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Abstract

There are a lot of natural problems arising in real life that can be modeled as dis-
crete optimization problems. Unfortunately many of them are believed to be hard
to solve efficiently (i.e. they cannot be solved in polynomial time unless P=NP).
An approximation algorithm is one of the ways to tackle these hard optimization
problems. These algorithms have polynomial running time and guarantee a fea-
sible solution whose value is within a proven factor of the optimal solution value.
The field of approximation algorithms has grown fast over the last few decades,
and many techniques have been developed to handle these hard problems. How-
ever, there are still many problems for which substantial progress is needed. The
ultimate goal for any optimization problem is an approximation algorithm with a
performance guarantee along with a matching hardness of approximation result.

In this thesis we address two fundamental geometric packing problems: Strip
Packing and two-dimensional Geometric Knapsack. In the Strip Packing problem
we are given a set of rectangles and the goal is to place them into a rectangu-
lar region of fixed width W so that they do not overlap while minimizing the
total height of the spanned region. On the other hand, in the two-dimensional
Geometric Knapsack problem we are given a set of rectangles with associated
profits and a square region of fixed height and width N , and the goal is to select
and pack inside the region a subset of the rectangles of maximum profit so that
they do not overlap. Both problems are NP-hard and have many interesting real-
world applications, so they have been studied through the lens of approximation
algorithms in the past.

We start by describing our results on the Strip Packing problem, where we
develop improved approximation algorithms for some important special cases.
In the first case we show a pseudo-polynomial time (PPT)

�
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3 + ε

�

-approximation
which improves and simplifies the previous best

�

7
5 + ε

�

-approximation from Nadi-
radze and Wiese [2016]. In the second case we show that there exists a tight
�

3
2 + ε

�

-approximation for the problem in the special case where no rectangle is
“large” in both dimensions (compared to the dimensions of the optimal solution).
Both these results try to give new insights in order to approach the important
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open problem of improving the approximability of Strip Packing.
In the second part we describe our results for the two-dimensional Geometric

Knapsack problem and some of their known variants. For this problem we im-
prove upon the best known approximation ratios for the cases with and without
90 degree rotations, and give refined approximation algorithms for the case of
uniform weights. These are the first algorithms that break the approximation
barrier of 2 for the aforementioned problems. As an important development we
introduce the notion of L-packings which turns out to be crucial to achieve the
previously mentioned results in the settings without rotations, and may be of
independent interest to address related problems.
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Chapter 1

Introduction

Many important optimization problems are known to be NP-hard (Garey and
Johnson [1979]), and hence it is widely believed that an efficient algorithm (i.e.
an algorithm with polynomial running time) to solve them exactly is unlikely to
exist. Since these problems capture a lot of applications from the real world, it
has become crucial to find ways to deal with them and get solutions in a rea-
sonable time at the expense of efficiency in some sense. To this end, the major
research sub-fields that have arisen are the following:

1. Exact and Parameterized Algorithms. The main goal in this field is to
solve the problems exactly as fast as possible. This direction has suc-
cessfully led to algorithms with super-polynomial running time but signifi-
cantly faster than the naive brute-force approach, and also to sharpen lower
bounds on the required running time to solve the problems under some
complexity assumptions (usually stronger than P6=NP). More recently, a
common approach is to isolate some aspects of the input as parameter(s)
(for example the size of the solution, the diameter of the input graph, the
maximum degree of the input graph, etc.) in order to obtain a running time
guarantee which is super-polynomial only in the parameter(s). In practice,
algorithms designed under this paradigm work efficiently on instances with
small parameter-sized inputs.

2. Restricted Instances/Relaxed models. Another two successful approaches
(similar in spirit to parameterization) is trying to solve NP-hard problems
only for special classes of instances, such as planar graphs, perfect graphs
or bounded cost/weight ratios (Hadlock [1975]; Grötschel et al. [2012];
Zukerman et al. [2001]), or to give extra power to the algorithm while
comparing it to the optimum solution without those extra guarantees. In
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2 1.1 Basic definitions

the latter framework we can include resource augmentation, fractional so-
lutions, etc. (Correa and Kenyon [2004]; Heydrich and Wiese [2017]; Lau
et al. [2011]). These approaches come handy because, for many prob-
lems, algorithms for special cases as well as algorithms with extra power
lead to improved algorithms for the general problem due to the deeper
understanding of the inner structure of the instances.

3. Approximation Algorithms. The goal in this field is to develop efficient
algorithms (i.e. with polynomial running time) that, although not neces-
sarily outputting optimal solutions, compute solutions with a proven per-
formance guarantee in the worst case. This field has provided powerful
algorithmic techniques such as LP Rounding, Primal-Dual, Randomized
Rounding and Metric Embeddings among others (Hochbaum [1997]; Vazi-
rani [2001]; Williamson and Shmoys [2011]). In some cases, although the
algorithms have polynomial running time, big exponents and hidden con-
stants may do the algorithms impractical, but such bounds help to develop
a further mathematical understanding of the inherent hardness of these
problems. This acts as a stepping stone in the long run to come up with
new algorithmic approaches.

Recently these approaches have been mixed to achieve better performance
guarantees even for problems which are provably inapproximable. In particular,
in the field of geometric optimization and packing problems, many results have
been developed obtaining improved approximation algorithms with weaker run-
ning time guarantees (Adamaszek and Wiese [2014]; Jansen and Thöle [2010];
Wiese [2017]), improved approximations for restricted instances and relaxed
models (Grandoni et al. [2015, 2017]; Wiese [2018]), and even approximation
and exact algorithms with weaker running time guarantees for relaxed models
(Antoniadis et al. [2017]; Pilipczuk et al. [2017]).

1.1 Basic definitions

In the following we present some basic definitions that will be used along this
thesis. Let us start the formal definition of approximation algorithm.

Definition 1 (Williamson and Shmoys [2011]). Given an optimization problem
P , an α-approximation algorithm for P is an algorithm with polynomial run-
ning time that, for each instance of the problem, outputs a solution whose value is
within a factor α of the value of an optimal solution.
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The approximation ratio α≥ 1 of an approximation algorithm is defined as

max
I∈I

max
§

OPT(I)
APX(I)

,
APX(I)
OPT(I)

ª

,

where I is the set of instances of the problem, APX(I) is the value of the solution
computed by the approximation algorithm when run on instance I and OPT(I) is
the value of an optimal solution for instance I . The best kind of approximation
algorithms one can hope to design are called Polynomial Time Approximation
Schemes which we proceed to define.

Definition 2. A Polynomial Time Approximation Scheme (PTAS) for an opti-
mization problem P is a family of algorithms {Aε}ε>0 such that, for each ε > 0,
Aε is a (1 + ε)-approximation algorithm for P . The running time of these algo-
rithms is polynomial in the input size for any fixed ε.

We can consider the following interesting relaxations of Definition 1: if we al-
low quasi-polynomial running time O(npolylogn) instead of polynomial time, then
similarly to Definition 2 a family of algorithms with arbitrarily good approxi-
mation ratios is called a Quasi-Polynomial Time Approximation Scheme (QP-
TAS). The development of this kind of algorithms is useful as it is commonly
seen as a hint that an algorithm with polynomial running time achieving the
same approximation guarantee exists. It is often as well insightful to consider
the asymptotic approximation ratios as many pathological lower bound instances
occur when the optimal value is small. We say that an algorithm is an asymp-
totic α-approximation if there exists some value n0 ∈ N such that the algorithm
is an α-approximation restricted to instances I where OPT(I) ≥ n0. A family of
asymptotic approximation algorithms with arbitrarily good approximation ratios
is called an Asymptotic Polynomial Time Approximation Scheme (APTAS)

We can also consider a parameterized problem which consists of a problem
plus a parameter k that bounds a certain part of the input. One typically assumes
that k is much smaller than the input size |I |. Choosing the correct parameter
may allow us to find algorithms with a very accurate control on the dependence
of the running time as a function of the parameter. This is the main notion that
the field of Parameterized Complexity tries to capture.

Definition 3 (Cygan et al. [2015]). A parameterized optimization problem P is
called Fixed-Parameter Tractable (FPT) if there exists an algorithm A , a com-
putable function f : N → N and a constant c such that, given an instance (I , k),
algorithmA correctly solves the problem in time bounded by f (k) · |I |c.



4 1.2 Two-dimensional Rectangle Packing Problems

In the special case of numerical problems (for example problems involving
sizes or profits), there exists the notion of pseudo-polynomial running time which
takes into account not only the length of the instance but also the values in-
volved. Although being a weaker complexity notion it is a reasonable unit of
measurement for some problems.

Definition 4 (Vazirani [2001]). Given an optimization problem P , an algorithm
for P is said to have pseudo-polynomial running time (PPT) if, for any instance
I of P , the running time of the algorithm applied to I is poly(|Iu|), where Iu corre-
sponds to instance I encoded in unary.

Equivalently, an algorithm runs in PPT if its running time is bounded by
O(poly(n ·W )) where n is the size of the instance and W is the absolute value of
the largest integer in the instance. If an NP-hard problem can be solved in PPT
we say it is weakly NP-hard, and if it does not admit a PPT algorithm unless
P=NP we say it is strongly NP-hard.

Additionally, we can search for hardness of approximation results, which means
that there cannot exist an approximation algorithm with performance guarantee
better than a given threshold assuming P 6=NP or other widely believed conjecture
relating known complexity classes. A problem is said to be APX-hard if it does
not admit a PTAS unless P=NP. The ultimate goal for any NP-hard optimization
problem is to find an approximation algorithm for it plus a matching hardness of
approximation result.

1.2 Two-dimensional Rectangle Packing Problems

An important family of problems in the field that has received increasing atten-
tion in the last years is the family of Rectangle Packing problems. In general,
instances of these problems consist of a family of rectangles, each one character-
ized by an integral height and an integral width (and possibly an integral profit),
plus a region in the two-dimensional plane, and the objective is to pack the rect-
angles (or a subset of them) inside the given region in an axis-parallel way such
that they do not overlap while optimizing some given criteria. Many important
and well-studied problems fall in this framework, such as the two-dimensional
geometric variants of Bin Packing, Independent Set and many more. In this the-
sis we study two such problems, namely the Strip Packing problem and the two-
dimensional Geometric Knapsack problem.

In the Strip Packing problem we are given a collection of rectangles, and an
infinite vertical strip of width W in the two-dimensional plane. As mentioned
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before, we need to find an axis-parallel embedding of the rectangles without
rotations inside the strip so that no two rectangles overlap (feasible packing).
Our goal is to minimize the final height of this packing. More formally, we
are given a parameter W ∈ N and a set R = {R1, . . . , Rn} of rectangles, each
one characterized by a width w(Ri) ∈ N, w(Ri) ≤ W , and a height h(Ri) ∈ N.
A packing of R is a pair (left(Ri), bottom(Ri)) ∈ N × N for each Ri, with 0 ≤
left(Ri)≤W −w(Ri), meaning that the left-bottom corner of Ri is placed in posi-
tion (left(Ri), bottom(Ri)) and its right-top corner in position (right(Ri), top(Ri)),
where right(Ri) = left(Ri)+w(Ri) and top(Ri) = bottom(Ri)+h(Ri). This packing
is feasible if the interiors of the rectangles are pairwise disjoint in this embed-
ding (or equivalently rectangles are allowed to overlap on their boundary only).
Our goal is to find a feasible packing of minimum final height maxi{top(Ri)} (see
Figure 1.1 for an example). Strip packing is a natural generalization of one-
dimensional Bin Packing (Coffman Jr. et al. [2013]), which is the case when all
the rectangles have the same height, and makespan minimization (Coffman Jr.
and Bruno [1976]) which is the case when all the rectangles have the same width.
The problem has lots of applications in industrial engineering and computer sci-
ence, specially in cutting stock, logistics and scheduling (Kenyon and Rémila
[2000]; Harren et al. [2014]). More recently, there have been several appli-
cations of Strip Packing in electricity allocation and peak demand reduction in
smart-grids (Tang et al. [2013]; Karbasioun et al. [2013]; Ranjan et al. [2015]).

The two-dimensional Geometric Knapsack problem is the geometric variant
of the classical (one-dimensional) knapsack problem. We are given a set of n
rectangles R = {R1, . . . , Rn}, where each rectangle Ri ∈ R has integral height
h(Ri), integral width w(Ri) and an associated integral profit p(Ri). Furthermore,
we are given an axis-aligned square knapsack K = [0, N]× [0, N], N ∈ N, and
our goal is to select a subset of rectangles OPT ⊆ R of maximum total profit
p(OPT) :=

∑

Ri∈OPT p(Ri) and to find a feasible packing for the selected rectangles
fully contained in the knapsack. Different variants of the problem have been con-
sidered in the literature, being the most important ones the cases with/without
rotations (meaning that 90 degree rotations for the rectangles may be allowed)
and whether the rectangles have different weights (weighted case) or all of them
have weight 1 (cardinality case). See Figure 1.2 for an example. Besides being a
natural mathematical problem, it is well-motivated by practical applications. For
instance, one might want to place advertisements on a board or a website, or cut
rectangular pieces from a sheet of some material of fixed size. Also, it models
a scheduling setting where each rectangle corresponds to a job that needs some
“consecutive amount” of a given resource (memory storage, frequencies, etc.).
In all these cases, dealing with rectangular shapes only is a reasonable simpli-
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R4 R5
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final
height

Figure 1.1. An instance of Strip Packing. Each rectangle Ri is characterized
by its height h(Ri) and width w(Ri) (Left), and the goal is to pack them into a
strip of width W so that the final height is minimized (Right).

fication and often the developed techniques can be extended to deal with more
general instances.

Strip Packing and two-dimensional Geometric Knapsack are known to be
strongly NP-hard even when the instance consists solely of unweighted squares (Le-
ung et al. [1990]). Accordingly, they have received significant attention from
the point of view of approximation algorithms. Along this work we make fur-
ther progress in the understanding of the approximability of these problems by
developing improved classical approximation algorithms and also improved al-
gorithms for some of the described relaxed models.

1.3 Outline of the Thesis

In Chapter 2 we review some preliminary results and useful tools to handle rect-
angle packing problems. We also introduce the notion of Container-based solu-
tions which will be central for our approach.

In Chapter 3 we describe our results on Strip Packing, namely improving
the known upper bounds for the approximability of the problem in pseudo-
polynomial time and also a tight approximation algorithm for a family of relevant
restricted instances. In the end we discuss some open questions and further di-
rections.
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N

Figure 1.2. An instance of Two-Dimensional Geometric Knapsack. Each rect-
angle Ri is characterized by its height h(Ri), width w(Ri) and profit p(Ri) (Top),
and the goal is to pack a subset of them of maximum profit into a given squared
Knapsack either without rotations (Left) or with 90 degree rotations (Right).

Then in Chapter 4 we describe our results on two-dimensional Geometric
Knapsack, improving the approximability on all the variants mentioned in the
previous section. Again, in the end of the chapter we discuss some open problems
and future directions of research.

We defer to the Appendix some rather technical proofs and complementary
results.
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Chapter 2

Standard Tools

In this chapter we review some useful tools and preliminary results that will
be used along this work. Most of these results are implicitly used in previous
literature, so this is an attempt to standardize the whole approach and techniques
in a comprehensive way. Given a set of rectangles R we will denote by hmax(R)
(resp. wmax(R)) the maximum height (resp. width) among the rectangles in R ,
and by a(R) the total area of the rectangles in R , i.e.,

∑

Ri∈R

h(Ri)w(Ri).

We call a box a rectangular region in the plane where rectangles can be packed
inside, and we say it has size a× b if it has width a and height b.

2.1 Useful Procedures under Size/Area Guarantees

2.1.1 Steinberg Algorithm

The following theorem due to Steinberg gives a useful tool to pack items into
rectangular regions provided roughly only of area constraints and it comes handy
when proving the existence of a feasible packing into a given region. For a given
number x , let us denote x+ :=max(x , 0).

Theorem 5 (Steinberg [1997]). Suppose we are given a set of rectangles R ′ and
a rectangular region Q of width w and height h. If

2a(R ′)≤ wh− (2wmax −w)+(2hmax − h)+

then R ′ can be packed into Q. Furthermore, there is a polynomial time algorithm
that computes such packing.

Sometimes we will make use of the following simpler corollary which is a
direct application of Steinberg theorem.

9



10 2.1 Useful Procedures under Size/Area Guarantees

Corollary 6. Consider a set R ′ of rectangles and a rectangular region Q of width
w and height h. If wmax(R ′)≤

w
2 (resp. hmax(R ′)≤

h
2) and a(R ′)≤ wh

2 , then there
exists a feasible packing of R ′ inside Q.

2.1.2 Next-Fit Decreasing Height

One of the most common algorithms to pack rectangles into a box of size w× h
is Next-Fit Decreasing Height (NFDH). In this algorithm, the first step is to sort
rectangles non-increasingly by height, say h(R1) ≥ h(R2) ≥ . . . ≥ h(Rn). Then,
the first rectangle is packed in the bottom-left corner, and a shelf is defined of
height h(R1) and width w. The next rectangles are put in this shelf, next to each
other and touching the bottom of the shelf, until one does not fit, say the i-th
one. At this point we define a new shelf above the first one, with height h(Ri).
This process continues until all the rectangles are packed or the height of the
next shelf does not fit inside the box (see Figure 2.1b for an example).

This algorithm was studied by Coffman Jr. et al. [1980] in the context of
Strip Packing, in order to bound the obtained height when all the rectangles are
packed into a strip. An important property of the algorithm is that, if a given set
of rectangles needs to be packed into a given rectangular region and all of them
are relatively small compared to the dimensions of the region, then NFDH is very
efficient even in terms of area. This result can be summarized in the following
lemma which will be useful for our purposes.

Lemma 7 (Coffman Jr. et al. [1980]). Given a set of rectangles with width at most
w and height at most h, if NFDH is used to pack these rectangles into a rectangular
region of width a and height b, then all the rectangles are packed or the area of the
rectangles that were packed is at least (a−w)(b− h).

We will also often make use of the following simpler corollary.

Corollary 8. Consider a rectangular region of width w and height h, and a set of
rectangles R ′ satisfying that wmax(R ′) ≤ εw, hmax(R ′) ≤ εh and a(R ′) ≤ (1 −
2ε)wh, then NFDH packs all the rectangles from R ′ into the region.

Proof. If NFDH does not pack all the rectangles into the region, then due to
Lemma 7 the total area of the packed rectangles is at least (1−ε)2wh≤ (1−2ε)wh
which is a contradiction.
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(a) Example of vertical
container. Every

vertical line intersects
at most one rectangle.

(b) Example of area
container. Shelves are
defined by the set of

dashed lines.

(c) A container packing,
consisting of a constant

number of vertical, horizontal
and area containers.

Figure 2.1. Illustration of Container-based solutions and related definitions.

2.2 Container Packings

A big part of previous work on Geometric Packing problems (e.g. Bansal et al.
[2009]; Nadiradze and Wiese [2016]) implicitly or explicitly exploits a container-
based approach. The idea is to restrict ourselves to solutions that are partitioned
into a constant number of axis-aligned rectangular regions (containers) such that
their sizes (and therefore positions) can be efficiently computed, and subse-
quently place the rectangles inside the containers in a simple way: either one
next to the other from left to right or from bottom to top, or by means of NFDH.
Container-like packings turn out to be particularly useful since they naturally
induce (one-dimensional) knapsack instances as it is described in Section 2.2.2.

More in detail, a container is a box labeled as horizontal, vertical, or area (see
Figure 2.1 for a reference). A container packing for a set of rectangles R ′ into a
collection of non-overlapping containers has to satisfy the following properties:

• Items in a horizontal (resp., vertical) container are stacked one on top of
the other (resp., one next to the other).

• Each R ∈ R ′ packed in an area container of size a×b must satisfy w(R)≤ εa
and h(R)≤ εb.

In what follows we will show how to reduce the possible sizes of the con-
tainers in any container packing to a set of polynomial size (that can then be
computed efficiently), and then how to pack the rectangles into the containers
once we have already chosen them. Depending on the setting, we may allow
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to discard some rectangles or to increase the running time in order to achieve
this. With this framework in mind, the main remaining question would be: how
good is the best container packing with respect to the optimal solution? Answer-
ing this question directly implies an approximation guarantee for the induced
search algorithm and is the main focus of Chapters 3 and 4 for the cases of Strip
Packing and two-dimensional Geometric Knapsack respectively.

2.2.1 Rounding the Container Dimensions

In this section we show that it is possible to round down the size of each hori-
zontal, vertical or area container so that the resulting sizes can be chosen from
a polynomially sized set, while removing a set of rectangles of small total profit.

Lemma 9. Let R be a set of weighted rectangles that can be packed into Oε(1)
containers. Then there exists a set R ′ of total profit p(R ′) ≥ (1 − O(ε))p(R)
such that there is a container packing for R ′ inside the original containers and the
possible sizes of the new containers belong to a set of size poly(n).

In order to prove Lemma 9, we will give first some definitions. For a set
R of rectangles, we define WIDTHS(R) = {w(R) |R ∈ R} and HEIGHTS(R) =
{h(R) |R ∈ R}.

Given a finite set P of real numbers and a fixed natural number k, we define
the set

P(k) = {(p1 + p2 + · · ·+ pl) + ipl+1 | p j ∈ P ∀ j, l ≤ k, 0≤ i ≤ n, i integer}.

Note that if |P|= O(n), then |P(k)|= O(nk+2). Moreover, if P ⊆Q, then obviously
P(k) ⊆Q(k), and if k′ ≤ k′′, then P(k

′) ⊆ P(k
′′). Finally, given two containers C1 and

C2, we say that C1 is smaller than C2 if C1 fits inside C2.

Lemma 10. Let ε > 0, and let R be a set of weighted rectangles packed in an
horizontal (resp. vertical) container C. Then, for any k ≥ 1/ε, there is a set
R ′ ⊆ R with total profit p(R ′) ≥ (1− ε)p(R) that can be packed in a container
C ′ smaller than C such that h(C ′) ∈ HEIGHTS(R)(k) and w(C ′) ∈WIDTHS(R (k)).

Proof. Without loss of generality, we prove the claim for an horizontal container
C; the proof for vertical containers is symmetric. Clearly, the width of C can be
reduced to wmax(R), and wmax(R) ∈WIDTHS(R) ⊆WIDTHS(R)(k).

If |R| ≤ 1/ε, then
∑

Ri∈R
h(Ri) ∈ HEIGHTS(R)(k) and we can fix the height

of C to be that value. Otherwise, let RTALL be the set of the 1/ε rectangles in
R with largest height (breaking ties arbitrarily), let R j be the one with smallest
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profit among them, and let R ′ = R \ {R j}. Clearly, p(R ′) ≥ (1− ε)p(R). Since
each element ofR ′\RTALL has height at most h(R j), it follows that h(R\RTALL)≤
(n−1/ε)h(R j). Thus, letting i =

�

h(R ′ \RTALL)/h(R j)
�

≤ n, all the rectangles in
R ′ fit in a container C ′ of width wmax(R) and height h(C ′) := h(RTALL)+ ih(R j) ∈
HEIGHTS(R)(k). Since h(RTALL) + ih(R j) ≤ h(RTALL) + h(R ′ \ RTALL) + h(R j) =
h(R)≤ h(C), this proves the result.

Lemma 11. Let ε > 0, and let R be a set of rectangles packed inside an area
container C. Then there exists a subset R ′ ⊆ R with total profit p(R ′) ≥ (1 −
4ε)p(R) and a container C ′ smaller than C such that w(C ′) ∈ WIDTHS(R)(0),
h(C ′) ∈ HEIGHTS(R)(0), and each R j ∈ R ′ satisfies that w(R j) ≤

ε
1−εw(C

′) and
h(R j)≤

ε
1−εh(C

′).

Proof. Without loss of generality, we can assume that w(C) ≤ nwmax(R) and
h(C)≤ nhmax(R): if not, we can first shrink C so that these conditions are satis-
fied, and all the rectangles still fit in C .

Define a container C ′ of width w(C ′) = wmax(R) bw(C)/wmax(R)c and height
h(C ′) = hmax(R) bh(C)/hmax(R)c, that is, C ′ is obtained by shrinking C to the
closest integer multiples of wmax(R) and hmax(R). Observe that w(C ′) ∈WIDTHS(R)(0)

and h(C ′) ∈ HEIGHTS(R)(0). Clearly, w(C ′)≥ w(C)−wmax(R)≥ w(C)−εw(C) =
(1− ε)w(C), and similarly h(C ′) ≥ (1− ε)h(C ′). Hence a(C ′) ≥ (1− ε)2a(C) ≥
(1− 2ε)a(C).

We now select a set R ′ ⊆ R by greedily choosing elements from R sorted
non-increasingly by profit/area ratio, adding as many elements as possible with-
out exceeding a total area of (1−2ε)a(C ′) (which then would be packable inside
C ′ thanks to Corollary 8). Let Rlast be the last rectangle added to R ′. Since
each element ofR has area at most ε2a(C), then either all elements are selected
(and then p(R ′) = p(R)), or the total area of the selected elements is at least
(1−2ε)a(C ′)−ε2a(C)≥ (1−3ε)a(R). In this case, since p(Rlast)

a(Rlast)
≤ p(R)

a(R ′) (as other-

wise the selected rectangles would have profit
∑

R∈R ′

p(R)
a(R)

a(R)>
p(R)
a(R ′)

∑

a(R) =

p(R)), the total profit of the rectangles that were not packed is at most

∑

R∈R\R ′

p(R)
a(R)

a(R)≤
p(Rlast)
a(Rlast)

∑

R∈R\R ′
a(R)≤

p(R)
a(R ′)

3εa(R)≤ 4εp(R).

Since the container was shrunk by a factor (1−ε) at most, the claim is proved.

By applying Lemmas 10 and 11 we conclude the proof of Lemma 9
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2.2.2 Packing Rectangles into Containers

Now we proceed to show that, given a set of a constant number of containers and
a set of weighted rectangles, it is possible to efficiently find an almost optimal
packing of the rectangles into the containers. In order to achieve that we will
first show that there is a PTAS for the closely related Maximum Generalized As-
signment Problem (GAP) if the number of bins is constant. In GAP, we are given
a set of k one-dimensional bins with capacity constraints and a set of n items
that have a possibly different size and profit for each bin, and the goal is to pack
a maximum-profit subset of items into the bins. Let us assume that if item i is
packed in bin j, then it has size si j ∈ Z and profit pi j ∈ Z.

GAP is known to be APX-hard and the best known polynomial time approxi-
mation algorithm has ratio (1− 1/e+ ε) (Fleischer et al. [2011]; Feige and Von-
drak [2006]). In fact, for an arbitrarily small constant δ > 0 (which can even
be a function of n) GAP remains APX-hard even on the following instances: bin
capacities are identical, and for each item i and bin j, pi j = 1, and si j = 1 or
si j = 1+δ (Chekuri and Khanna [2005]). The complementary case, where item
sizes do not vary across bins but profits do, is also APX-hard (Chekuri and Khanna
[2005]). However, when all profits and sizes are the same across all bins (i.e.,
pi j = pik and si j = sik for all bins j, k), the problem is known as multiple knapsack
problem (MKP) and it admits a PTAS (Chekuri and Khanna [2005]).

On the other hand, for our purposes we only need instances where k = O(1).
A PTAS for GAP for a constant number of bins follows from extending known
techniques from the literature (Shmoys and Tardos [1993]). However, we did
not find an explicit proof in the literature and thus, for the sake of completeness,
in this section we present a full, self-contained description of such an algorithm.

Let C j be the capacity of bin j. Let p(OPT) be the profit of the optimal assign-
ment.

Theorem 12. There exists a pseudo-polynomial time algorithm for GAP with k =
O(1) bins.

Proof. For each i ∈ [n] and c j ∈ [C j] for each j ∈ [k], let Si,c1,c2,...,ck
denote a

subset of the set of items {1,2, . . . , i} packed into the bins such that the profit
is maximized and capacity of bin j is at most c j. Let P[i, c1, c2, . . . , ck] denote
the profit of Si,c1,c2,...,ck

. Clearly P[1, c1, c2, . . . , ck] is known for all c j ∈ [C j] for
j ∈ [k]. Moreover, we define P[i, c1, c2, . . . , ck] = 0 if c j < 0 for any j ∈ [k]. We
can compute the value of P[i, c1, c2, . . . , ck] by using a dynamic program (DP),
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that exploits the following recurrence:

P[i, c1, c2, . . . , ck] =max{P[i − 1, c1, c2, . . . , ck],

max
j
{pi j + P[i − 1, c1, . . . , c j − si j, . . . , ck]}}

With a similar recurrence, we can easily compute a corresponding set Si,c1,c2,...,ck
.

The running time of the above program is O
�

n
k
∏

j=1
C j

�

which is pseudo-polynomial.

Theorem 13. There is an algorithm for maximum generalized assignment problem
with k bins that runs in time O

�

�

1+ε
ε

�k
nk/ε2+k+1

�

and returns a solution that has
profit at least (1− 3ε)p(OPT), for any fixed ε > 0.

In order to prove Theorem 13 we will first prove that it is possible to achieve
such a result by slightly augmenting the sizes of the bins as the following lemma
states.

Lemma 14. There is a O
�

�

1+ε
ε

�k
nk+1

�

time algorithm for the maximum generalized
assignment problem with k bins, which returns a solution with profit at least p(OPT)
if we are allowed to augment the bin capacities by a (1+ε)-factor for any fixed ε > 0.

Proof. Consider the dynamic program described in Theorem 12 and its running

time O
�

n
k
∏

j=1
C j

�

. If each C j is polynomially bounded, then this running time is

polynomial. Therefore, we will now create a modified instance where each bin
size is polynomially bounded.

