Measure and Conquer:
A Simple 20-288M) |ndependent Set Algorithm

Fedor V. Fomini Fabrizio Grandorii Dieter Kratsch

Abstract dominating set [8], treewidth [9] and many others. (See the

For more than 30 years Davis-Putnam-style exponentigy/vey [20].) There are several explanations to that:
time backtracking algorithms have been the most common,
tools used for finding exact solutions of NP-hard problems.
Despite of that, the way to analyze such recursive algosthm
is still far from producing tight worst case running time
bounds. e Approximation algorithms are not always satisfactory.

The “Measure and Conquer” approach is one of the re- For example, maximum independent set is hard to
cent attempts to step beyond such limitations. The approach approximate withim*~¢ [11].
is based on the choice of the measure of the subproblems _ . .
recursively generated by the algorithm considered; thia-me ¢ A reduction of th,? base (?gnth‘? exponential running
sure is used to lower bound the progress made by the algo- time, say from @2°) to O(.Z)), Increases the size .Of
rithm at each branching step. A good choice of the measure the instances solvf’;\b_le V.V'th'n a gllven amount (.)f time
can lead to a significantly better worst case time analysis. by a con;tanvnu!tlpllcatlve factor; running a given

In this paper we apply “Measure and Conquer” to the exponen'FlaI angnthm on a faster comp_u_ter can enlarge
analysis of a very simple backtracking algorithm solving th the mentioned size only by a constaditivefactor.

well-studied maximum independent set problem. The resull, The design and analysis of exact algorithms leads to
of the analysis is striking: the running time of the algarmith a better understanding of NP-hard problems and ini-

is O(20288"), which is competitive with the current besttime tiates interesting new combinatorial and algorithmic
bounds obtained with far more complicated algorithms (and challenges.

naive analysis).

Our example shows that a good choice of the measut@yated Work. The design of exponential algorithms for
made in the very first stages of exact algorithms desigRe maximum independent set problem has a long history
can have a tremendous impact on the running time bouRggrting from the first algorithm due to Tarjan [17] break-
achievable. ing the trivial Q2") bound. The first published algorithm
Keywords: Algorithms and data structures, exponentials due to Tarjan and Trojanowski (1977): it has running
time exact algorithms, NP-hard problems, independent ggie o(zn/3) and polynomial space complexity [18]. In

There are certain applications that require exact solu-
tions of NP-hard problems, although this might only be
possible for moderate input sizes.

problem. 1986 Jian published a polynomial-space algorithm of run-
_ ning time (2%3%4") [13] and Robson came out with a poly-
1 Introduction nomial space algorithm of running time(29-2%") and with

Recently, there has been a growing interest in the design andexponential space algorithm using timé28¥76") [14].
analysis of exact exponential time algorithms for NP-hatd a recent technical report [15] Robson claims better run-
problems such as satisfiability [6, 12, 16], coloring [2, 3hing times, both in polynomial and in exponential space. The
maximum independent set [1, 5], max-cut [19], minimumiescription of his new algorithm, which is partially comgut
generated, takes almost 18 pages. A significant amount of re-
~ *Department of Informatics, University of Bergen, N-5020 BergNor- search was also devoted to solve the maximum independent
way, foni n@i . ui b. no. Supported by Norges forskningst project S€t problem on sparse graphs [1, 4, 5].
160778/V30. All mentioned exact algorithms for the maximum in-
TDipartimento di Informatica, Universitdi Roma “La Sapienza’, Via dependent set problem are search-tree based. They use a
Salaria 113, 00198 Roma, Italgr andoni @i . uni romal.it. Sup- pranch and reduce paradigm with a (long) list of reduction
ported by EC Project DELIS, and project WebMinds of the &alMinistry db hi | Oft this list is derived f
of University and Research (MIUR). and branching rules. Often, this list is derived from a some-
ILITA, Universitte de Metz, 57045 Metz Cedex 01, Francevhat tedious and complicated case analysis. The running
krat sch@ci ences. uni v-netz. fr time analysis leads to a linear recurrence for each bragchin

