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Abstract

For more than 30 years Davis-Putnam-style exponential-
time backtracking algorithms have been the most common
tools used for finding exact solutions of NP-hard problems.
Despite of that, the way to analyze such recursive algorithms
is still far from producing tight worst case running time
bounds.

The “Measure and Conquer” approach is one of the re-
cent attempts to step beyond such limitations. The approach
is based on the choice of the measure of the subproblems
recursively generated by the algorithm considered; this mea-
sure is used to lower bound the progress made by the algo-
rithm at each branching step. A good choice of the measure
can lead to a significantly better worst case time analysis.

In this paper we apply “Measure and Conquer” to the
analysis of a very simple backtracking algorithm solving the
well-studied maximum independent set problem. The result
of the analysis is striking: the running time of the algorithm
is O(20.288n), which is competitive with the current best time
bounds obtained with far more complicated algorithms (and
naive analysis).

Our example shows that a good choice of the measure,
made in the very first stages of exact algorithms design,
can have a tremendous impact on the running time bounds
achievable.
Keywords: Algorithms and data structures, exponential-
time exact algorithms, NP-hard problems, independent set
problem.

1 Introduction

Recently, there has been a growing interest in the design and
analysis of exact exponential time algorithms for NP-hard
problems such as satisfiability [6, 12, 16], coloring [2, 3],
maximum independent set [1, 5], max-cut [19], minimum
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dominating set [8], treewidth [9] and many others. (See the
survey [20].) There are several explanations to that:

• There are certain applications that require exact solu-
tions of NP-hard problems, although this might only be
possible for moderate input sizes.

• Approximation algorithms are not always satisfactory.
For example, maximum independent set is hard to
approximate withinn1−ε [11].

• A reduction of the base of the exponential running
time, say from O(2n) to O(20.9n), increases the size of
the instances solvable within a given amount of time
by a constantmultiplicative factor; running a given
exponential algorithm on a faster computer can enlarge
the mentioned size only by a constantadditivefactor.

• The design and analysis of exact algorithms leads to
a better understanding of NP-hard problems and ini-
tiates interesting new combinatorial and algorithmic
challenges.

Related Work. The design of exponential algorithms for
the maximum independent set problem has a long history
starting from the first algorithm due to Tarjan [17] break-
ing the trivial O(2n) bound. The first published algorithm
is due to Tarjan and Trojanowski (1977): it has running
time O(2n/3) and polynomial space complexity [18]. In
1986 Jian published a polynomial-space algorithm of run-
ning time O(20.304n) [13] and Robson came out with a poly-
nomial space algorithm of running time O(20.296n) and with
an exponential space algorithm using time O(20.276n) [14].
In a recent technical report [15] Robson claims better run-
ning times, both in polynomial and in exponential space. The
description of his new algorithm, which is partially computer
generated, takes almost 18 pages. A significant amount of re-
search was also devoted to solve the maximum independent
set problem on sparse graphs [1, 4, 5].

All mentioned exact algorithms for the maximum in-
dependent set problem are search-tree based. They use a
branch and reduce paradigm with a (long) list of reduction
and branching rules. Often, this list is derived from a some-
what tedious and complicated case analysis. The running
time analysis leads to a linear recurrence for each branching



rule that can be solved using standard techniques. The clas-
sical worst case running time analysis of such algorithms is
based on the assumption that a “natural” size of a problem
(instance) is associated to each node of the search tree. For
graph algorithms the natural measure is the number of ver-
tices or edges in the corresponding (remaining) graph and it
is not surprising that usually this measure is used for maxi-
mum independent set.

The interest on exact algorithms for the independent
set problem seems to have vanished in the nineties. This
is partially due to the fact that the current best algorithms
for the problem are already very complicated: adding a few
more branching rules in order to slightly reduce their running
time might seem a waste of time.

Fortunately the growing interest on exact algorithms for
NP-hard problems has led to important new insights. One of
those is the idea to use non-standard measures for the size of
a problem (instance). Using this approach, that they called
“Measure and Conquer”, Fomin et al. obtained the currently
fastest O(20.598n) algorithm for the minimum dominating set
problem [8].

