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Abstract1

In the maximum independent set of convex polygons problem, we are given a set of n convex polygons2

in the plane with the objective of selecting a maximum cardinality subset of non-overlapping polygons.3

Here we study a special case of the problem where the edges of the polygons can take at most d4

fixed directions. We present an 8d/3-approximation algorithm for this problem running in time5

O((nd)O(d4d)). The previous-best polynomial-time approximation (for constant d) was a classical nε6

approximation by Fox and Pach [SODA’11] that has recently been improved to a OPTε-approximation7

algorithm by Cslovjecsek, Pilipczuk and Węgrzycki [SODA ’24], which also extends to an arbitrary8

set of convex polygons.9

Our result builds on, and generalizes the recent constant factor approximation algorithms for the10

maximum independent set of axis-parallel rectangles problem (which is a special case of our problem11

with d = 2) by Mitchell [FOCS’21] and Gálvez, Khan, Mari, Mömke, Reddy, and Wiese [SODA’22].12
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1 Introduction13

The Maximum Independent Set of Convex Polygons problem (MISP) is a natural geometric14

packing problem with many applications in map labeling [13, 40], cellular networks [35],15

unsplittable flow [6], chip manufacturing [28], or data mining [18, 34]. Given a set of n16

convex polygons in the plane, the goal is to select a maximum number of them such that the17

polygons are pairwise non-overlapping.18

MISP is NP-hard [16, 29], hence it makes sense to design approximation algorithms for it.19

Disappointingly, the best (polynomial-time) approximation ratio for MISP (more precisely20

for k-intersecting curves) has been nε [17], for any fixed constant ε > 0. This ratio has21

recently been improved to OPTε [12].22
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XX:2 Approximating MISP with a bounded number of directions

Approximation Schemes. Interestingly, there is a quasi-polynomial time approximation23

scheme (QPTAS) for MISP [1]. Thus, the problem is not APX-hard, assuming NP *24

DTIME(2polylog(n)), suggesting that it should be possible to obtain a polynomial time25

approximation scheme (PTAS) for the problem.26

If we assume that we are allowed to shrink the polygons by a factor 1−δ for an arbitrarily27

small constant δ, then there is a PTAS for the problem [41]. Note that here the output is28

compared to the optimal solution without shrinking.29

When the input polygons are fat, e.g., regular polygons, then PTASes are known [9, 15].30

Axis-parallel rectangles. A prominent special case of MISP that has attracted a lot of31

attention over the years is the maximum independent set of axis-parallel rectangles (MISR),32

where all the polygons are rectangles with their edges parallel with the axes. An O(logn)33

approximation for MISR was given in [31, 39]. This was slightly improved to O(logn/ log logn)34

in [10], and substantially improved to O(log logn) in [7]. In a recent breakthrough result,35

Mitchell [37] presented the first constant factor approximation algorithm with approximation36

ratio 10, and later 3 + ε in an updated version [38] with a considerably shorter case analysis.37

Subsequently, his approach was simplified and improved to a (2 + ε)-approximation algorithm38

by Gálvez, Khan, Mari, Mömke, Reddy, and Wiese [21, 22]. These approaches rely on a39

dynamic program that considers all the partitions of a bounding box containing the instance40

into a number of containers with constant complexity (constant number of line segments).41

Our contribution. With the goal of better understanding the approximability of MISP, in42

this paper, we consider the following natural special case of MISP: d-MISP is the special case of43

MISP where the edges of the input polygons are parallel to a given set D of d = |D| directions.44

Notice that MISR is equivalent to 2-MISP. Our main result is a constant approximation for45

d-MISP when d is a constant.46

I Theorem 1. There exists an 8d/3-approximation algorithm for d-MISP running in time47

O((nd)O(d4d)).48

Our result builds on the approaches in [21, 22, 38], however we have to face several additional49

complications. In particular, already for d = 3 the algorithm and its analysis deviates50

substantially from the known (polynomial-time) results in the literature about axis-aligned51

rectangles. An overview of our approach is given in Section 3.52

Related Work. One can consider a natural weighted version of MISP, where each convex53

polygon has a positive weight, and the goal is to find an independent set of maximum total54

weight. The weighted version of MISR was studied in the literature, and the current-best55

polynomial time approximation factor is O(log logn) [8]. We remark that our approach,56

likewise the approaches in [21, 22, 37], does not seem to extend to the weighted case. In57

particular, finding a constant approximation for weighted MISR remains a challenging open58

problem. We remark that the QPTAS in [1] extends to the weighted case, hence suggesting59

that the weighted version of MISP might also admit a PTAS.60

MISR was also studied in terms of parameterized algorithms. Marx [36] proved that61

the problem is W[1]-hard, which rules out the existence of an EPTAS. A parameterized62

approximation scheme for the problem is given in [24].63

A rectangle packing problem related to MISR is the 2D Knapsack problem. Here we64

are given an axis-parallel square (the knapsack) and a collection of axis-parallel rectangles.65

The goal is to pack a maximum cardinality (or weight) subset of rectangles in the knapsack66
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Figure 1 A convex polygon in 4 directions. The edge e3(P ) is degenerate.87