rule that can be solved using standard techniques. The ct#sG is a maximum cardinality subset of pair-wise non-
sical worst case running time analysis of such algorithmsadjacent nodes. Our maximum independent set algorithm
based on the assumption that a “natural” size of a problémanches by imposing that some nodes belong or do not
(instance) is associated to each node of the search tree.dédong to the maximum independent set computed: we
graph algorithms the natural measure is the number of vesdl the nodes of the first kinthken and the other nodes
tices or edges in the corresponding (remaining) graph andigcarded Throughout this paper we use a modified big-Oh
is not surprising that usually this measure is used for marbtation that suppresses all polynomially bounded factors
mum independent set. For functionsf andg we write f(n) = O*(g(n)) if f(n) =

The interest on exact algorithms for the independe@{g(n)poly(n)), wherepoly(n) is a polynomial.
set problem seems to have vanished in the nineties. This A nodev is foldableif N(v) = {u1,Uz... Uy } contains

is partially due to the fact that the current best algorithmyg, anti-triangles. Folding of a given nodev of G is the

for the problem are already very complicated: adding a fejMocess of transforminG into a new graplG = G(v) by:
more branching rules in order to slightly reduce their ragni

time might seem a waste of time. (1) adding a new node; for each anti-edgeju; in N(v);
Fortunately the growing interest on exact algorithms fo

NP-hard problems has led to important new insights. One

those is the idea to use non-standard measures for the size of (uy);

a problem (instance). Using this approach, that they callegs) adding one edge between each pair of new nodes;

“Measure and Conquer”, Fomin et al. obtained the currently

fastest §20-5%") algorithm for the minimum dominating set (4) removingN|[v].

problem [8].

) adding edges between eaghand the nodes iN(u;) U

Note that when we fold a node of degree either zero or
one, we simply remov&|v] from the graph. Examples of

New Results. In this paper we continue our previougo|ging are given in Figure 1. Lai(G) denote the size of a
work on the “Measure and Conquer” method [8]. To study

the power of the method it is natural to test it at a pmb'eﬁfgurel Folding of a noder.
into which a lot of effort was put with the classical anal-

ysis — the maximum independent set problem. To stress () e '0 @ @
the power of the method, we developed a very simple al G:Q = (HD(E) = ‘i\
gorithm: it can be described in a few lines and analyzed@®) (\)(5) (GG GOOOO GGG

a few pages (though we needed a computer to find a good

measure for it). Our polynomial-space algorithm has run-

ning time Q2°-288"). Currently there is no better publishednaximum independent set of a grah
polynomial-space algorithm.

The algorithm uses reduction rules basedlomination
and folding which are known in the literature. We also o (Connected components) If G properly contains a
introduce the useful notion ahirroring, which allows to connected component C,
greatly simplify the description of the algorithm. Intwily,
when we branch by discarding a node, we can discard its a(G) =a(C)+a(G-C).
mirrors as well. This handy tool might be of independent
interest. e (Dominance) If there are two nodes v and w such that

The current methods of worst case running time analysis N[w] € N|v] (w dominates/),
for search-tree algorithms do not seem to provide tight uppe

LEMMA 2.1. For any graph G,

bounds. This motivates the study of lower bounds for such a(G) =a(G—{v}).
algorithms. We prove a lower bound 6(2°166") for the

running time of our algorithm. e (Folding) For any foldable node v,
2 Preliminaries a(G) = 1+a(G(V)).

LetG = (V, E) be am-nodes undirected graph. B (v) we

denote the set of nodes at distance (number of hdfi®im Proof. The first two properties are trivial.

