g. [13]).

Maybe the simplest and most studied local consistency property is
arc-consistency [33]. An assignment (x, a) is arc-consistent if, for every



other variable y, there is at least one assignment (y, b) compatible with
(x, a). The assignment (y, b) is a support for (x, a) on variable y. Clearly,
if an assignment is not arc-consistent, it cannot be consistent (unless x
is the unique variable). Arc-consistency can be naturally generalized. An
assignment (x, a) is path-inverse consistent [17] if it is arc-consistent and,
for every two other distinct variables y and z, there are assignments (y, b)
and (z, c) which are mutually compatible and compatible with (x, a).
We say that {(y, b), (z, c)} is a support for (x, a) on {y, z} The `-inverse
consistency [17] is the natural generalization of arc-consistency (` = 2)
and path-inverse consistency (` = 3) to arbitrary (fixed) values of ` ≤ n.

There is a long series of papers on arc-consistency [3,4,5,33,35]. The
currently fastest algorithm has running time O(e d 2), where e denotes the
number of distinct pairs of variables involved in some constraint. For long
time the fastest known `-inverse-consistency-based filtering algorithm, for
` ≥ 3, was the O(e n `−2d `) algorithm by Debruyne [10].

Remark 3. The quantity e n`−2, corresponding to the number of distinct
subsets of ` pairwise constrained variables, can be replaced by the tighter
e`/2, given by a combinatorial lemma by Erdős [19].

The algorithm in [10] is based on a rather simple dynamic strategy to
check whether an assignment is `-inverse consistent. Roughly, the idea is
to sort the candidate supports of any assignment (x, a) on any subset of
other (` − 1) distinct variables in an arbitrary way, and then follow such
order while searching for supports for (x, a). Moreover, the last supports
found are maintained: this way, if a support for (x, a) is deleted and a
new one is needed, the already discarded candidates are not reconsidered
any more.

The algorithm in [10] was conjectured to be asymptotically the fastest
possible. In this section we review an asymptotically faster algorithm for
` ≥ 3 [27], based on standard techniques from dynamic algorithms. For
the sake of simplicity, let us consider the case of path-inverse-consistency
(` = 3). The same approach extends to larger values of `. Consider any
triple of pairwise constrained variables {x, y, z}, and let Gx,y,z be the
graph whose nodes are the assignments of x, y and z, and whose edges
are the pairs of compatible assignments (i.e. Gx,y,z is the restriction of
the consistency graph to variables x, y, and z). Any assignment (x, a)
is path-inverse-consistent with respect to variables y and z if and only if
(x, a) belongs to at least one triangle of Gx,y,z. More precisely, the number
of supports for (x, a) on {y, z} is exactly the number of triangles of Gx,y,z

which contain (x, a).



Thus a natural approach to enforce path-inverse-consistency is to
count all the supports for (x, a) on {y, z} initially, and then update the
count each time a support is deleted. If we scan all the candidate sup-
ports, the initial counting costs O(d 3). Since there can be at most O(d)
deletions, and listing all the triangles that contain a given deleted value
costs O(d 2), the overall cost of this approach is O(d 3). Since the graphs
Gx,y,z are O(e1.5), this approach has cost O(e1.5d 3), the same as with
Debruyne’s algorithm.

We next show how to speed up both the initial counting and the
later updating by using fast matrix multiplication and lazy updating, two
techniques which are widely used in dynamic algorithms [14,15]. By A we
denote the adjacency matrix of G. Given an assignment i = (x, a), the
number of triangles in which i is contained is t(i) = (1/2)A3[i, i]. Hence, as
first observed by Itai and Rodeh [31], the quantities t(i)’s can be computed
in time O(dω), where ω < 2.376 is fast square matrix multiplication
exponent [8].

It remains to show how to maintain the counting under deletion of
nodes. We use the following idea. In time O(d ω) we can also compute
for each edge {i, j}, the number t(i, j) of triangles which contain {i, j}.
The number of triangles t(i) containing i is one half times the sum of the
t(i, j)’s over all the edges {i, j} incident to i. Now suppose we remove a
neighbor j of i. Then, in order to update t(i), it is sufficient to subtract
t(i, j). Suppose that we later remove another neighbor k of i. This time
subtracting t(i, k) is not correct any more, since we could subtract the
triangle {i, j, k} twice. However, we can subtract t(i, k) and then add
one if {i, j, k} is a triangle. This argument can be generalized. Suppose
we already deleted a subset of nodes D, and now we wish to delete a
neighbor j of i. Then, in order to update t(i), we first subtract t(i, j) and
then we add one for each k ∈ D such that {i, j, k} is a triangle. This
costs O(|D|) for each update. Altogether maintaining the counting costs
O(d|D|) per deletion of node.

