Designing Reliable Algorithms
in Unreliable Memories*

Irene Finocchi Fabrizio Grandoni Giuseppe F. Italiano *

Abstract

Some of today’s applications run on computer platforms with large and inexpensive
memories, which are also error-prone. Unfortunately, the appearance of even very
few memory faults may jeopardize the correctness of the computational results. We
say that an algorithm is resilient to memory faults if, despite the corruption of some
memory values before or during its execution, it is nevertheless able to get a correct
output at least on the set of uncorrupted values (i.e., the algorithm works correctly
on uncorrupted data). In this paper we will survey some recent work on resilient
algorithms and try to give some insight on the main algorithmic techniques used.

Keywords: memory faults, unreliable information, combinatorial algorithms, resilient
sorting and searching, resilient data structures.

1 Introduction

Many large-scale applications require the processing of massive data sets, which can easily
reach the order of Terabytes. For instance, NASA’s Earth Observing System generates
Petabytes of data per year, while Google currently reports to be indexing and searching
over 8 billion Web pages. In all such applications processing massive data sets, there is an
increasing demand for large, fast, and inexpensive memories, at any level of the memory
hierarchy: this trend is witnessed, e.g., by the large popularity achieved in recent years
by commercial Redundant Arrays of Inexpensive Disks (RAID) systems [14, 31], which
offer enhanced I/O bandwidths, large capacities, and low cost. Memories used in today’s
computer platforms, especially cheap ones, are not fully safe, and sometimes the content of
a memory unit may be temporarily or permanently lost or damaged. This may depend on

*Work supported in part by the Italian MIUR Project MAINSTREAM: “Algorithms for Massive In-
formation Structures and Data Streams”.

tDipartimento di Informatica, Universitd di Roma “La Sapienza”, via Salaria 113, 00198, Roma, Italy.
Email: {finocchi,grandoni}@di.uniromal.it.

!Dipartimento di Informatica, Sistemi e Produzione, Universitd di Roma “Tor Vergata”, via del Po-
litecnico 1, 00133 Roma, Italy. Email: italiano@disp.uniroma2.it.

manufacturing defects, power failures, or environmental conditions such as cosmic radiation
and alpha particles [26, 36, 43, 45]. As the memory size becomes larger, the mean time
between failures decreases considerably: assuming standard soft error rates for the internal
memories currently on the market [43], a system with Terabytes of memory (e.g., a cluster
of computers with a few Gigabytes per node) would experience one bit error every few
minutes.

A faulty memory may cause a variety of problems in most software applications, which
in some cases can also pose very serious threats, such as breaking cryptographic proto-
cols [7, 9, 47], taking control over a Java Virtual Machine [25] or breaking smart cards and
other security processors [1, 2, 42]. Most of these fault-based attacks work by manipulat-
ing the non-volatile memories of cryptographic devices, so as to induce very timing-precise
controlled faults on given individual bits: this forces the devices to output wrong cipher-
texts that may allow the attacker to determine the secret keys used during the encryption.
Differently from the almost random errors affecting the behavior of large size memories,
in this context the errors are introduced by a malicious adversary, which can assume some
knowledge of the algorithm’s behavior.

We stress that even very few memory faults may jeopardize the correctness of the
underlying algorithms. Consider for example the following simplified scenario. We are
given a set of n Web pages, each one with its own rank, and we wish to sort them by rank
using a classical sorting algorithm, say, MergeSort. It is easy to see that the corruption of
a single value of the rank is sufficient to make the algorithm output a sequence with ©(n)
Web pages in a wrong position. Similar phenomena have been observed in practice [27, 28].

Error checking and correction circuitry added at the board level could contrast memory
faults, but would also impose non-negligible costs in performance and money: hence, it is
not a feasible solution when speed and cost are both at prime concern. In the design of
reliable systems, when specific hardware for fault detection and correction is not available
or is too expensive, it makes sense to look for a solution to these problems at the application
level, i.e., to design algorithms and data structures that are able to perform the tasks they
were designed for, even in the presence of unreliable or corrupted information.

Suppose we are given an upper bound § on the number of faults that can happen
during the lifetime of an algorithm/data structure. Then a trivial approach to protect
the computation against memory faults would be data replication, in combination with
majority techniques. For example, in the scenario above we might maintain 20 + 1 copies
of each rank value, and use the majority value (which must be correct) as the actual rank
value during the execution of the sorting algorithm. This way, all the Web pages would be
sorted correctly. However, the resulting algorithm would take O(d nlogn) time and O(d n)
space. In most applications this overhead is not acceptable, even for moderate values of
0. On the other side, it is not clear how to avoid this overhead, especially if we insist on
computing a totally correct output (even on corrupted data).

The situation changes dramatically if we relax the definition of correctness, by requiring
that algorithms/data structures are consistent only with respect to the uncorrupted data.
For example, we might accept that the Web pages whose rank gets corrupted possibly
occupy a wrong position in the output sequence, provided that at least all the remaining

2

Web pages are sorted correctly. As we will show, this relaxed problem can be solved in
O(nlogn+ 6?) time and O(n) space, which is asymptotically optimal for § = O(y/nlogn).
This algorithm also performs very well in practice (see Section 3.1).

As we will see, many fundamental problems in the design of algorithms and data struc-
tures, such as the sorting problem mentioned before, have a natural and meaningful resilient
formulation, where the correctness constraint is properly relaxed. In this paper we survey
some recent work on the design and analysis of resilient algorithms and data structures,
that is algorithms and data structures which solve the resilient version of classical problems.

A model for memory faults. In this survey we focus on the faulty-memory RAM
model for memory faults, which was introduced in [24]. In this model, it is assumed that
there is an adaptive adversary which can corrupt up to § memory words, in any place and
at any time (even simultaneously). We remark that § is not a constant, but a parameter of
the model. The adaptive adversary captures situations like cosmic-rays bursts, memories
with non-uniform fault-probability, and hackers’ attacks which would be difficult to be
modelled otherwise.

The model also assumes that there are O(1) safe memory words which cannot be
accessed by the adversary. This memory stores the code of the algorithm/data structure
(which otherwise could be corrupted by the adversary), together with a small number
of running variables. This assumption is not very restrictive, since typically the space
occupied by the code is orders of magnitude smaller than the space taken by data: hence
one can usually afford the cost of storing the code in a smaller, more expensive and more
reliable memory. We remark that a constant-size reliable memory may even not be sufficient
for a recursive algorithm to work properly: parameters, local variables, return addresses
in the recursion stack may indeed get corrupted.