v. In particular,N*(v) = N(v) is theneighborhoodf v. We Consider folding. LeBbe a maximum independent set
letd(v) = [N(v)| be the degree of, andN[v] = N(v)U{v}. of G. If ve S S\ {v} is an independent set & = G(v).
Given a subseV’ of nodes,G[V’] is the graph induced by Otherwise,S contains at least one node bf(v) (since it
V', andG -V’ = GV \V’]. A maximum independent sets of maximum cardinality). IN(v)nS= {u}, S\ {u} is

an independent set @. Otherwise, it must b&l(v)S= Figure 3 A recursive algorithm for maximum independent
{ui,u;}, for two non-adjacent nodas andu; (sinceN(v) set.
does not contain any anti-triangle by assumption). In this

intm s(G) {

caseSU {uj} \ {uj,uj} is an independent set db. It (g if(G = 0) return 0:
~ fai Q) if(3 component c G) return m s(C)+m s(G—C);
follows thata(G) < 1+ a(G). A similar argument shows @ it(3 nodess andw Nw] ¢ Ni) return i (G v));
thatcx(G) >1+a (G) O @ if(3 a foldable noder: d(v) < 4 andN(v) contains at most 3 anti-edgef)
- take one such Dodeof minimum degree;
We introduce the following useful notion ahirror. return 1+ni s(G(v));
Given a nodev, a mirror of v is a nodeu € N?(v) such le,ectanodeof maximum degree;
that N(v) \ N(u) is a (possibly empty) clique. We denote return max{mi s(G— {v} —M(v)), 14 s(G-N[V)};

by M(v) the set of mirrors olv. Examples of mirrors are
given in Figure 2. Intuitively, when you discard a node

Figure 2 Example of mirrorsu is a mirror ofv.

this paper we use a different approach to the problem: in-
stead of developing even more complicated algorithms, we
analyze a very simple algorithm with a more careful choice
of the measure for the size of a problem instance.

Our simple algorithm, which we calti s, works as
follows (see also Figure 3). & is (0) the empty graph,
iS(G) = 0. Otherwise,m s tries to reduce the size of
e problem without branching, by applying Lemma 2.1.
Specifically, (1) ifG contains a proper connected component

LEMMA 2.2. (Mirroring) For any graph G and for any C, the algorithm recursively solves the Subproblems induced

you can discard its mirrors as well without modifying th
maximum independent set size. This intuition is formalizt;
in the following lemma.

node v of G, by C andG — C separately, and sums the solutions obtained
a(G) =max{a(G—{v}—M(v)),1+a(G—N[V])}. mis(G) = mig(C) + mis(G—C).
Proof. Nodev can either belong to a maximum independegse, (2) if there are two (adjacent) nodesnd w, with
set or not, from which we obtain the trivial equation N[w| € N[v], m s discardsv:
a(G) = max{a(G—{v}),1+a(G—N[V])}. mis(G) = misg(G — {V}).

Thus it is sufficient to show that, ifis not contained in any |t none of the conditions above holds, and (3) there is a
maximum independent set, the same holds for its mirrqftgaple nodev of degreed(v) < 3, or a foldable node of
M(v). Following the proof of Lemma 2.1, if no maXimumdegreed(v) = 4 with at most three anti-edges M(v), the

independent set containsevery maximum independent Sehigorithm selects one such nodef minimum degree and
contains at least two nodes M(v). Consider a mirror fg|ds it:

u e M(v). Since every independent set contains at most one Mis(G) = 1+ mis(G(V)).
node inN(v) \ N(u) (which is a cligue by assumption), it
must contain at least one node N{v) N"N(u) C N(u). It The reason of the restrictions on the nodes we fold will be
follows thatu is not contained in any maximum independei@earer from the analysis. Intuitively, we want to avoidttha
set. o folding increases the “size” of the problem.
As a last choice, (4) the algorithm greedily selects a

) node v of maximum degree, and branches according to
3 TheAlgorithm Lemma 2.2
All the previous exact algorithms for the maximum indepen-
dent set problem are analyzed by using the number of nodeis(G) = max{mig(G — {v} —M(v)),1+mis(G—N[V])}.
as a measure of the size of the problem (in [1] the number of o -)
edges is considered, but that approach works only for spdisgice that with simple modifications, the algorithm can
graphs). According to this standard analysis, simple algys© provide one maximum independent set (besides its
rithms perform quite bad. Thus it is not surprising that tt@rdinality).
currently fastest algorithms for maximum independent set, To emphasize the importance of a good choice of the
including Robson'sD*(20-2%) algorithm, are rather com-measure, we sketch the analysis rofs according to the
plicated, with up to several hundreds of branching rules. standard measure = k(G) = n. Let P[k] be the number