Let µ j =
εC j

n . For item i and bin j, define the modified size s′i j =
 

si j

µ j

£

=
 

nsi j

εC j

£

and C ′j =
�

(1+ε)C j

µ j

�

. Note that C ′j =
� (1+ε)n

ε

�

≤ (1+ε)n
ε , so the aforementioned DP

requires time at most O
�

n ·
� (1+ε)n

ε

�k
�

The DP finds the optimal solution OPTmodified for the modified instance. Now
consider the optimal solution for the original instance (i.e., with original item
sizes and bin sizes) OPToriginal. If we show the same assignment of items to the
bins is a feasible solution (with modified bin sizes and item sizes) for the modified
instance, we get OPTmodified ≥ OPToriginal and that will conclude the proof.

Let S j be the set of items packed in bin j in the OPToriginal. So,
∑

i∈S j
si j ≤ C j.

Hence,

∑

i∈S j

s′i j ≤

$

∑

i∈S j

�

si j

µ j
+ 1

�

%

≤

$

1
µ j

 

∑

i∈S j

si j + |S j|µ j

!%

≤
�

1
µ j
(C j + nµ j)

�

≤
�

(1+ ε)C j

µ j

�

= C ′j
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Thus OPToriginal is a feasible solution for the modified instance and the DP will
return a packing with profit at least p(OPT) under resource augmentation.

Now we can show how to employ this result to obtain a feasible solution with
an almost optimal profit using the original bin capacities.

Proof of Theorem 13. First, we claim the following:

Claim 15. If a set of items R j is packed in a bin B j with capacity C j, then there
exists a set of at most O(1/ε2) items X j, and a set of items Yj with p(Yj) ≤ εp(R j)
such that all items in R j \ (X j ∪ Yj) have size at most ε(C j −

∑

i∈X j
si j).

Proof. Let Q1 be the set of items i with si j>εC j. If p(Q1) ≤ εp(R j), we are done
by taking Yj = Q1 and X j = φ. Otherwise, define X j := Q1 and we continue
the next iteration with the remaining items. Let Q2 be the items with size greater
than ε(C j−

∑

i∈X j
si j) inR j\X j. If p(Q2)≤ εp(R j), we are done by taking Yj =Q2.

Otherwise define X j :=Q1∪Q2 and we continue with further iterations till we get
a set Q t with p(Q t) ≤ εp(R j). Note that we need at most 1

ε iterations since the

sets Q i are disjoint. Otherwise, p(R j) ≥
1/ε
∑

i=1

p(Q i) >
1/ε
∑

i=1

εp(R j) ≥ p(R j), which

is a contradiction. Thus, consider Yj =Q t and X j =
⋃t−1

l=1 Q l . One has |X j| ≤ 1/ε2

and p(Yj)≤ εp(R j). On the other hand, after removing Q t , the remaining items
have size < ε(C j −

∑

i∈X j
si j).

Now consider a bin with capacity (C j −
∑

i∈X j
si j) where all packed items R ′j

have sizes smaller than ε(C j −
∑

i∈X j
si j), then we can divide the bin into 1/ε

equal sized intervals S j,1, S j,2, . . . , S j,1/ε of length ε(C j −
∑

i∈X j
si j). Let R ′j,l be the

set of items intersecting the interval S j,l . As each packed item can belong to at
most two such intervals, the cheapest set R ′′ among {R ′j,1, . . . ,R ′j,1/ε} has profit
at most 2εp(R ′j). Thus we can remove this set R ′′ and reduce the bin size by a
factor of (1− ε).

Now consider the packing of k bins B j in the optimal packing OPT. Let R j

be the set of items packed in bin B j. Now the algorithm first guesses all X j ’s, a
constant number of items, in all k bins. We assign them to corresponding bins in
O(nk/ε2

) time. Then for bin j we are left with capacity r j := C j −
∑

i∈X si j. From
previous discussion, we know that there is packing of R ′′j ⊆ R j \ X j of profit
(1−2ε)p(R j \X j) in a bin with capacity (1−ε)C j. Thus we can use the resource
augmentation algorithm for GAP from Lemma 14 to pack the remaining items
in k bins where for bin j we set its capacity to be (1 − ε)C j for j ∈ [k] before
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the resource augmentation. As Lemma 14 returns the optimal packing on this
modified bin sizes we get total profit at least (1− 3ε)p(OPT).

Provided of these tools we can now show how to pack rectangles into a given
set of containers. The basic idea is to reduce the problem to an instance of GAP
with one bin per container, and then solve the latter problem directly placing the
assigned rectangles into horizontal and vertical containers plus using Next Fit
Decreasing Height to pack rectangles in area containers.

Theorem 16. There is a PTAS for the problem of computing a maximum profit
packing of a subset of rectangles of a given set R ′ into a given set of containers of
constant cardinality. On the other hand, it is possible to solve exactly this same
problem in pseudo polynomial time.

Proof. For each horizontal container C j of size w(C j)× h(C j), we create a (one-
dimensional) bin j of size h(C j). Furthermore, we define the size b(i, j) of rect-
angle Ri w.r.t. knapsack j as h(Ri) if h(Ri)≤ h(C j) and w(Ri)≤ w(C j). Otherwise
b(i, j) = +∞ (meaning that Ri does not fit in C j). The construction for ver-
tical containers is symmetric. For each area container Ck we create a bin k of
size (1− 2ε)a(Ck) and define the size b(i, k) of rectangle Ri w.r.t. knapsack k as
h(Ri)w(Ri) if h(Ri) ≤ εh(Ck) and w(Ri) ≤ εw(Ck), setting b(i, k) = +∞ other-
wise (meaning that the rectangle is not small with respect to the dimensions of
the container). This way, thanks to Corollary 8, all the rectangles assigned to an
area container can be packed using NFDH. The profit of rectangle Ri in every bin
will be p(Ri).

Thanks to Theorem 13 there is a PTAS for this problem and moreover it can
be solved exactly in pseudo-polynomial time thanks to Theorem 12.

2.3 Turning Fractional Packings into Feasible Solutions

A very common and useful tool is to develop solutions assuming that an instance
can be sliced. We say that a set of rectangles R is horizontally sliced if for each
rectangle Ri ∈ R is replaced by h(Ri) rectangles of height 1 and width w(Ri). As
the following lemma states, if the rectangles have small enough height and it is
possible to find a well structured packing for a sliced instance, then it is possible
to turn this solution into a container packing without slicing while dropping a
set of rectangles that can be efficiently repacked. An analogous statement can
be achieved for vertical slicing just by rotating the instance 90 degrees first. This
result is a slight generalization of the techniques presented by Kenyon and Rémila
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[2000] in the context of Strip Packing and the proof is very similar in spirit to
theirs.

Lemma 17. Let ε > 0 and consider a rectangular region of width A and height B.
Let also R be a set of rectangles having height at most δB for some given δ > 0. If
there exists a packing forRsliced (horizontally sliced) inside the region which can be

decomposed into K ∈ Oε(1) rectangular boxes and δ ≤
�

ε8

K

�2+K/ε7

, then it is possible
to partition R into two sets Rcont and Rdisc so that:

• There exists a container packing of Rcont such that the containers lie inside
the original boxes, and

• Rdisc can be packed into an horizontal container of height at most εB and
width at most max

Ri∈Rdisc

w(Ri) plus an area container of height at most 2εB and

width at most 2εA.

Proof. We will first partition the rectangles into two sets, RN the ones having
width at most ε

6

K A being narrow and RW the ones having width larger than ε6

K A
being wide. Let us assume by now that we remove narrow rectangles from the
packing, we will argue later how to include them back. Consider the packing of
wide sliced rectangles in the boxes and let us partition this area into stripes of
height 1 in such a way that each rectangle is contained in exactly one stripe. Let
us shift all the rectangles horizontally to the left as much as possible. Further-
more, let us rearrange the rectangles inside each stripe so that they are sorted
non-increasingly by width from left to right.

We use now the standard technique of linear grouping in order to reduce
the number of possible widths among wide rectangles to a constant. Consider
the whole set of wide rectangles in Rsliced piled one on top of each other and
consistently sorted non-increasingly by width from bottom to top, meaning that
the slices inRsliced corresponding to the same rectangle inR are together. We can
form groups H1, H2, . . . , Ht of total height exactly εB (except maybe for the last
group which might have smaller total height), and just to simplify the analysis let
us complete the rectangles in H1 by moving there all the slices corresponding to
the original rectangles present in H1 (at most δB slices). Since the total height of
wide rectangles is at most KB

ε6 , the number of groups t is at most K
ε7 . Notice that for

every i = 2, . . . , t, the width of every rectangle in Hi is smaller than the smallest
width present in Hi−1. We will then round up, for each i = 2, . . . , t, the width of
each rectangle in Hi to be the maximum width present in Hi, obtaining Hi. For
each i ≥ 2 it is possible to pack Hi in the space used by Hi−1, so if we remove
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H1 from the packing we obtain a feasible packing where wide rectangles have at
most K

ε7 possible widths. Furthermore the total area of the rounded rectangles
in the packing is not larger than a(RW ), and the total height of the discarded
rectangles so far is at most (ε +δ)B ≤ 2εB.

We will now define the concept of configuration. Let Q = w1, . . . , wt be the
set of possible widths in the instance after rounding. A configuration C will be a
vector of size |Q| where each coordinate contains a non-negative integer number
of value at most K

ε6 . Given a stripe with some wide rectangles inside, we will say
that the stripe obeys a configuration C if for each i = 1, . . . , |Q|, coordinate i of
C expresses exactly the number of rectangles of width wi inside the stripe. It is
not difficult to see that there are at most (K/ε7)|Q| many configurations.

Let us rearrange the stripes inside each box so that stripes obeying the same
configuration appear together. Now if we take all the stripes obeying the same
configuration inside a box we can define at most K

ε6 containers for them, where
each container will have the width of the rectangles inside (same for everyone)
and the total height of the rectangles inside. If we do this for every box and every
configuration, we get a container packing for the wide sliced rectangles into at
most K(K/ε7)|Q| K

ε6 ≤ (K/ε7)|Q|+2 containers. Notice that, for each possible width,
the total area of the containers of that width and the total area of the packed
slices of that width is the same.

We will describe now how to turn this packing into a feasible one without slic-
ing while discarding some rectangles which can be repacked using small extra
height. Consider all the containers of width w1 and we will greedily assign the
rectangles of (rounded) width w1 until we cover them, meaning that for each
container we assign rectangles to them until their total height becomes larger
than the height of the container for the first time. Notice that since the area of
the containers and the area of the rectangles we are packing is the same, this
procedure packs all the considered rectangles. If we discard now from each con-
tainer the last rectangle that was added to it by this procedure then we obtain
a feasible packing of rectangles of width w1 into the containers of width w1. By
repeating this procedure for each possible width we obtain a feasible packing
while discarding at most one rectangle per container. The total height of dis-
carded rectangles is at most (K/ε7)|Q|+2δB ≤ εB.

Now we will include back narrow rectangles to the packing. First of all, we
will use only boxes (among the original ones) having width at least ε

2

K Aand height
at least δ

ε2 B to pack rectangles, so we will discard the wide rectangles inside the
boxes not satisfying these properties. The total area of boxes that we will not
use (and hence of the discarded rectangles) is at most K( ε

2

K +
δ
ε2 )AB ≤ ε2AB, and
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notice that each one of them has width at most ε
2

K B.
As argued before, the total area of the containers is at most a(RW ) and the

total area of the boxes we are using so far is at least a(RN )+a(RW )−ε2AB, so the
total area in the considered boxes outside the containers is at least a(RN )−ε2AB.
We will now pack a subset of the narrow rectangles in this area, and then prove
that the rectangles that could not be packed in this space (if any) can be packed
in a small extra area container. Notice first that the aforementioned free area can
be decomposed into K(K/ε7)|Q| rectangular regions as follows: for each maximal
group of stripes obeying the same configuration inside a box, the union of the
empty space in those stripes is a rectangular region (this includes the case of to-
tally empty stripes). We will now focus only on such regions having height at least
δ
ε2 B, the total area of the boxes we are not using is at most ε2AB. Furthermore,
we will not use regions having width at most ε

4

K A. Since the width of the original
boxes is at least ε

2

K , the total area of such regions is at most ε2a(Boxes) ≤ ε2AB.
So the total area of the remaining regions is at least a(RN )− ε2AB and the rect-
angles we want to pack inside them are smaller in each dimension by a factor of
ε2 so we can pack narrow rectangles inside them using NFDH due to Corollary 8,
packing almost everything except for a set of narrow rectangles of total area at
most ε2AB.

So in total we have discarded a set of rectangles of total height at most εB
for which we define an extra horizontal container, plus a set of rectangles having
width at most ε

2

K A≤ ε2A and height at most δB ≤ ε2B whose total area is at most
ε2AB. This we can pack into an extra area container of height 2εB and width
2εA thanks to Corollary 8.

Unfortunately there is no control on the profits of the discarded rectangles
in this specific procedure so it is mostly used in the context of problems where
every rectangle has to be packed (such as Strip Packing). However, as shown in
Appendix A it is possible to ensure that even the profit of Pdisc is small but for the
purposes of the presented results this suffices.

2.4 Including Small Rectangles into a Container Pack-
ing

Another useful technique is a way to pack “small” items provided that we have a
packing for the rest of the instance which can be decomposed into boxes which
are efficient in terms of area. More in detail, let R be a set of rectangles that
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can be packed into a given rectangular region, and let εsmall be a given param-
eter. Consider now the set S of rectangles whose dimensions are at most an
εsmall-fraction of the region where we are packing the whole instance, and sup-
pose we have a packing of non-small items which can be decomposed into Oε(1)
rectangular regions such that these items are completely contained in the union
of these regions (notice that some items might intersect more than one such re-
gion), and the area outside of these regions is close to a(S). It turns out that this
residual area is sufficient to pack almost all the items of S into a constant num-
ber of area containers (not overlapping with the previous rectangular regions)
for εsmall small enough as the following lemma shows.

Lemma 18 (Small Items Packing Lemma). Let ε > 0 and Q be a rectangular region
of width w and height h, and let R be a set of rectangles. Suppose we are given a
packing of non-small items into Q which can be covered by Oε(1) disjoint rectangular
regions of total area at most min{(1− 2ε)wh, a(R \ S) + εareawh} for some given
εarea > 0. Then for εsmall small enough it is possible to define Oεsmall

(1) area containers
of width εsmall

ε w and height εsmall
ε h not overlapping with the rectangular regions such

that it is possible to pack S′ ⊆ S of profit p(S′) ≥ (1−O(ε))p(S) inside these new
area containers.

Proof. Let A be the total area of the rectangular regions covering the packing and
k the number of such regions. We will build a grid of width ε′w = εsmall

ε · w and
height ε′h = εsmall

ε · h inside Q. We delete any cell of the grid that overlaps with
some of the rectangular regions in the covering, and call the remaining cells free.
The new area containers are the free cells.

The total area of the deleted grid cells is, for εsmall small enough, at most

A+ 4k
1
ε′
· ε′2wh≤ A+ 2ε2N 2 ≤min{(1− ε)wh, a(R \ S) + 3ε2wh}

For the sake of simplicity, suppose that any empty space in the packing of R is
filled in with dummy small items of profit 0, so that a(R) = wh. We observe
that the area of the free cells is at least (1−O(ε))a(S): Either, a(S) ≥ εwh and
then the area of the free cells is at least a(S)−3ε2wh≥ (1−3ε)a(S); otherwise,
we have that the area of the free cells is at least εwh > a(S). Therefore we can
select a subset of small items S′ ⊆ S, with p(S′)≥ (1−O(ε))p(S) and area a(S′)≤
(1−O(ε))a(S) that can be fully packed into free cells using NFDH according to
Corollary 8.
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2.5 Packing Rectangles with Resource Augmentation

One last important known result that will be extensively used in this thesis is
the following PTAS for two-dimensional Geometric Knapsack when we allow to
slightly extend one dimension of the given knapsack (while comparing the profit
with the optimal profit for the original knapsack), usually known as one-sided
resource augmentation. The following lemma was essentially proved by Jansen
and Solis-Oba [2009]1. However we strengthen it by adding area guarantees
for the containers which will be useful for our purposes. We defer its proof to
Appendix A.

Lemma 19 (Resource Augmentation Packing Lemma). Let R ′ be a collection of
weighted rectangles that can be packed into a box of width a and height b, and
ε > 0 be a given constant. Then there exists a container packing of R ′′ ⊆R ′ inside
a box of width a and height (1+ε)b (resp., width (1+ε)a and height b) such that:

1. p(R ′′)≥ (1−O(ε))p(R ′);

2. The number of containers is Oε(1) and their sizes belong to a set of cardi-
nality nOε(1) that can be computed in polynomial time.

3. The total area of the containers is upper-bounded by a(R ′) + ε · ab.

1In Appendix A we reprove this lemma in a container-based form, rather than using LP-based
arguments, since this is more convenient for our algorithms. Our version of the lemma might
also be a handy tool for future work.



Chapter 3

Improved Approximation Algorithms
for Strip Packing

In this chapter we present our results on Strip Packing. In the first part we discuss
an asymptotically tight approximation algorithm in the special case when the
rectangles of the instance have always small width or small height with respect
to the dimensions of the optimal solution inside the strip. Then in the second part
we discuss a

�

4
3 + ε

�

-approximation in pseudo-polynomial time for the problem.
The first result has not yet been published (Gálvez et al. [2019]) while the second
one appeared in FSTTCS 2016 (Gálvez et al. [2016]).

We recall that in Strip Packing we are given a parameter W ∈ N and a set
R = {R1, . . . , Rn} of rectangles, each one characterized by a width w(Ri) ∈ N,
w(Ri) ≤ W , and a height h(Ri) ∈ N. A packing is a pair (left(Ri), bottom(Ri)) ∈
N×N for each Ri, with 0 ≤ left(Ri) ≤ W −w(Ri), meaning that the left-bottom
corner of Ri is placed in position (left(Ri), bottom(Ri)) and its right-top corner
in position (right(Ri), top(Ri)) where right(Ri) = left(Ri) + w(Ri) and top(Ri) =
bottom(Ri)+h(Ri), and it is feasible if the interiors of the rectangles are pairwise
disjoint in this embedding. Our goal is to find a feasible packing of minimum
height maxi{top(Ri)}.

A simple reduction from the Partition problem shows that the problem cannot
be approximated within a factor 3

2 − ε for any ε > 0 in polynomial-time unless
P=NP. This reduction relies on exponentially large (in n) rectangle widths.

3.0.1 Prior work

Let OPT = OPT(R) denote the optimal height for the considered Strip Pack-
ing instance (R , W ), and recall that hmax = hmax(R) (resp. wmax = wmax(R))
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is the largest height (resp. width) of any rectangle in R . Observe that triv-
ially OPT ≥ hmax, and w.l.o.g. we can assume that W ≤ nwmax. The first non-
trivial approximation algorithm for Strip Packing, with approximation ratio 3,
was given by Baker et al. [1980]. The First-Fit-Decreasing-Height algorithm
(FFDH) by Coffman Jr. et al. [1980] gives a 2.7-approximation. Sleator [1980]
gave an algorithm that generates a packing of height 2OPT+ hmax

2 , hence achieving
a 2.5-approximation. Afterwards, Steinberg [1997] and Schiermeyer [1994] in-
dependently improved the approximation ratio to 2. Harren and van Stee [2009]
first broke the barrier of 2 with their 1.9396-approximation. The present best
(5

3 + ε)-approximation is due to Harren et al. [2014].
More recently, algorithms running in pseudo-polynomial time (PPT) for this

problem have been developed. More specifically, the running time of a PPT al-
gorithm for Strip Packing is O((Nn)O(1)), where N =max{wmax , hmax}1. As Strip
Packing is strongly NP-hard (Garey and Johnson [1978]), it does not admit an
exact PPT algorithm unless P=NP.

First, Jansen and Thöle [2010] showed a PPT (3/2+ ε)-approximation algo-
rithm, and later Nadiradze and Wiese [2016] overcame the 3

2 -inapproximability
barrier by presenting a PPT (7

5 + ε)-approximation algorithm. After the publi-
cation of our extended abstract Gálvez et al. [2016], Adamaszek et al. [2017]
proved that there is no PPT (12

11 − ε)-approximation algorithm for Strip Pack-
ing unless NP ⊆ DTIME(2polylog(n)), and this lower bound was later improved to
�

5
4 − ε

�

by Henning et al. [2018]. On the other hand, Jansen and Rau [2017]
independently showed a PPT (4/3 + ε)-approximation algorithm with running

time (nW )1/ε
O(21/ε )

for the case without rotations which was later improved to a
(5/4+ ε)-approximation by the same authors (Jansen and Rau [2019]).

On other line of research, authors have also considered asymptotic approx-
imation algorithms. Coffman Jr. et al. [1980] described two level-oriented al-
gorithms, Next-Fit-Decreasing-Height (NFDH) and First-Fit-Decreasing-Height
(FFDH), that achieve asymptotic approximation ratios of 2 and 1.7, respectively.
After a sequence of improvements (Golan [1981]; Baker et al. [1981]), the semi-
nal work of Kenyon and Rémila [2000] provided an asymptotic polynomial-time
approximation scheme (APTAS) with an additive term O

�

hmax
ε2

�

. The latter addi-
tive term was subsequently improved to hmax by Jansen and Solis-Oba [2009].

In the variant of Strip Packing with rotations, we are allowed to rotate the in-
put rectangles by 90◦ (in other terms, we are free to swap the width and height
of any input rectangle). The case with rotations is much less studied in the lit-

1For the case without rotations, the polynomial dependence on hmax can indeed be removed
with standard techniques.
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erature. It seems that most of the techniques that work for the case without
rotations can be extended to the case with rotations, however this is not always
a trivial task. In particular, it is not hard to achieve a (2 + ε)-approximation
and the 3/2 hardness of approximation extends to this case as well (Jansen and
Solis-Oba [2009]). In terms of asymptotic approximation, Miyazawa and Wak-
abayashi [2004] gave an algorithm with asymptotic performance ratio of 1.613.
Later, Epstein and van Stee [2006] gave a 3

2 asymptotic approximation. Finally,
Jansen and van Stee [2005] achieved an APTAS for the case with rotations.

Strip packing has also been studied in higher dimensional settings. The
present best asymptotic approximation for 3-D Strip Packing is due to Jansen
and Prädel [2014] who presented a 3

2 -approximation extending techniques from
2-D Bin Packing.

3.1 Strip Packing without Large Rectangles

In this section we study the special but non-trivial case of Strip Packing where
all the rectangles are skewed, which informally means that every rectangle in the
instance is small with respect to the strip in at least one dimension, or equiva-
lently that there are no large rectangles. More in detail, given δ > 0, we say that
an instance of Strip Packing is δ-skewed if it does not contain rectangles having
width larger than δW and height larger than δOPT. The main result we will
prove is the following.

Theorem 20. Let ε > 0. There exists δ > 0 such that there is an algorithm for Strip
Packing computing

�

3
2 + ε

�

-approximate solutions if the instances are δ-skewed.

We remark that the algorithm does not need to recognize first if the instance
is δ-skewed (which would be NP-hard as it would require to compute the optimal
height); in turn it always returns a feasible solution but its approximation ratio
is guaranteed only if the instance satisfies the requirements. Furthermore, we
complement the result with an almost matching lower bound for this case.

3.1.1 Preliminaries

Given a set of rectangles R ′ ⊆ R , we recall that w(R ′) =
∑

Ri∈R ′
w(Ri), h(R ′) =

∑

Ri∈R ′
h(Ri) and a(R ′) =

∑

Ri∈R

h(Ri)w(Ri).

The operation of changing the bottom-left corner of a rectangle Ri in a given
packing from (left(Ri), bottom(Ri)) to (left(Ri), bottom(Ri)+a)will be denoted by
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shifting Ri vertically by a. Analogously, changing the corner from (left(Ri), bottom(Ri))
to (left(Ri)+a, bottom(Ri)) will be denoted by shifting Ri horizontally by a. These
operations are only allowed if the resulting packing is feasible and remains inside
the strip.

A monotone polygonal curve is a curve in the space consisting of the union
of axis parallel lines such that the obtained curve is connected and every vertical
line intersects the curve either on a single point or on a single vertical line. We
say that a rectangle Ri in the packing lies above (resp. below) a polygonal curve P
if for any x1 ∈ [left(Ri), left(Ri) +w(Ri)] we have that bottom(Ri) (resp. top(Ri))
is larger (resp. smaller) than the y-coordinate of P at x-coordinate x1.

From now on we will assume that instance R is δ-skewed for some δ > 0 to
be fixed, and let OPT be the height of the optimal solution. We will assume (by
possibly scaling up the heights) that OPT is an even number.

Let ε > 0 and assume for simplicity that 1
ε ∈ N. We will classify the rectangles

according to their heights as follows:

• A rectangle Ri is Tall if h(Ri)>
1
2OPT,

• A rectangle Ri is Vertical if h(Ri) ∈ (δOPT, 1
2OPT], and

• A rectangle Ri is Short if h(Ri)≤ δOPT.

We use T , V and S to denote tall, vertical and short rectangles respectively. Notice
that the set of short rectangles S includes the rectangles which are small in both
dimensions.

3.1.2 Hardness of Approximation

In this section we prove that the lower bound of 3
2 on the approximability of Strip

Packing still holds in the case of δ-skewed instances.

Lemma 21. Given δ > 0 and ε > 0, there is no
�

3
2 − ε

�

-approximation Strip
Packing even when restricted to δ-skewed instances only, unless P=NP.

Proof. We will prove this result via a reduction from Partition problem. Consider
an instance of Partition consisting of a set of integer numbers P = {x1, . . . , xn} and

let p =
n
∑

i=1

x i. We define our Strip Packing instance as follows: The width of the

strip will be W = (1+δ/4)M where M = 2p
δ . Also, we will have n+ 4

δ rectangles in
the instance, from which 4

δ will have height 1 and width δ
2 M (dummy rectangles)
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0 W =
�

1+ δ
4

�

M

0

1

2

δ
2 M

M
δ
4 M

Figure 3.1. Construction from Lemma 21. Light gray rectangles represent
dummy rectangles and dark gray rectangles represent partition rectangles.

and the remaining n rectangles will have, for each i = 1, . . . , n, height 1 and
width x i (partition rectangles). Notice that the instance is indeed δ-skewed as
the width of the rectangles is either δ2 M ≤ δ

2 W or at most p = δ
2 M ≤ δ

2 W .
We will prove now that the Partition instance is YES if and only if the optimal

height of the Strip Packing instance is 2. Since all the heights in the instance are
1, this would conclude the proof of the claim. Notice that if the Partition instance
is YES then we can pack one next to each other 2

δ dummy rectangles plus one
side of the partition since their total width would be M+ p

2 =
�

1+ δ
4

�

M . We then
analogously pack the rest of the rectangles on top, obtaining a packing of height
2 which is optimal as the total area of the rectangles is 2W (see Figure 3.1). On
the other hand, if the optimal height of the Strip Packing instance is 2, the region
[0, W ] × [0, 2] in the strip must be fully occupied by rectangles. This actually
implies that the horizontal line y = 1 does not intersect the interior of any rect-
angle in the packing: if it does, then the space below that rectangle cannot be
occupied by another one as their heights are 1. This divides the solution into two
rows of height 1 and width W which are completely filled with rectangles. The
only way to place dummy rectangles using only two rows is to have exactly 2

δ in
each row (as the largest total width below W that they can sum up to is M and
their total width is 2M), hence the remaining partition rectangles in each row
have total width exactly p

2 forming then a YES instance for Partition.

3.1.3 Existence of a Structured Solution

In this section we will prove our main structural result.



28 3.1 Strip Packing without Large Rectangles

Theorem 22. Given a δ-skewed instance of Strip Packing (R , W ), there exists a
feasible container packing of final height

�

3
2 +O(ε)

�

OPT. Furthermore, the possible
sizes of the containers belong to a set of polynomial size, and it is possible to include
an empty rectangular region inside [0, W ]×[0,

�

3
2 +O(ε)

�

OPT] of width ε2W and
height

�

1
2 + ε

�

OPT.

In order to achieve this, we will first show a way to pack T ∪S in such a way
that the remaining space in the packing can be decomposed into a constant num-
ber of rectangular regions where rectangles from V can be included afterwards.

Packing of Tall and Short Rectangles

Let us assume first that short rectangles can be horizontally sliced, meaning that
each short rectangle Ri is replaced by h(Ri) rectangles of height 1 and width
w(Ri). Later we can turn such a packing into a feasible one without slicing
while increasing the final height of the solution by a negligible amount thanks to
Lemma 17. Let Ssliced be the set of horizontal slices.

Lemma 23. It is possible to pack T ∪ Ssliced into the strip in such a way that:

• The final height of the packing is 3
2OPT;

• Rectangles in T are packed one next to each other in the bottom-left part of
the strip, sorted non-increasingly by height from left to right;

• There exist two non-crossing monotone polygonal curves C1 and C2 with in-
tegral vertices starting at x = 0 and ending at x = W such that rectangles
in T lie below C1, rectangles in Ssliced lie above C2, and the total area in the
strip above C1 and below C2 is at least 1

2OPT ·W + a(V ).

Proof. Consider the optimal solution and let us remove V from it. Let us draw
the horizontal line y = 1

2OPT and partition Ssliced into two sets Stop
sliced and Sbottom

sliced
corresponding to the rectangles in Ssliced which lie above and below the line y =
1
2OPT respectively (notice that this line does not intersect any rectangle in Ssliced

as OPT is even). If we shift up the rectangles in Sbottom
sliced by OPT we obtain a feasible

packing (since the region [0, W ]× [OPT, 3
2OPT] was empty) with final height at

most 3
2OPT. Notice that every rectangle in T intersects the line y = 1

2 . Now let
us shift down each rectangle Ri in T by bottom(Ri) so that its bottom-left corner
becomes (left(Ri), 0).