New Results. In this paper we continue our previous
work on the “Measure and Conquer” method [8]. To study
the power of the method it is natural to test it at a problem
into which a lot of effort was put with the classical anal-
ysis — the maximum independent set problem. To stress
the power of the method, we developed a very simple al-
gorithm: it can be described in a few lines and analyzed in
a few pages (though we needed a computer to find a good
measure for it). Our polynomial-space algorithm has run-
ning time O(20.288n). Currently there is no better published
polynomial-space algorithm.

The algorithm uses reduction rules based ondomination
and folding which are known in the literature. We also
introduce the useful notion ofmirroring, which allows to
greatly simplify the description of the algorithm. Intuitively,
when we branch by discarding a node, we can discard its
mirrors as well. This handy tool might be of independent
interest.

The current methods of worst case running time analysis
for search-tree algorithms do not seem to provide tight upper
bounds. This motivates the study of lower bounds for such
algorithms. We prove a lower bound ofΩ(20.166n) for the
running time of our algorithm.

2 Preliminaries

Let G= (V,E) be ann-nodes undirected graph. ByNd(v) we
denote the set of nodes at distance (number of hops)d from
v. In particular,N1(v) = N(v) is theneighborhoodof v. We
let d(v) = |N(v)| be the degree ofv, andN[v] = N(v)∪{v}.
Given a subsetV ′ of nodes,G[V ′] is the graph induced by
V ′, andG−V ′ = G[V \V ′]. A maximum independent set

of G is a maximum cardinality subset of pair-wise non-
adjacent nodes. Our maximum independent set algorithm
branches by imposing that some nodes belong or do not
belong to the maximum independent set computed: we
call the nodes of the first kindtaken, and the other nodes
discarded. Throughout this paper we use a modified big-Oh
notation that suppresses all polynomially bounded factors.
For functions f andg we write f (n) = O∗(g(n)) if f (n) =
O(g(n)poly(n)), wherepoly(n) is a polynomial.

A nodev is foldableif N(v) = {u1,u2 . . .ud(v)} contains
no anti-triangles. Folding of a given nodev of G is the
process of transformingG into a new graph̃G = G̃(v) by:

(1) adding a new nodeui j for each anti-edgeuiu j in N(v);

(2) adding edges between eachui j and the nodes inN(ui)∪
N(u j);

(3 ) adding one edge between each pair of new nodes;

(4) removingN[v].

Note that when we fold a nodev of degree either zero or
one, we simply removeN[v] from the graph. Examples of
folding are given in Figure 1. Letα(G) denote the size of a

Figure 1 Folding of a nodev.
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maximum independent set of a graphG.

LEMMA 2.1. For any graph G,

• (Connected components) If G properly contains a
connected component C,

α(G) = α(C)+α(G−C).

• (Dominance) If there are two nodes v and w such that
N[w] ⊆ N[v] (w dominatesv),

α(G) = α(G−{v}).

• (Folding) For any foldable node v,

α(G) = 1+α(G̃(v)).

Proof. The first two properties are trivial.
Consider folding. LetSbe a maximum independent set

of G. If v ∈ S, S\ {v} is an independent set of̃G = G̃(v).
Otherwise,S contains at least one node ofN(v) (since it
is of maximum cardinality). IfN(v)∩S= {u}, S\ {u} is



an independent set of̃G. Otherwise, it must beN(v)∩S=
{ui ,u j}, for two non-adjacent nodesui andu j (sinceN(v)
does not contain any anti-triangle by assumption). In this
caseS∪ {ui j } \ {ui ,u j} is an independent set of̃G. It
follows that α(G) ≤ 1+ α(G̃). A similar argument shows
thatα(G) ≥ 1+α(G̃). 2

We introduce the following useful notion ofmirror.
Given a nodev, a mirror of v is a nodeu ∈ N2(v) such
that N(v) \N(u) is a (possibly empty) clique. We denote
by M(v) the set of mirrors ofv. Examples of mirrors are
given in Figure 2. Intuitively, when you discard a nodev,

Figure 2 Example of mirrors:u is a mirror ofv.
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you can discard its mirrors as well without modifying the
maximum independent set size. This intuition is formalized
in the following lemma.

LEMMA 2.2. (Mirroring) For any graph G and for any
node v of G,

α(G) = max{α(G−{v}−M(v)),1+α(G−N[v])}.