of leaves in the search tree generated by the algorithm t® When the degree of a node decreases freon — 1, its

solve a problem of siz&. Of course,P[0] = 1. If one of weight decreases byw; = w; —w;_;. We assume that
the conditions of steps (1), (2), and (3) is satisfibgk] < Awz > Awg > Aws > Awg > Awy > 0. In other words,
P[k— 1]. Otherwise consider the nodeat which we branch. the weights decrease frowy to w, at increasing speed.
Note thatd(v) > 3. If d(v) = 3, when we discard, we The reason for this assumption will be clearer from the
either discard a mirror of or we fold a neighbow of v analysis.

in the following step (since(w) = 2 after removing)). In THI%OREM 4.1. Algorithm i s solves the maximum inde-
both cases, we decrease the number of nodes by at leas

two. When we takey, we removeN[v|, where|N[v]| = pefident set problem in time" ("),

4. This leads tdP[k] < Plk— 2]+ P[k—4]. Assume now Proof. The correctness of the algorithm immediately
d(v) > 4. In the worst casey has no mirrors(v) = 0). follows from Lemmas 2.1 and 2.2.

When we discard or take, we remove at least one or five Let P[k] be the total number of leaves in the search tree
nodes, respectively. ThuRk] < P[k—1]+Plk—5]. We generated to solve a problem of sike Also in this case
conclude thaP[k] < ok, wherea = 1.3247... < 2°4%is the we can assumB[0] = 1. In fact, wherk = 0, the algorithm
largest root of polynomial§x® — x* — 1) and (x* — x> — 1). solves the problem without branching (in polynomial time).
Since in each step the size of the graphs generated decrelas®a the discussion of previous section, it is sufficient to
by at least one, the depth of the search tree is at mosshow thaP[k] < 20298 < 20298 \\je preak the running time
Moreover, solving each subproblem, not considering thealysis in different parts, one for each step of the algorit

possible recursive calls, takes polynomial time. Thus the (1) Connected components. Suppose there is a con-

i i ; ; __ (y+(90.406n
time complexity of the algorithm 1&" (P[n)) ~0 (2) ._nected componen@ of sizek;. The size ofG —C s trivially
In next section we will show how to refine the runnin , —K—ky. Thus

time analysis ofri s to O*(2%-288") via a more careful choice
of the measur&(G) (without modifying the algorithm!). ~ (4.1) Pk] < Plki1] + P[kz].

4 TheAnalysis (2) Dominance. When we apply dominance, we gener-

When we measure the size of a maximum independent%tgta unique subproblem. Thus, from the point of view of the
instance with the number of nodes. we do not take i 8und orP[K], it is sufficient to guarantee that the size of the
account the fact that decreasing the’degree of a ndt problem does not increase. This is trivially true in the case
a positive impact on the progress of the algorithm (even?rl:fedogg}:g]cz’ei'rr;(;es’e\ggen we remove a ngdhe size of
we do not immediately remowve from the graph). In fact, P y

decreasing the degree of a node pays off on long term, since W) + z Awgy) > 0.
the nodes of degree at most two can be filtered out without ueN(v)
branching.

This suggests the idea to give a different “weight” to (3) Folding. By basically the same arguments as in the
nodes of different degree. In particular, fet(n;) denote dominance case, also in the case of folding it is sufficient
the number of nodes of degredat leasti) in the graph {0 guarantee that the size of the problem does not increase.

considered. We will use the following measute= k(G) This property is trivially true when we fold a nogef degree
of the size ofG: zero or one (since we simple remoMév| from the graph).

Unfortunately, this is not always the case witém) > 2. In
k(G) = Z)Wi n <n, fact in this case, besides removing nodes, we also introduce
i> new nodes, possibly of larger degree (and weight). Hence
where the weightsy; € [0, 1] will be fixed in the following. we need to enforce some further constraints on the weights.