(without rotations). 2D Knapsack admits a QPTAS [2] and a few constant approximation67

algorithms are known [19, 20, 30]. Here as well, finding a PTAS is a challenging open68

problem.69

Bonsma et al. [6] established an intriguing connection between MISR and the Unsplittable70

Flow on a Path problem. A PTAS for the latter problem was recently obtained [25], closing71

a very long line of research (see, e.g., [3, 4, 5, 6, 26, 27]).72

2 Preliminaries73

In this paper, a (possibly closed) curve is always assumed to be a polygonal chain (or a74

singleton point) and a polygon S is a bounded set with non-empty interior int(S) and whose75

boundary ∂S is a closed curve. We denote the closure of S as S̄, so S̄ = ∂S ∪ int(S). We say76

that two polygons S, T (with non-empty interior) touch if int(S)∩ int(T ) = ∅ but ∂S∩∂T 6= ∅77

and intersect if int(S) ∩ int(T ) 6= ∅. A curve f touches S if f ∩ int(S) = ∅ but f ∩ ∂S 6= ∅.78

A line segment or curve is called degenerate if it is a singleton point. A line segment79

or curve is assumed to be non-degenerate unless we explicitly state the opposite. For an80

(oriented) line segment e = ww′ (resp. curve γ = w1w2 · · ·wk) we define the head of e (of γ)81

as h(e) = w′ (h(γ) = wk) and the tail of e (of γ) as t(e) = w (t(γ) = w1) and the interior of82

e (of γ) as int(e) = e \ {h(e), t(e)} (int(γ) = γ \ {h(γ), t(γ)}). For a degenerate line segment83

(resp. curve), the head and the tail coincide with the line segment (resp. curve).84

For a vector v = (x, y), let v⊥ := (y,−x) (which is v rotated clockwise orthogonally). For85

a positive integer k, let [k] := {1, . . . , k}.86

Input. For a fixed positive integer d, the input of our problem is given by a set of (pairwise89

linearly independent) d direction defining vectors D = {v1, . . . , vd} ⊆ Z2 and a set I of90

n convex polygons with edges oriented along the directions given in D. Polygons of this91

type are sometimes called d-discrete orientation polytopes (d-DOPs) [32]. In this paper,92

we will more casually refer to them as (input) polygons; the significance of the word93

“polygon” will be clear from context. Without loss of generality, assume v1 = (0, 1) and94

that v2, . . . , vd point to the left and are ordered by decreasing slope, see Figure 1. For95

i ∈ {d + 1, . . . , 2d}, let vi := −vi−d. The indices of the directions are counted modulo 2d,96

i.e., i = i + 2d = i − 2d. More explicitly, each polygon P ∈ I is encoded by 2d integers97

p1(P ), . . . , p2d(P ) as P = {x ∈ R2 : xᵀv⊥i < pi(P ), ∀i ∈ [2d]}; and thus P̄ = {x ∈ R2 :98

xᵀv⊥i ≤ pi(P ), ∀i ∈ [2d]}. We assume that those linear inequalities are all tight, including99

SoCG 2024



XX:4 Approximating MISP with a bounded number of directions

redundant ones1, i.e., ei(P ) := P̄ ∩{x : xᵀv⊥i = pi(P )} 6= ∅ for every i ∈ [2d]. ei(P ) is called100

the edge of P in direction vi. Then, for every i ∈ [2d], ei(P ) and ei+1(P ) are incident and101

h(ei(P )) = t(ei+1(P )). Note that e1(P )e2(P ) · · · e2d(P ) forms a positively oriented closed102

curve.103

Grid. Let L1 be the set of all lines in directions v1, . . . , vd passing through the vertices104

of the input polygons. In particular, all the edges (including the degenerate ones) of all105

the polygons in the input lie on the lines in L1. Notice that |L1| ≤ 2d2n. We recursively106

define Vk, for k ∈ [2d] and Lk, for k ∈ {2, . . . , 2d} as follows: Vk is the set of intersection107

points of any two (non-parallel) lines in Lk, and Lk is the set of all lines in directions D108

passing through points in Vk−1. We define the grid Gk = (Lk,Vk). Since |Vk| ≤ |Lk|2 and109

|Lk| ≤ |Vk−1| · d, it follows that |Vk| ≤ (2d3n)2k . The grid G2d form the coordinate system of110

our algorithm: every geometric object appearing in the algorithm and the analysis lies on111

G2d. A line segment s lies on Gk if s lies on some line in Lk and the extreme points of s lie112

on Vk. Similarly, a curve or polygon lies on Gk if all of its line segments do so.113

Container. Consider the grid G1. Let C∗ ∈ G1 be a parallelogram that encloses all polygons117

in I; we call C∗ the bounding box.2 A container (see Figure 2(a)) is a polygon on G2d with118

positively oriented boundary s1f1s2f2 . . . sκfκ where 2 ≤ κ ≤ 5, such that:119

s1, s2, . . . , sκ are disjoint and possibly degenerate parallel line segments on G2d (these120

will later be called cutting lines).121

For all j ∈ [κ], fj is a simple curve on G2d consisting of at most 2d+ 1 line segments and122

t(fj) = h(sj) and h(fj) = t(sj+1) for every j ∈ [κ] (where sκ+1 = s1).123

For all j ∈ [κ], int(sj) does not intersect with any other part of the boundary of the124

container.125

For all i, j ∈ [κ], i 6= j, the curves fi and fj might touch but do not cross (defined below).126