Proof. Nodev can either belong to a maximum independent
set or not, from which we obtain the trivial equation

α(G) = max{α(G−{v}),1+α(G−N[v])}.

Thus it is sufficient to show that, ifv is not contained in any
maximum independent set, the same holds for its mirrors
M(v). Following the proof of Lemma 2.1, if no maximum
independent set containsv, every maximum independent set
contains at least two nodes inN(v). Consider a mirror
u∈ M(v). Since every independent set contains at most one
node inN(v) \N(u) (which is a clique by assumption), it
must contain at least one node inN(v)∩N(u) ⊆ N(u). It
follows thatu is not contained in any maximum independent
set. 2

3 The Algorithm

All the previous exact algorithms for the maximum indepen-
dent set problem are analyzed by using the number of nodes
as a measure of the size of the problem (in [1] the number of
edges is considered, but that approach works only for sparse
graphs). According to this standard analysis, simple algo-
rithms perform quite bad. Thus it is not surprising that the
currently fastest algorithms for maximum independent set,
including Robson’sO∗(20.296n) algorithm, are rather com-
plicated, with up to several hundreds of branching rules. In

Figure 3 A recursive algorithm for maximum independent
set.

int mis(G) {
(0) if(G = /0) return 0;
(1) if(∃ componentC⊂ G) return mis(C)+mis(G−C);
(2) if(∃ nodesv andw: N[w] ⊆ N[v]) return mis(G−{v});
(3) if(∃ a foldable nodev: d(v) ≤ 4 andN(v) contains at most 3 anti-edges){

take one such nodev of minimum degree;
return 1+mis(G̃(v));

}
(4) select a nodev of maximum degree;

return max{mis(G−{v}−M(v)), 1+mis(G−N[v])};
}

this paper we use a different approach to the problem: in-
stead of developing even more complicated algorithms, we
analyze a very simple algorithm with a more careful choice
of the measure for the size of a problem instance.

Our simple algorithm, which we callmis, works as
follows (see also Figure 3). IfG is (0) the empty graph,
mis(G) = 0. Otherwise,mis tries to reduce the size of
the problem without branching, by applying Lemma 2.1.
Specifically, (1) ifG contains a proper connected component
C, the algorithm recursively solves the subproblems induced
by C andG−C separately, and sums the solutions obtained

mis(G) = mis(C)+mis(G−C).

Else, (2) if there are two (adjacent) nodesv and w, with
N[w] ⊆ N[v], mis discardsv:

mis(G) = mis(G−{v}).

If none of the conditions above holds, and (3) there is a
foldable nodev of degreed(v) ≤ 3, or a foldable node of
degreed(v) = 4 with at most three anti-edges inN(v), the
algorithm selects one such nodev of minimum degree and
folds it:

mis(G) = 1+mis(G̃(v)).

The reason of the restrictions on the nodes we fold will be
clearer from the analysis. Intuitively, we want to avoid that
folding increases the “size” of the problem.

As a last choice, (4) the algorithm greedily selects a
node v of maximum degree, and branches according to
Lemma 2.2:

mis(G) = max{mis(G−{v}−M(v)),1+mis(G−N[v])}.

Notice that with simple modifications, the algorithm can
also provide one maximum independent set (besides its
cardinality).

To emphasize the importance of a good choice of the
measure, we sketch the analysis ofmis according to the
standard measurek = k(G) = n. Let P[k] be the number



of leaves in the search tree generated by the algorithm to
solve a problem of sizek. Of course,P[0] = 1. If one of
the conditions of steps (1), (2), and (3) is satisfied,P[k] ≤
P[k−1]. Otherwise consider the nodev at which we branch.
Note thatd(v) ≥ 3. If d(v) = 3, when we discardv, we
either discard a mirror ofv or we fold a neighborw of v
in the following step (sinced(w) = 2 after removingv). In
both cases, we decrease the number of nodes by at least
two. When we takev, we removeN[v], where |N[v]| =
4. This leads toP[k] ≤ P[k− 2] + P[k− 4]. Assume now
d(v) ≥ 4. In the worst case,v has no mirrors (M(v) = /0).
When we discard or takev, we remove at least one or five
nodes, respectively. ThusP[k] ≤ P[k− 1] + P[k− 5]. We
conclude thatP[k]≤ αk, whereα = 1.3247. . . < 20.406 is the
largest root of polynomials(x5− x4−1) and(x4− x2−1).
Since in each step the size of the graphs generated decreases
by at least one, the depth of the search tree is at mostn.
Moreover, solving each subproblem, not considering the
possible recursive calls, takes polynomial time. Thus the
time complexity of the algorithm isO∗(P[n]) = O∗(20.406n).