In order to simplify the running time analysis, we make the LEt_N(V) ={us, Lz, . -7Ud}’_ with d; = d(u;). We distin-
following assumptions: guish different cases, depending on the valug ©f{ 2, 3,4}.

assumption is that nodes of degree at most two CotherW|sev dominates them). Thus, by folding we

n . .
always be removed without branching during steps (moveN|v] and we introduce a unique node; of degree

.) < (d1— —1)= — ich impli
(2), and (3) of the algorithm. Thus their preseng ('ulz).*(dl 1).+(d2 1) q1+d2 2 (whichimplies that
. 2 . - the weight of this new node is at mos4, 4,—»). Hence, for
contributes to the running time only via a polyn0m|aa" d.dp > 2
factor. (4.2) -
e Secondw; = 1 fori > 7. This way, we have to compute W2+ W, +Wa, —Wag; +d,—2 = Way +Wd, —Way +d,—2 > 0.

only a finite (small) number of weights.

o First of all, wo = w; = w, = 0. The reason for thisg (33) case d =2 Nodeuw, andu, cannot be adjacent

(3.b) cased = 3. By a simple case analysis (see Figurgy,d,,d3 > 4 andd, > 3:

4), N(v) must contain exactly one edge, sgy,u>}. Thus 4

(45) Wy + dei - Wd1+d4—2 - Wd2+d4—2 - Wd3+d4—2 > 0.
i=

Figure 4 Possible graphl[v] for d(v) = 3. In the first case
there is one anti-triangle if(v). In the last two cases

dominatesu. The algorithm may fold/ only in the second Note th'at it is sufficient to c;onsider the (fi'nite). subset of
case. constraints wherd; < 8 for all i (each constraint witld; > 8

is dominated by the same constraint withreplaced by 8).

(4) Branching. When we branch, we can assume that,
for every nodew: (i) degw) > 3; (ii) if degw) < 4, eitherw
is not foldable oN(w) contains more than three anti-edges;

(iii) w is not dominated and does not dominate any other
node.
Suppose we branch at a given nodewith N(v) =

by foldingv, we introduce two new nodess anduzs, where {U1;Uz,-..,Ud} anddi = d(ui). We denote bym = my(v)
d(uiz) < (0 —2) + (dg— 1) + 1= di + d3 — 2. Hence, for all the number of nodes of degrea N(v):

th,dp,d3 > 3, m = [{ue N(v) : d(u) =i}|.

Let moreoverp, = pn(Vv) be the number of nodes N?(v)
which have exactiy neighbors ilN(v):

(3.c) case d=4. Assume N(v) contains two non-)
incident edges, saju;,up} and{us,us}. Since there can- ph={we N°(v) : IN(w) IN(v)| =h}|.

not be four anti-edges iN(v), there must be a third edgeNote that (at least) the nodes correspondingdoy and pg

incident to both{un, Uz} and {Us, Us}, say {Up,Us}. NOte o iore g, Additionally, the number of edges between
thatd; > 4 for all i, since otherwise we could fold a node oﬁlgp andNZ(v) is

degree three. In the worst case (there are no other edge
when we foldv we introduce three nodess, U4, anduys d
of degree at mosi; + dz — 3, dp +ds — 3, andd; + dg — 2, p=p(v) = z h ph.
respectively. Thus, for atl;, d,,ds,ds > 4, h=1

(4.3) W3+ Wqg; +Wd, +Wdy —Wd; ds—2 — Wely1dz—2 > 0.

4 We also definensj = 3 j>imj andp>h = 3 j>h Pj-

(4.4) ws+ de_ — W, +ds3 — Wely+ds 3 — Wy 1dy 2 > O. Suppose we discard The size of the problem decreases
= by wyq because of the removal of by at leastpgwy +

-~ Pd—1Wmax(3 d—11 because of the removal of the mirrors of
Now suppose the condition above does not hold (i;}l(ii 3.d-1) d .
the edges ifN(v) are incident to each other). Again by and by atleasy,_sm Aw; because of the reduction of the