Suppose that the tall rectangles are labeled in such a way that h(R1)≥ h(R2)≥
· · · ≥ h(R|T |). We will now describe a procedure to consistently shift them to the
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0
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Figure 3.2. Depiction of the proof of Lemma 23. Left: Packing of T ∪ Ssliced

in the optimal solution. Light gray rectangles correspond to Ssliced, dark gray
rectangles correspond to T . Center: By shifting Sbottom

sliced to the top we can shift
down the rectangles in T . Right: We can shift now horizontally rectangles in
T and sort stripes of Ssliced to obtain the claimed structure.

left one by one so that the second claim of the lemma is satisfied. Notice that
the horizontal line y = h(R1) does not intersect any rectangle, so we can shift
rectangle R1 to the left by left(R1) and shift to the right all the rectangles con-
tained in the region [0, left(R1)]× [0, bottom(R1)] by w(R1) obtaining a feasible
solution. If we now restrict ourselves to the region [w(R1), W ]× [0, h(R1)] and
the rectangles contained inside we can recourse this argument in order to shift
R2 to the left so that it is contiguous to R1 and then continue, obtaining in the end
a feasible solution that satisfies the second claim of the lemma. Furthermore, we
can define the polygonal curve C1 just from the boundary of the rectangles in
T : starting at the point (0, h(R1)) we draw an horizontal line to the right up to
(w(R1), h(R1)), then a vertical line down to (w(R1), h(R2)), then a horizontal line
to the right up to (w(R1)+w(R2), h(R2)) and continue like that until reaching the
point (w(T ), h(R|T |). Then we finish the curve by adding a vertical line from that
point down to (w(T ), 0) and then an horizontal line to the right up to (W, 0).
Every rectangle in T clearly lies below C1 and furthermore the total area below
C1 in the strip is exactly a(T ).

Consider now the current packing of Ssliced which is completely contained
above C1 and below y = 3

2OPT. If we divide this space into horizontal stripes of
height 1 just by drawing horizontal lines at each possible integer Y -coordinate,
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every rectangle in Ssliced belongs to exactly one such stripe. Let us shift all the rect-
angles in Ssliced to the right as much as possible. Analogously to the case of T , we
can now rearrange the stripes (hence the corresponding rectangles inside) ver-
tically so that they are packed one on top of each other, sorted non-increasingly
from top to bottom according to the total width of the rectangles inside them and
in such a way that the final height of the current packing is exactly 3

2OPT. Anal-
ogously to the case of tall rectangles, we can define the polygonal curve C2 from
the boundary of the rectangles, obtaining that the area of the region above C2

and below y = 3
2OPT in the strip is exactly a(S). See Figure 3.2 for a depiction

of the procedure.
Due to the way we defined the curvesC1 andC2 and the fact that a(T )+a(S)+

a(V ) ≤W ·OPT, we conclude that the region of the strip contained between C1

and C2 has area at least 3
2OPT ·W − a(T )− a(S)≥ 1

2OPT ·W + a(V ), concluding
the proof of the lemma.

Now our goal is to refine a bit the packing obtained from Lemma 23 in order
to create Oε(1) boxes for Ssliced and then apply Lemma 17 to obtain a feasible
packing without slicing of T ∪S. Notice that we can include the extra containers
from Lemma 17 on top of the current solution which would increase its final
height by at most O(ε)OPT. The following lemma summarizes the properties of
the solution we can obtain plus some extra guarantees that will be useful in the
latter steps.

Lemma 24. It is possible to pack T ∪ S inside the strip in such a way that:

• The final height of the packing is
�

3
2 +O(ε)

�

OPT;

• Rectangles in T are packed one next to each other in the bottom-left part of the
strip, sorted non-increasingly by height from left to right, and fully contained
in at most 1

ε rectangular boxes;

• Rectangles in S are packed into Oε(1) containers which are fully contained in
at most 2

ε rectangular boxes; and

• The total area inside the region [0, W ] × [0,
�

3
2 +O(ε)

�

OPT] and outside
the aforementioned boxes is at least

�

1
2 +O(ε)

�

OPT ·W + a(V ) and can be
partitioned into at most 3

ε rectangular boxes.

Proof. Consider the packing obtained from Lemma 23 and let us shift vertically
all the rectangles in Ssliced by O(εOPT) and the curve C2 accordingly. The rect-
angles still lie above the curve C2 and the final height of the current solution is
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C2

εOPT

C ′2

Figure 3.3. Description of the construction of boxes for Ssliced. Left: Packing
of Ssliced lying above the curve C2. Right: After shifting up the rectangles by
εOPT we can create boxes lying above C ′2 (dashed curve).

�

3
2 +O(ε)

�

OPT. We will now define a set of at most 2
ε rectangular boxes of total

area at most a(S)+ εOPT ·W and such that every rectangle in Ssliced is contained
in exactly one box. Let C ′2 be the polygonal curve resulting from shifting down
C2 by εOPT. We define the first box by a vertical line starting at the left-topmost
point ofC2 and going down by εOPT, which is a point fromC ′2, and then we draw
an horizontal line to the right until x = W . Let p1 be the intersection between
the previous horizontal line and C2. Then we define our second box starting
from p1 and moving vertically down εOPT distance (which is a point from C ′2)
and then drawing an horizontal line to the right until x = W . By iterating this
procedure until it is not possible to continue (meaning that the last horizontal
line does not intersect C2), we obtain our set of boxes (see Figure 3.3).

Notice that every box has height exactly εOPT, so the total number of boxes
is at most 1

ε +1≤ 2
ε (as there are no short rectangles below y = 1

2OPT). Further-
more these boxes are completely contained aboveC ′2 and below y =

�

3
2 +O(ε)

�

OPT
so their total area is at most a(S) + εW ·OPT and each rectangle in Ssliced is con-
tained in exactly one box asC2 is completely contained in the union of the boxes.

Now we can apply Lemma 17 to this packing of Ssliced and obtain a feasible
packing of T ∪ S plus the two extra containers which we can pack on top of
the current solution by increasing the final height by at most O(ε)OPT. Notice
that by shifting every rectangle in S by εOPT we can round up the height of
the rectangles in T to multiples of εOPT, obtaining at most 1

ε boxes (which will
actually be containers) for T by grouping rectangles of equal rounded height.

It just remains to partition the free area outside the boxes. If we extend
the vertical boundaries of the boxes (one line per box will matter due to their
structure in the solution) we naturally decompose that region into a set of at most
3
ε rectangular boxes of total area at least a(V ) +

�

1
2 +O(ε)

�

OPT (see Figure 3.4
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�

3
2 +O(ε)

�

OPT

OPT

1
2OPT

�

1
2 + ε

�

OPT

Figure 3.4. Description of the Packing of Vsliced. Left: Packing of T ∪ S as
described in Lemma 24. The dashed vertical lines naturally induce a partition
of the free area into Oε(1) boxes. Right: Boxes in the free area sorted by height.
By ignoring

�

1
2 + ε

�

OPT height from each box we can cover the free white area
with Vsliced and even reserve space for future discarded vertical rectangles.

(Left)).

Including Vertical rectangles

In this section we will build on the packing obtained from Lemma 24 in order
to include Vsliced in the given free boxes. Then we can apply Lemma 17 to obtain
a feasible solution without slicing. However, in this case we cannot simply pack
the extra containers on top as their height can be as large as 1

2OPT but we will
prove that these extra containers can be included together with V in the free area
between T and S.

Lemma 25. Consider the set of 3
ε free boxes from Lemma 24. It is possible to

pack Vsliced inside these boxes and furthermore define an empty rectangular region
of height

�

1
2 + ε

�

OPT and width 3εW contained in the union of these boxes.

Proof. Consider the set of given boxes one next to each other and sorted non-
decreasingly by height. We will say that for each box its top region of height
�

1
2 + ε

�

OPT is forbidden and the rest is usable (if a box has height less than
�

1
2 + ε

�

OPT then all its area is forbidden). See Figure 3.4 (Right) for a depic-
tion of this partition. Notice that the total usable area is at least a(V )+O(ε)OPT.
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We will now pack Vsliced trying to cover the usable area as follows: We first
divide the boxes into vertical stripes of width 1 and consider them in the order of
non-increasing height. Let Susable be the set of stripes having non-empty usable
area. We will pack the rectangles from Vsliced in a Next-Fit fashion into Susable,
meaning that we start opening the leftmost stripe and iteratively pack rectangles
(in any arbitrary order) in the current open stripe; if a rectangle does not fit
we close the stripe and open the leftmost empty stripe. Notice that by doing
so every stripe containing some rectangle (except probably the last one) has its
usable area completely covered, which implies that we used only stripes from
Susable. Furthermore, since a(Susable)≥ a(V )+O(ε)OPTW + OPT

2 w(Susable) and the
total area of the stripes we used is at most a(V ) + OPT

2 w(Susable), we have a set
of contiguous free stripes with non-empty usable area having total width at least
O(ε)W (as their height is at most

�

3
2 +O(ε)

�

OPT). We can place a box of width
3εW and height

�

1
2 + ε

�

OPT in these stripes, concluding the proof.

Now we can obtain a feasible solution decomposed into containers as follows:
Starting from the solution given by Lemma 24 we can pack Vsliced into the boxes
thanks to Lemma 25 and then use Lemma 17 to obtain a container packing for V
inside the boxes. We still have some extra containers, one of size 2εW × 2εOPT
that can be packed on top of the current solution and one of height at most 1

2OPT
and width at most εW which can be packed in the free box left from Lemma 25.
In order to restrict the possible sizes of the containers we apply Lemma 9 with
the area of the rectangles as profit, obtaining an extra vertical container of width
εW and height at most 1

2OPT which can again be packed in the aforementioned
free box. Having all this we can conclude the proof of Theorem 22 as there is
still an empty box of width εW and height

�

1
2 + ε

�

OPT inside the region [0, W ]×
�

0,
�

3
2 +O(ε)

�

OPT
�

.

3.1.4 Algorithm

In this section we present our final algorithm. It is a slight modification of the
PTAS for container packings described in Section 2.2. We will assume that the
instance is δ-skewed for δ ≤ (ε)(1/ε)O(1) so that all the previous lemmas hold. We
start by computing a value OPT′ such that OPT ≤ OPT′ ≤ (1+ ε)OPT. This can
be done using any 2-approximation APX for Strip Packing and then guessing the
best value of the form (1+ kε) APX

2 , k ∈ {0, . . . , 1/ε}. One of them must satisfy
OPT ≤ (1+ kε) APX

2 ≤ OPT + ε APX
2 .

It would be desirable to guess the set of containers from Theorem 22 and try
to assign rectangles to them using our PTAS for container packings (Theorem 16).
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However, some rectangles will be left out using the previous PTAS and must be
repacked. To this end, the discarded rectangles must have height at most 1

2OPT
so that they can be repacked in the free space left by Theorem 22.

This is achievable due to the simple structure of tall rectangles in the con-
structed solution (see Lemma 24). So we first guess the tall rectangles, which
can be done by sorting the rectangles non-increasingly by height and guessing
the smallest tall rectangle. Then we just pack them one next to each other in this
order in the left-bottom corner of the strip. Now we enumerate all the possible
subsets of non-overlapping containers for the remaining rectangles to be packed,
where the number and sizes of the containers are properly bounded. In particu-
lar, there are at most Oε(1) containers and there is a set of size nOε(1) that we can
compute in polynomial time such that the height and the width of each container
is contained in this set as stated in Theorem 22.

We compute an approximate solution for each resulting set of containers us-
ing the PTAS from Theorem 16 with accuracy ε4 and using the area of each
rectangle as its profit. There exists a set of containers for which the discarded
rectangles has total area ε4W ·OPT and that can be packed into height at most
�

3
2 +O(ε)

�

OPT while leaving an empty rectangular region of height
�

1
2 + ε

�

OPT
and width ε2W due to Theorem 22.

We will assume now that we deal with the aforementioned container packing
(though this procedure is done for every possible combination). We now will
repack the remaining rectangles into three extra containers: one horizontal con-
tainer of width W and height εOPT′, one vertical container of width ε2W and
height 1

2OPT′ and an area container of width 2εW and height 2εOPT′. Let us
partition the set of remaining rectangles into three sets: A1 are the rectangles of
width at least ε2W , which have total height at most ε2OPT hence being packable
in the horizontal container; A2 are the rectangles of width smaller than ε2W but
height at least ε2OPT′ whose total width is at most ε2W and hence are packable
into the vertical container; and finally the remaining rectangles of height at most
ε2OPT′ and width at most ε2W which can be packed into the area container due
to Corollary 8. The horizontal and area containers can be packed on top of the
current packing while the vertical container can be placed inside the free space
left by Theorem 22. This implies that there exists a set of containers computed
by the algorithm that can be packed into the strip using height

�

3
2 +O(ε)

�

OPT so
we output the computed solution of smaller height that packs all the rectangles
into the described containers.

This concludes the proof of Theorem 20.
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3.2 A PPT (4/3+ ε)-approximation for Strip Packing

In this section we show our progress on the PPT approximability of Strip Packing,
by presenting an improved (4

3 + ε)-approximation. Our approach refines the
result presented by Nadiradze and Wiese [2016], which modulo several technical
details works as follows: let α ∈ [1/3,1/2) be a proper constant parameter,
and define a rectangle Ri to be tall if h(Ri) > α · OPT. They prove that the
optimal packing can be structured into a constant number of rectangular boxes,
that occupy a total height of OPT′ ≤ (1+ ε)OPT inside the vertical strip. Some
rectangles are not fully contained in one box (they are cut by some box). Among
them, tall rectangles remain in their original position. All the other cut rectangles
are repacked on top of the boxes: part of them in a horizontal box of size W ×
O(ε)OPT, and the remaining ones in a vertical box of size O(εW )×αOPT (that
we next imagine as placed on the top-left of the packing under construction).

Some of these boxes contain only relatively high rectangles (including tall
ones) of relatively small width. The next step is a rearrangement of the rectangles
inside one such vertical box B (see Figure 3.7a), say of size w×h: they first slice
non-tall rectangles into unit width rectangles (this slicing can be finally avoided
with standard techniques). Then tall rectangles are shifted to the top/bottom of
B, shifting sliced rectangles consequently (see Figure 3.7b). Now they discard
all the (sliced) rectangles completely contained in a central horizontal region of
size w× (1+ ε−2α)h, and then nicely rearrange the remaining rectangles into a
constant number of sub-boxes (excluding possibly a few more non-tall rectangles,
that can be placed in the additional vertical box).

These discarded rectangles can be packed into 2 extra boxes of size w
2×(1+ε−

2α)h (see Figure 3.7d). In turn, the latter boxes can be packed into two discarded
boxes of size W

2 × (1+ε−2α)OPT′, that we can imagine as placed, one on top of
the other, on the top-right of the packing. See Figure 3.5a for an illustration of the
final packing. This leads to a total height of (1+max{α, 2(1−2α)}+O(ε)) ·OPT,
which is minimized by choosing α= 2

5 .
Our main technical contribution is a repacking lemma that allows one to

repack a small fraction of the discarded rectangles of a given box inside the free
space left by the corresponding sub-boxes (while still having Oε(1) many sub-
boxes in total). This is illustrated in Figure 3.7e. This way we can pack all the
discarded rectangles into a single discarded box of size (1−γ)W×(1+ε−2α)OPT′,
where γ is a small constant depending on ε, that we can place on the top-right
of the packing. The vertical box where the remaining rectangles are packed still
fits to the top-left of the packing, next to the discarded box. See Figure 3.5b for
an illustration. Choosing α= 1/3 gives the claimed approximation factor.
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Here γ is a small constant depending on ε.

Figure 3.5. Comparison of final solutions.

We remark that the basic approach by Nadiradze and Wiese strictly requires
that at most 2 tall rectangles can be packed one on top of the other in the optimal
packing, hence imposing α ≥ 1/3. Thus in some sense this work pushes their
approach to its limit.

The algorithm from Nadiradze and Wiese [2016] is not directly applicable to
the case when 90◦ rotations are allowed. In particular, they use a linear program
to pack some rectangles. When rotations are allowed, it is unclear how to de-
cide which rectangles are packed by the linear program. We use our container-
based approach to circumvent this limitation, which allows us to pack all the
rectangles using dynamic programming. This way we achieve a PPT (4/3+ ε)-
approximation for Strip Packing with rotations, breaking the polynomial-time
approximation barrier of 3/2 for that variant as well.
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Figure 3.6. Illustration of some of the preliminary definitions.

3.2.1 Preliminaries

Let 0 < ε < α, α ≥ 1
3 , and assume for simplicity that 1

ε ∈ N. We first classify the
input rectangles into six groups according to parameters δh,δw,µh,µw satisfying
ε ≥ δh > µh > 0 and ε ≥ δw > µw > 0, whose values will be chosen later (see
also Figure 3.6a). A rectangle Ri is

• Large if h(Ri)≥ δhOPT and w(Ri)≥ δwW .

• Tall if h(Ri)> αOPT and w(Ri)< δwW .

• Vertical if h(Ri) ∈ [δhOPT,αOPT] and w(Ri)≤ µwW ,

• Horizontal if h(Ri)≤ µhOPT and w(Ri)≥ δwW ,

• Small if h(Ri)≤ µhOPT and w(Ri)≤ µwW ;

• Medium in all the remaining cases, i.e., if h(Ri) ∈ (µhOPT,δhOPT), or
w(Ri) ∈ (µwW,δwW ) and h(Ri)≤ αOPT.

We use L, T , V , H, S, and M to denote large, tall, vertical, horizontal, small,
and medium rectangles, respectively. We remark that, differently from Nadiradze
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and Wiese [2016], we need to allow δh 6= δw and µh 6= µw due to some additional
constraints in our construction (see Section 3.2.5).

Notice that according to this classification, every vertical line across the opti-
mal packing intersects at most two tall rectangles. The following lemma allows
us to choose δh,δw,µh and µw in such a way that δh and µh (δw and µw, respec-
tively) differ by a large factor, and medium rectangles have small total area.

Lemma 26. Given a polynomial-time computable function f : (0,1)→ (0, 1), with
f (x) < x, any constant ε ∈ (0, 1), and any positive integer k, we can compute in
polynomial time a set ∆ of T = 2(1

ε )
k many positive real numbers upper bounded

by ε, such that there is at least one number δh ∈∆ so that a(M)≤ εk ·OPT ·W by
setting µh = f (δh), µw =

εµh
12 , and δw =

εδh
12 .

Proof. Let T = 2(1
ε )

k. Let y1 = ε, and, for each j ∈ {1, . . . , T}, define y j+1 =
f (y j). Let x j =

ε y j

12 . For each j ≤ T , let Wj = {Ri ∈ R : w(Ri) ∈ [x i+1, x i)} and
similarly H j = {Ri ∈ R : h(Ri) ∈ [yi+1, yi)}. Observe that sets Wj (respectively
H j) are pairwise disjoint and the total area of rectangles in

⋃

Wi (
⋃

Hi respec-
tively) is at most W ·OPT. Thus, there exists a value j such that the total area of

the elements in Wj∪H j is at most
2OPT ·W

T
= εk ·OPT ·W . By choosing δh = y j,

µh = y j+1, δw = x j, µw = x j+1 all the conditions of the lemma are fulfilled.

Function f and constant k will be chosen later. From now on, assume that
δh,δw,µh and µw are chosen according to Lemma 26.

3.2.2 Overview of the Algorithm

We next overview some of the basic results from Nadiradze and Wiese [2016]
that are required for our result. We define the constant γ := εδh

2 , and w.l.o.g.
assume γ ·OPT ∈ N.

Let us temporarily remove small rectangles S from the instance. We will pack
all the remaining rectangles L ∪ H ∪ T ∪ V ∪M into a sufficiently small number
of boxes embedded into the strip. By using Lemma 18 it is possible to include
them back afterwards.

The following lemma from Nadiradze and Wiese [2016] allows one to round
the heights and positions of rectangles of large enough height, without increasing
much the height of the packing.

Lemma 27 (Nadiradze and Wiese [2016]). There exists a feasible packing of
height OPT′ ≤ (1+ ε)OPT where: (1) the height of each rectangle in L ∪ T ∪ V is
rounded up to the closest integer multiple of γ ·OPT and (2) their x-coordinates are
as in the optimal solution and their y-coordinates are integer multiples of γ ·OPT.
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We next focus on rounded rectangle heights (i.e., implicitly replace L∪ T ∪V
by their rounded version) and on this slightly suboptimal solution of height OPT′.

The following lemma helps us to pack rectangles in M in a structured way.

Lemma 28. If k in Lemma 26 is chosen sufficiently large, all the rectangles in M can
be packed in polynomial time into a box BM ,hor of size W ×O(ε)OPT and a vertical
container BM ,ver of size (γ3W ) × (αOPT). Furthermore, BM ,hor can be decomposed
into one horizontal and one area container.

Proof. Consider first the rectangles in A1 := {Ri ∈ M : h(Ri) ≤ ε2OPT, w(Ri) ≤
ε2W}. Due to Lemmas 7 and 26 we know that they can be packed using NFDH
into an area container of height εOPT and width W as εk ≤ (1− 2ε2)ε. Next we
proceed to pack rectangles inA2 := {Ri ∈ M : w(Ri)> ε2W}. Due to Lemma 26,
the total area of this set is at most εkOPT ·W , and hence we can pack them into
a single horizontal container of width W and height at most εk−2OPT ≤ εOPT. It
is easy to see that we can put these two containers together one on top of each
other inside box BM ,hor.

We next packA3 := M \(A1∪A2) = {Ri ∈ M : h(Ri)> ε2OPT} into a vertical
container BM ,ver of size (γ3W )× (αOPT). Recall that γ := εδh

2 . Note that, for each
Ri ∈ A ′, we have w(Ri) ∈ (µwW,δwW ) and h(Ri) ≤ αOPT. If we pack these
rectangles one next to each other the total width becomes at most εk−2W ≤ γ

3W

which is true for any k ≥ log 1
ε

�

3
ε2γ

�

.

We say that a rectangle Ri is cut by a box B if Ri ∩B, Ri \B and B \Ri are non-
empty (considering both Ri and B as open regions with an implicit embedding
on the plane). We say that a rectangle Ri ∈ H (resp. Ri ∈ T ∪ V ) is nicely cut by
a box B if Ri is cut by B and their intersection is a rectangular region of width
w(Ri) (resp. height h(Ri)). Intuitively, this means that an edge of B cuts Ri along
its longest side (see Figure 3.6b).

Now it remains to pack L ∪ H ∪ T ∪ V . The following lemma describes an
almost optimal packing of those rectangles.

Lemma 29. There is an integer KB = (
1
ε )(

1
δw
)O(1) such that, assuming µh ≤

ε2δw
4KB

,
there is a partition of the region BOPT′ := [0, W ]× [0, OPT′] into a setB of at most
KB boxes and a packing of the rectangles in L ∪ T ∪ V ∪H such that:

• each box has size equal to the size of some Ri ∈ L (large box), or has height
at most δhOPT′ (horizontal box), or has width at most δwW (vertical box);

• each Ri ∈ L is contained in a large box of the same size;
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• each Ri ∈ H is contained in an horizontal box or is cut by some box. Further-
more, the total area of horizontal cut rectangles is at most W · ε2OPT′;

• each Ri ∈ T ∪V is contained in a vertical box or is nicely cut by some vertical
box.

In order to prove this lemma we will adapt the following result from Nadi-
radze and Wiese [2016].

Lemma 30 (Nadiradze and Wiese [2016]). Suppose that we perform the classi-
fication described in Section 3.2.1 using symmetric parameters δh = δw = δ and
µh = µw = µ. Then, there exists a universal integer K = (1/ε)(1/δ)O(1) such that
for any input instance there is a partition of [0, W ] × [0, OPT′] by line segments
with integer coordinates yielding a partition into at most K boxes and a packing of
the rectangles L ∪ T ∪ V ∪H such that

• each face of the partition is a rectangular box of height at most δOPT′ or
width at most δW, or its size equals the size of rectangle in L,

• for each rectangle R in L there is a box containing R and no other rectangle
and whose size equals the size of R in both dimensions,

• Every rectangle in T ∪ V is either contained in a vertical box or nicely cut by
a vertical box, and

• all rectangles in H that are not nicely cut by some horizontal box have a total
area of at most ε ·OPT′ ·W.

Proof of Lemma 29. We apply Lemma 30, where we use parameters ε2

2 and set
δ to be δw. Recall that δw < δh; by requiring that µh < δw, and since rect-
angles with height in [δw,δh) are in M , we have that {Ri ∈ R \ M : w(Ri) ≥
δhW and h(Ri)≥ δhOPT}= {Ri ∈ R \M : w(Ri)≥ δwW and h(Ri)≥ δhOPT}.

Let Hcut ⊆ H be the set of horizontal rectangles that are nicely cut by a box.
Since rectangles in Hcut satisfy w(R)≥ δwW , at most 2

δw
of them are nicely cut by a

box, and there are at most KB boxes. Hence, their total area is at most µhOPT·W ·2KB
δw

,

which is at most ε
2

2 ·OPT ·W , provided that µh ≤
ε2

4 ·
δw
KB

. Since Lemma 30 implies
that the area of the cut horizontal rectangles that are not nicely cut is at most
ε2

2 OPT′ ·W , the total area of horizontal cut rectangles is at most ε2OPT′ ·W .

We denote the sets of vertical, horizontal, and large boxes by BV ,BH and
BL, respectively. We next use Tcut ⊆ T and Vcut ⊆ V to denote tall and vertical
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cut rectangles in the above lemma, respectively. Let us also define Tbox = T \ Tcut

and Vbox = V \ Vcut.
Using standard techniques we can pack all the rectangles excluding the ones

contained in vertical boxes in a convenient manner. This is summarized in the
following lemma.

Lemma 31. Given B as in Lemma 29 and assuming µw ≤
γδh

6KB(1+ε)
, there exists a

packing of L ∪H ∪ T ∪ V such that:

1. all the rectangles in L are packed inBL;

2. all the rectangles in H are packed inBH plus an additional box BH,cut of size
W ×O(ε)OPT. Furthermore, this additional box can be decomposed into one
horizontal container and one area container;

3. all the rectangles in Tcut ∪ Tbox ∪ Vbox are packed as in Lemma 29;

4. all the rectangles in Vcut are packed in an additional vertical container BV,cut

of size (γ3W )× (αOPT).

Proof. Note that there are at most 1/(δwδh) rectangles in L and at most 4KB

rectangles in Tcut, since at most 2 tall rectangles can be nicely cut by the left
(resp. right) side of each box; this is enough to prove points (1) and (3).

Thanks to Lemma 29, the total area of horizontal cut rectangles is at most
ε2OPT′ ·W . Let us partition this set of rectangles according to their width, ob-
taining sets A1 and A2 corresponding to the rectangles that have width w(R)≤ εW
and the rectangles that have width w(R) > εW respectively. By Corollary 8, we
can remove A1 from the packing and pack it using NFDH into an additional area
container of width W and height εOPT as µh ≤ ε2 and ε2 ≤ (1− 2ε)ε. Further-
more, as the total height of the rectangles in A2 is at most εOPT, we can remove
them from the packing and place them in an horizontal container of width W
and height εOPT. We can put these two containers one on top of the other in
box BH,cut, proving point (2).

At most 2(1+ε)
δh

rectangles in V can be nicely cut by a box; thus, in total there

are at most 2KB(1+ε)
δh

nicely cut vertical rectangles. Since the width of each vertical
rectangle is at most µwW , they can be removed from the packing and placed in
BV,cut, piled side by side, as long as 2KB(1+ε)

δh
· µwW ≤ γ

3W , which is equivalent to

µw ≤
γδh

6KB(1+ε)
. This proves point (4).

Up to this point the structure of this constructed solution and the one con-
structed by Nadiradze and Wiese [2016] is (essentially) the same. The main
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difference is the way to pack Tbox ∪ Vbox where we exploit a refined approach.
This is the technical heart of this paper, and it is discussed in the next section.

3.2.3 A Repacking Lemma

We next describe how to pack rectangles in Tbox ∪ Vbox. In order to highlight our
contribution, we first describe how the approach developed by Nadiradze and
Wiese [2016] works.

It is convenient to assume that all the rectangles in Vbox are sliced vertically2.
Let Vsliced be such sliced rectangles. We will show how to pack all the rectangles
in Tbox ∪ Vsliced into a constant number of sub-boxes. Using Lemma 17 it is then
possible to pack Vbox into the space occupied by Vsliced plus an additional box
BV,round of size (γ3W )×αOPT.

We next focus on a specific vertical box B, say of size w×h (see Figure 3.7a).
Let T cut be the tall rectangles cut by B. Observe that there are at most 4 such
rectangles (2 on the left/right side of B). The rectangles in T cut are packed as in
Lemma 31. Let also T and V be the tall rectangles and sliced vertical rectangles,
respectively, originally packed completely inside B.

They show that it is possible to pack T ∪ V into a constant size set S of sub-
boxes contained inside B−T cut, plus an additional box D of size w×(1+ε−2α)h.
Here B − T cut denotes the region inside B not contained in T cut. In more detail,
they start by considering each rectangle Ri ∈ T . Since α≥ 1

3 by assumption, one
of the regions above or below Ri cannot contain another tall rectangle in T , say
the first case applies (the other one being symmetric). Then Ri is moved up so
that its top side touches the top boundary of B. The sliced rectangles in V that are
covered this way are shifted right below Ri (note that there is enough free space
by construction). At the end of the process all the rectangles in T touch at least
one of the top and bottom side of B (see Figure 3.7b). Note that no rectangle is
discarded up to this point.

Next, the space inside B − (T ∪ T cut) is partitioned into maximal height unit-
width vertical stripes. We call each such stripe a free rectangle if both its top and
bottom side overlap with the top or bottom side of some rectangle in T∪T cut, and
otherwise a pseudo rectangle (see Figure 3.7c). We define the i-th free rectangle
to be the free rectangle contained in stripe [i − 1, i]× [0, h].