In next section we will show how to refine the running
time analysis ofmis to O∗(20.288n) via a more careful choice
of the measurek(G) (without modifying the algorithm!).

4 The Analysis

When we measure the size of a maximum independent set
instance with the number of nodes, we do not take into
account the fact that decreasing the degree of a nodev has
a positive impact on the progress of the algorithm (even if
we do not immediately removev from the graph). In fact,
decreasing the degree of a node pays off on long term, since
the nodes of degree at most two can be filtered out without
branching.

This suggests the idea to give a different “weight” to
nodes of different degree. In particular, letni (n≥i) denote
the number of nodes of degreei (at leasti) in the graph
considered. We will use the following measurek = k(G)
of the size ofG:

k(G) = ∑
i≥0

wi ni ≤ n,

where the weightswi ∈ [0,1] will be fixed in the following.
In order to simplify the running time analysis, we make the
following assumptions:

• First of all, w0 = w1 = w2 = 0. The reason for this
assumption is that nodes of degree at most two can
always be removed without branching during steps (1),
(2), and (3) of the algorithm. Thus their presence
contributes to the running time only via a polynomial
factor.

• Second,wi = 1 for i ≥ 7. This way, we have to compute
only a finite (small) number of weights.

• When the degree of a node decreases fromi to i −1, its
weight decreases by∆wi = wi −wi−1. We assume that
∆w3 ≥ ∆w4 ≥ ∆w5 ≥ ∆w6 ≥ ∆w7 ≥ 0. In other words,
the weights decrease fromw7 to w2 at increasing speed.
The reason for this assumption will be clearer from the
analysis.

THEOREM 4.1. Algorithm mis solves the maximum inde-
pendent set problem in time O∗(20.298n).

Proof. The correctness of the algorithm immediately
follows from Lemmas 2.1 and 2.2.

Let P[k] be the total number of leaves in the search tree
generated to solve a problem of sizek. Also in this case
we can assumeP[0] = 1. In fact, whenk = 0, the algorithm
solves the problem without branching (in polynomial time).
From the discussion of previous section, it is sufficient to
show thatP[k]≤20.298k ≤20.298n. We break the running time
analysis in different parts, one for each step of the algorithm.

(1) Connected components. Suppose there is a con-
nected componentC of sizek1. The size ofG−C is trivially
k2 = k−k1. Thus

(4.1) P[k] ≤ P[k1]+P[k2].

(2) Dominance. When we apply dominance, we gener-
ate a unique subproblem. Thus, from the point of view of the
bound onP[k], it is sufficient to guarantee that the size of the
problem does not increase. This is trivially true in the case
of dominance, since, when we remove a nodev, the size of
the problem decreases by

wd(v) + ∑
u∈N(v)

∆wd(u) ≥ 0.

(3) Folding. By basically the same arguments as in the
dominance case, also in the case of folding it is sufficient
to guarantee that the size of the problem does not increase.
This property is trivially true when we fold a nodevof degree
zero or one (since we simple removeN[v] from the graph).
Unfortunately, this is not always the case whend(v) ≥ 2. In
fact in this case, besides removing nodes, we also introduce
new nodes, possibly of larger degree (and weight). Hence
we need to enforce some further constraints on the weights.

Let N(v) = {u1,u2, . . . ,ud}, with di = d(ui). We distin-
guish different cases, depending on the value ofd∈ {2,3,4}.

(3.a) case d = 2. Node u1 and u2 cannot be adjacent
(otherwisev dominates them). Thus, by foldingv, we
removeN[v] and we introduce a unique nodeu12 of degree
d(u12)≤ (d1−1)+(d2−1) = d1+d2−2 (which implies that
the weight of this new node is at mostwd1+d2−2). Hence, for
all d1,d2 ≥ 2,
(4.2)

w2 +wd1 +wd2 −wd1+d2−2 = wd1 +wd2 −wd1+d2−2 ≥ 0.