. .) sjze ofN(v). Altogether the reduction is
a simple case enumeration (see Figure 5), there must be V) g

exactly three edges which form a triangle, sfyi, U2}, Aoyt = Aoyt(V)
{uz,us}, and{uz,us}. By the same argument as above, the d

> Wg+ PdaWd + Pd—1Wmax(3, d—1} + Zm Aw;.
i=

Figure 5 Possible graphsl[v] for d(v) = 4, where all the

edges inN(v) are incident 0 _each other. _In the first fouphjger now the case we takeThe size of the problem de-
caseN(v) contains one anti-triangle. Only in the last case o ses by because of the removal uf and byy %, mw;
can be folded. because of the removal bf(v). The size of the problem fur-

ther decreases because of the reduction of the sikE (.
Consider a node € N2(v) with h neighbors inN(v). Note
that the reduction of the size nis

Wd(z) — We(z)—h = BAWq(z) +AWgz) 1+ ... +AWgz) py1-

If h=1, the minimum reduction of the size nfs achieved
fold v, we introduce three nodas 4, uzs, anduss, where

d(uia) < (di —=3)+ (da—1)+2=d +ds—2. Thus for all Wei(z) — Wd(2)—1 = BWq(z) > AWy = Wy —Wg 1.

Now consider the case > 2. Any case withd(z) —h > 3 quasi-convex programming for a general treatment of such a
is dominated by a case where theedges considered argyroblem). We numerically obtained

incident toh distinct nodes of degres:
(ws, Wa, Ws, Wg) = (0.55960.84050.9562 0.9964),

Wy —Wd(z-h = AWy +AWqz)_1+ -+ AWy
d(z) — Md@-h 4@ 4@-1 42701 \hich leads ton < 2°2% and thus to the claimed running
> hAwg =h(wyg —wg_1). time O*(20.298n)_

Thus we can assun#z) — h < 2, and the reduction of the o

size 0fzisWy(z) —Wqg(z)—h = Wq(z)- It follows that in the worst The running time analysis can be further refined to
casez has the minimum possible degree compatible wiith O (20-288") stjll without modifying the algorithm. We give
d(z) = max{3,h}. Thus the reduction of the size NF(V) iS the details in the appendix.

at least _)))
THEOREM4.2. Algorithmmi s solves the maximum inde-

d pendent set problem in time*(20-288),
i 5 A Lower Bound

Each node irN(v) has at least one neighbor k?(v) We have showed that a more careful choice of the measure

(otherwise we could remove by dominance). Moreover, €ads to a much tighter bound on the running timeros.

the nodes of degree threeﬁhiv) have exacﬂy two neighborsNonethEIGSS, the bound achieved mlght still be peSSimiStiC
in N2(v) (otherwise we could fold them). Thys> m.4+ To estimate the possibilities for further improvements, it
2mg = d + mg, the worst case occurring when=d+mg. IS hatural to ask for lower bounds on such running times.

Altogether, the reduction of the size of the problefiNotice that we are concerned with lower bounds on the
when we take/ is complexity of a particular algorithm and not with lower

bounds on the complexity of an algorithmic problem).

THEOREMb5.1. The worst case running time afi s is

d d Q(2"/6) = Q (201660,

AN = AIN(V) > Wy +_ZmWi + PLAWG + > PhWmax(3h}-
= h=2 Proof. Consider the following connected gragh, ¢ > 1,
The following recurrence follows, for afhy and pn such that of n= 6¢ nodes:G, consists of blocksBy, B, ...,B,. Each

Zid=3mi —d andZﬂzlh ph = d+ mg: block B;, i < ¢, is formed by six nodes;, b, ¢, d, g, and
u;. For each K i </, nodey; is adjacent to nodes, b;, ¢j,
(4.6) P[k] < Pk—Aout] +P[k—AN]. di, & which form a chord-less cycle of length five. Also for

eachi =1,...,¢ — 1 there are edgeda, a1}, {bi,bit1},
Observe that it is sufficient to consider only a finitéGi,Ciy1}, {di,di;1}, and{&,e1}. (See Figure 6 for an
number of recurrences. In fact, for> 8, independently example).
from the values of then, the worst case value of thg is
p1 = pandp; = 0 fori # 1 (sinceAwy = 0 ford > 8). Recall Figure 6 Lower-bound grapl@, for £ = 3. Algorithmni s
that, ford > 8, wyq = 1 . Thus all the worst case recurrencé®ay branch at node; .
for d > 8 are dominated by a recurrence of the kind

Pk < P[k—l—imAwi] + Plk— 1—im W, — Msg],

with 57 om +m.g = 8.