In the randomized version of the model [23] the random bits are not accessible to
the adversary. Moreover, reading a memory word (in the unsafe memory) is an atomic
operation, that is the adversary cannot corrupt a memory word after the reading process
has started. Without the last two assumptions, most of the power of randomization would
be lost in the setting considered.

In the following, we will denote by « the actual number of faults that happen during a
specific execution of an algorithm or data structure. Note that o < 4.

Organization. The remainder of this paper is organized as follows. In Section 2 we
survey some alternative models of faulty environments considered in the literature, and
compare them with the faulty-memory RAM. In Section 3 we consider the resilient sorting
problem, both in the comparison-based setting (Section 3.1) and in the case of integer
values (Section 3.2). Section 4 is devoted to resilient searching in a sorted sequence. In
Section 5 we focus on the design and analysis of resilient data structures. In particular,
we consider search trees (Section 5.1) and priority queues (Section 5.2). We conclude with
some remarks and open problems in Section 6.

2 Related Models

The problem of computing with unreliable information or in the presence of faulty compo-
nents dates back to the 50’s [46]. Due to the heterogeneous nature of faults (e.g., permanent
or transient) and to the large variety of components that may be faulty in computer plat-
forms (e.g., processors, memories, network nodes or links), many different models have
been proposed in the literature. We next briefly survey a few such models, and relate them
to the faulty-memory RAM.

The liar model. Two-person games in the presence of unreliable information have been
the subject of extensive research since Rényi [41] and Ulam [44] posed the following “twenty
questions problem”:

Two players, Paul and Carole, are playing the game. Carole thinks of a number
between one and one million, which Paul has to guess by asking up to twenty
questions with binary answers. How many questions does Paul need to get the
right answer if Carole is allowed to lie once or twice?

Many subsequent works have addressed the problem of searching by asking questions an-
swered by a possibly lying adversary [4, 10, 19, 20, 32, 37, 38, 39]. These works consider
questions of different formats (e.g., comparison questions or general yes-no questions such
as “Does the number belong to a given subset of the search space?”) and different degrees
of interactivity between the players (in the adaptive framework, Carole must answer each
question before Paul asks the next one, while in the non-adaptive framework all questions
must be issued in one batch). We remark that the problem of finding optimal searching
strategies has strong relationships with the theory of error correcting codes. Furthermore,
different kinds of limitations can be posed on the way Carole is allowed to lie: e.g., fixed
number of errors, probabilistic error model, or linearly bounded model in which the number
of lies can grow proportionally with the number of questions. Even in the very difficult
linearly bounded model, searching is now well understood and can be solved to optimality:
Borgstrom and Kosaraju [10], improving over [4, 19, 38|, designed an O(logn) searching
algorithm. We refer to the excellent survey by Pelc [39] for an extensive bibliography on
this topic.

Problems such as sorting and selection have instead substantially different bounds.
Lakshmanan et al. [33] proved that Q(nlogn+ k-n) comparisons are necessary for sorting
when at most k lies are allowed. The best known O(nlogn) algorithm tolerates only
O(logn/loglogn) lies, as shown by Ravikumar in [40]. In the linearly bounded model,
an exponential number of questions is necessary even to test whether a list is sorted [10].
Feige et al. [20] studied a probabilistic model and presented a sorting algorithm correct
with probability at least (1 — ¢) that requires ©(nlog(n/q)) comparisons. Lies are well
suited at modelling transient ALU failures, such as comparator failures.

We remark that, since memory data get never corrupted in the liar model, fault-tolerant
algorithms may exploit query replication strategies. This kind of approach does not work
in the faulty-memory RAM model.

Fault-tolerant sorting networks. Destructive faults have been first investigated in
the context of fault-tolerant sorting networks [5, 34, 35, 48], in which comparators can
be faulty and can possibly destroy one of the input values. Assaf and Upfal [5] present
an O(nlog® n)-size sorting network tolerant (with high probability) to random destructive
faults. Later, Leighton and Ma [34] proved that this bound is tight. The Assaf-Upfal
network makes ©(logn) copies of each item, using data replicators that are assumed to be
fault-free. We observe that, differently from fault-tolerant sorting networks, the algorithms
and data structures that we are going to present use data replication only at a very limited
extent, i.e., without increasing asymptotically the space consumption with respect to their
non-resilient counterparts.

Parallel computing with memory faults. Multiprocessor platforms are even more
prone to hardware failures than uniprocessor computers. A lot of research has been thus
devoted to deliver general simulation mechanisms of fully operational parallel machines on
their faulty counterparts. The simulations designed in [15, 16, 17, 29] are either randomized
or deterministic, and operate with constant or logarithmic slowdown, depending on the
model (PRAM or Distributed Memory Machine), on the nature of faults (static or dynamic,
deterministic or random), and on the number of available processors. Some of these works
also assume the existence of a special fault-detection register that makes it possible to
recognize memory errors upon access to a memory location. This is different from the
faulty-memory RAM model, where corrupted values are not distinguishable from correct
ones.

Pointer-based data structures. Unfortunately, many pointer-based data structures
are highly non-resilient: losing a single pointer makes the entire data structure unreachable.
This problem has been addressed in [6], providing fault-tolerant versions of stacks, linked
lists, and binary search trees: these data structures have a small time and space overhead
with respect to their non-fault-tolerant counterparts, and guarantee that only a limited
amount of data may be lost upon the occurrence of memory faults. In contrast, in the
faulty-memory RAM model correct values cannot get lost.

Checkers. Blum et al. [8] considered the following problem: given a data structure resid-
ing in a large unreliable memory controlled by an adversary and a sequence of operations
that the user has to perform on the data structure, design a checker that is able to detect
any error in the behavior of the data structure while performing the user’s operations. The
checker can use only a small amount of reliable memory and can report a buggy behavior
either immediately after an errant operation (on-line checker) or at the end of the sequence
(off-line checker). Memory checkers for random access memories, stacks and queues have
been presented in [8], where lower bounds of §2(logn) on the amount of reliable memory
needed in order to check a data structure of size n are also given.

It is worth to mention that the algorithms and data structures that we are going to
present might not always be able to detect faulty behaviors: nonetheless, they operate

correctly on the uncorrupted data.

3 Resilient Sorting

In this section we consider the problem of sorting in the presence of memory faults, both
in the comparison-based setting and in the case of integer values. Recall that we do not
wish to recover corrupted data, but simply to be correct on uncorrupted data, with a low
time and space overhead. Hence, we can define the following natural resilient version of
the sorting problem:

Resilient sorting: we are given a set of n keys that need to be sorted. The
values of some keys may be arbitrarily corrupted during the sorting process.
The problem is to order correctly the set of uncorrupted keys.