In particular, a container has at most 10d+10 line segments. Let C be the set of all containers127

C with int(C) ⊆ int(C∗). In particular, C∗ is a container and C∗ ∈ C. A bipartition of C ∈ C128

is a pair {C1, C2} ⊆ C such that C1, C2 split up C, i.e., int(C)\(∂C1∪∂C2) = int(C1)∪int(C2)129

and C1 and C2 may touch but not intersect.130

Crossing curves. Two curves cross (see also Figure 2(b)) if each one of them contains133

a connected subcurve w0w1 · · ·wk and q0q1 · · · qk, respectively, which form a crossing, i.e.,134

if w0 6= q0, wk 6= qk, wi = qi for 1 ≤ i ≤ k − 1 and the (non-collinear) triangles w0q0w2135

and wtqtwt−2 have the same orientation (i.e., are either both positively or both negatively136

oriented).3 For two curves formed by at most k line segments in total, it can be decided in137

time O(k3) whether there exists a crossing among them or not [11]. With this definition, it138

is guaranteed that every container has a well-defined interior [11].139

The proofs and details which are omitted due to space constraints will appear in the full140

version of the paper (see also [23]).141

1 An inequality is redundant if we can remove it from the definition of P without affecting P .88
2 It can, for example, be chosen as a parallelogram delimited by the leftmost and rightmost vertical lines and

the top and bottom v2-oriented lines in G1 (i.e., the extension of e2(P ′) where P ′ = arg maxP∈I p2(P )
and the extension of ed+2(P ′′) where P ′′ = arg maxP∈I pd+2(P )).

114

115

116
3 Any container is thus weakly simple according to the definitions in [14, Box 5.1] and [33]. The concept
of weakly simple polygons is extensively discussed in [11].

131

132
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(a) A container with κ = 5. The line segment s4 on
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Figure 2 A container with κ = 5. An illustration of crossing and non-crossing.152

3 Our Approach153

First, we present the algorithm in Section 3.1, and give an overview of the analysis in154

Sections 3.2 and 3.3. The detailed analysis and proofs are given in the later sections.155

3.1 The algorithm156

Our algorithm is a dynamic program that generalizes the algorithm in [21]. Each cell of the157

dynamic program corresponds to a container C ∈ C. For each container, the dynamic program158

computes a set of disjoint polygons Dyn(C) ⊆ I as follows. If C encloses no polygon in I,159

set Dyn(C) = ∅. If C encloses exactly one polygon P ∈ I, set Dyn(C) = {P}. Otherwise,160

the dynamic program goes through all bipartitions of C and chooses the bipartition {C1, C2}161

that maximizes |Dyn(C1)|+ |Dyn(C2)| and sets Dyn(C) = Dyn(C1) ∪Dyn(C2). The final162

output of the algorithm is Dyn(C∗).163

I Lemma 2 (Running time). Let N = |V2d| be the number of points in the grid G2d. Dyn(C∗)164

can be computed in time O
(
N20d+20) = O((nd)O(d4d)).165

Proof. The boundary of each container can be identified by a sequence of 10d + 10 line166

segments in G2d. There are therefore at most O
(
N10d+10) containers in C. As argued in167

[21], any bipartition {C1, C2} of C is determined by the boundary between C1 and C2, i.e.,168

∂C1 ∩ ∂C2, which is composed of at most 10d+ 10 line segments. Thus, to compute Dyn(C),169

the dynamic program does not consider more that O
(
N10d+10) bipartitions. This gives a total170

running time O
(
N20d+20). The lemma follows since N = O((2d3n)4d), see Section 2. J171

It is not hard to see that the output Dyn(C∗) is indeed an independent set, so we will focus172

on showing that the algorithm has the claimed approximation guarantee.173

3.2 Analysis174

By construction, the output solution Dyn(C∗) is the union of the solutions of two smaller175

containers, and so on. We represent this structure by a binary tree called recursive partition176

SoCG 2024



XX:6 Approximating MISP with a bounded number of directions

defined below. We argue that Dyn(C∗) is the best solution among all the solutions repre-177

sentable by a recursive partition. Then, we show the existence of a recursive partition that178

respects the approximation factor claimed in Theorem 1.179

I Definition 3. For a set R ⊆ I, a recursive partition of R is a rooted tree T with vertex180

set V such that181

every node u ∈ V corresponds to a pair (Cu,Pr(Cu)) where Cu ∈ C is a container, and182

Pr(Cu) is the set of protected polygons of R contained in Cu,183

the root r of T corresponds to (C∗, ∅), i.e., Cr = C∗ and Pr(Cr) = ∅;184

every internal node has two children u1, u2 such that: Cu1 and Cu2 form a bipartition of185