Note that all the free rectangles are contained in a rectangular region of width

2For technical reasons, slices have width 1/2 in Nadiradze and Wiese [2016]. For our algo-
rithm, slices of width 1 suffice.
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w and height at most

h− 2αOPT ≤ h− 2α
OPT′

1+ ε
≤ h(1−

2α
1+ ε

)≤ h(1+ ε − 2α)

contained in the central part of B. Let V disc be the set of (sliced vertical) rectan-
gles contained in the free rectangles. Rectangles in V disc can be obviously packed
inside D. For each corner Q of the box B, we consider the maximal rectangular
region that has Q as a corner and only contains pseudo rectangles whose top/bot-
tom side overlaps with the bottom/top side of a rectangle in T cut; there are at
most 4 such non-empty regions, and for each of them we define a corner sub-box,
and we call the set of such sub-boxes Bcorn (see Figure 3.7c). The final step of the
algorithm is to rearrange horizontally the pseudo/tall rectangles so that pseu-
do/tall rectangles of the same height are grouped together as much as possible
(modulo some technical details). The rectangles in Bcorn are not moved. The
sub-boxes are induced by maximal consecutive subsets of pseudo/tall rectangles
of the same height touching the top (resp., bottom) side of B (see Figure 3.7d).
We crucially remark that, by construction, the height of each sub-box (and of B)
is a multiple of γOPT.

By splitting each discarded box D into two halves Bdisc,top and Bdisc,bot, and
replicating the packing of boxes inside BOPT′ , it is possible to pack all the discarded
boxes into two boxes Bdisc,top and Bdisc,bot, both of size W

2 × (1+ ε − 2α)OPT′.
A feasible packing of boxes (and hence of the associated rectangles) of height

(1 +max{α, 2(1 − 2α)} + O(ε))OPT is then obtained as follows. We first pack
BOPT′ at the base of the strip, and then on top of it we pack BM ,hor, two additional
boxes BH,round and BH,cut (which will be used to repack the horizontal items; see
Lemma 31 for details), and a box BS (which will be used to pack some of the
small items). The latter 4 boxes all have width W and height O(εOPT′). On the
top right of this packing we place Bdisc,top and Bdisc,bot, one on top of the other.
Finally, we pack BM ,ver, BV,cut and BV,round on the top left, one next to the other.
See Figure 3.5a for an illustration. The height is minimized for α= 2

5 , leading to
a (7/5+O(ε))-approximation.

The main technical contribution of this paper is to show how it is possible to
repack a subset of V disc into the free space inside Bcut := B − T cut not occupied
by sub-boxes, so that the residual sliced rectangles can be packed into a single
discarded box Bdisc of size (1−γ)w×(1+ε−2α)h (repacking lemma). See Figure
3.7e. This apparently minor saving is indeed crucial: with the same approach as
above all the discarded sub-boxes Bdisc can be packed into a single discarded box
Bdisc of size (1−γ)W × (1+ε−2α)OPT′. Therefore, we can pack all the previous
boxes as before, and Bdisc on the top right. Indeed, the total width of BM ,ver, BV,cut
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(a) Original packing in a
vertical box B after
removing Vcut. Gray

rectangles correspond to
T , dark gray ones to T cut

and light gray ones to V .

(b) Rectangles in T are
shifted vertically so that
they touch either the top
or the bottom of box B,
shifting also slices in V

accordingly.
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α
1+εh

(1− α
1+ε)h

h

(c) Classification in
B − (T ∪ T cut). Crosshatched
stripes correspond to pseudo
rectangles, empty stripes to
free rectangles, and dashed
regions to corner sub-boxes.
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(d) Rearrangement of pseudo and tall
rectangles to get Oε(1) sub-boxes, and

additional packing of V disc as in
Nadiradze and Wiese [2016].

≥ γw
good indexes

≤ (1− γ)w (1
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(e) Our refined repacking of V disc

according to Lemma 32: some vertical
slices are repacked in the free space and

the extra box has reduced size.

Figure 3.7. Creation of pseudo rectangles, how to get constant number of
sub-boxes and repacking of vertical slices in a vertical box B.

and BV,round is at most γW for a proper choice of the parameters.
Altogether the resulting packing has height (1+max{α, 1−2α}+O(ε))OPT.

This is minimized for α= 1
3 , leading to the claimed (4/3+O(ε))-approximation.

See Figure 3.5b for an illustration.
It remains to prove our repacking lemma.

Lemma 32 (Repacking Lemma). Consider a partition of D into w unit-width ver-
tical stripes. There is a subset of at least γw such stripes so that the corresponding
sliced vertical rectangles V repack can be repacked inside Bcut = B − T cut in the space
not occupied by sub-boxes.
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Proof. Let g(i) denote the height of the i-th free rectangle, where for notational
convenience we introduce a degenerate free rectangle of height g(i) = 0 when-
ever the stripe [i − 1, i] × [0, h] inside B does not contain any free rectangle.
This way we have precisely w free rectangles. We remark that free rectangles are
defined before the horizontal rearrangement of tall/pseudo rectangles, and the
consequent definition of sub-boxes.

Recall that sub-boxes contain tall and pseudo rectangles. Now consider the
area in Bcut not occupied by sub-boxes, which is in fact contained in the central
region of height h(1 − 2α

1+ε ). Partition this area into maximal-height unit-width
vertical stripes as before (newly free rectangles). Let g ′(i) be the height of the i-th
newly free rectangle, where again we let g ′(i) = 0 if the stripe [i − 1, i]× [0, h]
does not contain any (positive area) free region. Note that, since tall and pseudo
rectangles are only shifted horizontally in the rearrangement, it must be the case
that:

w
∑

i=1

g(i) =
w
∑

i=1

g ′(i).

Let G be the (good) indexes where g ′(i) ≥ g(i), and G = {1, . . . , w} \ G be the
bad indexes with g ′(i) < g(i). Observe that for each i ∈ G, it is possible to pack
the i-th free rectangle inside the i-th newly free rectangle, therefore freeing a
unit-width vertical strip inside D. Thus it is sufficient to show that |G| ≥ γw.

Observe that, for i ∈ G, g(i)− g ′(i) ≥ γOPT ≥ γ h
1+ε : indeed, both g(i) and

g ′(i) must be multiples of γOPT since they correspond to the height of B minus
the height of one or two tall/pseudo rectangles. On the other hand, for any index
i, g ′(i)− g(i)≤ g ′(i)≤ (1− 2α

1+ε )h, by the definition of g ′. Altogether

(1−
2α

1+ ε
)h·|G| ≥

∑

i∈G

(g ′(i)−g(i)) =
∑

i∈G

(g(i)−g ′(i))≥
γh

1+ ε
·|G|=

γh
1+ ε

·(w−|G|)

We conclude that |G| ≥ γ

1+ε−2α+γw, and then the claim follows since by assump-
tion α > ε ≥ γ.

3.2.4 A refined Structural Lemma

The original algorithm from Nadiradze and Wiese [2016] uses standard LP-based
techniques, as in Kenyon and Rémila [2000], to pack the horizontal rectangles.
We can avoid that via a refined structural lemma: here boxes and sub-boxes are
further partitioned into containers, and then the resulting container packing can
be found optimally in PPT via dynamic programming (see Theorem 16). This
approach has two main advantages:
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• It leads to a simpler algorithm.

• It can be easily adapted to the case with rotations, as discussed in Sec-
tion 3.2.6.

The goal of this section is to prove the following lemma that summarizes the
aforementioned properties. Recall thatBOPT′ = [0, W ]× [0, OPT′].

Lemma 33. By choosing α= 1/3, there is an integer KF ≤
�

1
εδw

�O(1/(δwε))
such that,

assuming µh ≤
ε

KF
and µw ≤

γ

3KF
, there is a packing of R in the region [0, W ] ×

[0, (4/3+O(ε))OPT′] with the following properties:

• All the rectangles in R \ S are contained in KTOTAL = Oε(1) containers, such
that each of these containers is either contained in or disjoint fromBOPT′;

• At most KF containers are contained inBOPT′ , and their total area is at most
a(R \ S).

• All the rectangles in S are packed into O(K2
F ) area containers inside BOPT′

plus an extra area container BS disjoint fromBOPT′ .

Horizontal rectangles

Thanks to Lemma 31 we know that horizontal rectangles are packed into a

set of boxes of cardinality at most KB =
�

1
ε

�

�

1
δw

�O(1)
. By requiring that µh ≤

ε
2KB

1
KB(KB/ε2)4KB/ε2

we can refine these boxes into containers by means of Lemma 17.

The two extra containers can be packed into a box BH,round of size W ×O(ε)OPT′.

Vertical and tall rectangles

The main goal of this section is to prove the following lemma:

Lemma 34. There is a constant KV ∈ Oε(1) such that, assuming µw ≤
�

γ5

62/γ

�
62/γ

γ4
, it

is possible to pack all the rectangles into T ∪V in at most KV vertical containers, so
that each container is packed completely either:

• in one of the boxes inBV ;

• in the original position of a nicely cut rectangle from Lemma 29 and contain-
ing only the corresponding nicely cut rectangle;

• in a box Bdisc of size (1− γ)W × (1+ ε − 2α)OPT′;
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• in one of two vertical containers BV,cut and BV,round, each of size γ

3W ×αOPT.

Moreover, the area of the vertical containers packed inside BOPT′ is at most a(T ∪V ).

Consider a specific vertical box B of size w×h; as described in Section 3.2.3,
the rectangles are repacked so that each rectangle in T touches either the top or
the bottom edge of B, and then the set P of pseudo rectangles plus the (up to
four) corner sub-boxes Bcorn are defined, each one of them containing only slices
of rectangles in V . Let Brem := B − T cut. We now get a rearrangement of this
packing applying the following lemma from Nadiradze and Wiese [2016]:

Lemma 35 (follows from the proof of Lemma 3.6 and Section 4 in Nadiradze and
Wiese [2016]). There is packing of T∪P∪Bcorn into at most KR := 21+ε

γ ·6
(1+ε)/γ+4

sub-boxes inside Brem, such that:

• each sub-box contains only tall rectangles or only pseudo rectangles, that are
all of the same height as the sub-box;

• each sub-box is completely occupied by the contained pseudo/tall rectangles,
and the y-coordinate of such rectangles is the same as before the rearrange-
ment;

• the corner sub-boxes in Bcorn and the rectangle slices inside them are packed
in the same position as before the rearrangement.

Proof. We give a brief outline of the proof, the details can be found in Section 4
in Nadiradze and Wiese [2016].
First, it is possible to combine rectangles in Bcorn with T cut to form new unmovable
items, which we denote by T

′
cut (Lemma 4.6 in Nadiradze and Wiese [2016]).

This way we can assume that the boundary of each item in T
′
cut intersects a corner

of B. Recall that items in T ∪ P touch either the top or the bottom boundary of
B. Now the following result can be proved by induction:
Given a packing into a box B such that:

• each item touches the top or the bottom boundary of B;

• the height of each item equals one out of at most Γ many values;

• the heights of the items touching the bottom boundary have at most k
distinct values;

• the items touching the four corners are called unmovable items, all other
items are movable items;
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then there exists another packing that does not change the positions of the un-
movable items and allows a nice partition into 6k · Γ sub-boxes for the movable
items.
In this nice partition, the sub-boxes are induced by maximal consecutive subsets
of movable items of the same height touching the top (resp., bottom) side of B.
In our case, by Lemma 3.2 in Nadiradze and Wiese [2016], we get k = 1+ε

γ and
Γ = 1+ε

γ . Now each sub-box can be divided into two sub-boxes by rearranging
tall/pseudo rectangles inside: one sub-box contains only tall rectangles while the
other one contains only pseudo-rectangles. By considering also the corner sub-
boxes Bcorn we get the desired value of KR. Furthermore, each sub-box contains
only tall rectangles or only pseudo rectangles that are all of the same height as
the sub-box (notice that this holds for corner sub-boxes in Bcorn as well since each
one of them contains only pseudo-rectangles of the same height). On the other
hand, in this procedure every rectangle is moved only horizontally, implying that
the y-coordinate of each pseudo/tall rectangle in B remains unchanged after the
rearrangement.

Consider the packing obtained by the above lemma; partition all the free
space in Brem which is not occupied by the above defined boxes into at most
2KR + 1 empty sub-boxes by considering the maximal rectangular regions that
are not intersected by the vertical lines passing through the edges of the sub-
boxes. By Lemma 32, a fraction of the rectangles contained in slices of D of total
width at least γw can be repacked inside the empty sub-boxes.

Among the at most 3KR + 1 sub-boxes that we defined, some only contain
tall rectangles, while the others contain pseudo rectangles. The ones that only
contain tall rectangles are already containers and box BV,cut defined in the proof
of Lemma 31 is already a vertical container as well. For each sub-box B′ that
contains pseudo rectangles, we now consider the sliced vertical rectangles that
are packed in it. By Lemma 17, there is a packing of almost all the rectangles
in B′ into at most Oε(1) containers, and their total area is equal to the total
area of the rectangles they contain. There are also at most 4KB containers to
pack the tall rectangles that are nicely cut; each of them is packed in its original
position in a vertical container of exactly the same size. In total we defined at
most κ ∈ Oε(1) containers. As the remaining vertical rectangles can be packed
in a vertical container BV,round of size γW

3 × αOPT, this concludes the proof of
Lemma 34.
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Small rectangles

It remains to pack the small rectangles S. We can pack them in the free space
left by horizontal and vertical containers inside BOPT′ plus an additional box BS

of small height by means of Lemma 18 using the area of the rectangles as profit.
By placing box BS on top of the remaining packed rectangles, the final height of
the solution increases only by ε ·OPT′.

Concluding the proof

There are at most KL := 1
δhδw

many large rectangles. Each such large rectangle is
assigned to one horizontal container of the same size.

Rectangles in M are packed as described in the proof of Lemma 28, using at
most 3 containers, which are placed in the boxes BM ,hor and BM ,ver.

Horizontal, vertical and small rectangles are packed as explained in the pre-
vious subsection. The total number of containers is clearly Oε(1), and each of
these containers is either contained in or disjoint fromBOPT′ .

By packing the boxes and containers we defined as in Figure 3.5b, we obtain a
packing in a strip of width W and height OPT′ ·(max{1+α, 1+(1−2α)}+O(ε)),
which is at most (4/3 + O(ε))OPT′ for α = 1/3. This concludes the proof of
Lemma 33.

3.2.5 The Final Algorithm

Consider the packing of Lemma 33: all the rectangles are packed into KTOTAL =
Oε(1) containers. Since their positions (x , y) and their sizes (w, h) are w.l.o.g.
contained in {0, . . . , W} × {0, . . . , nhmax}, we can enumerate in PPT over all the
possible feasible such packings of k ≤ KTOTAL containers, and one of those will
coincide with the packing defined by Lemma 33. The problem of assigning the
rectangles to the containers can be solved exactly in PPT as stated in Theorem 16,
hence packing all the rectangles.

Note that unlike Nadiradze and Wiese [2016], we do not use linear program-
ming to pack horizontal rectangles, which will be crucial when we extend our
approach to the case with rotations.

It is not difficult to see that function f and constant k from Lemma 26 can
be chosen in such a way that all the constraints are satisfied. Finally we achieve
the claimed result.

Theorem 36. There is a PPT (4
3 + ε)-approximation algorithm for Strip Packing.
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3.2.6 Extension to the Case with Rotations

In this section, we briefly explain the changes needed in the above algorithm to
handle the case with rotations.

We first observe that, by considering the rotation of the rectangles as in the
optimum solution, Lemma 33 still applies. Therefore we can define a multi-
ple knapsack instance, where knapsack sizes are defined as before. Some ex-
tra care is needed to define the size b(i, j) of rectangle Ri into a container C j

of size w(C j) × h(C j). Assume C j is horizontal, the vertical case being sym-
metric. If rectangle Ri fits in C j both rotated and non-rotated, then we set
b(i, j) = min{w(Ri), h(Ri)} (this dominates the size occupied in the knapsack
by the optimal rotation of Ri). If Ri fits in C j only non-rotated (resp., rotated),
we set b(i, j) = h(Ri) (resp., b(i, j) = w(Ri)). Otherwise we set b(i, j) = +∞.

In the case of an area container Ck, we set the size b(i, k) of rectangle Ri to
be a(Ri) if h(Ri) ≤ εh(Ck) and w(Ri) ≤ εw(Ck), or w(Ri) ≤ εh(Ck) and h(Ri) ≤
w(Ck) (in other words, if there exists an orientation such that the rectangle is
small compared to the container in both dimensions). Otherwise we set b(i, k) =
+∞. This way, we know that there exists a rotation for the rectangles assigned
to an area container such that NFDH can pack all of them, and such rotation
can be determined just from the size of the rectangle and the dimensions of the
container.

By construction, the above multiple knapsack instance admits a feasible so-
lution that packs all the rectangles. This immediately implies a packing of all the
rectangles. Altogether we achieve:

Theorem 37. There is a PPT (4
3 + ε)-approximation algorithm for Strip Packing

with rotations.

3.3 Conclusions

The approximability of Strip Packing in pseudo-polynomial running time has
been basically settled recently (Henning et al. [2018]; Jansen and Rau [2019]),
but for the case of polynomial running time there is still a gap between the lower
and upper bound. This question seems to be hard (either knowing if the lower
or the upper bound can be improved) but making progress towards the final an-
swer is an important task in the field. Furthermore, addressing non-trivial special
families of instances is also an interesting direction that may help to answer the
most general question. As our first result suggests that the presence of large
items makes the instances difficult, considering restricted instances that include
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large items is a reasonable and interesting direction (for example, rectangles with
lower-bounded height or lower-bounded width).

A related problem in the field is the dynamic storage allocation problem (DSA).
Here we are given a strip of integral width W and a set of n rectangles {R1, . . . , Rn},
each one characterized by an integral height h(Ri), an integral starting x-coordinate
s(Ri) and an integral ending x-coordinate t(Ri), satisfying 0≤ s(Ri)< t(Ri)≤W ,
and the goal is to pack all the rectangles inside the strip such that the starting and
ending coordinates of each task are respected and the rectangles do not overlap
while minimizing the final height of the packing (in other words, it is similar
to Strip Packing but the horizontal position of each rectangle is fixed, being the
width of each rectangle equal to the distance between its starting and ending
coordinates). This problem is known to be NP-hard and the best known approx-
imation factor for it is (2+ ε) (Buchsbaum et al. [2004]), leaving space to look
for improved approximation algorithms.
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Chapter 4

On the Two-Dimensional Geometric
Knapsack problem

In this chapter we present our results for the two-dimensional Geometric Knap-
sack problem. Namely, we present improved approximation algorithms for the
four most studied variants (with/without rotations, uniform/general profits).
These results were published at FOCS 2017 (Gálvez et al. [2017]).

We recall that in the two-dimensional Geometric Knapsack problem (2DK)
we are given a set of n elements R = {1, . . . , n}, where each i ∈ R is an axis-
aligned open rectangle (0, w(i)) × (0, h(i)) in the two-dimensional plane, and
has an associated profit p(i)1. Furthermore, we are given an axis-aligned square
knapsack K = [0, N]× [0, N]. All the values w(i), h(i), p(i) and N are positive
integers. Our goal is to select a subset of items OPT ⊆ R of maximum total
profit opt = p(OPT) :=

∑

i∈OPT p(i) and to place them so that the selected items
are pairwise disjoint and fully contained in the knapsack. As in Strip Packing,
for each i ∈ OPT we have to define a pair of coordinates (left(i), bottom(i)) that
specify the position of the bottom-left corner of i in the packing. In other words,
i is mapped into a rectangle R(i) := (left(i), right(i)) × (bottom(i), top(i)), with
right(i) = left(i)+w(i) and top(i) = bottom(i)+h(i). For any two i, j ∈ OPT, we
must have R(i) ⊆ K and R(i)∩ R( j) = ;.

2DK is strongly NP-hard (Leung et al. [1990]), and it has been intensively
studied from the point of view of approximation algorithms. The best known
polynomial time approximation algorithm for it is due to Jansen and Zhang
and yields a (2 + ε)-approximation (Jansen and Zhang [2004b]). This is the
best known result even in the cardinality case (i.e. with all profits being 1).

1In order to follow the standard notation for Knapsack problems we refer to rectangles with
associated profits as items.
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However, there are reasons to believe that much better polynomial time ap-
proximation ratios are possible: there is a QPTAS under the assumption that
N = npoly(log n) (Adamaszek and Wiese [2015]), and there are PTASs if the profit
of each item equals its area (Bansal et al. [2009]), if the size of the knapsack can
be slightly increased (Fishkin, Gerber, Jansen and Solis-Oba [2005]; Jansen and
Solis-Oba [2009]), if all items are relatively small (Fishkin, Gerber and Jansen
[2005]) and if all input items are squares Jansen and Solis-Oba [2008]; Hey-
drich and Wiese [2017]. Note that, with no restriction on N , the current best
approximation for 2DK is 2+ ε even in quasi-polynomial time.

All prior polynomial-time approximation algorithms for 2DK implicitly or ex-
plicitly exploit a container-based packing approach as described in Section 2.2.
Indeed, also the QPTAS from Adamaszek and Wiese [2015] can be cast in this
framework, with the relevant difference that the number of containers in this
case is poly-logarithmic (leading to quasi-polynomial running time).

One of the major bottlenecks to achieve approximation factors better than 2
(in polynomial-time) is that items that are high and narrow (vertical items) and
items that are wide and thin (horizontal items) can interact in a very complicated
way. Indeed, consider the following seemingly simple L-packing problem: we
are given a set of items i with either w(i) > N

2 (horizontal items) or h(i) > N
2

(vertical items). Our goal is to pack a maximum profit subset of them inside an
L-shaped region L= ([0, N]×[0, hL])∪([0, wL]×[0, N]), so that horizontal (resp.,
vertical) items are packed in the bottom-right (resp., top-left) of L. To the best
of our knowledge, the best-known approximation ratio for this problem is 2+ ε:
Remove either all vertical or all horizontal items, and then pack the remaining
items by a simple reduction to one-dimensional knapsack (for which an FPTAS
is known). It is unclear whether a container-based packing can achieve a better
approximation factor, and we conjecture that this is not the case. As we will see,
a better understanding of this L-packing problem will play a major role in the
design of improved approximation algorithms for 2DK.

4.0.1 Description of the Results

We break the 2-approximation barrier for 2DK. In order to do that, we substan-
tially deviate for the first time from pure container-based packings, which are,
either implicitly or explicitly, at the hearth of prior work. Namely, we consider
L&C-packings that combine Oε(1) containers plus one L-packing of the above type
(see Fig.4.1.(a)), and show that one such packing has large enough profit.

While it is easy to pack almost optimally items into containers, the mentioned
(2+ε)-approximation for L-packings is not sufficient to achieve altogether a bet-
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ter than 2 approximation factor: indeed, the items of the L-packing might carry
all the profit! The main algorithmic contribution of this paper is a PTAS for
the L-packing problem. It is easy to solve this problem optimally in pseudo-
polynomial time (Nn)O(1) by means of dynamic programming. We show that a
(1+ ε)-approximation can be obtained by restricting the top (resp., right) coor-
dinates of horizontal (resp., vertical) items to a proper set that can be computed
in polynomial time nOε(1). Given that, one can adapt the above dynamic program
to run in polynomial time.

Theorem 38. There is a PTAS for the L-packing problem.

In order to illustrate the power of our approach, we next sketch a simple
�

16
9 +O(ε)

�

-approximation for the cardinality case of 2DK (details in Section 4.4.1).
By standard arguments2 it is possible to discard large items with both sides longer
than ε ·N . The remaining items have height or width smaller than ε ·N (horizon-
tal and vertical items, resp.). Let us delete all items intersecting a random vertical
or horizontal strip of width ε · N inside the knapsack. We can pack the remain-
ing items into Oε(1) containers by exploiting the PTAS under one-dimensional
resource augmentation for 2DK (Lemma 19). A vertical strip deletes vertical
items with O(ε) probability, and horizontal ones with probability roughly pro-
portional to their width, and symmetrically for a horizontal strip. In particular,
let us call long the items with longer side larger than N/2, and short the remain-
ing items. Then the above argument gives in expectation roughly one half of the
profit optlong of long items, and three quarters of the profit optshort of short ones.
This is already good enough unless optlong is large compared to optshort.

At this point L-packings and our PTAS come into play. We shift long items
such that they form 4 stacks at the sides of the knapsack in a ring-shaped region,
see Fig.4.1.(b)-(c): this is possible since any vertical long item cannot have an
horizontal long item both at its left and at its right, and vice versa. Next we delete
the least profitable of these stacks and rearrange the remaining long items into an
L-packing, see Fig.4.1.(d). Thus using our PTAS for L-packings, we can compute
a solution of profit roughly three quarters of optlong. It is not difficult to check
that the combination of these two algorithms gives the claimed approximation
factor.

Above we used either Oε(1) containers or one L-packing: by combining the
two approaches together and with a more sophisticated case analysis we achieve
the following result (see Appendix C).

2There can be at most Oε(1) such items in any feasible solution, and if the optimum solution
contains only Oε(1) items we can solve the problem optimally by brute force.



56

(a) (b) (c) (d)

Figure 4.1. (a): An L&C-packing with 4 containers, where the top-left con-
tainer is packed by means of Next-Fit-Decreasing-Height. (b): A subset of long
items. (c): Such items are shifted into 4 stacks at the sides of the knapsack,
and the top stack is deleted. (d): The final packing into an L-shaped region.

Theorem 39. There is a polynomial-time 558
325 +ε < 1.72 approximation algorithm

for cardinality 2DK.

For weighted 2DK we face severe technical complications for proving that
there is a profitable L&C-packing. One key reason is that in the weighted case
we cannot discard large items since even one such item might contribute a large
fraction to the optimal profit. In order to circumvent these difficulties, we ex-
ploit the corridor-partition at the hearth of the QPTAS for 2DK from Adamaszek
and Wiese [2015] (in turn inspired by prior work from Adamaszek and Wiese
[2013]). Roughly speaking, there exists a partition of the knapsack into Oε(1)
corridors, consisting of the concatenation of Oε(1) (partially overlapping) rectan-
gular regions (subcorridors). In the QPTAS from Adamaszek and Wiese [2015]
the authors partition the corridors into a poly-logarithmic number of containers.
Their main algorithm then guesses these containers in time npoly(log n). However,
we can only handle a constant number of containers in polynomial time. There-
fore, we present a different way to partition the corridors into containers: here
we lose the profit of a set of thin items, which in some sense play the role of
long items in the previous discussion. These thin items fit in a very narrow ring
at the boundary of the knapsack and we map them to an L-packing in the same
way as in the cardinality case above. Some of the remaining non-thin items are
then packed into Oε(1) containers that are placed in the (large) part of the knap-
sack not occupied by the L-packing. Our partition of the corridors is based on
a somewhat intricate case analysis that exploits the fact that long consecutive
subcorridors are arranged in the shape of rings or spirals: this is used to show
the existence of a profitable L&C-packing.
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Theorem 40. There is a polynomial-time 17
9 + ε < 1.89 approximation algorithm

for (weighted) 2DK.

Rotation setting. In the variant of 2DK with rotations (2DKR), we are allowed
to rotate any item i by 90 degrees. This means that i can also be placed in the
knapsack as a rectangle of the form (left(i), left(i)+h(i))×(bottom(i), bottom(i)+
w(i)). The best known polynomial time approximation factor for 2DKR (even
for the cardinality case) is again 2+ε due to Jansen and Zhang [2004b] and the
mentioned QPTAS from Adamaszek and Wiese [2015] works also for this case.

By using the techniques described above and exploiting a few more ideas, we
are also able to improve the approximation factor for 2DKR (see Sections 4.5.1
and 4.5.2 for the cardinality and general case, resp.). The basic idea is that any
thin item can now be packed inside a narrow vertical strip (say at the right edge
of the knapsack) by possibly rotating it. This way we do not lose one quarter of
the profit due to the mapping to an L-packing and instead place all items from the
ring into the mentioned strip (while we ensure that their total width is small).
The remaining short items are packed by means of a novel resource contraction
lemma: unless there is one huge item that occupies almost the whole knapsack
(a case that we consider separately), we can pack almost one half of the profit of
non-thin items in a reduced knapsack where one of the two sides is shortened by
a factor 1−ε (hence leaving enough space for the vertical strip). We remark that
here we heavily exploit the possibility to rotate items. Thus, roughly speaking,
we obtain either all profit of non-thin items, or all profit of thin items plus one
half of the profit of non-thin items: this gives a

�

3
2 + ε

�

-approximation.

Theorem 41. For any constant ε > 0, there exists a polynomial-time
�

3
2 + ε

�

ap-
proximation algorithm for 2DKR.

A further refinement of this approach yields a
�

4
3 + ε

�

-approximation in the
cardinality case. We remark that, while resource augmentation is a well-established
notion in approximation algorithms, resource contraction seems to be a rather
novel direction to explore.

Theorem 42. For any constant ε > 0, there exists a polynomial-time
�

4
3 + ε

�

-
approximation algorithm for cardinality 2DKR.

4.0.2 Other related work

The mentioned (2+ε)-approximation for two-dimensional Geometric Knapsack (Jansen
and Zhang [2004b]) works in the weighted case of the problem. However, in the
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unweighted case a simpler (2+ ε)-approximation is known (Jansen and Zhang
[2004a]). If one can increase the size of the knapsack by a factor 1+ ε in both
dimensions then one can compute a solution of optimal weight, rather than an
approximation, in time f (1/ε) · nO(1) where the exponent of n does not depend
on ε for some suitable function f (Heydrich and Wiese [2017]). Similarly, for
the case of squares there is a (1+ε)-approximation algorithm known with such a
running time, i.e., an EPTAS (Heydrich and Wiese [2017]). This improves previ-
ous results such as a (5/4+ε)-approximation (Harren [2006]) and the previously
mentioned PTAS (Jansen and Solis-Oba [2008]).

4.1 Preliminaries

In this section we will review some building blocks used later in the analysis of
our algorithm.

4.1.1 Item classification

We start with a classification of the input items according to their heights and
widths. For two given constants 1≥ εlarge > εsmall > 0, we classify an item i as:

• small if h(i), w(i)≤ εsmallN ;

• large if h(i), w(i)> εlargeN ;

• horizontal if w(i)> εlargeN and h(i)≤ εsmallN ;

• vertical if h(i)> εlargeN and w(i)≤ εsmallN ;

• intermediate otherwise (i.e., at least one side has length in (εsmallN ,εlargeN]).