When |D| becomes too large, say |D| ≥ d ε for some ε ∈ (0, 1), this
approach is not convenient any more. However in that case we can up-
date all the t(i, j)’s, and empty D. In order to update the t(i, j)’s, we
need to compute all the 2-length paths passing through a node in D.
This costs O(d ωε+2(1−ε)), that is the time to multiply a d × d ε matrix
by a d ε × d, where the multiplication is performed by decomposing the
rectangular matrices in square pieces, and using square matrix multipli-
cation. Since we perform such update every d ε deletions, the amortized
cost per deletion is O(d 2+ε(ω−3)). Balancing the terms O(d 2+ε(ω−3)) and



O(d 1+ε), one obtains an overall O(d 1+1/(4−ω)) = O(d 1.616) amortized cost
per deletion. Using more sophisticated rectangular matrix multiplication
algorithms [30] the running time can be reduced to O(d 2.575). This leads
to the following result.

Theorem 1. Path-inverse consistency can be enforced in time O(e1.5d 2.575).

Remark 4. Depending on the size and density of the matrices involved, it
might be convenient in practice to use matrix-multiplication algorithms
different from the fastest asymptotic ones.

Another important consistency property is max-restricted path consis-
tency. The same basic approach as above allows one to reduce the time to
enforce max-restricted path consistency from O(e1.5d 3) [11] to O(e1.5d 2.575)
[26].

4 Exact algorithms in variables/values ordering

The classical approach to solve (exactly) NP-hard problems is via heuris-
tics. Although heuristics are very useful in practice, they suffer from few
drawbacks. First, they do not guarantee worst-case running times (better
than the trivial bounds). For example, the worst-case running time to
solve a (d, 2)-CSP instance on n variables is (implicitly) assumed to be
Ω(dn), that is the time bound achieved with exhaustive search. This can
be problematic in critical applications, where the worst-case running time
matters. Moreover, since the relative performance of heuristics can be as-
sessed only empirically, it is often difficult to compare different heuristic
approaches for the same problem.

A potential way to overcome those limits is offered by the design of
exact algorithms, an area which attracted growing interest in the last
decade. The aim of exact algorithms is to solve NP-hard problems in
the minimum possible (exponential) worst-case running time. Exact al-
gorithms have several merits:

• The measure of performance is theoretically well-defined: comparing
different algorithms is easy.

• The running time is guaranteed on any input, not only on inputs
tested experimentally.

• A reduction of the base of the exponential running time, say, from
O(2n) to O(2 0.9 n), increases the size of the instances solvable within
a given amount of time by a constant multiplicative factor; running
a given exponential algorithm on a faster computer can enlarge the
mentioned size only by a constant additive factor.



• The design and analysis of exact algorithms leads to a deeper insight
in NP-hard problems, with a positive long-term impact on the appli-
cations.

There are exact algorithms faster than trivial approaches for a number
of problems such as: TSP [18,28], maximum independent set [1,22,41],
minimum dominating set [20], coloring [2,7], satisfiability [6,9], maximum
cut [47], feedback vertex set [39], Steiner tree [16,36], treewidth [23], and
many others. For more references, see e.g. [21,32,43,48,49].

To show the potentialities of exact algorithms, we will describe an
exact deterministic algorithm which solves any (d, 2)-CSP on n variables
in time O((1 + bd/3c1.3645)n), thus breaking the Ω(d n) barrier given by
trivial enumeration.

In order to achieve such running time, we first describe a faster al-
gorithm to solve (3, 2)-CSPs, and we later show how to use it to speed
up the solution of arbitrary (d, 2)-CSPs. Note that (3, 2)-CSP is an in-
teresting problem in its own, since it includes as special cases important
problems like 3-coloring and 3-SAT via Lemma 2.

We need the following two observations.

Lemma 3. (reduction) [2] Consider a variable x of a (d, 2)-CSP such
that |D(x)| ≤ 2. Then there is a polynomial-time computable equivalent
(d, 2)-CSP with one less variable.

Proof. If D(x) = {a}, it is sufficient to remove variable x, and each value
conflicting with (x, a) in the domains of the other variables. So, let us
assume D(x) = {a, b}. In such case remove x and add the following set
of constraints: for every (y, a′) conflicting with (x, a) and for every (z, b′)
conflicting with (x, b), y 6= z, add the constraint {(y, a′), (z, b′)}. In fact,
setting y = a′ and z = b′ would rule out any possible assignment for x.
On the other direction, any solution to the new problem can be extended
to a solution for the original problem by assigning either value a or b to
x. �

Lemma 4. (domination) Consider any (d, 2)-CSP. Let a, b ∈ D(x),
for some variable x, and let A and B be the set of assignments of other
variables conflicting with (x, a) and (x, b), respectively. If A ⊆ B, then an
equivalent CSP is obtained by removing b from D(x).

Proof. Suppose there is a solution where x = b. Then, by switching x to
a, the solution remains feasible. �



Remark 5. The two properties above cannot be applied if the aim is to
compute all the solutions, or the best solution according to some objective
function.

We are now ready to describe our improved algorithm for (3, 2)-CSP,
which consists of the following steps.

1. (filtering) Exhaustively apply arc-consistency and domination to re-
duce the domains.

2. (base) If there a variable with an empty domain, return no. Other-
wise, if there is at most one variable, return yes.

3. (reduction) If there is a domain D(x) of cardinality at most 2, re-
move variable x according to Lemma 3, and branch one the problem
obtained.