Cu, and Pr(Cu) ⊆ Pr(Cu1) ∪ Pr(Cu2);186

for every leaf u of T , Cu contains exactly one polygon Pu ∈ R or no polygon in R at all;187

for every P ∈ R, there exists a leaf u of T such that P lies in Cu.188

Clearly, if R ⊆ I admits a recursive partition, it must be an independent set. It is easy189

to show by induction on the height of the tree that the output Dyn(C∗) admits a recursive190

partition, which leads to the following lemma.191

I Lemma 4 ([21, Lemma 2.2]). If R ⊆ I admits a recursive partition, then |Dyn(C∗)| ≥ |R|.192

Therefore, Theorem 1 is a consequence of Lemma 2 and the following proposition.193

I Proposition 5. Let OPT be an optimal solution of an instance of MISP. There exists a194

recursive partition for some set R ⊆ OPT such that |R| ≥ 3
8d |OPT |.195

3.3 Informal overview of the proof of Proposition 5196

Intuitively, we construct the set R by starting from an optimal solution OPT contained in197

the initial container (the bounding box) Cr = C∗ and Pr(Cr) = ∅. Then, we will recursively198

partition the current container Cu into two containers Cu1 and Cu2 . R is then defined as199

the set of polygons of OPT that are fully contained in the leaf containers. For a polygon200

P ∈ OPT contained in Cu, we say that P is lost (at Cu) if it is neither contained in Cu1 nor201

in Cu2 .202

Below, one of the d directions in D plays a special role: without loss of generality, we203

assume that this direction is vertical/vertical-up (v1). The exact choice will be made later.204

Accountable polygons. We prove that there exists a subset ACC ⊆ OPT (the accountable205

polygons) with at least 3
4d |OPT | polygons, such that for each polygon P ∈ ACC lost during206

partitioning of some Cu into Cu1 and Cu2 we can charge an unique polygon P ′ ∈ OPT and207

P ′ lies in a leaf container of the recursive partition.208

We next describe in more details the set of accountable polygons ACC and how protected209

polygons are defined. For technical reasons, we replace each original polygon P ∈ OPT with210

a new polygon ext(P ) lying on G2d that contains P (see Figures 3 and 4). The new set of211

polygons remains independent, and we will simply denote it by OPT in the following.212

Let P ∈ OPT and consider its edge e1(P ) in direction vertical-up. Let P ′ ∈ OPT and213

consider its edge ed+1(P ′) in direction vertical-down. We say that P sees P ′ if e1(P ) is214

non-degenerate and h(ed+1(P ′)) ∈ int(e1(P ))∪{t(e1(P ))}, see Figure 4. We let the set ACC215

of accountable polygons be the polygons P ∈ OPT such that P sees some P ′ ∈ OPT. It is216

easy to show that each polygon is seen by at most one other polygon in OPT.217
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Partitioning. For C ∈ C, let OPT(C) be the set of polygons in OPT that lie on int(C).218

Our construction is guided by a partitioning lemma which is stated later. Roughly speaking,219

let C be a container with |OPT(C)| ≥ 2, and let Pr(C) be the set of protected polygons in220

C. The partitioning lemma states that C can be bipartitioned by a curve Γ into two smaller221

containers C1 and C2 such that222

(P1) Γ contains a vertical line segment ` that intersects all the polygons in OPT(C) that223

are intersected by Γ.224

(P2) Γ does not intersect any polygon in Pr(C),225

(P3) Pr(C) ⊆ Pr(C1) ∪ Pr(C2).226

We stress that the lemma does not hold for an arbitrary set Pr(C) (e.g., if we take Pr(C) =227

OPT(C)). The set of protected polygons in a container is defined below.228

Charging and protecting. The recursive partition which determines R is defined by repeat-229

edly applying the partitioning lemma. During the construction of the recursive partition, we230

need to guarantee that the vertical line segments given by (P1) do not intersect too many231

polygons from OPT; this is the only possibility of “losing” some polygons. For this, we use232

the set of accountable polygons ACC ⊆ OPT. Whenever we apply the partitioning lemma,233

the line ` intersects some polygons in ACC. For each P ∈ ACC that is intersected by `, i.e.,234

for each lost polygon P ∈ ACC, we charge exactly one polygon P ′ seen by P . By (P1), if `235

intersects P , then Γ does not intersect P ′. If P ′ is not already an element of Pr(C) and thus236

an element of Pr(C1) ∪ Pr(C2), then we add the polygon P ′ to either Pr(C1) if P ′ ∈ C1 or237

to Pr(C2) if P ′ ∈ C2. Moreover, if there is a polygon P ′′ ∈ OPT(C) that sees P , then P ′′ is238

also added to either Pr(C1) or Pr(C2).239

By (P3), adding P ′ to one of Pr(C1) and Pr(C2) means that the charged polygon P ′240

will remain protected. By (P2), P ′ will not be intersected by the curves in the following241

applications of the partitioning lemma. Therefore P ′ will be an element in R (our intended242

recursive partition). Adding P ′′ to one of Pr(C1) and Pr(C2) is also necessary, because the243

polygon P is already lost and if we were to lose P ′′ in one of the following steps, there might244

not be a polygon which we could charge the loss of P ′′ to.245

We conclude that for every polygon P ∈ ACC lost in the partitioning of a container, we246

can guarantee that a unique polygon P ′ seen by P is charged, and it will become the protected247

polygon in a leaf. At least half of the polygons in ACC are either lost or not, so there are at248

least 1
2 |ACC | polygons in the leaves. Proposition 5 follows since |ACC | ≥ 3

4d |OPT |.249

3.4 Comparison with previous work on MISR250

Overall, we follow the same high level approach as the papers on MISR [21, 22, 38]. Yet,251

to generalize the results on MISR to MISP, we encounter several technical difficulties. We252

discuss a few of the more prominent ones below.253

To define the set ACC, we need the following property (later referred as (E3)): for every254