Consider an assignment of the weighigs ws, ws, and
Wg Which satisfies the initial assumptions and the constraints
(4.2), (4.3), (4.4), and (4.5). It turns out thRjk] < ak, where
o > 1is the largest real root of the set of equations

Let us apply Algorithnmi s to graphG,. The graph is
connected. Moreover, no node is foldable and dominance
ak = gk—Bout | gk—AN cannot be applied. Thus the algorithm branches at a node
of maximum degree: so it can branchuat If we takeus,
corresponding to the recurrences of kind (4.6). Thus the a& remove nodess, b, ¢, d1, ande; arriving at graph
timation of the running time reduces to choosing the weigh®s_1. If we discardu;, the remaining vertices d3; are of
w minimizing o = a(w) (we refer to Eppstein’s work [7] on degree three and are not foldable. So at the next step the

algorithm can branch at; and so on. Thus the algorithm[15] J. M. Robson. Finding a maximum independent set in
can branch?/ = n/6 times, which implies a running time time O(2"/#4). Technical Report 1251-01, LaBRI, Univefsit
Q(27/6) = Q(20-166n), O Bordeaux I, 2001.

[16] U. Sctbning. A Probabilistic Algorithm for k-SAT and Con-

The large gap between upper and lower bound leaves siraint Satisfaction Problems. Proceedings of4Bth IEEE

room for improvement. Is is possible to further refine the Symposium on Foundations of Computer Science (FOCS
analysis of algorithmmi s, possibly via a further refined 1999) pp. 410-414.
measure of the size of maximum independent set instancg8? R. Tarjan. Finding a maximum clique. Technical Report 72-

Finding such measure is an interesting challenge. 123, Computer Sci. Dept., Cornell Univ., Ithaca, NY, 1972.
[18] R. Tarjan and A. Trojanowski. Finding a maximum indepen-
References dent set.SIAM Journal on Computind(3):537-546, 1977.

[19] R. Williams. A new algorithm for optimal constraint sat-
[1] R. Beigel. Finding maximum independent sets in sparse isfaction and its implications. Proceedings of st In-

and general graphs. Proceedings of ftGth ACM-SIAM ternational Collogquium on Automata, Languages and Pro-
Symposium on Discrete Algorithms (SODA 199%). 856— gramming (ICALP 2004)Springer LNCS vol. 3142, 2004,
857. pp. 1227-1237.

[2] R. Beigel and D. Eppstein, 3-coloring in tin@(1.3289"), J. [20] G.J. Woeginger. Exact algorithms for NP-hard problems: A
Algorithms 54: 444453, 2005. survey. Combinatorial Optimization — Eureka, You Shrink

[3] J. M. Byskov, Enumerating maximal independent sets with ~ SPringer LNCS vol. 2570, 2003, pp. 185-207.
applications to graph colourin@perations Research Letters
32: 547-556, 2004.

[4] J. Chen, I. Kanj, and W. Jia. Vertex cover: further Obsefﬁ\ppendix

vations and further improvementsJournal of Algorithms . . .
41:280-301, 2001. Proof. (Theorem 4.2) We can refine the running time

[5] J. Chen, I. A. Kanj, and G. Xia. Labeled search treednalysis given in the proof of Theorem 4.1 in the following
and amortized analysis: improved upper bounds for NP-hakdy.
problems. Proceedings of thie4th Annual International By a simple combinatorial property, if the sum of the
Symposium on Algorithms and Computation (ISAAC 2008egrees oN|[v] is even (odd), so it must be= p(v). Thus,