Note that this is the best that we can achieve in the presence of memory faults: we cannot
indeed prevent keys corrupted at the very end of the algorithm execution from occupying
wrong positions in the output sequence.

We remark that one of the main difficulties in designing efficient resilient sorting al-
gorithms derives from the fact that positional information is no longer reliable in the
presence of memory faults. Consider for instance the classical MergeSort algorithm: dur-
ing the merge step, errors may propagate due to corrupted keys. Even in the presence of
a single fault, in the worst case as many as ©(n) keys may be out of order in the output
sequence.

Observe that, if each value were replicated 26 + 1 times, by majority techniques we
could easily tolerate up to ¢ faults; however, the algorithm would present a multiplicative
overhead of ©(0) in terms of both space and running time. This implies, for instance, that
in order to be resilient to O(y/n) faults, a sorting algorithm would require Q(n3/?logn)
time and Q(n%?) space. The space may be improved using error-correcting codes, but at
the price of a higher running time. We will see in this section that it is possible to do much
better.

In the following, we will assume that the input keys are initially contained into an array,
whose address and length are maintained in safe memory. Otherwise, uncorrupted keys
might be lost because of pointers corruption. For ease of presentation, we will also assume
that each key occupies one memory location. This second constraint can be partially
relaxed, but that would not add much to the discussion below.

3.1 Comparison-Based Sorting

In [23, 24] both upper and lower bounds for the resilient comparison-based sorting problem
are presented. Any deterministic algorithm with optimal running time O(nlogn) can
tolerate the corruption of at most O(y/nlogn) keys. This lower bound implies that, if we
have to sort in the presence of w(y/nlogn) memory faults, then we should be prepared
to spend more than O(nlogn) time. In [24] a first resilient O(nlogn) comparison-based

6

I f

~N 7

Figure 1: The resilient merging procedure.

sorting algorithm that tolerates O((nlogn)'/?) memory faults has been designed. The
gap between the upper bound and the lower bound has been later closed in [23], where
a resilient sorting algorithm that takes O(nlogn + 6%) worst-case time is presented. This
yields an algorithm that can optimally tolerate up to O(y/nlogn) faults in O(nlogn) time.

The comparison-based sorting algorithms of [23, 24] are based on the same basic ap-
proach. The idea is to use a bottom-up iterative implementation of MergeSort, with a
carefully adapted (resilient) merging procedure. A sequence of keys is faithfully sorted if
the subsequence induced by the uncorrupted keys is sorted. Given two faithfully sorted
input sequences X and Y of size k, the aim is to merge them into a unique faithfully sorted
sequence S. The resilient merging procedure hinges upon the combination of two merging
subroutines, PurifyingMerge and UnbalancedMerge, with quite different characteristics.
The first subroutine is fast, but may discard a subset F' of keys. The keys F' are faithfully
sorted with a trivial algorithm NaiveSort, taking time O(d|F'|), and then merged with the
remaining keys Z, in time O(|Z| + (|F| + «)d), by using the second subroutine, which is
slow in general, but is especially efficient when applied to unbalanced sequences. (See also
Figure 1).

The algorithms in [24] and [23] differ in the implementation of PurifyingMerge: in the
former case the subroutine requires O(k) time and discards O(ad) elements, while in the
latter case it requires O(k+ «d) time but discards only O(«a) elements. These bounds yield
a total running time O(k + «d?) and O(k + ad) for resilient merging. This in turn yields
two resilient implementations of MergeSort that run in O(nlogn+4°) and O(nlogn + §?)
time, respectively.

The PurifyingMerge procedure in [23] is simple enough to be sketched here. The basic
idea is to use two input buffers X and Y, and one output buffer Z, all of size ©(5). The
top values of X (Y) are initially moved into X (). Then the content of X and Y is

merged into Z in the standard way. At the end of the process, the algorithm performs a
consistency check, of cost O(6). If the check succeeds, the content of Z is appended to the
output sequence Z. Otherwise, the algorithm is able to identify a pair of keys which are
not ordered correctly in either X or V: these two keys are moved to the fail set F', and
the merging process is restarted from scratch on the remaining keys. Since at least one of
the two removed keys must be corrupted (being the input sequences faithfully sorted by
assumption), at the end of the process |F| < 2a.

The overall cost of the successful merging steps is O(k). We can charge the O(9) cost
of each unsuccessful merging step on the corresponding corrupted key which is removed
from the input sequences. This gives the claimed O(k + « §) running time.

In [21] the impact of memory faults both on the correctness and on the running times of
MergeSort-based sorting algorithms, including the resilient algorithms presented in [23, 24],
has been experimentally investigated. In particular, many experiments with a variety
of fault injection strategies and different instance families have been carried out. The
experiments performed give evidence that simple-minded approaches to the resilient sorting
problem are largely impractical, while the design of more sophisticated algorithms seems
really worth the effort: the algorithms presented in [23, 24| are not only theoretically
efficient, but also fast in practice. In particular, an engineered implementation of [23]
introduced in [21] is robust to different memory fault patterns and appears to be the
algorithm of choice for most parameter choices. The algorithm of [24], however, seems
to have smaller constants hidden in the asymptotic notation and might be preferable for
rather small values of 4.

3.2 Integer Sorting

Suppose the input sequence is formed by integers in the range [0, n° — 1], for some constant
¢ > 0. In [23] a randomized sorting algorithm with expected running time O(n + 62) is
presented: thus, this algorithm is able to tolerate up to O(y/n) memory faults in expected
linear time. The same task can be performed deterministically in time O(n + §27¢), for any
constant € > 0. No lower bound for resilient integer sorting is currently known.

The integer sorting algorithm in [23] is based on a resilient implementation of RadixSort.
If the integers are represented in base b, where b > 2 is any constant, RadixSort can be
easily implemented in faulty memory by keeping b buckets, each stored in an array of size
n, and maintaining the addresses of the arrays and their current lengths in the O(1)-size
safe memory. However, when b is constant the running time of RadixSort is O(nlogn).
In order to make RadixSort run in linear time, we need b = Q(n¢), for some constant
e € (0,1]. This implies that O(1) safe memory words are not sufficient to store the initial
addresses and the current lengths of the b buckets. While the problem with the addresses
can be solved by storing the arrays in a proper way, the problem with the lengths is more
serious. We therefore need to solve b instances of a bucket-filling problem defined as follows:
We receive in an online fashion a sequence of k integers faithfully sorted up to the i-th
least significant digit. We have to copy this input sequence into an array By, whose current
length cannot be stored in safe memory. Array By must maintain the same faithful order

as the order in the input sequence.