P ∈ OPT and every non-degenerate edge e of P , int(e) touches either another polygon255

P ′ ∈ OPT or the boundary of the bounding box. This property can be obtained by256

“maximally extending” OPT as in [21, 38]. The difficulty here, unlike in the case of rectangles,257

is that naively extending the polygons can result in a grid of exponential size in n.258

For MISR [21, 38], the accountable polygons correspond to the non-nested polygons259

(both vertical and horizontal). It is essentially trivial to show that the number of non-nested260

rectangles is at least half of the optimal number of rectangles. In case of convex polygons,261

we require a more careful argument to show that there are at least 3
4d |OPT | accountable262

polygons.263
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Figure 3 Illustration of the pro-
cess of extending a polygon P . We
extend P by moving the edge e of
P until int(e) touches another poly-
gon in OPT.
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To obtain the partitioning lemma, we follow the same idea as in the case of axis-parallel264

rectangles but we need to work with significantly more complex objects. Firstly, the containers265

we work with have O(d)-times more line segments. Secondly, the containers that appear in266

our construction might not be simple (since some parts of the boundary may touch other parts267

of the boundary). These difficulties require more elaborate and more technical arguments.268

4 Charging options and accountable polygons269

Like the papers [21, 38] on MISR, first, we extend an optimum solution OPT.270

I Definition 6. Let OPT be an optimal solution of a MISP instance. We say that OPT′ is271

a maximal extension of OPT if:272

(E1) OPT′ is an independent set of (convex) polygons on G2d and enclosed in C∗.273

(E2) There exists a bijection ext : OPT→ OPT′ such that P ⊆ ext(P ) for every P ∈ OPT.274

(E3) For every P ∈ OPT′ and every non-degenerate edge e of P , int(e) touches either275

another polygon P ′ ∈ OPT′ or ∂C∗.276

On a high level, a maximal extension is constructed as follows: starting with OPT, one277

direction vi at a time, as long as there is a polygon P ∈ OPT with ei(P ) being non-degenerate278

but not satisfying (E3), we extend P by moving the edge ei(P ) “outside” (i.e., by steadily279

increasing pi(P )), see Figure 3. After the extension in the k-th direction, the edges of280

polygons in OPT lie on Gk, so the maximal extension lies on the grid G2d.281

By (E2) and (E1), it suffices to prove Proposition 5 for a maximal extension of OPT. (In282

particular, (E1) implies that the polygons in OPT′ have edges in the given d directions.)283

The purpose of a maximal extension is to guarantee (E3), which is helpful to bound the284

number of accountable polygons. For the rest of the paper, we assume that OPT is already285

“maximally extended” and thus satisfies (E3), and we work with the grid G2d.286

In the rest of this section, by the term direction we mean a direction vi where i ∈ [2d],298

and say that edge e is of direction vi if the points of the edge e correspond to t(e) + λ · vi,299

with λ ≥ 0. A charging option is specified by a direction vi, i ∈ [2d] and a choice between t300

and h. Let O = {vi}i∈[2d] × {t, h} be the set of the 2d · 2 = 4d charging options. We show301
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the existence of a charging option and a subset ACC ⊆ OPT of accountable polygons with302

respect to this option such that (essentially) |ACC | ≥ 3
4d |OPT |.303

I Definition 7. Let P ∈ OPT and let e be the edge of P in direction v = vi, i ∈ [2d].304

Let P ′ ∈ OPT and e′ be the (possibly degenerate) edge of P ′ of direction −v. For305

a ∈ {t, h}, we say that P sees P ′ with respect to (v, a) if e is non-degenerate and if306

¬a(e′) ∈ int(e) ∪ {a(e)}, where ¬t = h and ¬h = t. (See Figure 4.)307

Whenever there exists P ′ ∈ OPT and a charging option (v, a), such that P sees P ′ for308

(v, a) then we say that P is accountable for (v, a).309

I Lemma 8. Let (v, a) ∈ O be a charging option. Any polygon P ′ ∈ OPT is seen by at most310

one other polygon P ∈ OPT with respect to (v, a).311

Proof. Assume that P ′ is seen by P1, P2 ∈ OPT with respect to (v, a). Let e1 and e2 be the312

edge in direction v of P1 and P2, respectively. Then we have ¬a(e′) ∈ (int(e1) ∪ {a(e1)}) ∩313

(int(e2) ∪ {a(e2)}). Since int(e1) 6= ∅ and int(e2) 6= ∅, it follows that int(e1) ∩ int(e2) 6= ∅.314