We also call skewed items that are horizontal or vertical. We let Rsmall, Rlarge,
Rhor, Rver, Rskew, and Rint be the items which are small, large, horizontal, verti-
cal, skewed, and intermediate, respectively. The corresponding intersection with
OPT defines the sets OPTsmall, OPTlarge, OPThor, OPTver, OPTskew and OPTint respec-
tively.

Notice that |OPTlarge| ≤ 1/ε2
large. Analogously to Lemma 26 in Chapter 3, the

next lemma shows that we can neglect OPTint.

Lemma 43. For any constant ε > 0 and positive increasing function f (·), f (x)> x,
there exist constant values εlarge,εsmall, with ε ≥ εlarge ≥ f (εsmall) ≥ Ωε(1) and
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εsmall ∈ Ωε(1) such that the total profit of intermediate items is bounded by εp(OPT).
The pair (εlarge,εsmall) is one pair from a set of Oε(1) pairs and this set can be com-
puted in polynomial time.

Proof. Define k + 1 = 2/ε + 1 constants ε1, . . . ,εk+1, such that ε = f (ε1) and
εi = f (εi+1) for each i. Consider the k ranges of widths and heights of type
(εi+1N ,εiN]. By an averaging argument there exists one index j such that the
total profit of items in OPT with at least one side length in the range (ε j+1N ,ε jN]
is at most 2 ε2p(OPT). It is then sufficient to set εlarge = ε j and εsmall = ε j+1.

4.1.2 Corridors, Spirals and Rings

With the goal of decomposing the optimal solution into simpler substructures, we
build on a partition of the knapsack into corridors as in the work of Adamaszek
and Wiese [2015]. We define an open corridor to be a face on the 2D-plane
bounded by a simple rectilinear polygon with 2k edges e0, . . . , e2k−1 for some
integer k ≥ 2, such that for each pair of horizontal (resp., vertical) edges ei, e2k−i,
i ∈ {1, ..., k−1} there exists a vertical (resp., horizontal) line segment `i such that
both ei and e2k−i intersect `i and `i does not intersect any other edge. Note that e0

and ek are not required to satisfy this property: we call them the boundary edges
of the corridor. Similarly a closed corridor (or cycle) is a face on the 2D-plane
bounded by two simple rectilinear polygons defined by edges e0, . . . , ek−1 and
e′0, . . . , e′k−1 such that the second polygon is contained inside the first one, and for
each pair of horizontal (resp., vertical) edges ei, e′i, i ∈ {0, ..., k− 1}, there exists
a vertical (resp., horizontal) line segment `i such that both ei and e′i intersect
`i and `i does not intersect any other edge (see Figure 4.2 for examples). Let
us focus on minimum length such `i ’s: then the width α of the corridor is the
maximum length of any such `i. We say that an open (resp., closed) corridor of
the above kind has k−2 (resp., k) bends. A corridor decomposition is a partition
of the knapsack into corridors.

The following lemma summarizes the properties of the corridor decomposi-
tion for OPTskew presented by Adamaszek and Wiese [2015]. Later we will explain
how to deal with OPTsmall and OPTlarge in each specific case.

Lemma 44 (Corridor Packing Lemma from Adamaszek and Wiese [2015]). There
exists a corridor partition and a set OPTcorr ⊆ OPTskew such that:

1. there is a subset OPTcross
corr ⊆ OPTcorr with |OPTcross

corr | ≤ Oε(1) such that each
item i ∈ OPTcorr \OPTcross

corr is fully contained in some corridor,

2. p(OPTcorr)≥ (1−O(ε))p(OPTskew),
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3. the number of corridors is Oε,εlarge
(1) and each corridor has width at most

εlargeN and has at most 1/ε bends.

We next identify some structural properties of the corridors that are later ex-
ploited in our analysis. Observe that an open (resp., closed) corridor of the above
type is the union of k−1 (resp., k) boxes, that we next call subcorridors (see also
Figure 4.2). Each such subcorridor is a maximally large rectangular region con-
tained in the corridor. The subcorridor Si of an open (resp., closed) corridor of
the above kind is the one containing edges ei, e2k−i (resp., ei, ei′) on its boundary.
The length of Si is the length of the shortest such edge. We say that a subcorri-
dor is long if its length is more than N/2, and short otherwise. The partition of
subcorridors into short and long will be crucial in our analysis.

We call a subcorridor horizontal (resp., vertical) if the corresponding edges
are so. Note that each item in OPTcorr is univocally associated with the only
subcorridor that fully contains it: indeed, the longer side of a skewed item is
longer than the width of any corridor. Consider the sequence of consecutive
subcorridors S1, . . . , Sk′ of an open or closed corridor. Consider two consecutive
corridors Si and Si′ , with i′ = i+1 in the case of an open corridor and i′ = (i+1)
(mod k′) otherwise. First assume that Si′ is horizontal. We say that Si′ is to the
right (resp., left) of Si if the right-most (left-most) boundary of Si′ is to the right
(left) of the right-most (left-most) boundary of Si. If instead Si′ is vertical, then
Si must be horizontal and we say that Si′ is to the right (left) of Si if Si is to the
left (right) of Si′ . Similarly, if Si′ is vertical, we say that Si′ is above (below) Si if
the top (bottom) boundary of Si′ is above (below) the top (bottom) boundary of
Si. If Si′ is horizontal, we say that it is above (below) Si if Si (which is vertical)
is below (above) Si′ . We say that the pair (Si, Si′) forms a clockwise bend if Si is
horizontal and Si′ is to its bottom-right or top-left, and the complementary cases
if Si is vertical. In all the other cases the pairs form a counter-clockwise bend.
Consider a triple (Si, Si′ , Si′′) of consecutive subcorridors in the above sense. It
forms a U-bend if (Si, Si′) and (Si′ , Si′′) are both clockwise or counterclockwise
bends. Otherwise it forms a Z-bend. In both cases Si′ is the center of the bend, and
Si, Si′′ its sides. An open corridor whose bends are all clockwise (resp., counter-
clockwise) is a spiral. A closed corridor with k = 4 is a ring. Note that in a ring
all bends are clockwise or counter-clockwise, hence in some sense it is the closed
analogue of a spiral. We remark that a corridor whose subcorridors are all long is
a spiral or a ring as Z-bends cannot appear. As we will see, spirals and rings play
a crucial role in our analysis. In particular, we will exploit the following simple
facts.

Lemma 45. The following properties hold:
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A

B

Figure 4.2. Left: Illustration of two specific types of corridors: spirals (A) and
rings (B). Right: Example of a closed corridor which is not a ring.

1. The two sides of a Z-bend cannot be long. In particular, an open corridor
whose subcorridors are all long is a spiral.

2. A closed corridor contains at least 4 distinct (possibly overlapping) U-bends.

Proof. (1) By definition of long subcorridors and Z-bend, the 3 subcorridors of
the Z-bend would otherwise have total width or height larger than N . (2) Con-
sider the left-most and right-most vertical subcorridords, and the top-most and
bottom-most horizontal subcorridors. These 4 subcorridors exist, are distinct,
and are centers of a U-bend.

Finally, the following definition characterizes more in detail the interaction
between neighboring subcorridors. Given two consecutive subcorridors Si and
Si′ , we define the boundary curve among them as follows (see also Figure 4.2).
Suppose that Si′ is to the top-right of Si, the other cases being symmetric. Let
Si,i′ = Si ∩ Si′ be the rectangular region shared by the two subcorridors. Then
the boundary curve among them is any simple rectilinear polygon inside Si,i′

that decreases monotonically from its top-left corner to its bottom-right one and
that does not cut any item in these subcorridors. For a boundary horizontal
(resp., vertical) subcorridor of an open corridor (i.e., a subcorridor containing
e0 or e2k−1) we define a dummy boundary curve given by the vertical (resp.,
horizontal) side of the subcorridor that coincides with a (boundary) edge of the
corridor.

Remark 46. Each subcorridor has two boundary curves (including possibly dummy
ones). Furthermore, all its items are fully contained in the region delimited by such
curves plus the two edges of the corridor associated with the subcorridor (private
region).
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S2

S3

S2,3

S1

S1,2

S4S3,4

Figure 4.3. The subcorridors S1 and S3 are vertical, S2 and S4 are horizontal.
The subcorridor S3 is on the top-right of S2. The curve on the bottom left shows
the boundary curve between S1 and S2. The pair (S3, S4) forms a clockwise bend
and the pair (S2, S3) forms a counter-clockwise bend. The triple (S1, S2, S3)
forms a U-bend and the triple (S2, S3, S4) forms a Z-bend.

Later in Section 4.4.2 we will use this concept to further simplify the given
corridor partition into regions that can be searched efficiently.

4.2 Our approach: Search for L&C Packings

We proceed now to describe in detail the kind of structured solutions we will
search for and how to compute them efficiently. Instead of searching for purely
container based solutions as in prior work, we consider solutions that combine
Oε(1) containers plus one L-packing which we proceed to define. We will refer
to this kind of solutions as L&C-packings.

We will require the following technical definitions. A boundary ring of width
N ′ is a ring having as external boundary the edges of the knapsack and as internal
boundary the boundary of a square box of size (N −N ′)× (N −N ′) in the middle
of the knapsack. A boundary L of width N ′ is the region covered by two boxes of
size N ′×N and N ×N ′ that are placed on the left and bottom boundaries of the
knapsack.

L-packing problem. In this problem we are given a set of horizontal itemsRhor

having width larger than N/2, and a set of vertical items Rver with height larger
than N/2. Furthermore, we are given an L-shaped region L= ([0, N]× [0, hL])∪
([0, wL]× [0, N]). Our goal is to pack a subset OPT ⊆ R :=Rhor ∪Rver of maxi-
mum total profit such that OPThor := OPT ∩Rhor is packed inside the horizontal
box [0, N] × [0, hL] and OPTver := OPT ∩ Rver is packed inside the vertical box
[0, wL]× [0, N]. A solution to this problem we call an L-packing.

We remark that packing horizontal and vertical items independently is not
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suitable due to the possible overlaps in the intersection of the two boxes: this
is what makes this problem non-trivial, in particular harder than standard (one-
dimensional) knapsack.

L&C packings. An L&C packing is then defined as follows. We are given two
integer parameters N ′ ∈ [0, N/2] and ` ∈ (N/2, N]. We define a boundary L-
shaped region of width N ′, and a collection of non-overlapping containers con-
tained in the space not occupied by the boundary L. We let Rlong ⊆ R be the
items whose longer side has length longer than ` (hence longer than N/2), and
Rshort =R \Rlong be the remaining items. We can pack only items from Rlong in
the boundary L, and only items fromRshort in the containers (satisfying the usual
container packing constraints). See also Figure 4.1.

Remark 47. L&C packings contain container packings as a special case if we set
N ′ = 0 and `= N. This we call a degenerate L case.

4.2.1 Main algorithm

Now we can present the main algorithm for all the considered variants of 2DK.
It is in fact an approximation scheme for L&C packings. In order to bound the
approximation factor that this algorithm achieves in each variant we need to
understand how good with respect to the optimal value the most profitable L&C
packing is, which will be discussed in detail in Sections 4.4 and 4.5.

Our algorithm combines two basic packing procedures. The first one is the
PTAS to pack items into a constant number of containers (Theorem 16) described
in Chapter 2. The second packing procedure has to deal with our L-packing
problem. As we will prove in Section 4.3, there is a PTAS for this problem (see
Theorem 38).

To use these packing procedures, we first guess whether the optimal L&C-
packing uses a non-degenerate boundary L. If yes, we guess a parameter ` which
denotes the minimum height of the vertical items in the boundary L and the min-
imum width of the horizontal items in the boundary L. For `we allow all heights
and widths of the input items that are larger than N/2, i.e., at most 2n values.
LetRlong be the items whose longer side has length at least ` (hence longer than
N/2). We guess the width of the boundary L from the candidate values (which
we will prove can be done efficiently) and solve the resulting instance (L,Rlong)
almost optimally using the PTAS for L-packings due to Theorem 38.

Then we enumerate all the possible subsets of non-overlapping containers in
the space not occupied by the boundary L (or in the full knapsack, in the case of
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a degenerate L), where we will prove that only Oε(1) containers and a set of size
nOε(1) that we can compute in polynomial time such that the height and the width
of each container is contained in this set suffice. We compute an approximate
solution for the resulting container packing instance with itemsRshort =R\Rlong

using the PTAS from Theorem 16. Finally, we output the most profitable solution
that we computed.

4.3 A PTAS for L-packings

In this section we present our main algorithmic tool, which is a PTAS for the
problem of finding an optimal L-packing. As mentioned before, the interaction
between vertical and horizontal items in the L-shaped region makes this problem
interesting and non-trivial. We will borrow notation described in Section 4.2

Observe that in an optimal packing we can assume w.l.o.g. that items in
OPThor are pushed as far to the right/bottom as possible. Furthermore, the items
in OPThor are packed from bottom to top in non-increasing order of width. In-
deed, it is possible to permute any two items violating this property while keeping
the packing feasible. A symmetric claim holds for OPTver. See Figure 4.1.(d) for
an illustration.

Given the above structure, it is relatively easy to define a dynamic program
(DP) that computes an optimal L-packing in pseudo-polynomial time (Nn)O(1).
The basic idea is to scan items of Rhor (resp. Rver) in decreasing order of width
(resp., height), and each time guess if they are part of the optimal solution OPT.
At each step either both the considered horizontal item i and vertical item j
are not part of the optimal solution, or there exists a guillotine cut3 separating i
or j from the rest of OPT. Depending on the cases, one can define a smaller L-
packing sub-instance (among N 2 choices) for which the DP table already contains
a solution.

In order to achieve a (1 + ε)-approximation in polynomial time nOε(1), we
show that it is possible (with a small loss in the profit) to restrict the possible top
coordinates of OPThor and right coordinates of OPTver to proper polynomial-size
subsets Ctop and Cbottom, resp. We call such an L-packing (Ctop,Cbottom)-restricted.
By adapting the above DP one obtains:

Lemma 48. An optimal (Ctop,Cbottom)-restricted L-packing can be computed in time
polynomial in m := n+ |Ctop|+ |Cbottom| using dynamic programming.

3A guillotine cut is an infinite, axis-parallel line ` that partitions the items in a given packing
in two subsets without intersecting any item.
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Proof. For notational convenience we assume 0 ∈ Ctop and 0 ∈ Cbottom. Let
H1, . . . , H|Rhor| be the items in Rhor in decreasing order of width and V1, . . . , V|Rver|
be the items in Rver in decreasing order of height (breaking ties arbitrarily). For
w ∈ [0, wL] and h ∈ [0, hL], let L(w, h) = ([0, w]× [0, N])∪ ([0, N]× [0, h]) ⊆ L.
Let also ∆L(w, h) = ([w, wL] × [h, N]) ∪ ([w, N] × [h, hL]) ⊆ L. Note that L =
L(w, h)∪∆L(w, h).

We define a dynamic program table DP indexed by i ∈ [1, |Rhor|] and j ∈
[1, |Rver|], by a top coordinate t ∈ Ctop, and a right coordinate r ∈ Cbottom. The
value of DP(i, t, j, r) is the maximum profit of a (Ctop,Cbottom)-restricted pack-
ing of a subset of {Hi, . . . , H|Rhor|} ∪ {Vj, . . . , V|Rver|} inside ∆L(r, t). The value of
DP(1, 0,1, 0) is the value of the optimum solution we are searching for. Note that
the number of table entries is upper bounded by m4.

We fill in DP according to the partial order induced by vectors (i, t, j, r), pro-
cessing larger vectors first. The base cases are given by (i, j) = (n(h)+1, n(v)+1)
and (r, t) = (wL, hL), in which case the table entry has value 0.

In order to compute any other table entry DP(i, t, j, r), with optimal solution
OPT′, we take the maximum of the following few values:

• If i ≤ |Rhor|, the value DP(i+1, t, j, r). This covers the case that Hi /∈ OPT′;

• If j ≤ |Rver|, the value DP(i, t, j+1, r). This covers the case that Vj /∈ OPT′;

• Assume that there exists t ′ ∈ Ctop such that t ′−h(Hi)≥ t and that w(Hi)≤
N − r. Then for the minimum such t ′ we consider the value p(Hi)+DP(i+
1, t ′, j, r). This covers the case that Hi ∈ OPT′, and there exists a (horizon-
tal) guillotine cut separating Hi from OPT′ \ {Hi}.

• Assume that there exists r ′ ∈ Cbottom such that r ′ − w(Vj) ≥ r and that
h(Vj)≤ N− t. Then for the minimum such r ′ we consider the value p(Vj)+
DP(i, t, j + 1, r ′). This covers the case that Vj ∈ OPT′, and there exists a
(vertical) guillotine cut separating Vj from OPT′ \ {v j}.

We observe that the above cases (which can be explored in polynomial time)
cover all the possible configurations in OPT′. Indeed, if the first two cases do not
apply, we have that Hi, Vj ∈ OPT′. Then either the line containing the right side
of Vj does not intersect Hi (hence any other item in OPT′) or the line containing
the top side of Hi does not intersect Vj (hence any other item in OPT′). Indeed,
the only remaining case is that Vj and Hi overlap, which is impossible since they
both belong to OPT′.

We will show that there exists a (Ctop,Cbottom)-restricted L-packing with the
desired properties.
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Lemma 49. There exists a (Ctop,Cbottom)-restricted L-packing solution of profit at
least (1−2ε)opt, where the sets Ctop and Cbottom have cardinality at most nO(1/ε1/ε)

and can be computed in polynomial time based on the input (without knowing
OPT).

Lemmas 48 and 49 together immediately imply a PTAS for L-packings (show-
ing Theorem 38). The rest of this section is devoted to the proof of Lemma 49.

We will describe a way to delete a subset of items Dhor ⊆ OPThor with p(Dhor)≤
2εp(OPThor), and shift down the remaining items OPThor \ Dhor so that their top
coordinate belongs to a set Ctop with the desired properties. Symmetrically, we
will delete a subset of items Dver ⊆ OPTver with p(Dver) ≤ 2εp(OPTver), and shift
to the left the remaining items OPTver \ Dver so that their right coordinate belongs
to a set Cbottom with the desired properties. We remark that shifting down (resp.
to the left) items of OPThor (resp., OPTver) cannot create any overlap with items
of OPTver (resp., OPThor). This allows us to reason on each such set separately.

We next focus on OPThor only: the construction for OPTver is symmetric. For
notational convenience we let 1, . . . , nhor be the items of OPThor in non-increasing
order of width and from bottom to top in the starting optimal packing. We remark
that this sequence is not necessarily sorted (increasingly or decreasingly) in terms
of item heights: this makes our construction much more complicated.

Let us first introduce some useful notation. Consider any subsequence B =
{bstart, . . . , bend} of consecutive items (interval). For any i ∈ B, we define topB(i) :=
∑

k∈B,k≤i h(k) and bottomB(i) = topB(i) − h(i). The growing subsequence G =
G(B) = {g1, . . . , gh} of B (with possibly non-contiguous items) is defined as fol-
lows. We initially set g1 = bstart. Given the item gi, gi+1 is the smallest-index
(i.e., lowest) item in {gi+1, . . . , bend} such that h(gi+1)≥ h(gi). We halt the con-
struction of G when we cannot find a proper gi+1. For notational convenience,
define gh+1 = bend+1. We let BG

i := {gi+1, . . . , gi+1−1} for i = 1, . . . , h. Observe
that the sets BG

i partition B \ G. We will crucially exploit the following simple
property.

Lemma 50. For any gi ∈ G and any j ∈ {bstart, . . . , gi+1 − 1}, h( j)≤ h(gi).

Proof. The items j ∈ BG
i = {gi + 1, . . . , gi+1 − 1} have h( j) < h(gi). Indeed, any

such j with h( j)≥ h(gi) would have been added to G, a contradiction.
Consider next any j ∈ {bstart, . . . gi − 1}. If j ∈ G the claim is trivially true by

construction of G. Otherwise, one has j ∈ BG
k for some gk ∈ G, gk < gi. Hence,

by the previous argument and by construction of G, h( j)< h(gk)≤ h(gi).

The intuition behind our construction is as follows. Consider the growing
sequence G = G(OPThor), and suppose that p(G)≤ ε · p(OPThor). Then we might
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simply delete G, and shift the remaining items OPThor \ G = ∪ jB
G
j as follows.

Let dxey denote the smallest multiple of y not smaller than x . We consider each
set BG

j separately. For each such set, we define a baseline vertical coordinate
base j = dbottom(g j)eh(g j)/2, where bottom(g j) is the bottom coordinate of g j in the

original packing. We next round up the height of i ∈ BG
j to ĥ(i) := dh(i)eh(g j)/(2n),

and pack the rounded items of BG
j as low as possible above the baseline. It is

not difficult to check that the possible top coordinates for rounded items fall in
a polynomial size set (using Lemma 50). It is also not hard to check that items
are not shifted up.

We use recursion in order to handle the case p(G) > ε · p(OPThor). Rather
than deleting G, we consider each BG

j and build a new growing subsequence for
each such set. We repeat the process recursively for rhor many rounds. Let G r

be the union of all the growing subsequences in the recursive calls of level r.
Since the sets G r are disjoint by construction, there must exist a value rhor ≤

1
ε

such that p(G rhor) ≤ ε · p(OPThor). Therefore we can apply the same shifting
argument to all growing subsequences of level rhor (in particular we delete all of
them). In the remaining growing subsequences we can afford to delete 1 out of
1/ε consecutive items (with a small loss of the profit), and then apply a similar
shifting argument.

We next describe our approach in more detail. We exploit a recursive pro-
cedure delete&shift. This procedure takes as input two parameters: an in-
terval B = {bstart, . . . , bend}, and an integer round parameter r ≥ 1. Procedure
delete&shift returns a set D(B) ⊆ B of deleted items, and a shift function
shift : B \ D(B) → N. Intuitively, shift(i) is the value of the top coordinate of
i in the shifted packing w.r.t. a proper baseline value which is implicitly defined.
We initially call delete&shift(OPThor, rhor), for a proper rhor ∈ {1, . . . , 1

ε } to be
fixed later. Let (D, shift) be the output of this call. The desired set of deleted items
is Dhor = D, and in the final packing top(i) = shift(i) for any i ∈ OPThor \Dhor (the
right coordinate of any such i is N).

The procedure behaves differently in the cases r = 1 and r > 1. If r = 1,
we compute the growing sequence G = G(B) = {g1 = bstart, . . . , gh}, and set
D(B) = G(B). Consider any set BG

j = {g j + 1, . . . , g j+1 − 1}, j = 1, . . . , h. Let
base j := dbottomB(g j)eh(g j)/2. We define for any i ∈ BG

j ,

shift(i) = base j +
∑

k∈BG
j ,k≤i

dh(k)eh(g j)/(2n).

Observe that shift is fully defined since ∪h
j=1BG

j = B \ D(B).
If instead r > 1, we compute the growing sequence G = G(B) = {g1 =
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Figure 4.4. Illustration of the delete&shift procedure with rhor = 2. The
dashed lines indicate the value of the new baselines in the different stages of
the algorithm. (Left) The starting packing. Dark and light gray items denote
the growing sequences for the calls with r = 2 and r = 1, resp. (Middle) The
shift of items at the end of the recursive calls with r = 1. Note that light gray
items are all deleted, and dark gray items are not shifted. (Right) The shift
of items at the end of the process. Here we assume that the middle dark gray
item is deleted.

bstart, . . . , gh}. We next delete a subset of items D′ ⊆ G. If h < 1
ε , we let D′ =

D′(B) = ;. Otherwise, let Gk = {g j ∈ G : j = k (mod 1/ε)} ⊆ G, for k ∈
{0, . . . , 1/ε−1}. We set D′ = D′(B) = {d1, . . . , dp}= Gx where x = arg mink∈{0,...,1/ε−1} p(Gk).
See Figure 4.4 for a sketch of the procedure.

Proposition 51. It holds that p(D′) ≤ ε · p(G). Furthermore, any subsequence
{gx , gx+1, . . . , g y} of G with at least 1/ε items contains at least one item from D′.

Let us consider each set BG
j = {g j + 1, . . . , g j+1 − 1}, j = 1, . . . , h: We run

delete&shift(BG
j , r − 1). Let (Dj, shift j) be the output of the latter procedure,

and shiftmax
j be the maximum value of shift j. We set the output set of deleted

items to D(B) = D′ ∪ (∪h
j=1Dj).

It remains to define the function shift. Consider any set BG
j , and let dq be the

deleted item in D′with largest index (hence in topmost position) in {bstart, . . . , g j}:
define baseq = dbottomB(dq)eh(dq)/2. If there is no such dq, we let dq = 0 and
baseq = 0. For any i ∈ BG

j we set:

shift(i) = baseq +
∑

gk∈G,dq<gk≤g j
h(gk)

+
∑

gk∈G,dq≤gk<g j
shiftmax

k + shift j(i).

Analogously, if g j 6= dq, we set

shift(g j) = baseq +
∑

gk∈G,dq<gk≤g j
h(gk)

+
∑

gk∈G,dq≤gk<g j
shiftmax

k .
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This concludes the description of delete&shift. We next show that the final
packing has the desired properties. Next lemma shows that the total profit of
deleted items is small for a proper choice of the starting round parameter rhor.

Lemma 52. There is a choice of rhor ∈ {1, . . . , 1
ε } such that the final set Dhor of

deleted items satisfies p(Dhor)≤ 2ε · p(OPThor).

Proof. Let G r denote the union of the sets G(B) computed by all the recursive
calls with input round parameter r. Observe that by construction these sets are
disjoint. Let also D r be the union of the sets D′(B) on those calls (the union of
sets D(B) for r = rhor). By Proposition 51 and the disjointness of sets G r one has

p(Dhor) =
∑

1≤r≤rhor
p(D r)

≤ ε ·
∑

r<rhor
p(G r) + p(D rhor)

≤ ε · p(OPThor) + p(D rhor).

Again by the disjointness of sets G r (hence D r), there must exists a value of
rhor ∈ {1, . . . , 1

ε } such that p(D rhor)≤ ε · p(OPThor). The claim follows.

Next lemma shows that, intuitively, items are only shifted down with respect
to the initial packing.

Lemma 53. Let (D, shift) be the output of some execution of delete&shift(B, r).
Then, for any i ∈ B \ D, shift(i)≤ topB(i).

Proof. We prove the claim by induction on r. Consider first the case r = 1. In
this case, for any i ∈ BG

j :

shift(i)

=dbottomB(g j)eh(g j)/2 +
∑

k∈BG
j ,k≤i

dh(k)eh(g j)/(2n)

≤topB(g j)−
1
2

h(g j) +
∑

k∈BG
j ,k≤i

h(k) + n ·
h(g j)

2n

=topB(i).

Assume next that the claim holds up to round parameter r−1≥ 1, and consider
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round r. For any i ∈ BG
j with baseq = dbottomB(dq)eh(dq)/2, one has

shift(i)

=dbottomB(dq)eh(dq)/2 +
∑

gk∈G,dq<gk≤g j

h(gk)

+
∑

gk∈G,dq≤gk<g j

shiftmax
k + shift j(i)

≤topB(dq) +
∑

gk∈G,dq<gk≤g j

h(gk)

+
∑

gk∈G,dq≤gk<g j

topBG
k
(gk+1 − 1) + topBG

j
(i)

=topB(i).

An analogous chain of inequalities shows that shift(g j) ≤ topB(g j) for any g j ∈
G \ D′. A similar proof works for the special case baseq = 0.

It remains to show that the final set of values of top(i) = shift(i) has the
desired properties. This is the most delicate part of our analysis. We define a set
C r

top of candidate top coordinates recursively in r.

• Set C 1
top contains, for any item j ∈ Rhor, and any integer 1 ≤ a ≤ 4n2, the

value a · h( j)
2n .

• Set C r
top, for r > 1 is defined recursively w.r.t. to C r−1

top . For any item j, any
integer 0 ≤ a ≤ 2n− 1, any tuple of b ≤ 1/ε − 1 items j(1), . . . , j(b), and
any tuple of c ≤ 1/ε values s(1), . . . , s(c) ∈ C r−1

top , C r
top contains the sum

a · h( j)
2 +

∑b
k=1 h( j(k)) +

∑c
k=1 s(k).

Note that sets C r
top can be computed based on the input only (without know-

ing OPT). It is easy to show that C r
top has polynomial size for r = Oε(1).

Lemma 54. For any integer r ≥ 1, |C r
top| ≤ (2n)

r+2+(r−1)ε
εr−1 .

Proof. We prove the claim by induction on r. The claim is trivially true for r = 1
since there are n choices for item j and 4n2 choices for the integer a, hence
altogether at most n · 4n2 < 8n3 choices. For r > 1, the number of possible
values of C r

top is at most

n · 2n · (
1/ε−1
∑

b=0

nb) · (
1/ε
∑

c=0

|C r−1
top |

c)≤ 4n2 · n
1
ε−1 · |C r−1

top |
1
ε

≤ (2n)
1
ε+1((2n)

r+1+(r−2)ε
εr−2 )

1
ε ≤ (2n)

r+2+(r−1)ε
εr−1 .
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Next lemma shows that the values of shift returned by delete&shift for
round parameter r belong to C r

top, hence the final top coordinates belong to
Ctop :=C rhor

top .

Lemma 55. Let (D, shift) be the output of some execution of delete&shift(B, r).
Then, for any i ∈ B \ D, shift(i) ∈ C r

top.

Proof. We prove the claim by induction on r. For the case r = 1, recall that for
any i ∈ BG

j one has

shift(i) = dbottomB(g j)eh(g j)/2

+
∑

k∈BG
j ,k≤i

dh(k)eh(g j)/(2n).

By Lemma 50, bottomB(g j) =
∑

k∈B,k<g j
h(k)≤ (n−1)·h(g j). By the same lemma,

∑

k∈BG
j ,k≤i h(k)≤ (n− 1) · h(g j). It follows that

shift(i)≤ 2(n− 1) · h(g j) +
h(g j)

2
+ (n− 1) ·

h(g j)

2n

≤ 4n2 ·
h(g j)

2n
.

Hence shift(i) = a · h(g j)
2n for some integer 1 ≤ a ≤ 4n2, and shift(i) ∈ C 1

top for
j = g j and for a proper choice of a.