(3.b) case d = 3. By a simple case analysis (see Figure
4), N(v) must contain exactly one edge, say{u1,u2}. Thus

Figure 4 Possible graphsN[v] for d(v) = 3. In the first case
there is one anti-triangle inN(v). In the last two casesv
dominatesu. The algorithm may foldv only in the second
case.
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by foldingv, we introduce two new nodesu13 andu23, where
d(ui3) ≤ (di −2)+(d3−1)+1 = di +d3−2. Hence, for all
d1,d2,d3 ≥ 3,

(4.3) w3 +wd1 +wd2 +wd3 −wd1+d3−2−wd2+d3−2 ≥ 0.

(3.c) case d = 4. Assume N(v) contains two non-
incident edges, say{u1,u2} and{u3,u4}. Since there can-
not be four anti-edges inN(v), there must be a third edge
incident to both{u1,u2} and {u3,u4}, say{u2,u3}. Note
thatdi ≥ 4 for all i, since otherwise we could fold a node of
degree three. In the worst case (there are no other edges),
when we foldv we introduce three nodesu13, u24, andu14

of degree at mostd1 + d3−3, d2 + d4−3, andd1 + d4−2,
respectively. Thus, for alld1,d2,d3,d4 ≥ 4,

(4.4) w4 +
4

∑
i=1

wdi −wd1+d3−3−wd2+d4−3−wd1+d4−2 ≥ 0.

Now suppose the condition above does not hold (all
the edges inN(v) are incident to each other). Again by
a simple case enumeration (see Figure 5), there must be
exactly three edges which form a triangle, say{u1,u2},
{u2,u3}, and{u1,u3}. By the same argument as above, the

Figure 5 Possible graphsN[v] for d(v) = 4, where all the
edges inN(v) are incident to each other. In the first four
casesN(v) contains one anti-triangle. Only in the last casev
can be folded.
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degree ofu1, u2, andu3 must be at least four. When we
fold v, we introduce three nodesu14, u24, andu34, where
d(ui4) ≤ (di −3)+ (d4−1)+ 2 = di + d4−2. Thus for all

d1,d2,d3 ≥ 4 andd4 ≥ 3:

(4.5) w4 +
4

∑
i=1

wdi −wd1+d4−2−wd2+d4−2−wd3+d4−2 ≥ 0.

Note that it is sufficient to consider the (finite) subset of
constraints wheredi ≤ 8 for all i (each constraint withdi > 8
is dominated by the same constraint withdi replaced by 8).

(4) Branching. When we branch, we can assume that,
for every nodew: (i) deg(w)≥ 3; (ii) if deg(w)≤ 4, eitherw
is not foldable orN(w) contains more than three anti-edges;
(iii) w is not dominated and does not dominate any other
node.

Suppose we branch at a given nodev, with N(v) =
{u1,u2, . . . ,ud} and di = d(ui). We denote bymi = mi(v)
the number of nodes of degreei in N(v):

mi = |{u∈ N(v) : d(u) = i}|.

Let moreoverph = ph(v) be the number of nodes inN2(v)
which have exactlyh neighbors inN(v):

ph = |{w∈ N2(v) : |N(w)∩N(v)| = h}|.

Note that (at least) the nodes corresponding topd−1 and pd

are mirrors ofv. Additionally, the number of edges between
N(v) andN2(v) is

p = p(v) =
d

∑
h=1

h ph.

We also definem≥i = ∑ j≥i mj andp≥h = ∑ j≥h p j .
Suppose we discardv. The size of the problem decreases

by wd because of the removal ofv, by at leastpd wd +
pd−1wmax{3, d−1} because of the removal of the mirrors of
v, and by at least∑d

i=3mi ∆wi because of the reduction of the
size ofN(v). Altogether the reduction is

∆OUT = ∆OUT(v)

≥ wd + pd wd + pd−1wmax{3, d−1} +
d

∑
i=3

mi ∆wi .