This implies that P1 and P2 intersect, thus P1 = P2. J315

We say that a polygon P ∈ OPT is a corner polygon in the bounding box C∗, if all but316

one of the edges of P are contained in the boundary of C∗. In particular, P is a corner317

polygon if P = C∗. Similarly, if C∗ is partitioned into two convex polygons, then both318

are corner polygons. Let Z ⊆ OPT be the set of corner polygons in C∗. Since C∗ is a319

parallelogram, we have |Z| ≤ 4, and the polygon C ′ = C∗ \ (
⋃
Z) is convex.320

I Lemma 9 (Good charging option). Assume that OPT satisfies (E3). Then, there exists a321

charging option (v, a) ∈ O such that at least 3
4d |OPT \Z| polygons in OPT \Z are accountable322

with respect to (v, a).323

Proof. Let P ∈ OPT and c be a vertex of P . Let e, e′ be the two non-degenerate edges324

incident to c where c = h(e) = t(e′). Denote with v (resp. v′) the direction of e (resp. e′).325

B Claim 10. Suppose that e or e′ (or both) does not lie on the boundary of C∗. Then, P is326

accountable with respect to (v, h) or (v′, t).327

Proof. By (E3), each non-degenerate edge of P not contained in the boundary of the bounding328

box, must touch some other polygon of OPT in its interior. By assumption either e or e′329

does not lie on the boundary of C∗, without loss of generality, say e. Then P touches some330

P1 ∈ OPT on int(e), i.e., int(e)∩ e1 6= ∅, where e1 is the edge of P1 in direction −v (e1 could331

be degenerate). See Figure 5. If P sees P1 with respect to (v, h), i.e., t(e1) ∈ int(e) ∪ {h(e)}332

then the claim is true, so assume that t(e1) /∈ int(e)∪{h(e)}. This however implies c ∈ int(e1).333

Since c ∈ int(e1) and C∗ is convex, it follows that e′ is not on the boundary of C∗. Then,334

by (E3), there exists P2 ∈ OPT that touches P on int(e′), i.e., int(e′) ∩ e2 6= ∅, where e2 is335

the edge of P2 in direction −v′. If P does not see P2 with respect to (v′, t), then c ∈ int(e2)336

by the same argument as before. So int(e1) and int(e2) intersect in c and thus P1 and P2337

intersect (as e1 and e2 have different direction) which is a contradiction. Therefore, P must338

see P2 with respect to (v′, t). C339

Consider P ∈ OPT \Z. Since P is not a corner polygon in C∗, it has at least two346

consecutive non-degenerate edges such that neither of them lies on ∂C∗. By Claim 10, every347

vertex of P incident to one or both of these edges, provides a charging option for which P is348

accountable. Thus, the total number of pairs (P, (v, a)) with P ∈ OPT \Z and (v, a) ∈ O349

such that P is accountable with respect to (v, a) is at least 3|OPT \Z|. Since |O| = 4d, there350

SoCG 2024
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P

ee
′

c

P1

e1

P

ee
′

c

P1

P1

c1

e1

Figure 5 Claim 10: the blue (red) corners represents the tail (head) of the edges in direction −v.340

exists an option (v, a) for which the number of accountable polygons in OPT \Z is at least351

3
4d |OPT \Z|.4 J352

5 Recursive partitioning353

Without loss of generality (by rotating and mirroring the initial instance if necessary), we354

assume that the option (v, a) satisfying Lemma 9 is vertical-up and tail, i.e., (v1, t). In other355

words, for any P ∈ OPT, if e1(P ) is non-degenerate and if there is a P ′ ∈ OPT such that356

h(ed+1(P ′)) ∈ int(e1(P ))∪t(e1(P )), then we say that P sees P ′ (and P ′ is seen by P ) and that357

P is accountable. Lemma 9 states that there exists a subset ACC ⊆ OPT \Z of accountable358

polygons such that |ACC | ≥ 3
4d |OPT \Z|, consequently |Z|+ |ACC | ≥ 3

4d |OPT |.359

We will construct a recursive partition for a specific subset R ⊆ OPT, such that |R| ≥360

|Z|+ 1
2 |ACC |, which proves Proposition 5. Recall that OPT(C) denotes the set of polygons361

in OPT that lie on int(C). Moreover, all of the polygons in OPT and the bounding box C∗362

lie on the grid G2d.363

Handling corner polygons. If Z 6= ∅, then we construct the first few nodes of the recursive364

partition as follows. Take any corner polygon P ∈ Z. Recall that the root r of the recursive365

partition corresponds to (C∗, ∅). We add two children u1, u2 to r and partition C∗ into366

the containers Cu1 = P and Cu2 = C∗ \ P . Set Pr(Cu1),Pr(Cu2) = ∅. By construction,367

OPT(Cu1) = {P} (so u1 is a leaf in the final tree and OPT(Cu2) = OPT \{P}. Notice that368

C∗ \ P is convex with at most five line segments since C∗ is convex. C∗ \ P has five line369

segments if P is a triangle, and less if P has more than three sides.) We recurse by treating370

Cu2 as the new bounding box.371

We end up with a tree on |Z|+ 1 leaves, where for one leaf u, Cu is a convex polygon372

such that OPT(Cu) = OPT \Z and with at most eight line segments (since |Z| ≤ 4) and373