Assume next that the claim is true up to r − 1 ≥ 1, and consider the case r.
Consider any i ∈ BG

j , and assume 0< baseq = dbottomB(dq)eh(dq)/2. One has:

shift(i) = dbottomB(dq)eh(dq)/2 +
∑

gk∈G,dq<gk≤g j

h(gk)

+
∑

gk∈G,dq≤gk<g j

shiftmax
k + shift j(i).

By Lemma 50, bottomB(dq)≤ (n−1)h(dq), therefore dbottomB(dq)eh(dq)/2 = a· h(dq)
2

for some integer 1 ≤ a ≤ 2(n− 1) + 1. By Proposition 51, |{gk ∈ G, dq < gk ≤
g j}| ≤ 1/ε−1. Hence

∑

gk∈G,dq<gk≤g j
h(gk) is a value contained in the set of sums

of b ≤ 1/ε−1 item heights. By the inductive hypothesis shiftmax
k , shift j(i) ∈ C r−1

top .
Hence by a similar argument the value of

∑

gk∈G,dq≤gk<g j
shiftmax

k + shift j(i) is con-

tained in the set of sums of c ≤ 1/ε − 1 + 1 values taken from C r−1
top . Alto-

gether, shift(i) ∈ C r
top. A similar argument, without the term shift j(i), shows that
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shift(g j) ∈ C r
top for any g j ∈ G\D′. The proof works similarly in the case baseq = 0

by setting a = 0. The claim follows.

Proof of Lemma 49. We apply the procedure delete&shift to OPThor as described
before, and a symmetric procedure to OPTver. In particular the latter procedure
computes a set Dver ⊆ OPTver of deleted items, and the remaining items are shifted
to the left so that their right coordinate belongs to a setCbottom :=C rver

bottom, defined
analogously to the case of Ctop :=C rhor

top , for some integer rver ∈ {1, . . . , 1/ε} (pos-
sibly different from rhor, though by averaging this is not critical).

It is easy to see that the profit of non-deleted items satisfies the claim by
Lemma 52 and its symmetric version. Similarly, the sets Ctop and Cbottom satisfy
the claim by Lemmas 54 and 55, and their symmetric versions. Finally, w.r.t. the
original packing non-deleted items in OPThor and OPTver can be only shifted to
the bottom and to the left, resp., by Lemma 53 and its symmetric version. This
implies that the overall packing is feasible.

This concludes the proof of Theorem 38. In what follows we will see how to
bound the profit of the best structured solutions and hence obtain approximation
algorithms in each case due to the fact that we can now search for L&C packings
almost optimally as described in Section 4.2.1.

4.4 2DK without Rotations

As discussed in Section 4.2, it just remains to provide bounds for the profit of the
best L&C packing satisfying that:

• the number of containers is constant;

• the possible sizes for the containers are polynomially many and can be
computed efficiently;

• the possible sizes of the L-shaped region are polynomially many and can
be computed efficiently;

• it is possible to include back large items to our solutions.

This section is devoted to provide such bounds for the setting without rota-
tions, first in the unweighted case and then in the weighted case.
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4.4.1 A Simple Improved Approximation for Cardinality 2DK

We start by presenting a simple improved approximation for the cardinality case
of 2DK. The argumentation was already sketched in Section 4.0.1 but now we
show the proof in full detail. Notice first that, regarding large items, we can
assume that the optimal solution OPT ⊆R satisfies that |OPT| ≥ 1/ε3 since oth-
erwise we can solve the problem optimally by brute force in time nO(1/ε3). There-
fore, we can discard from the input all large items with both sides larger than
ε · N : any feasible solution can contain at most 1/ε2 such items, and discarding
them leaves a solution of cardinality at least (1− ε)|OPT|. Let OPT′ denote this
slightly sub-optimal solution obtained by removing large items.

We will need the following technical lemma, that holds also in the weighted
case (see also Fig.4.1.(b)-(d)).

Lemma 56. Let H and V be given subsets of items from some feasible solution
with width and height strictly larger than N/2 respectively. Then there exists an
L-packing of a set APX ⊆ H ∪ V with p(APX) ≥ 3

4(p(H ) + p(V )) into the area
L= ([0, N]× [0, h(H )])∪ ([0, w(V )]× [0, N]).

Proof. Let us consider the packing of H ∪V . Consider each i ∈ H that has no
j ∈ V to its top (resp., to its bottom) and shift it up (resp. down) until it hits
another i′ ∈ H or the top (resp, bottom) side of the knapsack. Note that, since
h( j)> N/2 for any j ∈ V , one of the two cases above always applies. We iterate
this process as long as possible to move any such i. We perform a symmetric
process on V . At the end of the process all items inH ∪V are stacked on the 4
sides of the knapsack4.

Next we remove the least profitable of the 4 stacks: by a simple permutation
argument we can guarantee that this is the top or right stack. We next discuss
the case that it is the top one, the other case being symmetric. We show how
to repack the remaining items in a boundary L of the desired size by permuting
items in a proper order. In more detail, suppose that the items packed on the left
(resp., right and bottom) have a total width of wl (resp., total width of wr and
total height of hb). We next show that there exists a packing into L′ = ([0, N]×
[0, hb])∪([0, wl+wr]×[0, N]). We prove the claim by induction. Suppose that we
have proved it for all packings into left, right and bottom stacks with parameters
w′l , w′r , and h′ such that h′ < hb or w′l +w′r < wl +wr or w′l +w′r = wl +wr and
w′r < wr .

4It is possible to permute items in the left stack so that items appear from left to right in
non-increasing order of height, and symmetrically for the other stacks. This is not crucial for this
proof, but we implemented this permutation in Fig.4.1.(c).
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In the considered packing we can always find a guillotine cut `, such that one
side of the cut contains precisely one lonely item among the leftmost, rightmost
and bottom-most items. Let ` be such a cut. First assume that the lonely item j
is the bottom-most one. Then by induction the claim is true for the part above `
since the part of the packing above ` has parameters wl , wr , and h− h( j). Thus,
it is also true for the entire packing. A similar argument applies if the lonely item
j is the leftmost one.

It remains to consider the case that the lonely item j is the rightmost one.
We remove j temporarily and shift all other items by w( j) to the right. Then we
insert j at the left (in the space freed by the previous shifting). By induction, the
claim is true for the resulting packing since it has parameters wl+w( j), wr−w( j)
and h, resp.

For our algorithm, we consider the following three solutions. The first uses
an L that occupies the full knapsack, i.e., wL = hL = N . Let OPTlong ⊆ OPT
be the items in OPT with height or width strictly larger than N/2 and define
OPTshort = OPT \ OPTlong. We apply Lemma 56 to OPTlong and hence obtain a
packing for this L with a profit of at least 3

4p(OPTlong).
For the other two packings we will employ one-sided resource augmenta-

tion PTAS (Lemma 19). We apply it to the slightly reduced knapsacks [0, N]×
[0, N/(1 + ε)] and [0, N/(1 + ε)] × [0, N] such that in both cases it outputs a
solution that fits in the full knapsack [0, N] × [0, N] and whose profit is by at
most a factor 1 + O(ε) worse than the optimal solution for the respective re-
duced knapsacks. We will prove that one of these solutions yields a profit of at
least (1

2 − O(ε))p(OPT) + (1
4 − O(ε))p(OPTshort) and hence one of our packings

yields a (16
9 + ε)-approximation.

Lemma 57. There exists an L&C packing of profit at least ( 9
16 + ε)OPT for the

cardinality case of 2DK.

Proof. Let OPT be the considered optimal solution with opt= p(OPT). Recall that
there are no large items. Let also Ver ⊆ OPT be the (vertical) items with height
more than ε ·N (hence with width at most ε ·N), and Hor= OPT\Ver (horizontal
items). Note that with this definition both sides of a horizontal item might have
a length of at most ε · N . We let optlong = p(OPTlong) and optshort = p(OPTshort).

As mentioned above, we already know that the best L-packing has a total
profit of at least (3

4 − O(ε))optlong which can be seen by applying Lemma 56
with H = OPTlong ∩ Hor and V = OPTlong ∩ Ver. In order to show that the
other two packings yield a good profit, consider a random horizontal strip S =
[0, N]× [a, a+ε ·N] (fully contained in the knapsack) where a ∈ [0, (1−ε)N) is
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chosen unformly at random. We remove all items from OPT intersecting S. Each
item in Hor and OPTshort ∩ Ver is deleted with probability at most 3ε and 1

2 + 2ε
respectively. Therefore the total profit of the remaining items is in expectation
at least (1 − 3ε)p(Hor) + (1

2 − 2ε)p(OPTshort ∩ Ver). Observe that the resulting
solution can be packed into a restricted knapsack of size [0, N]× [0, N/(1+ ε)]
by shifting down the items above the horizontal strip. Therefore, when we apply
Lemma 19 to the knapsack [0, N]× [0, N/(1+ ε)], up to a factor 1− ε, we show
that a container packing of at least the same profit exists. In other terms, this
profit is at least (1− 4ε)p(Hor) + (1

2 −
5
2ε)p(OPTshort ∩ Ver).

By a symmetric argument, we show that a container packing of profit at least
(1−4ε)p(Ver)+(1

2 −
5
2ε)p(OPTshort∩Hor) exists when we apply Lemma 19 to the

knapsack [0, N/(1 + ε)] × [0, N]. Thus the best of the latter two solutions has
profit at least (1

2 − 2ε)optlong + (
3
4 −

13
4 ε)optshort = (

1
2 − 2ε)opt + (1

4 −
5
4ε)optshort.

The best of our three solutions has therefore value at least ( 9
16 −O(ε))opt where

the worst case is achieved for roughly optlong = 3 · optshort.

Thanks to this existential lemma and the algorithm in Section 4.2.1 we con-
clude the following theorem. Notice that there is no need to include back small
items as they are already packed into containers due to Lemma 19, and also the
requirements for the number of containers and the possible sizes of the contain-
ers and the L-shaped region are satisfied.

Theorem 58. There is a
�

16
9 + ε

�

-approximation for the cardinality case of 2DK.

In the above result we use either an L-packing or a container packing. If we
also consider solutions that combine both kind of packings it is possible to ob-
tain an improved approximation ratio as stated in Theorem 39. In particular, we
consider configurations were long items (or a subset of them) can be packed into
a relatively small L, and pack part of the remaining short items in the comple-
mentary rectangular region using Steinberg theorem (Theorem 5) and related
techniques. This proof is deferred to Appendix C.

4.4.2 Weighted Case without Rotations

Now we proceed with the weighted case of 2DK. Our main goal is to prove the
following theorem:

Lemma 59. There exists an L&C packing of profit at least ( 9
17 + ε)OPT for the

weighted case of 2DK.
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In order to prove this we will first describe a method to “process” corridors
from Lemma 44 and further decompose them into rectangular boxes with items
inside, and then analyze different candidate packings to prove the desired bound.

For the sake of simplicity we will first assume that we are able to drop Oε(1)
items at no cost. Then in Appendix B we will explain how to get rid of this
assumption.

Partitioning Corridors into Rectangular Boxes

As explained in Section 2.4 we can temporarily remove small items OPTsmall

and then include them back almost optimally as long as we ensure the required
area guarantees for the considered candidate solutions. Also, since |OPTlarge| ≤
O(1/ε2

large) we can assume that there are no large items in the instance, hence we
may now assume that we need to pack only the skewed items from OPTskew.

We proceed to describe a routine to partition the corridors into rectangular
boxes such that each item is contained in one such box. We remark that to achieve
this partitioning we sometimes have to sacrifice a large fraction of OPTcorr, hence
we do not achieve a (1 + ε)-approximation as in the work of Adamaszek and
Wiese [2015]. On the positive side, we generate only a constant (rather than
polylogarithmic) number of boxes. This is crucial to obtain polynomial time al-
gorithms in the later steps.

Recall that each i ∈ OPTcorr is univocally associated with the only subcorridor
that fully contains it. We say that we delete a sub-corridor, when we delete all
items univocally associated with the subcorridor. Note that in the deletion of
a sub-corridor we do not delete items that are partially contained in that sub-
corridor but completely contained in a neighbor sub-corridor. Given a corridor,
we sometimes delete some of its subcorridors, and consider the residual corri-
dors (possibly more than one) given by the union of the remaining subcorridors.
Note that removing any subcorridor from a closed corridor turns it into an open
corridor. We implicitly assume that items associated with a deleted subcorridor
are also removed (and consequently the corresponding area can be used to pack
other items).

Given a corridor, we partition its area into a constant number of boxes as fol-
lows (see also Figure 4.5, and Adamaszek and Wiese [2015] for a more detailed
description of an analogous construction). Let S be one of its boundary subcorri-
dors (if any), or the central subcorridor of a U-bend. Note that one such S must
exist (trivially for an open corridor, otherwise by Lemma 45.2). In the corridor
partition, there might be several subcorridors fulfilling the latter condition. We
will explain later in which order to process the subcorridors, here we explain
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α

Figure 4.5. Our operation that divides a corridor into Oε(1) boxes and Oε(1)
shorter corridors. The dark gray items show thin items that are removed in this
operation. The light gray items are fat items that are shifted to the box below
their respective original box. The value α denotes the width of the depicted
corridor.

only how to apply our routine to one subcorridor, which we call processing of a
subcorridor.

Suppose that S is horizontal with height b, with the shorter horizontal asso-
ciated edge being the top one. The other cases are symmetric. Let εbox > 0 be a
sufficiently small constant to be defined later. If S is the only subcorridor in the
considered corridor, S forms a box and all its items are marked as fat. Otherwise,
we draw 1/εbox horizontal lines that partition the private region of S into sub-
regions of height εbox b. We mark as thin the items of the bottom-most (i.e., the
widest) such subregion, and as killed the items of the subcorridor cut by these
horizontal lines. All the remaining items of the subcorridor are marked as fat.

For each such subregion, we define an associated (horizontal) box as the
largest axis-aligned box that is contained in the subregion. Given these boxes,
we partition the rest of the corridor into 1/εbox corridors as follows. Let S′ be a
corridor next to S, say to its top-right. Let P be the set of corners of the boxes
contained in the boundary curve between S and S′. We project P vertically on
the boundary curve of S′ not shared with S, hence getting a set P ′ of 1/εbox

points. We iterate the process on the pair (S′, P ′). At the end of the process, we
obtain a set of 1/εbox boxes from the starting subcorridor S, plus a collection of
1/εbox new (open) corridors each one having one less bend with respect to the
original corridor. Later, we will also apply this process on the latter corridors.
Each newly created corridor will have one bend less than the original corridor
and thus this process eventually terminates. Note that, since initially there are
Oε,εlarge

(1) corridors, each one with O(1/ε) bends, the final number of boxes is
Oε,εlarge,εbox

(1).

Remark 60. Assume that we execute the above procedure on the subcorridors until
there is no subcorridor left on which we can apply it. Then we obtain a partition of
OPTcorr into disjoint sets OPTthin, OPTfat and OPTkill of thin, fat, and killed items,
respectively. Note that each order to process the subcorridors leads to different such
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partition. We will define this order carefully in our analysis.

Remark 61. By a simple shifting argument, there exists a packing of OPTfat into
the boxes. Intuitively, in the above construction each subregion is fully contained in
the box associated with the subregion immediately below (when no lower subregion
exists, the corresponding items are thin).

We will from now on assume that the shifting of items as described in Remark
61 has been done. The following lemma summarises some of the properties of
the boxes and of the associated partition of OPTcorr (independently from the way
ties are broken). LetRhor andRver denote the set of horizontal and vertical input
items, respectively.

Lemma 62. The following properties hold:

1. |OPTkill|= Oε,εlarge,εbox
(1);

2. For any given constant εring > 0, there is a sufficiently small εbox > 0 such that
the total height (resp., width) of items in OPTthin∩Rhor (resp., OPTthin∩Rver)
is at most εringN.

Proof. (1) Each horizontal (resp., vertical) line in the construction can kill at
most 1/εlarge items, since those items must be horizontal (resp., vertical). Hence
we kill Oε,εlarge,εbox

(1) items in total.
(2) The mentioned total height/width is at most εboxN times the number of

subcorridors, which is Oε,εlarge
(1). The claim follows for εbox small enough.

A profitable L&C packing

In this section we prove that there exists an L&C packing with enough profit.
Note that in the previous processing of the corridors we did not specify in which
order we partition the subcorridors into boxes. In this section, we give several
such orders which will then result in different packings. The last such packing
is special since we will modify it a bit to gain some space and then reinsert the
thin items that were removed in the process of partitioning the corridors into
containers. Afterwards, we will show that one of the resulting packings will
yield an approximation ratio of 17/9+ ε.

In the remainder of this section we prove Lemma 59, but as mentioned before
assuming that we can drop Oε(1) items at no cost. Hence, formally we will prove
that there is an L&C packing for a setR ′ of items and a set of Oε(1) itemsRdrop ⊆
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R \R ′ such that p(R ′) + p(Rdrop) ≥ (
9
17 −O(ε))p(OPT). In Appendix B we will

prove Lemma 59 in full generality (without dropping any items).
The proof of Lemma 59 involves some case analysis. Recall that we classify

subcorridors into short and long, and horizontal and vertical. We further parti-
tion short subcorridors as follows: let S1, . . . , Sk′ be the subcorridors of a given
corridor, and let Ss

1, . . . , Ss
k′′ be the subsequence of short subcorridors (if any).

Mark Ss
i as even if i is so, and odd otherwise. Note that corridors are subdivided

into several other corridors during the box construction process (see Figure 4.5),
and these new corridors might have fewer subcorridors than the initial corridor.
However, the marking of the subcorridors (short, long, even, odd, horizontal,
vertical) is inherited from the marking of the original subcorridor.

We will describe now 7 different ways to partition the subcorridors into boxes,
for some of them we delete some of the subcorridors. Each of these different
processing orders will give different sets OPTthin, OPTkill and OPTcont

fat , and based
on these, we will partition the items into three sets. We will then prove three
different lower bounds on p(OPTL&C) w.r.t. the sizes of these three sets using
averaging arguments about the seven cases.

Cases 1a, 1b, 2a, 2b: Short horizontal/short vertical subcorridors. We delete
either all vertical short (case 1) or all horizontal short subcorridors (case 2). We
first process all short subcorridors, then either all vertical (subcases a) or hori-
zontal long ones (subcases b), and finally the remaining (horizontal or vertical,
resp.) long ones. We can start by processing all short corridors. Indeed, any such
corridor cannot be the center of a Z-bend by Lemma 45 since its two sides would
be long, hence it must be boundary or the center of a U-bend. After processing
short subcorridors, by the same argument the residual (long) subcorridors are
the boundary or the center of a U-bend. So we can process the long subcorridors
in any order. This gives in total four cases (see Fig. 4.6 for a depiction of these
cases).

Cases 3a, 3b: Even/odd short subcorridors. We delete the odd (resp., even)
short subcorridors and then process even (resp., odd) short subcorridors last. We
exploit the fact that each residual corridor contains at most one short subcorridor.
Then, if there is another (long) subcorridor, there is also one which is boundary
(trivially for an open corridor) or the center of a U-bend (by Lemma 45, Property
2). Hence we can always process some long subcorridor leaving the unique short
subcorridor as last one. This gives two cases.
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Figure 4.6. Figure for Case 1 and 2. The knapsack on the left contains two
corridors, where short subcorridors are marked light grey and long subcorridors
are marked dark grey. In case 1, we delete vertical short subcorridors and then
consider two processing orders in subcases a and b. In case 2, we delete hori-
zontal short subcorridors and again consider two processing orders in subcases
a and b.

Case 4: Fat only. Do not delete any short subcorridor. Process subcorridors in
any feasible order.

In each of the cases, we apply the procedure described at the beginning of this
section to partition each box into Oε(1) containers, which generates a constant
number of discarded items. These discarded items will be included into OPTkill.
We next label items as follows. Consider the classification of items into OPTcont

fat ,
OPTthin, and OPTkill in each one of the 7 cases above. Then:

• OPTT is the set of items which are in OPTthin in at least one case;
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• OPTK is the set of items which are in OPTkill in at least one case;

• OPTF is the set of items which are in OPTcont
fat in all the cases.

Remark 63. Consider the subcorridor of a given corridor that is processed last in
any of the above cases. None of its items are assigned to OPTthin in that case and
thus essentially all its items are packed in one of the constructed containers. In
particular, for an item in set OPTT, in some of the above cases it might be in such a
subcorridor and thus marked fat and packed into a container.

Lemma 64. It holds that

p(OPTF ∪OPTT) + p(OPTK) + p(OPTlarge) + p(OPTcross
corr )≥ (1−O(ε))p(OPT).

Proof. Let us initialize OPTF = OPTcont
fat , OPTT = OPTthin, and OPTK = OPTkill by

considering one of the above cases. Next we consider the aforementioned cases,
hence moving some items in OPTF to either OPTT or OPTK. Note that initially
p(OPTF ∪ OPTT) + p(OPTkill) + p(OPTlarge) + p(OPTcross

corr ) ≥ (1 − O(ε))p(OPT) by
Lemma 44 and hence we keep this property.

LetRlc andRsc denote the items in long and short corridors, respectively. We
also let OPTLF = Rlc ∩ OPTF, and define analogously OPTSF, OPTLT, and OPTLF.
The next three lemmas provide a lower bound on the case of a degenerate L.

Lemma 65. p(OPTL&C)≥ p(OPTLF) + p(OPTSF).

Proof. Follows immediately since we pack a superset of OPTF in case 4.

Lemma 66. p(OPTL&C)≥ p(OPTLF) +
p(OPTLT)

2 + p(OPTSF)
2 .

Proof. Consider the sum of the profit of the packed items corresponding to the
four subcases of cases 1 and 2. Each i ∈ OPTLF appears 4 times in the sum (as
items in OPTF are fat in all cases and all long subcorridors get processed), and
each i ∈ OPTLT at least twice by Remark 63: If a long subcorridor L neighbors
a short subcorridor, the short subcorridor is either deleted or processed first.
Further, all neighboring long subcorridors are processed first in case 1a and 2a
(if L is horizontal, then its neighbors are vertical) or 1b and 2b (if L is vertical).
Thus, L is the last processed subcorridor in at least two cases. Additionally, each
item i ∈ OPTSF also appears twice in the sum, as it gets deleted either in case 1
(if it is vertical) or in case 2 (if it is horizontal), and is fat otherwise. The claim
follows by an averaging argument.

Lemma 67. p(OPTL&C)≥ p(OPTLF) +
p(OPTSF)

2 + p(OPTST)
2 .
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Proof. Consider the sum of the number of packed items corresponding to cases
3a and 3b. Each i ∈ OPTLF appears twice in the sum as it is fat and all long
subcorridors get processed. Each i ∈ OPTSF ∪ OPTST appears at least once in
the sum by Remark 63: An item i ∈ OPTSF is deleted in one of the two cases
(depending on whether it is in an even or odd subcorridor) and otherwise fat.
An item i ∈ OPTST is also deleted in one of the two cases and otherwise its
subcorridor is processed last. The claim follows by an averaging argument.

There is one last (and slightly more involving) case to be considered, corre-
sponding to a non-degenerate L.

Lemma 68. p(OPTL&C)≥
3
4p(OPTLT) + p(OPTST) +

1−O(ε)
2 p(OPTSF).

Proof. Recall that εlargeN is the maximum width of a corridor. We consider an
execution of the algorithm with a boundary L of width N ′ = εringN , and threshold
length ` = (1

2 + 2εlarge)N . We remark that this length guarantees that items in
Rlong are not contained in short subcorridors.

By Lemma 56, we can pack a subset of OPTT∩Rlong of profit at least 3
4p(OPTT∩

Rlong) in a boundary L of width εringN . By Lemma 62 the remaining items in OPTT

can be packed in two containers of size `×εringN and εringN ×` that we place on
the two sides of the knapsack not occupied by the boundary L.

In the free area we can identify a square region K ′′ of width and height (1−
ε)N . We next show that there exists a feasible solution OPT′SF ⊆ OPTSF with
p(OPT′SF) ≥ (1−O(ε))p(OPTSF)/2 that can be packed in a square of side length
(1−3ε)N . We can then apply the Resource Augmentation (Lemma 19) to obtain a
container packing of OPT′′SF ⊆ OPT′SF having profit p(OPT′′SF)≥ (1−O(ε))p(OPT′SF)
inside a central square region of width and height (1−3ε)(1+εra)N ≤ (1−2ε)N .

Consider the packing of OPTSF as in the optimum solution. Choose a random
vertical (resp., horizontal) strip in the knapsack of width (resp., height) 3εN .
Delete from OPTSF all the items intersecting the vertical and horizontal strips:
clearly the remaining items OPT′SF can be packed into a square of side length
(1− 3ε)N . Consider any i ∈ OPTSF, and assume i is horizontal (the vertical case
being symmetric). Recall that it has height at most εsmallN ≤ εN and width at
most ` ≤ 1

2 + 2ε. Therefore i intersects the horizontal strip with probability at
most 5ε and the vertical strip with probability at most 1

2 +8ε. Thus by the union
bound the probability that item i belongs to OPT′SF can be bounded below by
1
2 − 13ε. The claim follows by linearity of expectation.

Lemma 69. In the packings due to Lemmas 65, 66, 67, and 68 it is possible to
cover the items in the solution using Oε(1) rectangular regions of total area at most
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min{(1−2ε)N 2, a(OPTcorr)+ εraN 2} while discarding a set OPTdisc of items of con-
stant cardinality.

Proof. We will first prove the following claim: Let R ′ ⊆ OPTskew be a collection
of items that can be packed into the knapsack and decomposed into boxes such
that no box contain simultaneously horizontal and vertical items, and εcont > 0
be a given constant. Then there exists a container packing of R ′′ ⊆ R ′ into the
knapsack and a set Rdisc ⊆R ′ \R ′′ such that:

1. p(R ′′) + p(Rdisc)≥ (1−O(ε))p(R ′);

2. The number of containers is Oε,εlarge,εcont
(1) and their sizes belong to a set of

cardinality nOε,εlarge ,εcont (1) that can be computed in polynomial time;

3. |Rdisc| ∈ Oε,εlarge,εcont
(1); and

4. The total area of the containers is upper-bounded by min{(1−2ε)N 2, a(R ′)+
εcontN

2}.

To prove the claim let us focus on a specific box of size a× b, and on the items
Rbox ⊆ R ′ inside it. If |Rbox| = Oε(1) then we can simply include them in Rdisc

and think of the box as empty. Otherwise, assume w.l.o.g. that this box (hence
its items) is horizontal. We obtain a set Rbox by removing from Rbox all items
intersecting a proper horizontal strip of height 3εb. Clearly these items can be
repacked in a box of size a × (1 − 3ε)b. By a simple averaging argument, it is
possible to choose the strip so that the items fully contained in it have total profit
at most O(ε)p(Rbox). Furthermore, there can be at most O(1/εlarge) items that
partially overlap with the strip (since items are skewed). We add these items to
Rdisc and do not pack them.

At this point we can use the Resource Augmentation Lemma (Lemma 19) to
pack a large profit subsetR ′box ⊆Rbox into Oεcont

(1) containers that can be packed
in a box of size a × (1 − 3ε)(1 + εra)b ≤ a × (1 − 2ε)b. We perform the above
operation on each box of the previous construction and defineR ′′ to be the union
of the respective R ′box. Now it just remains to prove the area guarantees of the
claim. Notice first that from each box we either deleted all the items inside or
packed a subset of the items into a reduced box having at least 2εab area less. It
follows that the total area of the containers is at most (1− 2ε)N 2. On the other
hand, due to the area guarantees of Lemma 19, we know that the total area of
the containers is at most a(R ′) + εcontN

2, proving the claim.
Now, in the cases of Lemmas 65, 66 and 67 the rectangular regions corre-

spond to the containers and the required guarantees follow directly from the
previous claim.
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On the other hand, in the case of Lemma 68, we add to the containers coming
from the previous claim four rectangular regions: one of size εringN × N plus
another of size N × εringN to cover the boundary L, and the two containers of
size εringN × ` and ` × εringN to pack items from OPTT. Notice that there is a
region not occupied by the boundary L nor by the containers of area at least
4εN 2 − 4ε2N 2 − 4εringN

2 ≥ 2εN 2 for εring small enough, e.g., εring ≤ ε2 suffices.
Hence the first inequality follows. For the other inequality, from the claim at the
beginning of the proof we have that the total area of the rectangular regions is
at most

a(OPTcorr) + εra(1− 2ε)2N 2 + 4εringN
2 ≤ a(OPTcorr) + εraN 2

for εring small enough.

Combining the above Lemmas 64, 65, 66, 67, and 68 we achieve the de-
sired approximation factor, assuming that the (dropped) Oε(1) items in OPTkill∪
OPTlarge∪OPTcross

corr ∪OPTdisc have zero profit, and due to the guarantees in Lemma 69
we know that such a solution can be found by our algorithm. Notice that the
worst case is obtained, up to 1−O(ε) factors, for p(OPTLT) = p(OPTSF) = p(OPTST)
and p(OPTLF) =

5
4p(OPTLT). This gives p(OPTLT) =

4
17 ·p(OPTT∪OPTF) and a total

profit of 9
17 · p(OPTT ∪OPTF).

This concludes the proof of Theorem 40 assuming that we can drop O(1)
rectangles at no cost. It is possible to drop this assumption by applying a standard
shifting argumentation whose details we defer to Appendix B.

4.5 2DK with Rotations

This section is devoted to provide bounds on the profit of the best structured
solution for two-dimensional Geometric Knapsack with rotations (2DKR), first in
the unweighted case and then in the weighted case. As opposed to the previous
section, we will now focus only on purely container-based solutions, which can
be handled by our algorithm described in Chapter 2. It is an interesting open
question whether it is possible to solve the L-packing problem with 90 degree
rotations.