The bucket-filling problem can be solved in O(k+ad) expected time, and in O(k+ad'*¢)
deterministic time. This gives the claimed O(n + 6%) expected and O(n + §**¢) worst-case
running times. To give an intuition of the techniques used to solve the bucket-filling
problem, we next sketch a simpler algorithm performing the task in O(k + ') worst-
case time. Besides the output array By, we use two buffers to store temporarily the input
keys: a buffer By of size |B;| = 26 + 1, and a buffer By of size |By| = 2v/5 + 1. All the
entries of both buffers are initially set to a value, say 400, that is not contained in the
input sequence. The current length p; of B; is kept in unsafe memory in multiple copies.
Specifically, we maintain one copy of py, |Bs| copies of p;, and |B;| copies of py. The
majority value of the copies of p; is interpreted as the actual value of p;. Note that the
adversary may corrupt the value of p, and p; (not of py). However, doing that requires Q(1)
and Q(V/§) faults, respectively. The algorithm works as follows. Each time a new input
key is received, it is appended to By;. Whenever B, is full (according to py), we flush it as
follows: (1) we remove any +oc from By and sort B, with two-way BubbleSort considering
the 7 least significant digits only; (2) we append B, to By, and we update p; accordingly;
(3) we reset By and p,. Whenever B is full, we flush it in a similar way, moving its keys
to By. We flush buffer B;, j € {1,2}, also whenever we realize that the index p; points to
an entry outside B; or to an entry of value different from +oo (which indicates that a fault
happened either in p; or in B; after the last time B; was flushed).

To show the correctness, we notice that all the faithful keys eventually appear in 5. All
the faithful keys in B;, i € {1,2}, at a given time precede the faithful keys not yet copied
into B;. Moreover we sort B; before flushing it. This guarantees that the faithful keys
are moved from B; to B;_; in a first-in-first-out fashion. Bubblesort has the property to
faithfully sort a k-unordered sequence of n keys in time O(n+ (k+ «)n). Consider the cost
paid by the algorithm between two consecutive flushes of B;. Let o/ and o’ be the number of
faults in By and p1, respectively, during the phase considered. If no fault happens in either
B; or p1 (o/ + " = 0), flushing buffer B; costs O(|B1|) = O(6). If the value of p; is faithful
(o < V/6), the sequence is O(c/)-unordered: in fact, removing the corrupted values from B;
produces a sorted subsequence. Thus sorting B; costs O((1+ /)d). Otherwise (o > /3),
the sequence B; can be O(§)-unordered and sorting it requires O((1 + § + o’)§) = O(6?)
time. Thus, the total cost of flushing buffer By is O(k + (a/V/3) 6* + a) = O(k + o 69).
Using a similar argument, it can be shown that the total cost of flushing buffer B, is
O(k + «0). The claimed running time immediately follows.

4 Resilient Searching

Similarly to sorting, one of the main difficulties in designing efficient resilient searching
algorithms derives from the fact that positional information is no longer reliable in the
presence of memory faults: for instance, when we search an array whose correct keys are in
increasing order, it may be still possible that a corrupted key in position 7 is smaller than
some correct key in position j, j < %, thus guiding the search towards a wrong direction.

The resilient searching problem can be formalized as follows:

Resilient searching: we are given a sequence of n keys sorted in increasing
order, on which we wish to perform membership queries. The values of keys
may be arbitrarily corrupted during the searching process. Let k be the key to
be searched for. The problem is either to find a key (corrupted or uncorrupted)
equal to k, or to determine that there is no correct key equal to .

It is not difficult to see that this is the best we can hope for, since memory faults can make
the search-key k appear or disappear in the sequence at any time.

Like in the case of resilient sorting, and for analogous reasons, we will assume that the
input keys are contained into an array: the address and length of the array, and the search
key k are maintained in safe memory. Moreover, each key occupies one memory location.

Both upper and lower bounds for the resilient searching problem, considering both
deterministic and randomized algorithms, have been proved in [12, 23, 24]. In [24] a
first algorithm, taking O(logn + 6%) time, was designed; furthermore it was proved that
any deterministic resilient searching algorithm must take Q(logn + §) time. The lower
bound has been extended to randomized algorithms in [23], where an optimal O(logn +
) randomized searching algorithm and an almost optimal O(logn + §'7¢) deterministic
searching algorithm, for any constant € > 0, are also introduced. The gap between the
upper bound and the lower bound for deterministic searching has been recently closed
in [12], by giving an optimal O(logn + J) deterministic algorithm.

We first notice that a naive resilient searching algorithm could be easily implemented
by using a majority argument at each search step, i.e., by following the search direction
suggested by the majority of (20+1) keys in consecutive array positions. Since one can have
at most 6 memory faults, this guarantees that the search direction will never be wrong.
However, with this approach the running time would be O(¢é logn). In order to reduce the
overhead, the algorithms in [12, 23, 24] proceed in a non-resilient way, checking from time
to time if they did some mistake. If this is the case, they correct the search direction.

In more detail, the algorithm in [24] works in rounds consisting of § non-resilient binary
search steps. At the end of each round it spends O(J) time to check whether the search
direction is correct. If this is not the case, it recovers the search direction in O(d) time
using a simple majority argument. The running time analysis is based on two main facts.
First, the ©(0) time spent for the correctness check at the end of a correct round can be
amortized over the ¢ search steps just performed. Second, the ©(4) time spent during each
unsuccessful round can be charged over corrupted values: since at least one corrupted value
is out of the interval in which the search proceeds, each corrupted key can be charged at
most once and we will have at most o unsuccessful rounds. This yields a total running
time O(logn + ad) = O(logn + §2). As shown in [23], the running time can be reduced to
O(logn + 61*¢), for any constant ¢ € (0,1), by performing less reliable tests more often.

The randomized algorithm in [23] is based on the following intuition: if ¢ is much
smaller than n and at each search step we compare the key x to be searched for against a
randomly chosen key (instead of the central one), the probability of sampling a corrupted

10

key and hence of possibly going towards a wrong direction will be small. This probability,
however, becomes larger and larger as the search proceeds, because the size of the interval
in which k¥ must be searched for is progressively reduced. Hence, when the interval is too
small (i.e., contains less than ¢ - ¢ keys for some constant ¢ > 1), the algorithm switches
to an exhaustive search. Since corrupted sampled keys can mislead the search, at the end
of the process the algorithm checks, in O(J) time, whether the search proceeded in the
right way. If not, a new search is performed from scratch. One such iteration requires
O(logn + 0) time. It can be shown that, with constant positive probability, in a given
iteration no corrupted value is sampled, and hence the algorithm halts. This yields the
desired result.