Consider now the case we takev. The size of the problem de-
creases bywd because of the removal ofv, and by∑d

i=3miwi

because of the removal ofN(v). The size of the problem fur-
ther decreases because of the reduction of the size ofN2(v).
Consider a nodez∈ N2(v) with h neighbors inN(v). Note
that the reduction of the size ofz is

wd(z)−wd(z)−h = ∆wd(z) +∆wd(z)−1 + . . .+∆wd(z)−h+1.

If h = 1, the minimum reduction of the size ofz is achieved
whenzhas the largest possible degreed(z) = d:

wd(z)−wd(z)−1 = ∆wd(z) ≥ ∆wd = wd −wd−1.



Now consider the caseh ≥ 2. Any case withd(z)− h ≥ 3
is dominated by a case where theh edges considered are
incident toh distinct nodes of degreed:

wd(z)−wd(z)−h = ∆wd(z) +∆wd(z)−1 + · · ·+∆wd(z)−h+1

≥ h∆wd = h(wd −wd−1).

Thus we can assumed(z)−h ≤ 2, and the reduction of the
size ofz is wd(z)−wd(z)−h = wd(z). It follows that in the worst
casez has the minimum possible degree compatible withh:
d(z) = max{3,h}. Thus the reduction of the size ofN2(v) is
at least

p1 ∆wd +
d

∑
h=2

phwmax{3,h}.

Each node inN(v) has at least one neighbor inN2(v)
(otherwise we could removev by dominance). Moreover,
the nodes of degree three inN(v) have exactly two neighbors
in N2(v) (otherwise we could fold them). Thusp ≥ m≥4 +
2m3 = d+m3, the worst case occurring whenp = d+m3.

Altogether, the reduction of the size of the problem
when we takev is

∆IN = ∆IN(v) ≥ wd +
d

∑
i=3

miwi + p1 ∆wd +
d

∑
h=2

phwmax{3,h}.

The following recurrence follows, for allmi andph such that
∑d

i=3mi = d and∑d
h=1h ph = d+m3:

(4.6) P[k] ≤ P[k−∆OUT]+P[k−∆IN ].

Observe that it is sufficient to consider only a finite
number of recurrences. In fact, ford ≥ 8, independently
from the values of themi , the worst case value of thepi is
p1 = p andpi = 0 for i 6= 1 (since∆wd = 0 for d≥ 8). Recall
that, ford ≥ 8, wd = 1 . Thus all the worst case recurrences
for d ≥ 8 are dominated by a recurrence of the kind

P[k] ≤ P[k−1−
7

∑
i=3

mi ∆wi ] + P[k−1−
7

∑
i=3

mi wi −m≥8],

with ∑7
i=3mi +m≥8 = 8.

Consider an assignment of the weightsw3, w4, w5, and
w6 which satisfies the initial assumptions and the constraints
(4.2), (4.3), (4.4), and (4.5). It turns out thatP[k]≤αk, where
α > 1 is the largest real root of the set of equations

αk = αk−∆OUT +αk−∆IN

corresponding to the recurrences of kind (4.6). Thus the es-
timation of the running time reduces to choosing the weights
w minimizing α = α(w) (we refer to Eppstein’s work [7] on

quasi-convex programming for a general treatment of such a
problem). We numerically obtained

(w3,w4,w5,w6) = (0.5596,0.8405,0.9562,0.9964),

which leads toα < 20.298, and thus to the claimed running
timeO∗(20.298n).

2

The running time analysis can be further refined to
O∗(20.288n), still without modifying the algorithm. We give
the details in the appendix.

THEOREM 4.2. Algorithm mis solves the maximum inde-
pendent set problem in time O∗(20.288n).

5 A Lower Bound

We have showed that a more careful choice of the measure
leads to a much tighter bound on the running time ofmis.
Nonetheless, the bound achieved might still be pessimistic.

To estimate the possibilities for further improvements, it
is natural to ask for lower bounds on such running times.
(Notice that we are concerned with lower bounds on the
complexity of a particular algorithm and not with lower
bounds on the complexity of an algorithmic problem).

THEOREM 5.1. The worst case running time ofmis is
Ω(2n/6) = Ω(20.166n).