4.5.1 Cardinality 2DKR

Now we proceed to present a polynomial time
�

4
3 + ε

�

-approximation algorithm
for 2DKR for the cardinality case. In order to do so we will show that there
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exists a container-based packing for OPTskew having the claimed profit and then
argue about small and large items analogously to the approach in Section 4.4.1.
Our existential result crucially exploits the following resource contraction lemma,
which is our main new idea in the setting with rotations. Along this section we
will assume w.l.o.g. that ε,εsmall > 0 are sufficiently small constants.

Lemma 70. (Resource Contraction Lemma) Suppose that there exists a feasible
packing of a set of itemsR , with |R| ≥ 1/ε3

small. Then it is possible to pack a subset

R ′ ⊆R of cardinality at least 2
3(1−O(ε))|R| into the region [0,

�

1− ε
1
2ε+1

�

N]×
[0, N] if rotations are allowed.

We will first assume that this lemma holds to prove that a profitable structured
packing exists, and then we will prove Lemma 70.

Existence of a Profitable Packing

Similarly to the case without rotations, we will first show the existence of a prof-
itable structured solution. More in detail we will prove the following result.

Lemma 71. There exists a container packing of total profit at least
�

3
4 −O(ε)

�

|OPT|
for the cardinality case of 2DKR.

Proof. As in Section 4.4.1, we assume that there are no large items and tem-
porarily remove small items. Hence, from now on we will assume that there are
only skewed items in OPT. We start with the corridor partition from Lemma 44
and also define thin, fat and killed items according to the procedure described
in Section 4.4.2. Killed items can be safely discarded since there are only Oε(1)
of them as stated in Lemma 62. Let T and F be the set of thin and fat items
respectively.

A first candidate solution that we can consider packs (1− ε)|F | items: After
the removal of T , we can get a container packing for almost all items in F as
discussed in Lemma 65 in Section 4.4.2.

A second candidate solution we consider can pack (1−O(ε))(|T |+ 2
3 |F |)many

items, and here we will make use of our resource contraction lemma (Lemma 70).
First of all, thanks to Lemma 62 we can ensure that the total height of the items

in T is at most ε
1
2ε +1N

2 , and hence we can pack them in a single vertical container

of width ε
1
2ε +1N

2 by rotating the horizontal items in T .
Now we consider two possible cases: if |F | ≥ 1

ε3
small

, then we can apply Lemma

70 to show that there exists F ′ ⊆ F of cardinality at least 2
3(1−O(ε))|F | that can
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be packed inside K ′ := [0,
�

1− ε
1
2ε+1

�

N]× [0, N]. Then we can use the resource
augmentation PTAS (Lemma 19) to get a container packing of (2/3 − O(ε))|F |
many items in the region K ′′ := [0,

�

1− ε
1
2ε+1/2

�

N]× [0, N] with the required
area guarantees so that small items can be packed later by means of Lemma 18,
and place the vertical container for items in T to the right of K ′′ in the region
[
�

1− ε
1
2ε+1/2

�

N , 1]× [0, N]. This already proves the claim in this first case

On the other hand, if |F | < 1
ε3

small
, then either |T | < 1

ε4
small

in which case we can

pack |F∪T |< 2
ε4

small
items just by brute-force, or else |T | ≥ 1

ε4
small
≥ 1

εsmall
|F |, in which

case we pack at least|T | ≥ (1− O(ε))(|T |+ |F |) many items, proving the claim
also in this case.

By combining both candidate solutions, the claimed bound on the profit of
the best container packing holds. Up to a factor (1 − O(ε)), the worst case is
obtained when |F |= 3|T | which gives a total profit of 3

4 |OPT|.

As discussed before, the required guarantees hold in order to include back
almost |OPTsmall|many items to the solution, and hence by applying our algorithm
described in Section 4.2.1 we can conclude the proof of Theorem 42 provided
that Lemma 70 is true.

Proof of the Resource Contraction Lemma

Now we will prove Lemma 70. Let us first remove from the set of itemsR all the
ones having both height and width larger than εsmallN . Let R2 be the resulting
set: observe that |R2| ≥ (1− εsmall)|R|. We next show how to remove from R2

a set of cardinality at most ε|R2| such that the remaining items Rfinal are either
very tall or not too tall, where the exact meaning of this will be given next.

Lemma 72. There exists a value i ∈ {1, . . . , d1/(2ε)e} such that the set of items
from R2 having height h(i) ∈ ((1 − 2εi)N , (1 − εi+1)N] has cardinality at most
ε|R2|.

Proof. For each i = 1, . . . , d1/(2ε)e, let Ki be the set of items in R2 with height
in ((1− 2εi)N , (1− εi+1)N]. An item can belong to at most two such sets if ε is
small enough. Thus, the smallest such set has cardinality at most ε|R2|.

We remove from R2 the elements from the set Ki of minimum cardinality
guaranteed by the above lemma, and let Rfinal be the resulting set. We also
define εs = εi for the same i. Thus, εs ≥ ε1/2ε > εsmall/ε. Note that the items in
Rfinal have height either at most (1− 2εs)N or larger than (1− ε · εs)N .
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γN

δN

βNαN

SB,δ

SL,α SR,β

ST,γ

(a) Depiction of strips
SL,α, SR,β , SB,δ, ST,γ

αN

SL,α

(b) CL,α, DL,α are dark and light
gray items resp.

Figure 4.7. Definitions for cardinality 2DK with rotations.

Now we require the following technical definitions. For any δ > 0 we denote
the strips of width N and height δN at the top and bottom of the knapsack by
ST,δ := [0, N]× [(1−δ)N , N] and SB,δ := [0, N]× [0,δN] respectively. Similarly,
we denote the strips of height N and width δN to the left and right of the knap-
sack by SL,δ := [0,δN]× [0, N] and SR,δ := [(1− δ)N , N]× [0, N] respectively
(see Figure 4.7(a)). The set of items in Rfinal intersected by a strip SK ,δ are de-
noted by EK ,δ and the set of items fully contained in such a strip are denoted by
CK ,δ. Obviously CK ,δ ⊆ EK ,δ, and we define, DK ,δ = EK ,δ\CK ,δ (see Figure 4.7(b)).

To prove the resource contraction lemma we will make use of the following
technical lemmas which provide area guarantees for the items intersected by
some of the strips and a way to pack them in a slightly reduced knapsack.

Lemma 73. Either a(EL,εs
∪ ER,εs

)≤ (1+8εs)
2 N 2 or a(ET,εs

∪ EB,εs
)≤ (1+8εs)

2 N 2.

Proof. Let us define V := EL,εs
∪ ER,εs

the set of items intersected by at least
one of the vertical strips of width εsN and H := ET,εs

∪ EB,εs
the set of items

intersected by at least one of the horizontal strips of height εsN . Note that,
a(V ) + a(H) = a(V ∪ H) + a(V ∩ H). Clearly a(V ∪ H) ≤ N 2 since all items fit
into the knapsack. On the other hand, except possibly four items (the ones by a
vertical and a horizontal strip at the same time) all other items in V∩H lie entirely
within the union of the four strips. Thus a(V ∩H) ≤ 4εsN

2 + 4εsmallN
2 ≤ 8εsN

2,
as εsmall ≤ εs. We can conclude that

min{a(V ), a(H)} ≤
a(V ) + a(H)

2
=

a(V ∪H) + a(V ∩H)
2

≤
(1+ 8εs)

2
N 2

.
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εi+1

εi

(a)

N −w(X ) 2|X |/3

CT,εi+1 rotated CB,εi+1 rotated

(b)

Figure 4.8. Case A for cardinality 2DKR. Dark gray rectangles are X , light
gray rectangles are Z , gray rectangles plus hatched rectangles are Y , hatched
rectangles are CT,εi+1 and CB,εi+1 . (a): original packing in N × N . (b): modified
packing leaving space for resource contraction on the right.

Lemma 74. Let 0 < εa < 1/2 be a constant and R̃ := {1, . . . , k} a set of items
satisfying w(i)≤ εsmallN for all i ∈ R̃ . If a(R̃)≤ (1/2+ εa)N 2, then there exists a
set of items S ⊆ R̃ of cardinality at least (1−2εs−2εa)|R̃| that can be packed into
[0, (1− εs)N]× [0, N].

Proof. Let us assume that the items in R̃ are given in non-decreasing order ac-
cording to their area. Note that a(i) ≤ εsmallN

2 ≤ εs
2 N 2 for any i ∈ R̃ . Let

S := {1, . . . , j} be such that (1−2εs)
2 N 2 ≤

∑ j
i=1 a(i) ≤ (1−εs)

2 N 2 and
∑ j+1

i=1 a(i) >
(1−εs)

2 N 2. Then by using Steinberg theorem (Theorem 5), S can be packed into
[0, (1− εs)N]× [0, N]. As we considered items sorted non-decreasingly by area,

we have that |S||R̃| ≥
( 1

2−εs)
( 1

2+εa) . Thus, |S| ≥
�

1− (εa+εs)

( 1
2+εa)

�

|R̃|> (1−2εa−2εs)|R̃|.

Now we have all the required elements to proceed with the proof of Lemma 70.
Let us assume that a(ET,εs

∪EB,εs
)≤ (1+8εs)

2 N 2 thanks to Lemma 73 (the other case
being symmetric). Let us partition Rfinal into three sets in order to bound the
profit of our candidate solutions: Let X be the set of items in Rfinal intersecting
both horizontal strips ST,εs

and SB,εs
, Y := {ET,εs

∪ EB,εs
} \ X the items intersecting

only one of the horizontal strips and Z :=Rfinal \{X ∪Y } be the remaining items
(see Figure 4.8(a) and 4.9(a) for examples). Now let us consider the following
two cases.

• Case A: w(X )≥ 12ε · εsN .
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εi+1

εi

(a)

X rotated

(b)

Figure 4.9. Case B for cardinality 2DKR. Dark gray rectangles are X , light
gray rectangles are Z , gray rectangles plus hatched rectangles are Y , hatched
rectangles are CT,εi+1 and CT,εi+1 . (a): original packing. (b): modified packing
leaving space for resource contraction on the top.

From Lemma 72, all items in X must intersect also ST,ε·εs
and SB,ε·εs

. This
implies that the removal of X ∪ CT,ε·εs

∪ CB,ε·εs
creates a set of empty strips

of height N and total width w(X ). By a simple permutation argument,
all items in Y ∪ Z can be packed inside [0, N −w(X )]× [0, N], leaving an
empty vertical strip of width w(X ) in the right side of the knapsack. Next
we rotate CT,ε·εs

and CB,ε·εs
and pack them in two vertical strips, each one

having width ε · εsN . Note that w(i) ≤ ε · εsN for all i ∈ X . Now pick
items from X , sorted non-decreasingly by width, until their total width is
in [w(X )− 4ε · εsN , w(X )− 3ε · εsN] and pack them into another vertical
strip. The cardinality of this set is at least (w(X )−4ε·εsN)

w(X ) |X | ≥ 2
3 |X |, where

the last inequality follows by our assumption on w(X ) (see Figure 4.8 for
a depiction of the final packing). Hence, at least 2

3 |X |+ |Y |+ |Z | ≥
2
3 |Rfinal|

items can be packed into [0, (1− ε · εs)N]× [0, N].

• Case B: w(X )< 12ε · εsN .

Observe that Y = (ET,εs
\ X )∪̇(EB,εs

\ X ), hence |Y |= |ET,εs
\ X |+ |EB,εs

\ X |.
Assume w.l.o.g. that |EB,εs

\X | ≥ |Y |/2≥ |ET,εs
\X |. Let us remove ET,εs

. We
can pack X on top of R \ ET,εs

as 12ε · εs ≤ εs − ε · εs for ε small enough.
This gives a packing of |X |+ |Z |+ |Y |2 many items. On the other hand, as
a(X ∪ Y ) = a(ET,εs

∪ EB,εs
) ≤ (1+8εs)

2 N 2, by using Lemma 74 it is possible to
pack at least (1− 2εs − 8εs)|X ∪ Y | ≥ (1− 10εs)(|X |+ |Y |) many items into
[0, (1− ε · εs)N]× [0, N].

Thus we can always pack a set of items having cardinality at least
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max
�

(1− 10εs)(|X |+ |Y |), |X |+ |Z |+
|Y |
2

	

≥ 1
3(1− 10εs)(|X |+ |Y |) +

2
3

�

|X |+ |Z |+ |Y |2

�

≥ 2
3(1− 10εs)(|X |+ |Y |+ |Z |)

= 2
3(1− 10εs)|Rfinal|.

This concludes the proof of Lemma 70 as |Rfinal| ≥ (1−O(ε))|R|.

4.5.2 Weighted 2DKR

In this section we present a polynomial time
�

3
2 + ε

�

-approximation algorithm
for the weighted version of 2DKR. Differently from the cardinality case, where it
is possible to remove a constant number of items at a negligible cost, the same
is not possible in the weighted case, where a single item could have a big profit.

As we will see, a problematic case for our approach occurs when one very
large item is present in the optimal solution. We call an item i massive if w(i) ≥
(1 − ε)N and h(i) ≥ (1 − ε)N . The presence of such a big item in the optimal
solution requires a different analysis, that we present below. In both the cases,
we can show that there exists a container packing with roughly 2/3 of the profit
of the optimal solution.

We will prove the following result:

Theorem 75. There exists a container packing of total profit at least
�

2
3 −O(ε)

�

p(OPT)
for the weighted case of 2DKR.

To achieve the claimed result, we will first prove that in the presence of a
massive item it is possible to find such a container packing, and then when there
is no massive item we will follow a similar approach to the one developed in
Section 4.5.1, proving that it is possible to pack enough profit into a reduced
knapsack and then use the previously described techniques to get the required
candidate solutions.

Massive item case

We start by analyzing the case where the optimal solution has a massive item
m. We will assume, without loss of generality, that 1/(3ε) is an integer. In this
specific case we will consider three candidate solutions.

Consider first the items in OPT\{m}. Clearly, each of them has width or height
at most εN ; moreover, a(OPT \ {m})≤ (1− (1− ε)2)N 2 = (2ε− ε2)N 2 ≤ N2

2(1+ε) if
ε is small enough. Thus, by possibly rotating each element so that the height is
smaller than ε, by Steinberg theorem (Theorem 5) all the items in OPT \{m} can
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be packed in a box of size N× N
1+ε ; then, by Lemma 19, there is a feasible container

packing for a subset of OPT \ {m} of profit at least (1−O(ε))p(OPT \ {m}).
Consider now the whole solution. From the definition of massive item, the

region [εN , (1−ε)N]2 is entirely covered by the massive item m. Let us partition
the region with x-coordinate between εN and (1 − ε)N into k = 1/(3ε) strips
S1, . . . , Sk of width 3ε(1 − 2ε)N ≥ 2εN and height N each. Let OPT(Si) be the
set of items such that their left or right edge (or both) is contained in the interior
of strip Si. Since each item belongs to at most two of these sets, there exists i
such that p(OPT(Si)) ≤ 6εp(OPT). Symmetrically, we define k horizontal strips
T1, . . . , Tk, obtaining an index j such that p(OPT(T j))≤ 6εp(OPT). If we remove
from the solution the items in (OPT(Si) ∪ OPT(T j)), obtaining OPT′, every re-
maining item is either disjoint from Si or T j, or completely crosses one of them.
Furthermore, we have that p(OPT′) ≥ (1 − 12ε)p(OPT). Let MV be the set of
items in OPT′ \ {m} that overlap T j, and let MH be the set of items in OPT′ \ {m}
that overlap Si (see Figure 4.10). Clearly, the items in MH can be packed inside
an horizontal container of width N and height N − h(m), and the items in MV

can be packed in a vertical container of width N −w(m) and height N .
Let H be the set of items of OPT′\MH that are completely above or completely

below the massive item m; symmetrically, let V be the set of items of OPT′ \MV

that are completely to the left or completely to the right of m. We will now
show that there is a container packing for MH ∪ V ∪ {m}. Since all the elements
overlapping T j have been removed, V can be packed in a box of size (N−w(m))×
(1− 2ε)N by a simple shifting argument. Since (1− 2ε)N · (1+ ε)< (1− ε)N ≤
h(m), Lemma 19 implies that there is a container packing of a subset of V with
profit at least (1−O(ε))p(V ) in a bin of size (N −w(m))×h(m) and using Oε(1)
containers; thus, by adding an horizontal container of the same size as m and an
horizontal container of size N × (N − h(m)), we obtain a container packing for
MH∪V ∪{m}with Oε(1) containers and profit at least (1−O(ε))p(MH∪V ∪{m}).
Symmetrically, there is a container packing for a subset of MV ∪ H ∪ {m} with
profit at least (1−O(ε))p(MV ∪H ∪ {m}) and Oε(1) containers.

Putting these candidate solutions together we can prove the following.

Lemma 76. Suppose that there is a massive item m ∈ OPT. Then, there exists a
container packing having profit at least

�

2
3 −O(ε)

�

p(OPT).

Proof. Consider the slightly suboptimal solution OPT′ defined above, and notice
that OPT′ = {m} ∪ MH ∪ H ∪ MV ∪ V . By the discussion above, there is a con-
tainer packing with Oε(1) containers and profit at least (1−O(ε))max{p(OPT′ \
{m}), p(MH ∪ V ∪ {m}), p(MV ∪ H ∪ {m})}. Since each element in OPT′ is con-
tained in at least two of the above solutions, it follows that the profit of the best
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(a) Massive item case. Items inter-
secting strips MH and MV (hatched
rectangles) cross these stripes com-
pletely.

i
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h(i)
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Bottom(i)
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(b) Bottom(i), Top(i), Left(i), Right(i)
correspond to vertical, horizontal,
north east and north west patterns re-
spectively.

Figure 4.10

container packing is at least
�

2
3 −O(ε)

�

p(OPT).

No massive item case

If there is no massive item in the optimal solution, we will show two candidate
container packings and show that the maximum of them always packs at least
a
�

2
3 −O(ε)

�

fraction of the optimal profit, bounding then p(OPTL&C). In order
to achieve this, similarly to the approach developed in Section 4.5.1, we will
prove that it is possible to pack enough profit in a reduced knapsack and then
use Lemma 19 to obtain a structured solution. More in detail, we will prove the
following resource contraction lemma.

Lemma 77. (Weighted Resource Contraction Lemma) If a set of items R does not
contain a massive item and can be packed into a box of size N×N, then it is possible
to pack a setR ′ of profit at least 1

2p(R) into a box of size N × (1− ε
2)N (into a box

of size (1− ε
2)N × N resp.) if rotations are allowed.

Let us assume by now that this lemma holds and show the existence of a
profitable packing in this case. Later in the end of this section we prove the
resource contraction lemma.
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Lemma 78. Suppose that there is no massive item in OPT. Then, there exists a
container packing having profit at least

�

2
3 −O(ε)

�

p(OPT).

Proof. First, we consider the corridor decomposition from Lemma 44 and the
classification of items as in Section 4.4.2 to define sets LF, SF, LT, ST and OPTsmall.
Let T := LT ∪ ST be the set of thin items.

Then similarly to Lemma 88, we can show that the profit of the best container
packing is at least (1− ε)(p(LF) + p(SF) + p(OPTsmall)). Thus,

p(OPTL&C)≥ (1− ε)p(OPT)− p(T ).

In the second case, we can use our Resource Contraction Lemma (Lemma
77), to show that it is possible to pack 1

2 of the remaining profit from the optimal
solution, i.e., p(OPT \ T )/2 into a box of size N × (1 − ε/2)N . Now, we can
pack T in a horizontal container of height ε4 N and using Lemma 77 and resource
augmentation we can pack p(OPT\T )/2 in the remaining region N×(1−ε/4)N .
Thus,

p(OPTL&C)≥ p(T ) +
1− ε

2
(p(OPT)− p(T )).

Hence, up to (1−O(ε)) factor, we pack at least

max{
1
2
(p(T ) + p(OPT \ T )), p(OPT \ T )} ≥

2
3

p(OPT).

This concludes the proof of Theorem 75. Note that now we can just apply our
PTAS for container packings to get the desired approximation algorithm, hence
completing the proof of Theorem 41.

Proof of Lemma 77 Let εs = ε/2. We will consider different cases in order to
partition R into two sets R1,R \R1 and show that each such set can be packed
into the reduced knapsack N × (1− εs)N .

In a packing of a set of items R , for item i we define the sets Left(i) := {k ∈
R : right(k) ≤ left(i)}, Right(i) := {k ∈ R : left(k) ≥ right(i)}, Top(i) := {k ∈
R : bottom(k) ≥ top(i)}, Bottom(i) := {k ∈ R : top(k) ≤ bottom(i)}, i.e., the
items that lie completely to the left, right, above and below of i respectively.
We also consider the following four strips ST,3εs

, SB,εs
, SL,εs

, SR,εs
(see Figure 4.11).

Recall that for any δ > 0 we denote the strips of width N and height δN at
the top and bottom of the knapsack by ST,δ := [0, N]× [(1−δ)N , N] and SB,δ :=
[0, N]×[0,δN] respectively. Similarly, we denote the strips of height N and width



94 4.5 2DK with Rotations

3εsN

εsN

εsNεsN

SB,εs

SL,εs SR,εs

ST,3εs

(a) Case 1:
DB,εs

∩ DT,3εs
= ;.

i

(b) Case 2A: i does not
intersect SL,εs

or SR,εs
.

i

(c) Case 2B: i intersects
both SL,εs

and SR,εs
.

i

(d) Case 2C: i ∈ DL,εs

and right(i)≤ N/2.

i

(e) Case 2C: i ∈ DL,εs
and

right(i)> N/2.

i

(f) Case 2C:
i ∈ CL,εs

.

Figure 4.11. Cases for the Resource Contraction Lemma (Lemma 77).

δN to the left and right of the knapsack by SL,δ := [0,δN]× [0, N] and SR,δ :=
[(1− δ)N , N]× [0, N] respectively. The set of items in the solution intersected
by a strip SK ,δ are denoted by EK ,δ, the set of items fully contained in such a strip
are denoted by CK ,δand DK ,δ = EK ,δ \ CK ,δ.

Now we will analyze the different possible cases.
Case 1: No item intersects both SB,εs

and ST,3εs
. Let us define in this case R1 :=

ET,3εs
. As items inR1 do not intersect SB,εs

,R1 can be packed into a (N , N(1−εs))
bin. On the other hand, if we keepR\(R1∪CL,εs

∪CR,εs
) in its position, rotate CL,εs

and CR,εs
and pack them on top of the previous packing using two strips of height

εsN and width N , we get a packing of total height at most (1 − 3εs + 2εs)N ≤
(1− εs)N .
Case 2: There is some item i intersecting both SB,εs

and ST,3εs
. In this case we

distinguish three subcases:
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Case 2A: Item i does not intersect neither SL,εs
nor SR,εs

.
In this case item i partitions R1 \ (CT,3εs

∪ CB,εs
∪ {i}) into two sets: Left(i) and

Right(i). W.l.o.g., assume left(i) ≤ 1/2. If we let R1 = Right(i) ∪ {i}, as item i
does not intersect the strip SL,εs

, we can packR1 into a box of height N and width
(1− εs)N . On the other hand, we can pack R \R1 in the reduced knapsack as
follows: we can rotate CT,3εs

and CB,εs
and pack them to the right of Left(i). This

packing ofR\R1 takes height N and width left(i)+4εsN ≤ (
1
2+4εs)N ≤ (1−εs)N

if εs is small enough.

Case 2B: Item i intersects both SL,εs
and SR,εs

.
LetR1 to be CL,εs

∪CR,εs
∪Top(i). We can pack Top(i) and then rotate CL,εs

and CR,εs

to be packed on top. These items can be packed into height (1− top(i)+2εs)N ≤
5εsN ≤ (1−εs)N if εs is small enough. On the other hand, as there is no massive
item, R \R1 can be packed using height (1− εs)N and width N .

Case 2C: Item i intersects only SL,εs
(symmetrically only SR,εs

).
Consider first the case i ∈ DL,εs

. If right(i) ≤ N/2, let R1 := Right(i) which can
be packed into a box of width (1−εs)N and height N . On the other hand, we can
pack R \ {R1 ∪ CT,3εs

∪ CB,εs
} in its original position and CT,3εs

∪ CB,εs
on its side

by rotating them. The total width of this packing is at most (1/2+ 3εs + εs)N ≤
(1− εs)N if εs is small enough.
On the other hand, if right(i) > N/2, let R1 := Left(i) ∪ i which can clearly
be packed into a reduced knapsack as i does not intersect SR,εs

. Now, consider
R \ {R1 ∪ CT,3εs

∪ CB,εs
}, rotate CT,3εs

∪ CB,εs
and pack them on its left. The total

width of this packing is at most (1/2+ 4εs)N ≤ (1− εs)N .
Finally, if the previous case does not hold, then every item intersecting both SB,εs

∩
ST,3εs

is completely contained in SL,εs
. Thus, we can considerR1 = ET,3εs

\ (CL,εs
∪

CR,εs
) which can be packed in the reduced knapsack as items do not intersect

SB,εs
. In order to pack R \R1 we can rotate CL,εs

and CR,εs
and pack them on top

of R \ (R1 ∪ CL,εs
∪ CR,εs

) as in Case 1.
This concludes the proof of Lemma 77.

4.6 Open Problems

The most important open question here is to close the gap for the approxima-
bility of all the considered cases. A way to make progress in this direction is to
generalize our techniques in order to handle multiple L-packing instances simul-
taneously, or also to handle ring-shaped instances of the problem for items with
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one large dimension and the remaining one small (similar to the L-case described
before). A way to handle these special cases would lead to improved approxima-
tion factors in the settings without rotations. On the other hand, finding a way
to handle L-packing instances when rotations are allowed is also an interesting
and important open question.

We can also consider parameterized algorithms for Geometric Knapsack. To
the best of our knowledge, the only result in this direction is a recent PTAS in
FPT time (considering the number of items in the optimal solution as parame-
ter) for the case with rotations and uniform weights, together with a hardness
result for all the cases (Grandoni et al. [2019]). Developing improved param-
eterized approximation algorithms for the remaining cases may help to devise
new algorithmic approaches to tackle the general problem.

Another interesting related problem is the geometric variant of the Unsplit-
table Flow on a Path problem (UFP), known as the Storage Allocation problem
(SAP). In this problem we are given a strip of integral width W and a set of
n items {1, . . . , n}, each one characterized by an integral height h(i), an inte-
gral starting x-coordinate s(i) and an integral ending x-coordinate t(i) satisfying
0≤ s(i)< t(i)≤W , plus an integral profit p(i). We are also given a capacity pro-
file which in some sense defines a “knapsack” where to assign a maximum subset
of items. More formally, we look at the strip as a path with W edges, where
each edge e is equipped with an integral capacity c(e). The goal is to select a
subset of the items of maximum profit and find a packing of them (i.e. decid-
ing vertical positions bottom(i) for each selected item i) such that the starting
and ending coordinates of each item are respected, they form a feasible non-
overlapping packing and for each edge e of the path and item i containing that
edge we have that top(i)≤ c(e) (in other words, it is similar to two-dimensional
Geometric Knapsack, but the horizontal position of each item is fixed and the
knapsack is not necessarily a square, it is defined by the capacity profile). This
problem is known to be NP-hard and the best known approximation factor for it
is (2+ ε) (Mömke and Wiese [2015]).



Appendix A

Two-Dimensional Geometric Knapsack
with Resource Augmentation

In this section we prove that it is possible to pack a high profit subset of items
into containers, if we are allowed to augment one side of a knapsack by a small
fraction.

The result was essentially proved by Jansen and Solis-Oba [2009], although
we introduced some modifications and extensions to obtain additional useful
features. For the sake of completeness, we provide a full proof, which follows
in spirit the proof of the original result, from which we also borrow most of the
notation.

We say that a container C ′ is smaller than a container C if w(C ′)≤ w(C) and
h(C ′) ≤ h(C). Given a container C and a positive ε < 1, we say that an item R j

is ε-small for C if w(R j)≤ εw(C) and h(R j)≤ εh(C).

Lemma 79 (Resource Augmentation Packing Lemma). Let R ′ be a collection of
items that can be packed into a box of size a × b, and εra > 0 be a given constant.
Then there exists a container packing ofR ′′ ⊆R ′ inside a box of size a× (1+εra)b
(resp., (1+ εra)a× b) such that:

1. p(R ′′)≥ (1−O(εra))p(R ′);

2. the number of containers is Oεra
(1) and their sizes belong to a set of cardinality

nOεra (1) that can be computed in polynomial time;

3. the total area of the containers is at most a(R ′) + εraab.

Note that we do not allow rotations, that is, items are packed with the same
orientation as in the original packing. However, as an existential result we can
apply it also to the case with rotations. Moreover, since Theorem 16 gives a PTAS
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for approximating container packings, this implies a simple algorithm that does
not need to solve any LP to find the solution, in both the cases with and without
rotations.

For simplicity, in this section we assume that widths and heights are positive
real numbers in (0, 1], and a = b = 1: in fact, all elements, containers and boxes
can be scaled without affecting the property of a packing of being a container
packing with the above conditions. Thus, without loss of generality, we prove
the statement for the augmented 1× (1+ εra) box.

Let ε′ra = εra/2< εra. We will first obtain a packing where all the elements of
each area container C are smaller than the dimensions of C by a factor ε′ra, and
in Section A.3 we will obtain the final packing, where the sizes of each container
are taken from a polynomially sized set of choices.

We will use the following Lemma, that follows from the analysis in Kenyon
and Rémila [2000].

Lemma 80 (Kenyon and Rémila [2000]). Let ε > 0, and let Q be a set of rect-
angles, each of height and width at most 1. Let L ⊆ Q be the set of rectangles of
width at least ε, and let OPTSP(L ) be the minimum width such that the rectangles
in L can be packed in a box of size OPTSP(L )× 1.

ThenQ can be packed in polynomial time into a box of height 1 and width w̃≤
max{OPTSP(L ) +

18
ε2 wmax, a(Q)(1+ ε) + 19

ε2 wmax}. Furthermore, all the rectangles
with both width and height less than ε are packed into at most 9

ε2 boxes, and all the
remaining rectangles into at most 27

ε3 vertical containers.

Note that the boxes containing the rectangles that are smaller than ε are not
necessarily packed as containers.

