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A note on the complexity of minimum
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Abstract

The currently (asymptotically) fastest algorithm for minimum dominating set on graphs ofn nodes
is the trivial�(2n) algorithm which enumerates and checks all the subsets of nodes. In this pa
present a simple algorithm which solves this problem in O(1.81n) time.
 2005 Published by Elsevier B.V.
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1. Introduction

Since the seminal work of Tarjan and Trojanowski[16], a lot of effort has been devote
to develop faster and faster (exponential-time) exact algorithms for NP-hard an
complete problems, such asmaximum independent set[3,10,14,15], vertex cover[1,5,12],
(maximum) satisfiability[2,7,11,13], 3-coloring [4,8] and many others.

Minimum dominating setis one of the most basic NP-hard problems[9]. The currently
(asymptotically) fastest algorithm to solve this problem on graphs ofn nodes is the trivia
�(2n) algorithm which enumerates and checks all the subsets of nodes.

In this paper we present a O(1.3424k) algorithm forminimum set cover, wherek, the
dimensionof the problem, is the sum of the number of sets available and of the nu
of elements which need to be covered. Minimum dominating set can be formulate
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minimum set cover problem of dimensionk = 2n. It follows that minimum dominating se
can be solved in O(1.34242n) = O(1.8021n) time.

1.1. Preliminaries

We use standard set notation. LetS be a collection of subsets of a givenuniverseU . For
the sake of simplicity, we assume thatS coversU :

U = US =
⋃
S∈S

S.

A set coverof S is a subsetS ′ of S which coversU . The minimum set cover problem
consists in determining the minimum cardinalitymsc(S) of a set cover ofS . Without loss
of generality, we can assume thatS does not contain the empty set (since it does
belong to any minimum set cover). We calldimensionk of S the sum of the cardinalitie
of S andU :

k = |S| + |U |.
Let R be a subset ofU . By del(S,R) we denote the collection which is obtained fromS
by removing the elements ofR from eachS in S , and by eventually removing the emp
sets obtained:

del(S,R) = {S′ �= ∅: S′ = S\R, S ∈ S}.
We use standard graph notation as for example in[6]. In particular, byG = (V ,E) we

denote a (undirected) graph, whereV is the set ofnodesandE is the set ofedges(pairs
of distinct nodes). Two nodesu and v are adjacentif there is an edge{u,v} ∈ E. The
neighborhoodN(v) of nodev is the set of nodes adjacent tov. A dominating setof G is a
subsetV ′ of V such that every nodeu ∈ V \V ′ is adjacent to at least one nodev ∈ V ′, i.e.:

V \V ′ ⊆
⋃
v∈V ′

N(v).

Theminimum dominating set problemconsists in determining the minimum cardinality o
dominating set ofG. Minimum dominating set can be naturally formulated as a minim
set cover problem, in which there is a setN(v) ∪ {v} for each nodev ∈ V (the set of
nodesdominatedby v). Note that the dimension of the minimum set cover formulation
minimum dominating set isk = 2n, wheren is the number of nodes ofG (there is one se
for each node and the set of elements which need to be covered is the set of nodes

2. A polynomial-space algorithm

In this section we describe a O(1.3803k) polynomial-space recursive algorithmMSC for
minimum set cover, wherek is thedimensionof the problem. It immediately follows tha
minimum dominating set can be solved in O(1.38032n) = O(1.9053n) time.

The algorithm is based on the following simple properties of set covers.
U
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1 int MSC(S) {
2 if(|S| = 0) return 0;
3 if(∃S,R ∈ S: S ⊂ R) returnMSC(S\{S});
4 if(∃s ∈ US∃ a uniqueS ∈ S: s ∈ S) return 1+ MSC(del(S, S));
5 takeS ∈ S of maximum cardinality;
6 return min{MSC(S\{S}),1+ MSC(del(S, S))};
7 }

Fig. 1. Recursive algorithm for minimum set cover.

Lemma 1. LetS be an instance of minimum set cover. The following properties hold:

(1) If there is a setS in S which is(properly) included in another setR in S (S ⊂ R), then
there is a minimum set cover which does not containS. In particular:

msc(S) = msc
(
S\{S}).

(2) If there is an elements of U which belongs to a uniqueS ∈ S , thenS belongs to every
set cover. In particular:

msc(S) = 1+ msc
(
del(S, S)

)
.

(3) For all the remainingS ∈ S , the following holds:

msc(S) = min
{
msc

(
S\{S}),1+ msc

(
del(S, S)

)}
.

Note that the sets of cardinality one satisfy exactly one of the properties (1) and (2) of
Lemma 1.

A basic version of the algorithm is described inFig. 1. The base case (line 2) is whe
|S| = 0. In that case,msc(S) = 0. Otherwise (lines 3 and 4), the algorithm tries to red
the dimension of the problem without branching, by applying one of the propertie1)
and (2) ofLemma 1. If none of the two properties above applies, the algorithm simply t
(line 5) a setS ∈ S of maximum cardinality and branches (line 6) according to property
of Lemma 1.