The optimal deterministic algorithm proposed in [12] implicitly divides the sorted input
array into blocks of 59 + 1 elements in consecutive positions: each block consists of a left
verification segment containing the first 20 elements, a query segment containing the next
0 + 1 elements, and a right verification segment containing the last 20 elements. All the
query segments implicitly define § + 1 disjoint sorted sequences Sy, ..., S5, such that the
j-th element of sequence S; is the i-th element of the query segment of the j-th block.
We remark that the elements in each sequence do not occupy consecutive positions in
the input array. The algorithm stores a value k£ € [0,4] in safe memory and performs a
(non-resilient) adapted binary search on the elements of sequence Sy. When the search
terminates, the algorithm identifies two elements that are adjacent in Sy, and performs a
verification procedure on the corresponding blocks to check whether the search was mislead
by corruptions. If the verification succeeds, then the location of the search key x must be
in one of the two (consecutive) blocks: in this case all the ©(d) elements in the blocks
are exhaustively scanned. If the verification fails, k£ is incremented by one, a backtrack
is performed, and the binary search continues on a different sequence Si. Notice that
since there are § 4+ 1 disjoint sorted sequences, at least one of them must be free of faulty
elements. The verification procedure that checks whether the search was mislead is a simple
iterative algorithm: it maintains two values that express the confidence that the search
key & resides in the blocks on which the verification is invoked. Whenever one of the two
confidence values is increased, based on simple counting arguments, a new corruption has
been detected. This is crucial in the analysis, since guarantees that if O(f) time is used for
a verification, then Q(f) corruptions are detected. By showing that no single corruption
is counted twice, the total time spent for all the verifications can be bounded to O(J). By
charging each backtracking of the binary search to the verification procedure that triggered
it, it can be finally proved that the total time of the algorithm is O(logn + 6).

The Q(logn + ¢) lower bound in [23] on resilient (randomized) searching is based on
the following observation. An Q(logn) lower bound holds even when the entire memory is
safe. Thus, it is sufficient to prove that every resilient searching algorithm takes expected
time (J) when logn = o(d). Let A be a resilient searching algorithm. Consider the
following (feasible) input sequence I: for an arbitrary value &, the first (§+1) values of the
sequence are equal to k and the others are equal to +00. Let us assume that the adversary
arbitrarily corrupts d of the first (6 4+ 1) keys before the beginning of the algorithm. Since
an uncorrupted key k is left, A must be able to find it. Observe that, after the initial

11

corruption, the first (§+ 1) elements of I form an arbitrary (unordered) sequence. Suppose
by contradiction that A takes o(d) expected time. Then one can easily derive from .4 an
algorithm to find a given element in an unordered sequence of length ©(d) in sub-linear
expected time in a safe-memory system, which is of course not possible.

5 Resilient Data Structures

After the design of resilient algorithms for fundamental tasks such as sorting and searching,
it seems quite natural to ask whether we can successfully design resilient data structures,
without incurring in extra time or space overhead. In many applications such as file
system design, it is very important that the implementation of a data structure is resilient
to memory faults and provides mechanisms to recover quickly from erroneous states that
may lead to an incorrect behavior. The design of resilient data structures appears to be
quite a challenging task. As an example, classical implementations of search trees strongly
depend upon structural and positional information. Similarly to the case of binary search,
the corruption of a key in a search tree may compromise the search property and guide
the search towards wrong directions. Moreover, it should be noticed that pointer-based
data structures are highly non-resilient: due to the corruption of one single pointer, the
entire data structure may become unreachable and even uncorrupted values may be lost. A
natural approach to prevent the problems described above would be to use data and pointer
replication: however, if each pointer and each piece of data were replicated ©(6) times,
one would typically obtain a multiplicative overhead of ©(d) in terms of both space and
running time. In the following two subsections we will discuss results concerning resilient
search trees and resilient priority queues.

5.1 Resilient Search Trees

A resilient dictionary is a dictionary where the search operation implements the resilient
searching of Section 4, and the insert and delete operations are defined in the standard
way, with respect to the mentioned search operation.

In [22] a first step towards the design of resilient data structure was made, by presenting
a search tree implementing a resilient dictionary. The resilient search tree in [22] performs
searches, insertions and deletions in O(logn + §?) amortized time per operation, using
O(n—+9) space. This implies that up to O(y/logn) memory faults can be tolerated while still
achieving optimal time and space bounds. For a comparison, the trivial implementation
based on data replication would require O(d logn) time and O(dn) space to achieve the same
task. An optimal resilient dictionary has been recently proposed in [12]: the dictionary
requires linear space, supports queries in O(logn + §) worst case time, and range queries
in O(logn + 0 + k) time, where £k is the size of the output. The amortized update cost is
O(logn + 0). We now sketch the main ideas behind the design of both the data structures
in [22] and [12], since they are based on rather different techniques.

In the search tree described in [22], keys are grouped into a dynamically evolving set of

12

node v node interval 1(v)

(2.9 union U(v) of intervals
(-0, +®) « " inthe subtree

6:4,3,7,8,56+—__ number of keys and

/ \key list (diisordered)

(-10, 2] (30, 50]
(o, 2] (9, +o)

} -9,-5,0 /2 40, 38\
(-00,-10] (9, 30] (50, +oo)
(-00,-10] (9, 30] (50, +o0)

3-10, -20,-12 4:18, 29, 27, 10 3: 100, 56, 60

Figure 2: A resilient search tree.

non-overlapping intervals which span the key space. Intervals are maintained in a carefully
adapted AVL tree [18]. For each node v of the search tree, one maintains the following
variables:

1. (reliably, i.e., in 2§ + 1 copies) the endpoints of the corresponding interval I(v) and
the number |I(v)| of keys contained in the interval I(v);

2. (reliably) the interval U(v) delimited by the smallest and largest endpoints of the
intervals contained in the subtree rooted at v;

3. (reliably) the addresses of the left child, the right child, and the parent of v, and
all the information needed to keep the search tree balanced with the implementation
considered;

4. (unreliably, i.e., in a single copy) the unordered set of current keys contained in I(v),
stored in an array of size 24.

For an example, see Figure 2. The U(v)’s play a crucial role: they are used to test whether
a search is proceeding towards the right subtree.