Pr(Cu) = ∅. Each of the remaining |Z| leaves coincides with a unique element in Z. Thus, it374

suffices to construct the recursive partition of OPT \Z by treating Cu as the bounding box375

with at most 8 line segments. Equivalently, we assume Z = ∅ and allow C∗ to have up to376

eight line segments for the rest of this paper.377

5.1 The partitioning lemma – formal statement378

For any P ∈ OPT, let the top of P be defined as the curve top(P ) = e2(P )e3(P ) · · · ed(P )379

and the bottom of P as the curve bot(P ) = ed+2(P )ed+3(P ) · · · e2d(P ). We define the bottom380

4 If we could guarantee a maximal extension in which all the polygons have at least 4 sides, then we
would improve 3

4d to 1
d . In particular, when d = 2 we are in the case of axis-parallel rectangles and we

obtain a 2d = 4-approximation algorithm. This is the same approximation factor achieved in [21, 22, 38]
by charging each lost rectangle to one protected rectangle (the improved 2 + ε factor requires a more
complex charging).

341

342

343

344

345
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and top of the bounding box C∗ in the same way. The following definitions are illustrated in381

Figure 6.382

I Definition 11 (Top and bottom fences). Let P, P ′ ∈ OPT be two polygons such that P sees383

P ′. A top-fence is (a segment of) the curve top(P )h(e1(P ))t(ed+1(P ′)) top(P ′) such that384

the first and last line segment is not vertical. Symmetrically, a bottom-fence is (a segment385

of) the curve bot(P )t(e1(P ))h(ed+1(P ′)) bot(P ′) such that the first and last line segment is386

not vertical.387

If P ∈ OPT does not see any polygon, then a segment of its bottom (or top) is also called388

a bottom-fence (resp. top-fence).389

For a vertical line segment (cutting line) s, we say that a fence emerges from s if one390

extreme point of the fence lies on s.391

To prove the partitioning lemma, we further specialize the definition of a container (see392

Section 2)393

I Definition 12 (Structured container). A container C with ∂C = s1f1s2f2 · · · sκfκ, κ ≤ 5,394

is structured if the cutting lines s1, . . . , sκ are vertical and the curves f1, . . . , fκ are fences.395

We say that a cutting line is a left cutting line if it is oriented downwards (or degenerate),396

and right cutting line if it is oriented upwards (or degenerate). In a structured container,397

the left cutting lines (and thus right cutting lines) are consecutive (e.g., s1, . . . , sκ′ are left398

and sκ′+1, . . . , sκ are right cutting lines for some κ′ ∈ [κ− 1]).399

I Definition 13 (Protected by fences). Let C be a structured container and s be a (possibly400

degenerate) cutting line on C. We say that a polygon P ∈ OPT(C) is protected from the left401

in C via s if s is a left cutting line on ∂C and402

there exists a top-fence γh in C emerging from s, ending in h(e1(P )), and with top(P ) ⊆403

γh, and404

there exists a bottom-fence γt in C emerging from s, ending in t(e1(P )), and with405

bot(P ) ⊆ γt.406

We say that P is protected by fences γh and γt. Symmetrically, we say that a polygon407

P ∈ OPT(C) is protected from the right in C via s if s is a right cutting line on ∂C and408

there exists a top-fence σh in C emerging from s, ending in t(ed+1(P )), and with top(P ) ⊆409

σh, and410

there exists a bottom-fence σt in C emerging from s, ending in h(ed+1(P )), and with411

bot(P ) ⊆ σt.412

We say that P is protected by fences σh and σt. A polygon P ∈ OPT(C) is protected by413

fences in C if it is either protected from the left in C or protected from the right in C.414

We will show that each polygon in Pr(C) appearing in the construction of the recursive421

partition can be protected by fences in C, beginning by stating the partitioning lemma.422

The lemma holds only for structured containers, which matters for the construction of the423

recursive partition but it does not affect the algorithm, as it considers all possible containers.424

I Lemma 14 (Partitioning lemma). Let C be a structured container such that |OPT(C)| ≥ 2,425

and let P be a set of polygons in C protected by fences. Then, there exists a curve Γ such that426

(P1) Γ partitions C into two structured containers C1, C2 ∈ C with non-empty interiors.427

(P2) All the polygons in OPT(C) that are intersected by Γ are intersected by one vertical428

cutting line ` ⊆ Γ.429

(P3) Γ does not intersect any polygon protected by fences.430

(P4) Any polygon protected by fences in C is protected by fences in either C1 or C2.431

SoCG 2024



XX:12 Approximating MISP with a bounded number of directions

P2
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P4

P9

P12

P10

P5

P8

P6 P11

f2

f3

f4f1
s1

s2

s3

s4

P1

P7

P14

P16

P15

P13

Figure 6 Example of a structured container with κ = 4. The black arrows represent “seeing”,
top-fences are green, bottom-fences are blue. The polygons P1, P3, P4, P5, P8 are protected (only)
from the left, P14, P16 are protected (only) from the right, P9, P11 are protected both from the left
and from the right. Notice that the fences that protect P14 (from the right) are not unique since
P14 sees P15 and P16 which are cut and touch s4, respectively. Note also that the bottom-fences
touching P8, P11 and P11, P13 overlap.