Theorem 1. AlgorithmMSC solves minimum set cover in timeO(1.3803k), wherek is the
dimension of the problem.

Proof. The correctness of the algorithm is a straightforward consequence ofLemma 1.
Let Nh(k) denote the number of subproblems of dimensionh solved by the algorithm

to solve a problem of dimensionk. Clearly, Nh(k) = 0 for h > k (the subproblems ar
of dimension lower than the dimension of the original problem). Moreover,Nk(k) = 1
(considering the original problem as one of the subproblems). Consider the caseh < k

(which implies|S| �= 0). If one of the conditions of lines 3 and 4 is satisfied, the algori
generates a unique subproblem of dimension at mostk − 1. Thus:

Nh(k) � Nh(k − 1).
U
N



ARTICLE IN PRESS
S1570-8667(05)00022-5/FLA AID:97 Vol.•••(•••) [DTD5] P.4 (1-6)
JDA:m1a v 1.36 Prn:29/03/2005; 11:43 jda97 by:R.M. p. 4

4 F. Grandoni / Journal of Discrete Algorithms••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

n

d

ve the

r

r-

tion

epen-
s.
When-
solution

blem is

time
C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Otherwise, the algorithm takes a setS of maximum cardinality (|S| � 2), and it branches o
the two subproblemsS1 = S\{S} andS2 = del(S, S). The dimension ofS1 is k − 1 (one
set removed fromS). If |S| � 3, the dimension ofS2 is at mostk − 4 (one set remove
from S and at least three elements removed fromU ). Thus:

Nh(k) � Nh(k − 1) + Nh(k − 4).

Otherwise (all the sets inS have cardinality two), the dimension ofS2 is k − 3 (one set
removed fromS and two elements removed fromU ). Moreover,S2 must contain a setS′
of cardinality one. Then the algorithm has to execute one of the lines 3 and 4 to sol
subproblemS2. Thus:

Nh(k) � Nh(k − 1) + Nh(k − 3− 1) = Nh(k − 1) + Nh(k − 4).

A valid upper bound onNh(k) is Nh(k) � ck−h, wherec = 1.3802. . . < 1.3803 is the
(unique) positive root of the polynomial(x4 − x3 − 1). This implies that the total numbe
N(k) of subproblems solved is:

N(k) =
k∑

h=0

Nh(k) �
k∑

h=0

ck−h = O(ck).

The cost of solving a problem of dimensionh � k, excluding the cost of solving the co
responding subproblems (if any), is upper bounded by a polynomialp(k) of k. It follows
that the time complexity of the algorithm is O(ckp(k)) = O(1.3803k). �
Corollary 1. There is an algorithm which solves minimum dominating set inO(1.9053n)
time, wheren is the number of nodes in the graph.

In line 5 of MSC a set of maximum cardinality is taken. More sophisticated selec
criteria may lead to improved time bounds.

3. An exponential-space algorithm

In this section we show how to reduce the time complexity ofMSC via dynamic pro-
gramming, at the cost of an exponential space complexity.

The technique is similar to the one used by Robson in the context of maximum ind
dent set[14]. While solving a problemS , the same subproblemS ′ can appear many time
The idea is then to store the solutions of all the subproblems solved in a database.
ever a new subproblem is generated, this database is checked to see whether the
of that subproblem is already available. This way, one ensures that a given subpro
solved at most once. The database can be implemented in such a way that thequery time
is logarithmic in the number of solutions stored.

Theorem 2. Algorithm MSC, modified as above, solves minimum set cover in
O(1.3424k), wherek is the dimension of the problem.
U
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Proof. The correctness of the algorithm follows fromLemma 1.
Let Nh(k) denote the number of subproblems of dimensionh ∈ {0,1, . . . , k} solved by

the algorithm to solve a problem of dimensionk. From the proof ofTheorem 1, Nh(k) �
ck−h, wherec = 1.3802. . . < 1.3803 is the positive root of the polynomial(x4 − x3 − 1).
Each subproblemS ′ is obtained by removing some sets fromS and some elements fromU .
In other words:

S ′ = del(S\S∗,U∗),

for someS∗ ⊆ S andU∗ ⊆ U . This implies thatNh(k) �
(
k
h

)
. Let h′ be the largest intege

in {0,1, . . . , 
k/2�} such that
(

k
h′
)
< ck−h′

. The total numberN(k) of subproblems solve
is:

N(k) =
k∑

h=0

Nh(k) �
h′∑

h=0

(
k

h

)
+

k∑
h=h′+1

ck−h = O(ck−h′
).

It follows from Stirling’s approximation thatN(k) is O(c(1−α)k), whereα satisfies:

c1−α = 1

αα(1− α)1−α
.

The cost of each query to the database is polynomial ink. Thus the cost of solving
problem of dimensionh � k, excluding the cost of solving the corresponding subprobl
(if any), is upper bounded by a polynomialp(k) of k. It follows that the time complexity
of the algorithm is O(c(1−α)kp(k)) = O(1.3424k). �
Corollary 2. There is an algorithm which solves minimum dominating set inO(1.8021n)
time, wheren is the number of nodes in the graph.
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