After insertions or deletions, intervals might be split and merged. When this happens,
the search tree is modified consequently in a reliable way, in time O(6 logn + 6%). By
standard doubling techniques, one can ensure that: (1) each interval contains ©(J) keys,
and (2) the set of intervals, and thus the search tree, is modified only every €2(§) insertions
and/or deletions. The first property allows one to store the search tree reliably, while
keeping the space linear: in fact, there are O(n/0) intervals/nodes only, and each one can
afford to use extra space O(J) to ensure reliable computations. Thanks to the second
property, the amortized cost per update is O(logn + 6) only.

The second key ingredient of the resilient search tree in [22] lies in the way one searches
for an interval containing a given key . This can be done in O(logn + §2) worst-case

13

time. To give an idea of the techniques involved, we sketch how to perform the same
task in O(logn + aé?) = O(logn + 0°) worst-case time. To this aim, we generalize the
checkpoint-based approach used for resilient searching that we described in Section 4. The
idea is that the search algorithm must be fast on non-faulty instances, and thus it is not
possible to perform reliable computations too often. On the contrary, most of the times
we need to trust unreliable variables, and only every ©(J) search steps we can afford to
check reliably whether the computation is going towards the right direction. The search
algorithm keeps track of these reliable checks by means of checkpoints: if we realize that
something wrong happened, we backtrack to the last checkpoint, which is stored in safe
memory. The efficiency of the algorithm hinges on the fact that searches towards wrong
directions, which do not produce useful results, can be charged on corrupted values.

In more detail, the interval search proceeds in rounds. At the beginning of each round
we are given a checkpoint node v, which initially is the search tree root, and such that
k € U(v). At the end of the round we find a node v’ such that either k € I(v') or
k € U(W') C U(v). In the latter case, node v’ becomes the new checkpoint for the next
round. Each round consists of at most two phases. In both phases we perform up to ¢
classical search steps. The difference between the two phases is that in the first one, of cost
O(9), we use only the first copy of each variable involved, while in the second one, of cost
O(6%), we use all the 26 + 1 copies of such variables. Since the first phase is not reliable,
when it ends we perform a consistency check, of cost O(6), to verify whether the search is
proceeding towards the right direction. If the check fails, we start the second phase from
the checkpoint v. We end the first phase and start the second phase from v also whenever
we find any inconsistency.

Successful rounds, where there is no need to run the second phase, have total cost
O(logn). It can be shown that one can associate a distinct fault to each unsuccessful
round. This gives the claimed O(logn + «d?) running time.

We now describe the optimal resilient dictionary proposed in [12]. At any time during
the lifetime of the data structure, the sorted sequence of elements in the dictionary is
partitioned into a sequence of leaf structures, each storing ©(dlogn) elements. Each leaf
structure has a guiding element larger than all uncorrupted elements in the leaf structure
itself. The O(n/dlogn) guiding elements are placed in the leaves of a binary search tree,
called top tree. The top tree is implemented using the (non-resilient) binary search tree
described in [13], but storing all the elements and pointers reliably, i.e., using replication.
As shown in [13], the top tree can be maintained such that all its levels, except for the
last two, are complete. The memory lay out of the tree follows a left-to-right breadth
first order, that ensures that the elements of any level are stored consecutively. Each leaf
structure consists of a top bucket B and ©(logn) buckets: each bucket B; contains ()
elements, stored consecutively in memory, such that uncorrupted elements in B; are smaller
than uncorrupted elements in B;,;. For each bucket B;, the top bucket B reliably stores
a guiding element larger than all elements in B;: such elements are maintained in a sorted
array. It is not difficult to see that the top tree requires o(n) space, while ©(n) space is
used for all the leaf structures.

The query algorithm makes extensive use of the optimal deterministic resilient search

14

algorithm described in Section 4. In order to search for a key «, the algorithm first locates
two internal nodes of the top tree, say v; and vy, with guiding elements g; and g» such that
g1 < Kk < go. If h is the number of levels of the top tree, nodes v; and v, are located in level
h — 3, which is always complete. Thus, thanks to the breadth-first layout, nodes v; and v,
can be identified using the deterministic resilient search algorithm described in Section 4
on the array defined by values in that level. The leaf structure possibly containing x can be
in either of the subtrees rooted at v; and vy and can be identified by performing a standard
tree search in both subtrees, using the reliably stored guiding elements and pointers. The
search key x must be finally located in the appropriate leaf structure: the deterministic
resilient search algorithm is used again on the top bucket B and the bucket B; possibly
containing k is scanned exhaustively. Using the running time of the optimal deterministic
resilient search algorithm, it is not difficult to see that all the operations require O(logn+4)
time in the worst case. The breadth-first layout of the top tree also allows one to perform
range queries in O(logn + ¢ + k) time, where k is the size of the output.

Updates can be performed with similar techniques. Consider, as an example, the in-
sertion of an element into the dictionary. A search is first performed in order to locate
the appropriate bucket B; in a leaf structure, the element is added to B; and its size is
updated. When the size of B; increases too much, B; is split into two buckets of almost
equal size. The guiding elements of the two new buckets are computed and reliably in-
serted in the top bucket. This is done using an insertion sort step, by scanning and shifting
the elements in the top bucket from right to left, and placing the new guiding element at
the correct position. Similarly, when the size of the top bucket becomes too large, the
top bucket is split into two new leaf structures whose guiding elements are appropriately
computed and inserted into the top tree. By carefully choosing the size of buckets and top
buckets, it can be shown that an update in the top tree takes O(6log” n) time, but requires
(0 logn) updates in the leaf structures: the amortized cost for operations in the top tree
is therefore O(logn). Splitting a bucket of a leaf structure requires O(6? + dlogn) time,
but is done every €2(d) updates, yielding an amortized cost O(logn + §). Similarly to the
query algorithm, the initial search of the appropriate bucket in which the new key must be
inserted can be also implemented in O(logn + ¢) time. The total amortized running time
is therefore O(logn + 9).

5.2 Resilient Priority Queues

A resilient priority queue maintains a set of elements under the operations insert and
deletemin: insert adds an element and deletemin deletes and returns either the minimum
uncorrupted value or a corrupted value. Observe that this definition is consistent with the
resilient sorting problem discussed in Section 3: given a sequence of n elements, inserting
all of them into a resilient priority queue and then performing n deletemin operations yields
a sequence in which uncorrupted elements are correctly sorted.