Springer LNCS vol. 2906, 2003, pp. 148-157. if the lower boundd 4+ mgz on pis odd (even), we can replace
[6] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg; with d + mg + 1:

C. Papadimitriou, P. Raghavan, and U. &aimg. A deter-
ministic (2— 2/(k+ 1))" algorithm for k-SAT based on local p>d+mg+[(Z d(v)+ (d+mg)) (mod 2.
search.Theoretical Computer Scienc289(1):69-83, 2002. ueNY]
[7] D. Eppstein. Quasiconvex analysis of backtracking algo-
rithms. Proceedings of the5th ACM-SIAM Symposium onThe lower bound omp can be further refined fat = 4 (while
Discrete Algorithms (SODA 2004)p. 781-790. for d = 3, p=d + mg = 6 deterministically). If there are
[8] F. V. Fomin, F. Grandoni, and D. Kratsch. Measure angy edges iN(v), p = 2mg + 3my. If there is exactly one
Conquer: Domination - A Case Study, Proceedings gtjge iNN(v), say {u,uy}, the degree ofi andu, must

the 32nd International Colloquium on Automata, LanguagaS .
; . e four (otherwise we would fold one off anduy). Thus
and Programming (ICALP 20055pringer LNCS vol. 3580, D — 2mg + 3my — 2, with my > 2. It remains to consider

2005, pp. 191-203. ;
[9] F. V. Fomin, D. Kratsch, and I. Todinca. Exact algorithm]éhe ca;e there are at I.eaSt two edgen (). Eollpwmg the
for treewidth and minimum fill-in. Proceedings of tBast analysis of case (3.c), if such edges are not incident, trere
International Collogquium on Automata, Languages and Prdl0 other edges iN(v) and all the nodes iN(v) have degree
gramming (ICALP 2004)Springer LNCS vol. 3142, 2004,four (my = 4). Thusp = 2mg +3my — 4 = 8. Otherwise
pp. 568-580. there are at least two incident edgesN(v), say {uy,uz}
[10] M.R. Gareyand D. S. Johnso@omputers and Intractability. and{us,us}, from which we obtaimp > 2mg + 3my — 4, with
A Guide to the Theory of NP-Completeneseeemann, 1979. m, > 3. Altogether,p > 7 if my = 3, andp > 8 in all the
[11] J. Hastad. Clique is hard to approximate withitr . Acta gther cases.
Math. 182 (1):105-142, 1999. Consider now the cask= 3. Without loss of generality,
[12] K.Iwama and S. Tamaki. Improved upper bounds for 3-S e can assume thaN3(v) is not empty. In fact otherwise

Proceedings of théSth ACM-SIAM Symposium on Discret(\a/ would be contained in a small (constant-size) connected
Algorithms (SODA 2004)p.328.

[13] T. Jian. An Q2030 “aigorithm for solving maximum component, and thus it would B¥k] = O(1) trivially. This

independent set problemEEE Transactions on Computers has two consequences. First, we can asspgre2. S_econd,_
35(9):847-851, 1986. suppose all the nodes M(v) have at least one neighbor in

[14] J. M. Robson. Algorithms for maximum independent seth(v). This surely happens iz > 0 or p, = 3, and it may
Journal of Algorithms7(3):425-440, 1986. happen forp, = 2. After removing{v} UM(v), nodes in

N(v) have degree at most one. Thus the nodeld(w) are
taken, and all the remaining nodesNtt(v) are discarded
(without branching). Hence the degree of all the nodes in
N3(v) decreases, with a total extra reduction of the size of
the problem by at leagtws = ws.

Suppose nowp; = p = 6 (which implies that there are
no mirrors). After removing/, the neighbors o¥ become
nodes of degree two with two non-adjacent neighbors of
degree three. One of them will be folded, with a reduction of
the size of the problem by at leagf + 2wz — Wy = 2wz — Wy
(which must be non-negative by the constraints on folding).

By considering the new (refined) set of re-
currences, and by imposing (ws, W, Ws,Wg) =
(0.51390.77830.92300.9842, one obtains the claimed
O*(20288) running time. O