415

416

417

418

419

420

5.2 Construction and analysis of the recursive partition432

In this section we prove Proposition 5, i.e., we provide a recursive partition for R ⊆ OPT433

with |R| ≥ 1
2 |ACC |. (Recall that we already argued that we can assume Z = ∅.) We give434

an iterative construction of a recursive partition with the help of the partitioning lemma.435

We initialize a tree T with root node r, Cr = C∗, and Pr(Cr) = ∅. Then, iteratively,436

for every childless node u ∈ V (T ) with |OPT(Cu)| ≥ 2, add two children u1, u2 to u and437

choose Cu1 , Cu2 ∈ C as provided by (P1) in the partitioning lemma applied to Cu and Pr(Cu).438

Define the set of protected polygons Pr(Cu1) and Pr(Cu1) as follows.439

(A1) Set Pr(Cu1) = Pr(Cu) ∩OPT(Cu1) and Pr(Cu1) = Pr(Cu) ∩OPT(Cu1).440

(A2) For each P ∈ ACC that is intersected by `, i.e., each P ∈ ACC that is lost, if P sees441

a polygon P ′ ∈ OPT(Cu) (if P sees more than one polygon in OPT(Cu), choose one442

of them arbitrarily), add P ′ to Pr(Cu1) if P ′ is in Cu1 or to Pr(Cu2) if P ′ is in Cu2 .443

Moreover, charge the loss of P to P ′.444

(A3) For each Q′ ∈ OPT(Cu) intersected by ` for which there is a polygon Q ∈ OPT(Cu)445

that sees Q′, add Q to either Pr(Cu1) or Pr(Cu2) depending whether Q is in Cu1 or446

Cu2 .447

We first show to that by this construction, a polygon is protected only if it is protected by448

fences.449

I Lemma 15. Let P ′ ∈ Pr(Cu) for a node u of T . There exist fences that protect P ′ in Cu.450

Proof. We first argue in the case that P ′ is protected for the first time, i.e., added to Pr(Cu)451

via (A2) or (A3). Let u′ be the parent of u in T .452

First assume that P ′ is protected via (A2). Let P ∈ ACC∩OPT(Cu′) be the polygon453

that sees P ′. By definition, P is intersected by the cutting line `u′ from (P1) during the454

bipartitioning of Cu′ Let px and py be the two intersection points of `u′ and ∂P , where px455

is above py, see Figure 7. Since P sees P ′, the curve γx on top(P ) and top(P ′) from px456
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P ′P e1(P
′)`u′

px

py

γx

Cu′
γy

Figure 7 Illustration for the proof of Lemma 15: P ′ is protected by fences via (A2).480

to h(e1(P ′)) is a top-fence and the curve γy on bot(P ) and bot(P ′) from py to t(e1(P ′)) is457

a bottom-fence. γx and γy both emerge from `u′ and thus protect P ′ from the left in Cu.458

Hence, P ′ is protected by fences in Cu.459

The argument is symmetric if P ′ is protected via (A3): there is a polygon Q ∈ OPT(Cu′)460

seen by P ′ that is intersected by the the cutting line `u′ . Therefore, the curves on top(P ′)461

and top(Q) from ed+1(P ′) to `u′ and of bot(P ′) and bot(Q) from ed+1(P ′) to `u′ form a pair462

of fences that protect P ′ from the right in Cu.463

If P ′ is protected via (A1), then it has been protected for the first time in an ancestor of464

u, so the claim follows inductively from by (P3) and (P4). J465

With (P3) and (P4), Lemma 15 implies that protected polygons are not lost and stay466

protected, i.e., Pr(Cu) ⊆ Pr(Cu1)∪Pr(Cu2) for every interior node u in T . This in particular467

holds for every charged polygon. By the construction above, every charged polygon is468

protected and charged only once by Lemma 8. To make our charging scheme work, we need469

to make sure that every lost accountable polygon provides one charge, which follows by (P2)470

and the following lemma.471

I Lemma 16. Let P ∈ ACC be a polygon that is intersected by the vertical line segment `u472

for an internal node u ∈ T . Then there exists a polygon P ′ ∈ OPT(Cu) that is seen by P .473

Proof. Let P be the set of polygons seen by P . For the sake of contradiction, suppose that474

P ∩ OPT(Cu) = ∅. If some P ′ ∈ P partially lies in Cu, i.e., P ′ ∩ int(Cu) 6= ∅, then P ′475

was intersected by the vertical line `u′ in an ancestor u′ of u, so P is protected via (A3).476

Otherwise, if all polygons in P lie outside of Cu, then e1(P ) lies on a cutting line in ∂Cu.477

Therefore, top(P ) and bot(P ) form a top-fence and a bottom-fence, respectively, that protect478

P by fences in Cu. J479

Proof of Proposition 5. By Lemma 9, we have |ACC | − |Z| ≥ 3
4d |OPT | − |Z|. Recall that481

we have already assigned each polygon of Z to a unique leaf of T . By the charging scheme482

described above and since a protected (and thus charged) polygon is never lost, we have a483

unique polygon contained in a leaf of T for each lost accountable polygon during the partition.484

The proposition follows since at least half of the polygons in ACC are either lost, or at least485

half of the polygons in ACC are not lost. J486
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