We first notice that the resilient search tree described in Section 5.1 could be used to
implement priority queues, achieving O(logn + ¢) amortized time per operation. In [30]
Jorgensen et al. describe an alternative resilient priority queue that supports both insert

15

and deletemin operations withing the same time bounds, i.e., in O(logn + ¢) amortized
time per operation. Thus, their priority queue matches the performance of classical optimal
priority queues in the RAM model when the number of corruptions tolerated is O(logn).
An essentially matching lower bound is also proved in [30]: a resilient priority queue
containing n elements, with n > §, must use Q(logn + ¢) comparisons to answer an insert
followed by a deletemin.

The resilient priority queue of [30] resembles the cache-oblivious priority queue by Arge
et al. [3]. The main idea is to gather elements in large sorted groups, such that expensive
updates do not occur too often. In more detail, the data structure consists of an insertion
buffer I and of ©(log n) layers. Each layer L; contains an up-buffer U; and a down-buffer D;:
the up-buffers store large elements that are on their way up to the upper layers, whereas the
down-buffers store small elements, on their way down to lower layers. Besides the internal
ordering between elements in the same buffer, it is also guaranteed that all uncorrupted
elements in a down buffer D; are smaller than all uncorrupted elements in both D;,; and
U;+1- Due to these ordering properties, elements can be moved between neighboring layers
using two fundamental primitives, PUSH and PULL, that can be implemented efficiently by
means of the resilient merging algorithm described in Section 3: both primitives faithfully
merge consecutive buffers in the priority queue and redistribute the resulting sequence
among the participating buffers. Size invariants guarantee at any time that there are not
too few elements in the down buffers or too many elements in the up buffers.

New elements are added to the insertion buffer I, that is merged with the up buffer U
when it becomes full: if Uy breaks the size invariant, some elements are pushed upwards
by the PUsH primitive, that may be recursively invoked on the up buffers of larger layers.
Due to the ordering properties, the minimum is either in the insertion buffer I or in D
or in Uy: if Dy breaks the size invariant after deleting the minimum, some elements are
picked from the layer above by the PULL primitive, which may be recursively invoked on
the down buffers of larger layers.

It can be shown that the PusH and PULL primitives preserve the order invariant:
this implies the correctness of the implementation. The running time can be proved by
amortization arguments using the size invariants.

6 Concluding Remarks

In this paper we have surveyed some recent work related to the design of algorithms and
data structures resilient to memory faults. We have considered fundamental algorithmic
problems, such as sorting, static and dynamic searching, and the design of data structures,
such as dictionaries and priority queues. We have described upper and lower bounds
achieved in the faulty memory model for the aforementioned problems, sketching the main
ideas and algorithmic techniques behind the design of resilient implementations.

This preliminary work has raised many open and perhaps intriguing questions. First,
the model itself may need further investigations: indeed, in the simple faulty-memory RAM
of [24] there are simple problems for which it seems difficult to design efficient algorithms,

16

such as computing the sum of n keys. Is it possible to refine the faulty-memory model
in order to take this into account? Moreover, recent work has been focusing on a faulty
variant of the standard RAM model: can one design resilient algorithms for more complex
memory hierarchies?

Furthermore, it may be interesting to close some of the gaps between upper and lower
bounds for resilient algorithms. For instance, it would be nice to prove tight lower bounds
for the resilient integer sorting problem.

All the algorithms that we have discussed in this paper make explicit use of an upper
bound § on the number of memory faults: investigating whether it is possible to obtain (ef-
ficient) resilient algorithms that do not assume any a priori knowledge of ¢ is a challenging
open problem.

Finally, the design of resilient algorithms and data structures for fundamental problems
appears to be important especially when processing massive data sets in large, inexpensive
memories: engineering, experimentally studying the performances of these algorithms, and
reducing the constant factors hidden by the asymptotic notation appear therefore to be
very important for their concrete deployment in real applications.

Acknowledgments

We thank the anonymous referees for many useful comments that improved the presenta-
tion of the paper.

References

[1] R. Anderson and M. Kuhn. Tamper resistance — a cautionary note. Proc. 2nd
Useniz Workshop on Electronic Commerce, 1-11, 1996.

[2] R. Anderson and M. Kuhn. Low cost attacks on tamper resistant devices. Proc.
International Workshop on Security Protocols, 125—-136, 1997.

[3] L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley, and J. I. Munro.
Cache-oblivious priority queue and graph algorithm applications. Proc. Proc. 34th
Annual ACM Symposium on Theory of Computing (STOC’02), 268-276, 2002.

[4] J. A. Aslam and A. Dhagat. Searching in the presence of linearly bounded errors.
Proc. 23rd ACM Symp. on Theory of Computing (STOC’91), 486-493, 1991.

[5] S. Assaf and E. Upfal. Fault-tolerant sorting networks. SIAM J. Discrete Math.,
4(4), 472-480, 1991.

[6] Y. Aumann and M. A. Bender. Fault-tolerant data structures. Proc. 37th IEEE
Symp. on Foundations of Computer Science (FOCS’96), 580-589, 1996.

17

7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

J. Blomer and J.-P. Seifert. Fault based cryptanalysis of the Advanced Encryption
Standard (AES). Proc. 7th International Conference on Financial Cryptography
(FC’03), LNCS 2742, 162-181, 2003.

M. Blum, W. Evans, P. Gemmell, S. Kannan and M. Naor. Checking the correct-
ness of memories. Proc. 32th IEEE Symp. on Foundations of Computer Science
(FOCS’91), 1991.

D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of checking cryp-
tographic protocols for faults. Proc. EUROCRYPT, 37-51, 1997.

R. S. Borgstrom and S. Rao Kosaraju. Comparison based search in the presence
of errors. Proc. 25th ACM Symp. on Theory of Computing (STOC’93), 130-136,
1993.

R. Boyer and S. Moore. MJRTY - A fast majority vote algorithm. University of
Texas Tech. Report, 1982.

G. S. Brodal, R. Fagerberg, I. Finocchi, F. Grandoni, G. F. Italiano, A. G.
Jorgensen, G. Moruz and T. Mglhave. Optimal resilient dynamic dictionaries.
Proc. 15th Annual European Symp. on Algorithms (ESA’07), LNCS 4698, 347-358,
2007.

G. S. Brodal, R. Fagerberg and R. Jacob. Cache oblivious search trees via binary
trees of small height. Proc. 13th Annual ACM-SIAM Symp. on Discrete Algorithms
(SODA’02), 39-48, 2002.

P. M. Chen, E. L. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. RAID: High-
performance, reliable secondary storage. ACM Computing Surveys, 26(2), 145-185,
1994.