Proof. Consider the following connected graphGℓ, ℓ ≥ 1,
of n = 6ℓ nodes:Gℓ consists ofℓ blocksB1,B2, . . . ,Bℓ. Each
block Bi , i < ℓ, is formed by six nodesai , bi , ci , di , ei , and
ui . For each 1≤ i ≤ ℓ, nodeui is adjacent to nodesai , bi , ci ,
di , ei which form a chord-less cycle of length five. Also for
eachi = 1, . . . , ℓ− 1 there are edged{ai ,ai+1}, {bi ,bi+1},
{ci ,ci+1}, {di ,di+1}, and{ei ,ei+1}. (See Figure 6 for an
example).

Figure 6 Lower-bound graphGℓ for ℓ = 3. Algorithmmis
may branch at nodeu1.
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Let us apply Algorithmmis to graphGℓ. The graph is
connected. Moreover, no node is foldable and dominance
cannot be applied. Thus the algorithm branches at a node
of maximum degree: so it can branch atu1. If we takeu1,
we remove nodesa1, b1, c1, d1, and e1 arriving at graph
Gℓ−1. If we discardu1, the remaining vertices ofB1 are of
degree three and are not foldable. So at the next step the



algorithm can branch atu2 and so on. Thus the algorithm
can branchℓ = n/6 times, which implies a running time
Ω(2n/6) = Ω(20.166n). 2

The large gap between upper and lower bound leaves
room for improvement. Is is possible to further refine the
analysis of algorithmmis, possibly via a further refined
measure of the size of maximum independent set instances?
Finding such measure is an interesting challenge.
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Appendix

Proof. (Theorem 4.2) We can refine the running time
analysis given in the proof of Theorem 4.1 in the following
way.

By a simple combinatorial property, if the sum of the
degrees ofN[v] is even (odd), so it must bep = p(v). Thus,
if the lower boundd+m3 on p is odd (even), we can replace
it with d+m3 +1:

p≥ d+m3 +[( ∑
u∈N[v]

d(v)+(d+m3)) (mod 2)].

The lower bound onp can be further refined ford = 4 (while
for d = 3, p = d + m3 = 6 deterministically). If there are
no edges inN(v), p = 2m3 + 3m4. If there is exactly one
edge inN(v), say {u1,u2}, the degree ofu1 and u2 must
be four (otherwise we would fold one ofu1 andu2). Thus
p = 2m3 + 3m4 − 2, with m4 ≥ 2. It remains to consider
the case there are at least two edges inN(v). Following the
analysis of case (3.c), if such edges are not incident, thereare
no other edges inN(v) and all the nodes inN(v) have degree
four (m4 = 4). Thus p = 2m3 + 3m4 − 4 = 8. Otherwise
there are at least two incident edges inN(v), say{u1,u2}
and{u2,u3}, from which we obtainp≥ 2m3+3m4−4, with
m4 ≥ 3. Altogether,p ≥ 7 if m4 = 3, andp ≥ 8 in all the
other cases.

Consider now the cased = 3. Without loss of generality,
we can assume thatN3(v) is not empty. In fact otherwise
v would be contained in a small (constant-size) connected
component, and thus it would beP[k] = O(1) trivially. This
has two consequences. First, we can assumep3 < 2. Second,
suppose all the nodes inN(v) have at least one neighbor in
M(v). This surely happens ifp3 > 0 or p2 = 3, and it may
happen forp2 = 2. After removing{v} ∪M(v), nodes in



N(v) have degree at most one. Thus the nodes inN(v) are
taken, and all the remaining nodes inN2(v) are discarded
(without branching). Hence the degree of all the nodes in
N3(v) decreases, with a total extra reduction of the size of
the problem by at least∆w3 = w3.

Suppose nowp1 = p = 6 (which implies that there are
no mirrors). After removingv, the neighbors ofv become
nodes of degree two with two non-adjacent neighbors of
degree three. One of them will be folded, with a reduction of
the size of the problem by at leastw2+2w3−w4 = 2w3−w4

(which must be non-negative by the constraints on folding).
By considering the new (refined) set of re-

currences, and by imposing (w3,w4,w5,w6) =
(0.5139,0.7783,0.9230,0.9842), one obtains the claimed
O∗(20.288n) running time. 2