4. (branch 1) If there is a constraint {(x, a), (y, b)}, where (y, b) is not
involved in other constraints, branch by either selecting a (i.e., re-
stricting D(x) to {a}) or discarding a (i.e., removing a from D(x)).

5. (branch 2) Otherwise, take a pair (x, a) involved in constraints with
the maximum possible number of distinct variables. Branch by either
selecting or discarding a.

By branching on a set of subproblems, we mean solve them recursively,
and return yes if and only if the answer of any one of the subproblems is
yes.

Lemma 5. The algorithm above solves any (3, 2)-CSP instance in worst-
case time O(1.466n).

Proof. We define an instance ground if the algorithm solves it without
branching on two subproblems (hence in polynomial-time). By P (X , C)
we denote the total number of ground instances solved to solve a given
(3, 2)-CSP instance (X , C). Let P (n) be the maximum of P (X , C) over
all the instances on n variables. We will show that P (n) ≤ 1.4656n. The
claim follows by observing that generating each subproblem costs only
polynomial time, excluding the cost of the recursive calls, and the to-
tal number of subproblems generated is within a polynomial from P (n).
Hence the total running time is O(1.4656n nO(1)) = O(1.466n).

We proceed by induction on n. Trivially, P (0) = P (1) = 1 satisfy the
claim. Now assume the claim is true up to (n − 1) ≥ 1 variables, and
consider any instance (X , C) on n ≥ 2 variables. We distinguish different
cases, depending on the step where the algorithm branches:

(base) We do not generate any subproblem

P (X , C) ≤ 1 ≤ 1.4656n.



(reduction) We generate exactly one subproblem with one less variable:

P (X , C) ≤ P (n − 1) ≤ 1.4656 n−1 ≤ 1.4656n.

(branch 1) In both subproblems variable x is removed by Step 3. When
we select a, we remove b from D(y) by arc-consistency, and hence variable
y by Step 3. When we discard a, we remove a value c ∈ D(x) \ {b} by
dominance, being c dominated by b. So also in that case y is later removed
by Step 3. Altogether

P (X , C) ≤ P (n − 2) + P (n − 2) ≤ 2 · 1.4656 n−2 ≤ 1.4656n.

(branch 2) By basically the same arguments as above, if (x, a) is involved
in constraints with at least two other variables y and z, when we branch
by discarding a, we remove at least variable x, while when we branch by
selecting a, we remove at least variables x, y and z. Hence

P (X , C) ≤ 1.4656 n−1 + 1.4656n−3 ≤ 1.4656n.

Otherwise, by Steps 1 and 4, and by a simple case analysis, there must be a
set of 6 constraints involving x and y of the following form: {(x, a), (y, b′)},
{(x, a), (y, c′)}, {(x, b), (y, b′)}, {(x, c), (y, c′)}, {(x, b), (y, a′)}, and {(x, c), (y, a′)}.
When we select a, we remove variable x, values b′ and c′ from D(y) by
arc-consistency, and later variable y by Step 3. When we discard a, we
remove variable x, value a′ by dominance, and later variable y by Step 3.
Thus

P (X , C) ≤ 2 · 1.4656 n−2 ≤ 1.4656n.

The claim follows. �

By using similar, but more sophisticated, arguments, Beigel and Eppstein
showed that any (3, 2)-CSP on n variables can be solved in worst-case time
O(1.36443n) [2].

Consider now the following algorithm to solve any (d, 2)-CSP, which
can be interpreted as a derandomization of a result in [2]. For each variable
x, partition D(x) in dd/3e subsets of cardinality at most 3, and branch by
restricting the domain of x to each one of the mentioned subsets. When
all the domains are restricted in that way, solve the instance obtained
with the mentioned O(1.36443n) algorithm for (3, 2)-CSP. Return yes if
and only if one of the subproblems generated is feasible.

Theorem 2. Any (d, 2)-CSP, d ≥ 3, can be solved in O(αn) worst-case
time, where α = α(d) = min{dd/3e1.3645, 1 + bd/3c1.3645}.



Proof. For the sake of simplicity, assume all the domains have size d.
This can be achieved by adding dummy variables. Consider the algorithm
above. Its running time is trivially

O(dd/3en 1.36443nnO(1)) = O(dd/3en 1.3645n).

When d is not a multiple of 3 a better time bound is achieved by observing
that the partition of each D(x) contains bd/3c sub-domains of size 3,
and one sub-domain of size d (mod 3) ∈ {1, 2}. Hence the algorithm
generates

(

n
i

)

problems containing i domains of cardinality at most 2,
and n − i domains of cardinality 3. The variables corresponding to the
i small domains can be removed without branching. Hence the running
time is

O(
∑

i

(

n

i

)

bd/3cn−i1.36443n−inO(1)) = O((1 + bd/3c1.3645)n).

�

Remark 6. A different algorithm is obtained by partitioning the domains
in sub-domains of size 2 instead of 3, and then branching as in the algo-
rithm above. Since each subproblem created can be solved in polynomial
time, the overall running time is O(dd/2ennO(1)). This improves on the
previous result for d = 4 and d = 10.
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