B. S. Chlebus, A. Gambin and P. Indyk. PRAM computations resilient to memory
faults. Proc. 2nd Annual European Symp. on Algorithms (ESA’94), LNCS 855,
401-412, 1994.

B. S. Chlebus, A. Gambin and P. Indyk. Shared-memory simulations on a faulty-
memory DMM. Proc. 23rd International Colloquium on Automata, Languages and
Programming (ICALP’96), 586-597, 1996.

B. S. Chlebus, L. Gasieniec and A. Pelc. Deterministic computations on a PRAM
with static processor and memory faults. Fundamenta Informaticae, 55(3-4), 285—
306, 2003.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. The MIT Press/McGraw-Hill Book Company, 2nd Edition, 2001.

18

[19] A. Dhagat, P. Gacs, and P. Winkler. On playing “twenty questions” with a liar.
Proc. 8rd ACM-SIAM Symp. on Discrete Algorithms (SODA’92), 1622, 1992.

[20] U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Computing with noisy information.
SIAM Journal on Computing, 23, 1001-1018, 1994.

[21] U. Ferraro Petrillo, I. Finocchi, G. F. Italiano. The price of resiliency: a case

study on sorting with memory faults. Proc. 14th Annual European Symposium on
Algorithms (ESA’06), 768-779, 2006.

[22] 1. Finocchi, F. Grandoni, and G. F. Italiano. Resilient search trees. Proc. 18th
ACM-SIAM Symposium on Discrete Algorithms (SODA’07), 547-553, 2007.

[23] I. Finocchi, F. Grandoni, and G. F. Italiano. Optimal sorting and searching in the
presence of memory faults. Proc. 33rd Int. Colloquium on Automata, Lang. and
Prog. (ICALP’06), LNCS 4051 (part I), 286-298, 2006.

[24] 1. Finocchi and G. F. Italiano. Sorting and searching in faulty memories. To appear
in Algorithmica. Extended abstract in Proc. 36th ACM Symposium on Theory of
Computing (STOC’04), 101-110, 2004.

[25] S. Govindavajhala and A. W. Appel. Using memory errors to attack a virtual
machine. Proc. IEEE Symposium on Security and Privacy, 154-165, 2003.

[26] S. Hamdioui, Z. Al-Ars, J. Van de Goor, and M. Rodgers. Dynamic faults in
Random-Access-Memories: Concept, faults models and tests. Journal of Electronic
Testing: Theory and Applications, 19, 195-205, 2003.

[27] M. R. Henzinger. The past, present and future of Web Search Engines. Invited
talk. 81st Int. Coll. Automata, Languages and Programming (ICALP’04), Turku,
Finland, July 12-16 2004.

[28] M. R. Henzinger. Combinatorial Algorithms for Web Search Engines - Three Suc-
cess Stories. Invited talk. 18th ACM-SIAM Symposium on Discrete Algorithms
(SODA’07), New Orleans, USA, January 7-9, 200.

[29] P. Indyk. On word-level parallelism in fault-tolerant computing. Proc. 13th Annual
Symp. on Theoretical Aspects of Computer Science (STACS’96), 193-204, 1996.

[30] A. G. Jorgensen, G. Moruz and T. Molhave. Priority queues resilient to memory
faults. Proc. 10th Workshop on Algorithms and Data Strutures (WADS'07), 127
138, 2007.

[31] R. H. Katz, D. A. Patterson and G. A. Gibson, Disk system architectures for high
performance computing, Proceedings of the IEEE, 77(12), 1842-1858, 1989.

19

[32] D. J. Kleitman, A. R. Meyer, R. L. Rivest, J. Spencer, and K. Winklmann. Coping
with errors in binary search procedures. Journal of Computer and System Sciences,
20:396-404, 1980.

[33] K. B. Lakshmanan, B. Ravikumar, and K. Ganesan. Coping with erroneous infor-
mation while sorting. IEEE Trans. on Computers, 40(9):1081-1084, 1991.

[34] T. Leighton and Y. Ma. Tight bounds on the size of fault-tolerant merging and
sorting networks with destructive faults. STAM Journal on Computing, 29(1):258—
273, 1999.

[35] T. Leighton, Y. Ma and C. G. Plaxton. Breaking the ©(n log® n) barrier for sorting
with faults. Journal of Computer and System Sciences, 54:265-304, 1997.

[36] T. C. May and M. H. Woods. Alpha-Particle-Induced Soft Errors In Dynamic
Memories. IEEE Trans. Elect. Dev., 26(2), 1979.

[37] S. Muthukrishnan. On optimal strategies for searching in the presence of errors.
Proc. 5th ACM-SIAM Symp. on Discrete Algorithms (SODA’94), 680-689, 1994.

[38] A. Pelc. Searching with known error probability. Theoretical Computer Science, 63,
185-202, 1989.

[39] A. Pelc. Searching games with errors: Fifty years of coping with liars. Theoretical
Computer Science, 270, 71-109, 2002.

[40] B. Ravikumar. A fault-tolerant merge sorting algorithm. Proc. 8th Annual Int.
Conf. on Computing and Combinatorics (COCOON’02), LNCS 2387, 440-447,
2002.

[41] A. Rényi. A diary on information theory, J. Wiley and Sons, 1994. Original publi-
cation: Naplo az informdcidelméletril, Gondolat, Budapest, 1976.

[42] S. Skorobogatov and R. Anderson. Optical fault induction attacks. Proc. 4th Inter-
national Workshop on Cryptographic Hardware and Embedded Systems (CHES02),
LNCS 2523, 2-12, 2002.

[43] Tezzaron Semiconductor. Soft errors in electronic memory - a white paper, URL:
http://www.tezzaron.com/about/papers/Papers.htm, January 2004.

[44] S. M. Ulam. Adventures of a mathematician. Scribners (New York), 1977.

[45] A.J. Van de Goor. Testing semiconductor memories: Theory and practice, ComTex
Publishing, Gouda, The Netherlands, 1998.

[46] J. Von Neumann, Probabilistic logics and the synthesis of reliable organisms from
unreliable components. In Automata Studies, C. Shannon and J. McCarty eds.,
Princeton University Press, 43-98, 1956.

20

[47] J. Xu, S. Chen, Z. Kalbarczyk, and R. K. Iyer. An experimental study of secu-
rity vulnerabilities caused by errors. Proc. International Conference on Dependable
Systems and Networks, 421-430, 2001.

[48] A. C. Yao and F. F. Yao. On fault-tolerant networks for sorting. SIAM Journal on
Computing, 14, 120-128, 1985.

21