We need the following technical lemma to create a gap on the sizes of the
items analogously to Lemmas 26 and 72.

Lemma 81. Let ε > 0 and let f (·) be any positive increasing function such that
f (x) < x for all x. Then, there exist positive constant values δ,µ ∈ Ωε(1), with
f (ε) ≥ δ and f (δ) ≥ µ such that the total profit of all the items whose width or
height lies in (µ,δ] is at most ε · p(R ′).

Proof. Define k + 1 = 2/ε + 1 constants ε1, . . . ,εk+1, with ε1 = f (ε) and εi =
f (εi+1) for each i. Consider the k ranges of widths and heights of type (εi+1,εi].
By an averaging argument there exists one index j such that the total profit of
the items in R ′ with at least one side length in the range (ε j+1N ,ε jN] is at most
2 ε2p(R ′). It is then sufficient to set δ = ε j and µ= ε j+1.
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Figure A.1. An example of a packing after the short-narrow items have been
removed, and the wide items (in dark grey) have been aligned to the M vertical
strips. Note that the short-high items (in light gray) are much smaller than
the vertical strips.

We use this lemma with ε = ε′ra, and we will specify the function f later. By
properly choosing the function f , in fact, we can enforce constraints on the value
of µ with respect to δ, which will be useful several times; the exact constraints
will be clear from the analysis. Thus, we remove from R ′ the items that have at
least one side length in (µ,δ].

We call an item R wide if w(R) > δ, high if h(R) > δ, short if w(R) ≤ µ and
narrow if h(R)≤ µ.1 From now on, we will assume that we start with the optimal
packing of the items in R ′, and we will modify it until we obtain a packing with
the desired properties. We remove from R ′ all the short-narrow items, initially
obtaining a packing. We will show in section A.4 how to use the residual space
to pack them, with a negligible loss of profit.

As a first step, we round up the widths of all the wide items in R ′ to the
nearest multiple of δ2; moreover, we shift them horizontally so that their starting
coordinate is an integer multiple of δ2 (note that, in this process, we might have
to shift also the other items in order to make space). Since the width of each
wide item is at least δ and 1

δ · 2δ
2 = 2δ, it is easy to see that it is sufficient to

increase the width of the box to 1+ 2δ to perform such a rounding.
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Figure A.2. For each vertical box, we can remove a low profit subset of items
(red in the picture), to make space for short-high items that cross the right
edge of the box (blue).

A.1 Containers for Short-High Items

We draw vertical lines across the 1×(1+2δ) region spaced by δ2, splitting it into
M := 1+2δ

δ2 vertical strips (see Figure A.1). Consider each maximal rectangular
region which is contained in one such strip and does not overlap any wide item;
we define a box for each such region that contains at least one short-high item,
and we denote the set of such boxes byB .

Note that some short items might intersect the vertical edges of the boxes,
but in this case they overlap with exactly two boxes. Using a standard shifting
technique, we can assume that no item is cut by the boxes by losing profit at
most ε′raOPT: first, we assume that the items intersecting two boxes belong to the
leftmost of those boxes. For each box B ∈B (which has width δ2 by definition),
we divide it into vertical strips of width µ. Since there are δ2

µ > 2/ε′ra strips and
each item overlaps with at most 2 such strips, there must exist one of them such
that the profit of the items intersecting it is at most 2µp(B)≤ ε′rap(B), where p(B)
is the profit of all the items that are contained in or belong to B. We can remove
all the items overlapping such strip, creating in B an empty vertical gap of width
µ, and then we can move all the items intersecting the right boundary of B to
the empty space (see Figure A.2).

Remark 82. The number of boxes inB is at most 1+2δ
δ2 · 1

δ ≤
2
δ3 .

1Note that the classification of the items in this section is different from the ones used in the
main results of this thesis, although similar in spirit.
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First, by a shifting argument similar to above, we can reduce the width of
each box to δ2 − δ4 while losing only an ε′ra fraction of the profit of the items
in B. Then, for each B ∈ B , since the maximum width of the items in B is at
most µ, by applying Lemma 80 with ε = δ2/2 we obtain that the items packed
inside B can be repacked into a box B′ of height h(B) and width at most max{δ2−
δ4 + 72

δ4µ, (δ2 − δ4)(1+ δ2

2 ) +
76
δ4µ} ≤ δ2, which is true if we make sure that µ ≤

δ10/76. Furthermore, the short-high items in B are packed into at most
216
δ6
≤

1
δ7

vertical containers, assuming without loss of generality that δ ≤ 1/216. Note

that all the items are packed into vertical containers, because items that have
both width and height smaller than ε are short-narrow and we already removed
them. Summarizing:

Proposition 83. There is a set R+ ⊆ R ′ of items with total profit at least (1 −
O(ε′ra)) ·p(R

′) and a corresponding packing for them in a 1× (1+2δ) region such
that:

• every wide items in R+ has its length rounded up to the nearest multiple of
δ2 and it is positioned so that its left side is at a position x which is a multiple
of δ2, and

• each box B ∈ B storing at least one short-high item has width δ2, and the
items inside are packed into at most 1/δ7 vertical containers.

A.2 Fractional Packing with O(1) Containers

Let us consider now the set of items R+ and an almost optimal packing S+ for
them according to Proposition 83. We remove the items assigned to boxes inB
and consider each box B ∈ B as a single pseudoitem. Thus, in the new almost
optimal solution there are just pseudoitems from B and wide items with right
and left coordinates that are multiples of δ2. We will now show that we can
derive a fractional packing with the same profit, and such that the items and
pseudoitems can be (fractionally) assigned to a constant number of containers.
By fractional packing we mean a packing where horizontal items are allowed to
be sliced horizontally (but not vertically); we can think of the profit as being split
proportionally to the heights of the slices.

LetK be a subset of the horizontal items of size K that will be specified later.
By extending horizontally the top and bottom edges of the items in K and the



102 A.2 Fractional Packing with O(1) Containers

Figure A.3. Rearranging the items in a horizontal stripe. On the right, items
are repacked so that regions with the same configuration appear next to each
other. Note that the yellow item has been sliced, since it partakes in two
regions with different configurations.

pseudoitems in B , we partition the knapsack into at most 2(|K | + |B|) + 1 ≤
2(K + 2

δ3 ) + 1≤ 2(K + 3
δ3 ) horizontal stripes.

Let us focus on the (possibly sliced) items contained in one such stripe of
height h. For any vertical coordinate y ∈ [0, h] we can define the configuration
at coordinate y as the set of positions where the horizontal line at distance y
from the bottom cuts a vertical edge of an horizontal item which is not in K .
There are at most 2M−1 possible configurations in a stripe.

We can further partition the stripe into maximal contiguous regions with the
same configuration. Note that the number of such regions is not bounded, since
configurations can be repeated. But since the items are allowed to be sliced, we
can rearrange the regions so that all the ones with the same configuration appear
next to each other; see Figure A.3 for an example. After this step is completed,
we define up to M horizontal containers per each configuration, where we repack
the sliced horizontal items. Clearly, all sliced items are repacked.

Thus, the number of horizontal containers that we defined per each stripe is
bounded by M2M−1, and the total number overall is at most

2
�

K +
3
δ3

�

M2M−1 =
�

K +
3
δ3

�

M2M .

A.2.1 Existence of an Integral Packing

We will now show the existence of an integral packing, at a small loss of profit.
This is similar to the proof of Lemma 17 with the exception that now the profit
of the discarded items comes into account.

Consider a fractional packing in N containers. Since each item slice is packed
in a container of exactly the same width, it is possible to pack all but at most N
items integrally by a simple greedy algorithm: choose a container, and greedily
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pack in it items of the same width, until either there are no items left for that
width, or the next item does not fit in the current container. In this case, we
discard this item and close the container, meaning that we do not use it further.
Clearly, only one item per container is discarded, and no item is left unpacked.

The only problem is that the total profit of the discarded items can be large.
To solve this problem, we use the following shifting argument. Let K0 = ; and
K0 = 0. For convenience, let us define f (K) =

�

K + 3
δ3

�

M2M .
First, consider the fractional packing obtained by choosing K =K0, so that

K = K0 = 0. Let K1 be the set of discarded items obtained by the greedy algo-
rithm, and let K1 = |K1|. Clearly, by the above reasoning, the number of dis-
carded items is bounded by f (K0). If the profit p(K1) of the discarded items is at
most ε′rap(OPT), then we remove them and there is nothing else to prove. Oth-
erwise, consider the fractional packing obtained by fixing K =K0 ∪K1. Again,
we will obtain a set K2 of discarded items such that K2 := |K2| ≤ f (K0 + K1).
Since the sets K1,K2, . . . that we obtain are all disjoint, the process must stop
after at most 1/ε′ra iterations. Setting p := M2M and q := 3

δ3 M2M , we have
that Ki+1 ≤ p(K0 + K1 + . . . Ki) + q for each i ≥ 0. Crudely bounding it as
Ki+1 ≤ i · pq · Ki, we immediately obtain that Ki ≤ (pq)i. Thus, in the successful
iteration, the size ofK is at most K1/ε′ra−1 and the number of containers is at most

K1/ε′ra
≤ (pq)1/ε

′
ra = ( 3

δ2 M222M)1/ε
′
ra = Oε′ra,δ(1).

A.3 Rounding Down Horizontal and Vertical Containers

As per the above analysis, the total number of horizontal containers is at most
( 3
δ2 M222M)ε

′
ra and the total number of vertical containers is at most 2

δ3 · 1
δ7 = 2

δ10 .
We will now show that, at a small loss of profit, it is possible to replace each

horizontal and each vertical container defined so far with a constant number of
smaller containers, so that the total area of the new containers is at most as big
as the total area of the items originally packed in the container. Note that in each
container we consider the items with the original widths (not rounded up). We
use the following lemma:

Lemma 84. Let C be a horizontal (resp. vertical) container defined above, and let
RC be the set of items packed in C. Then, it is possible to pack a set R ′C ⊆ RC of

profit at least (1−3ε′ra)p(RC) in a set of at most
 

log1+ε′ra
( 1
δ)
£

/ε′2ra horizontal (resp.
vertical) containers that can be packed inside C and such that their total area is at
most a(RC).
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Proof. Without loss of generality, we prove the result only for the case of a hori-
zontal container.

Since w(Ri)≥ δ for each item Ri ∈ RC , we can partition the items inRC into
at most

 

log1+ε′ra
( 1
δ)
£

groups R1,R2, . . . , so that in each R j the widest item has
width bigger than the smallest by a factor at most 1+ ε′ra; we can then define a
container C j for each group R j that has the width of the widest item it contains
and height equal to the sum of the heights of the contained items.

Consider now one such C j and the set of items R j that it contains, and let
P := p(R j). Clearly, w(C j)≤ (1+ε′ra)w(Ri) for each Ri ∈ R j, and so a(C j)≤ (1+
ε′ra)a(R j). If all the items inR j have height at most ε′rah(C j), then we can remove
a set of items with total height at least ε′rah(C) and profit at most 2ε′rap(R j).
Otherwise, letQ be the set of items of height larger than ε′rah(C j), and note that
a(Q) ≥ ε′rah(C j)w(C j)/(1 + ε′ra). If p(Q) ≤ ε′raP, then we remove the items in
Q from the container C j and reduce its height as much as possible, obtaining
a smaller container C ′j; since a(C ′j) ≤ a(C j) − ε′raa(C j) = (1 − ε′ra)a(C j) ≤ (1 −
ε′ra)(1+ ε

′
ra)a(R j)< a(R j), then the proof is finished. Otherwise, we define one

container for each of the items inQ (which are at most 1/ε′ra) of exactly the same
size, and we still shrink the container with the remaining items as before; note
that there is no lost area for each of the newly defined container. Since at every
non-terminating iteration a set of items with profit larger than ε′raP is removed,
the process must end within 1/ε′ra iterations.

Note that the total number of containers that we produce for each initial
container C j is at most 1/ε′2ra, and this concludes the proof.

Thus, by applying the above lemma to each horizontal and each vertical con-
tainer, we obtain a modified packing where the total area of the horizontal and
vertical containers is at most the area of the items of R ′ (without the short-
narrow items, which we will take into account in the next subsection), while the
number of containers increases at most by a factor

 

log1+ε′ra
( 1
δ)
£

/ε′2ra.

A.4 Packing Short-Narrow Items

This is similar to the procedure shown in Section 3.2.4 but we need to provide
extra area guarantees in this case.

Consider the integral packing obtained from the previous subsection, which
has at most K ′ :=

�

2
δ10 + ( 3

δ2 M222M)ε
′
ra
�

 

log1+ε′ra
( 1
δ)
£

/ε′2ra containers. We can cre-
ate a non-uniform grid extending each side of the containers until they hit an-
other container or the boundary of the knapsack. Moreover, we also add hori-
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zontal and vertical lines spaced at distance ε′ra. We call free cell each face defined
by the above lines that does not overlap a container of the packing; by construc-
tion, no free cell has a side bigger than ε′ra. The number of free cells in this grid
plus the existing containers is bounded by KTOTAL = (2K ′ + 1/ε′ra)

2 = Oε′ra,δ(1).
We crucially use the fact that this number does not depend on value of µ.

Note that the total area of the free cells is no less than the total area of the
short-narrow items, as a consequence of the guarantees on the area of the con-
tainers introduced so far. We will pack the short-narrow items into the free cells
of this grid using NFDH, but we only use cells that have width and height at least
8µ
ε′ra

; thus, each short-narrow item will be assigned to a cell whose width (resp.
height) is larger by at least a factor 8/ε′ra than the width (resp. height) of the
item. Each discarded cell has area at most 8µ

ε′ra
, which implies that the total area

of discarded cells is at most 8µKTOTAL
ε′ra

. Now we consider the selected cells in an
arbitrary order and pack short narrow items into them using NFDH, defining a
new area container for each cell that is used. Thanks to Lemma ??, we know
that each new container C (except maybe the last one) that is used by NFDH
contains items for a total area of at least (1− ε′ra/4)a(C). Thus, if all items are
packed, we remove the last container opened by NFDH, and we call S the set of
items inside, that we will repack elsewhere; note that a(S) ≤ ε′2ra ≤ ε

′
ra/3, since

all the items in S were packed in a free cell. Instead, if not all items are packed
by NFDH, let S be the residual items. In this case, the area of the unpacked items

is a(S)≤ 8µKTOTAL
ε′ra

+ ε′ra/4≤ ε
′
ra/3, assuming that µ≤ ε′2ra

96KTOTAL
.

In order to repack the items of S, we define a new area container CS of height
1 and width ε′ra/2. Since a(CS) = ε′ra/2≥ (ε

′
ra/3)/(1− 2ε′ra), all elements from S

are packed in CS by NFDH, and the container can be added to the knapsack by
further enlarging its width from 1+ 2δ to 1+ 2δ+ ε′ra/2< 1+ ε′ra.

The last required step is to guarantee the necessary constraint on the total
area of the area containers, similarly to what was done in Section A.3 for the
horizontal and vertical containers.

Let D be any full area container (that is, any area container except for CS).
We know that the area of the items RD in D is a(RD) ≥ (1− ε′ra)a(D), since each
item Ri inside D has width less than ε′raw(D)/2 and height less than ε′rah(D)/2, by
construction. We remove items from RD in non-decreasing order of profit/area
ratio, until the total area of the residual items is between (1 − 4ε′ra)a(D) and
(1−3ε′ra)a(D) (this is possible, since each element has area at most ε′2raa(D)); let
R′D be the resulting set. We have that p(R′D)≥ (1−4ε′ra)p(RD), due to the greedy
choice. Let us define a container D′ of width w(D) and height (1− ε′ra)h(D). It is
easy to verify that each item in RD has width (resp. height) at most ε′raw(D

′) (resp.
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ε′rah(D
′)). Moreover, since a(R′D)≤ (1−3ε′ra)a(D)≤ (1−2ε′ra)(1−ε

′
ra)a(C)≤ (1−

2ε′ra)a(C
′), then all elements in R′D are packed in D′. By applying this reasoning

to each area container (except CS), we obtain property (3) of Lemma 79.
Note that the constraints on µ and δ that we imposed are µ ≤ δ10

76 (from

Section A.1), and µ ≤ ε′2ra
96KTOTAL

. It is easy to check that both of them are satisfied
if we choose f (x) = (ε′ra x)C for a big enough constant C that depends only on δ
and ε′ra.



Appendix B

Proof of Lemma 59 without Extra
Assumptions

We remove now the assumption that we can drop Oε(1) items from OPT. We will
add a couple of shifting steps to the argumentation above to prove Lemma 59
without that assumption.

It is no longer true that we can neglect the large items OPTlarge since they
might contribute a large amount towards the objective, even though their total
number is guaranteed to be small. Also, in the process of constructing the boxes,
we killed up to Oε(1) items (the items in OPTkill). Similarly, we can no longer
drop the constantly many items in OPTcross

corr . Therefore, we apply some careful
shifting arguments in order to ensure that we can still use a similar construction
as above, while losing only a factor 1 + O(ε) due to some items that we will
discard.

The general idea is as follows: For t = 0, . . . , k (we will later argue that
k < 1/ε), we define disjoint sets K(t) recursively, each containing at most Oε(1)
items. Each set K (t) =

⋃t
j=0 K( j) is used to define a grid G(t) in the knapsack.

Based on an item classification that depends on this grid, we identify a set of
skewed items and create a corridor partition w.r.t. these skewed items as de-
scribed in Lemma 44. We then create a partition of the knapsack into corridors
and a constant (depending on ε) number of containers (see Section B.1). Next,
we decompose the corridors into boxes (Section B.2) and these boxes into con-
tainers (section B.3) similarly as we did in Section 4.4.2 (but with some notable
changes as we did not delete small items from the knapsack and thus need to
handle those as well). In the last step, we add small items to the packing (Sec-
tion B.4). During this whole process, we define the set K(i + 1) of items that
are somehow “in our way” during the decomposition process (e.g., items that

107
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are not fully contained in some corridor of the corridor partition), but which we
cannot delete directly as they might have large profit. These items are similar
to the killed items in the previous argumentation. However, using a shifting ar-
gument we can simply show that after at most k < 1/ε steps of this process, we
encounter a set K(k) of low total profit, that we can remove, at which point we
can apply almost the same argumentation as in Lemmas 65, 66, and 67 to obtain
lower bounds on the profit of an optimal L&C packing (Section B.5).

We initiate this iterative process as follows: Denote by K(0) a set containing
all items that are killed in at least one of the cases arising in Section 4.4.2 (the set
OPTK in that section) and additionally the large items OPTlarge and the Oε(1) items
in OPTcross

corr (in fact OPTlarge ⊆ OPTcross
corr ). Note that |K(0)| ≤ Oε(1). If p(K(0)) ≤

ε · p(OPT) then we can simply remove these items (losing only a factor of 1+ ε)
and then apply the remaining argumentation exactly as above and we are done.
Therefore, from now on suppose that p(K(0))> ε · p(OPT).

B.1 Definition of Grid and Corridor Partition

Assume we are in round t of this process, i.e., we defined K(t) in the previous step
(unless t = 0, then K(t) is defined as specified above) and assume that p(K(t))>
εOPT (otherwise, see Section B.5). We are now going to define the non-uniform
grid G(t) and the induced partition of the knapsack into a collection of cells
Ct . The x-coordinates (y-coordinates) of the grid cells are the x-coordinates
(y-coordinates, respectively) of the items in K (t). This yields a partition of the
knapsack into Oε(1) rectangular cells, such that each item ofK (t) covers one or
multiple cells. Note that an item might intersect many cells.

Similarly as above, we define constants 1≥ εlarge ≥ εsmall ≥ Ωε(1) and apply a
shifting step such that we can assume that for each item i ∈ OPT touching some
cell C we have that w(i ∩ C) ∈ (0,εsmallw(C)]∪ (εlargew(C), w(C)] and h(i ∩ C) ∈
(0,εsmallh(C)] ∪ (εlargeh(C), h(C)], where h(C) and w(C) denote the height and
the width of the cell C and w(i∩C) and h(i∩C) denote the height and the width
of the intersection of the item i with the cell C , respectively. For a cell C denote
by OPT(C) the set of items that intersect C in OPT. We obtain a partition of
OPT(C) into OPTsmall(C), OPTlarge(C), OPThor(C), and OPTver(C):

• OPTsmall(C) contains all items i ∈ OPT(C) with h(i ∩ C) ≤ εsmallh(C) and
w(i ∩ C)≤ εsmallw(C),

• OPTlarge(C) contains all items i ∈ OPT(C) with h(i ∩ C) > εlargeh(C) and
w(i ∩ C)> εlargew(C),
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• OPThor(C) contains all items i ∈ OPT(C) with h(i ∩ C) ≤ εsmallh(C) and
w(i ∩ C)> εlargew(C), and

• OPTver(C) contains all items i ∈ OPT(C) with h(i ∩ C) > εlargeh(C) and
w(i ∩ C)≤ εsmallw(C).

We call an item i intermediate if there is a cell C such that w(i∩C) ∈ (εsmallw(C),εlargew(C)]
or h(i ∩ C) ∈ (εsmallw(C),εlargew(C)]. Note that an item i is intermediate if and
only if the last condition is satisfied for one of the at most four cells that contain
a corner of i. As in Section 4.1.1 it is possible to define εsmall and εlarge so that
intermediate items can be discarded at negligible cost.

For each cell C that is not entirely covered by some item in K(t) we add all
items in OPTlarge(C) that are not contained in K (t) to K(t + 1). Note that here,
in contrast to before, we do not remove small items from the packing but keep
them.

Based on the items OPTskew(Ct) := ∪C∈Ct
OPThor(C) ∪ OPTver(C) we create a

corridor decomposition and consequently a box decomposition of the knapsack.
To make this decomposition clearer, we assume that we first stretch the non-
uniform grid into a uniform [0,1]×[0,1] grid. After this operation, for each cell C
and for each element of OPThor(C)∪OPTver(C)we know that its height or width is
at least εlarge ·

1
1+2|K (t)| . We apply Lemma 44 on the set OPTskew(Ct) which yields a

decomposition of the [0,1]×[0,1] square into at most Oε,εlarge,K (t)(1) = Oε,εlarge
(1)

corridors. The decomposition for the stretched [0,1]×[0, 1] square corresponds
to the decomposition for the original knapsack, with the same items being inter-
sected. Since we can assume that all items of OPT are placed within the knapsack
so that they have integer coordinates, we can assume that the corridors of the
decomposition also have integer coordinates. We can do that, because shifting
the edges of the decomposition to the closest integral coordinate will not make
the decomposition worse, i.e., no new items of OPT will be intersected.

We add all items in OPTskew(Ct) that are not contained in a corridor (at most
Oε(1) many) and that are not contained in K (t) to K(t + 1). The corridor par-
tition has the following useful property: we started with a fixed (optimal) so-
lution OPT for the overall problem with a fixed placement of the items in this
solution. Then we considered the items in OPTskew(Ct) and obtained the sets
OPTcorr ⊆ OPTskew(Ct) and OPTcross

corr ⊆ OPTcorr. With the mentioned fixed place-
ment, apart from the Oε(1) items in OPTcross

corr , each item in OPTcorr is contained in
one corridor. In particular, the items in OPTcorr do not overlap the items inK (t).
We construct now a partition of the knapsack into Oε(1) corridors and Oε(1) con-
tainers where each container contains exactly one item from K (t). The main
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Figure B.1. Circumventing the items in R ′, shown in black. The connected
components between the dashed lines show the resulting new corridors.

obstacle is that there can be an item i ∈ K (t) that overlaps a corridor (see Fig-
ure B.1). We solve this problem by applying the following lemma on each such
corridor.

Lemma 85. Let S be an open corridor with b(S) bends. LetR ′ ⊆ OPT be a collection
of items which intersect the boundary of S withR ′∩OPTskew(Ct) = ;. Then there is
a collection of |R ′| · b(S) line segmentsL within S which partition S into corridors
with at most b(S) bends each such that no item from R ′ is intersected by L and
there are at most Oε(|R ′| · b(S)) items of OPTskew(Ct) intersected by line segments
in L .

Proof. Let i ∈ R ′ and assume w.l.o.g. that i lies within a horizontal subcorridor
Si of the corridor S. If the top or bottom edge e of i lies within Si, we define
a horizontal line segment ` which contains the edge e and which is maximally
long so that it does not intersect the interior of any item in R ′, and such that it
does not cross the boundary curve between Si and an adjacent subcorridor, or
an edge of the boundary of S (we can assume w.l.o.g. that e does not intersect
the boundary curve between Si and some adjacent subcorridor). We say that `
crosses a boundary curve c (or an edge e of the boundary of S) if c \ ` (or e \ `)
has two connected components.

We now “extend” each end-point of ` which does not lie at the boundary of
some other item of R ′ or at the boundary of S, we call such an end point a loose
end. For each loose end x of ` lying on the boundary curve ci j partitioning the
subcorridors Si and S j, we introduce a new line `′ perpendicular to `, starting
at x and crossing the subcorridor S j such that the end point of `′ is maximally
far away from x subject to the constraint that `′ does not cross an item in R ′,



111 B.1 Definition of Grid and Corridor Partition

another boundary curve inside S, or the boundary of S. We continue iteratively.
Since the corridor has b(S) bends, after at most b(S) iterations this operation
will finish. We repeat the above operation for every item i ∈ R ′, and we denote
by L the resulting set of line segments, see Figure B.1 for a sketch. Notice that
|L | = b(S) · |R ′|. By construction, if an item i ∈ OPTskew(Ct) is intersected by a
line inL then it is intersected parallel to its longer edge. Thus, each line segment
in L can intersect at most Oε(1) items of OPTskew(Ct). Thus, in total there are
at most Oε,εlarge

(|R ′| · b(S)) items of OPTskew(Ct) intersected by line segments in
L .

We apply Lemma 85 to each open corridor that intersects an item inK (t). We
add all items ofRskew(Ct) that are intersected by line segments inL to K(t+1).
This adds Oε(1) items in total to K(t+1) since |K (t)| ∈ Oε(1) and b(S)≤ 1/ε for
each corridor S. For closed corridors we have the following analogous lemma.

Lemma 86. Let S be a closed corridor with b(S) bends. Let OPTskew(S) denote
the items in OPTskew(Ct) that are contained in S. Let R ′ ⊆ OPT be a collection of
items which intersect the boundary of S with R ′ ∩ OPTskew(Ct) = ;. Then there
is a collection of Oε(|R ′|2/ε) line segments L within S which partition S into a
collection of closed corridors with at most 1/ε bends each and possibly an open
corridor with b(S) bends such that no item from R ′ is intersected by L and there
is a set of items OPT′skew(S) ⊆ OPTskew(S) with |OPT′skew(S)| ≤ Oε(|R ′|2) such that
the items in OPTskew(S) \OPT′skew(S) intersected by line segments in L have a total
profit of at most O(ε) · p(OPTskew(Ct)).

Proof. Similarly as for the case of open corridors, we take each item i ∈ R ′

whose edge e is contained in S, and we create a path containing e that partitions
S. Here the situation is a bit more complicated, as our newly created paths
could extend over more than 1

ε bends inside S. In this case we will have to
do some shortcutting, i.e., some items contained in S will be crossed parallel to
their shorter edge and we cannot guarantee that their total number will be small.
However, we will ensure that the total weight of such items is small. We proceed
as follows (see Figure B.1 for a sketch).

Consider any item i ∈ R ′ and assume w.l.o.g. that i intersects a horizontal
subcorridor Si of the closed corridor S. Let e be the edge of i within Si. For each
endpoint of e we create a path p as for the case of closed corridors. If after at
most b(S) ≤ 1/ε bends the path hits an item of R ′ (possibly the same item i),
the boundary of S or another path created earlier, we stop the construction of
the path. Otherwise, if p is the first path inside of S that did not finish after at
most b(S) bends, we proceed with the construction of the path, only now at each
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bend we check the total weight of the items of OPTskew(S) that would be crossed
parallel to their shorter edge, if, instead of bending, the path would continue
at the bend to hit itself. From the construction of the boundary curves in the
intersection of two subcorridors we know that for two bends of the constructed
path, the sets of items that would be crossed at these bends of the path are
pairwise disjoint. Thus, after O(|R ′|/ε) bends we encounter a collection of items
OPT′′skew(S) ⊆ OPTskew(S) such that p(OPT′′skew(S)) ≤

ε
|R ′|p(OPTskew(S)), and we

end the path p by crossing the items of OPT′′skew(S). This operation creates an open
corridor with up to O(|R ′|/ε) bends. We divide it into up to O(|R ′|) corridors
with up to 1/ε bends each. Via a shifting argument we can argue that this loses
at most a factor of 1 + ε in the profit due to these items. When we perform
this operation for each item i ∈ R ′ the total weight of items intersected parallel
to their shorter edge (i.e., due to the above shortcutting) is bounded by |R ′| ·
ε
|R ′|p(OPTskew(S)) = ε · p(OPTskew(S)). This way, we introduce at most O(|R ′|2/ε)
line segments. Denote them byL . They intersect at most Oε(|R ′|2) items parallel
to their respective longer edge, denote them by OPT′skew(S). Thus, the set L
satisfies the claim of the lemma.

Similarly as for Lemma 85 we apply Lemma 86 to each closed corridor. We
add all items in the respective set OPT′skew(S) to the set K(t + 1) which yields
Oε(1) many items. The items in OPTskew(S)\OPT′skew(S) are removed from the
instance, as their total profit is small.

B.2 Partitioning Corridors into Boxes

Then we partition the resulting corridors into boxes according to the different
cases described in Section 4.4.2. There is one difference to the argumentation
above: we define that the set OPTfat contains not only skewed items contained
in the respective subregions of a subcorridor, but all items contained in such a
subregion. In particular, this includes items that might have been considered as
small items above. Thus, when we move items from one subregion to the box
associated to the subregion below (see Remark 61) then we move every item
that is contained in that subregion. If an item is killed in one of the orderings
of the subcorridors to apply the procedure from Section 4.4.2 then we add it to
K(t +1). Note that |K(t +1)| ∈ Oε,εlarge,εbox

(1) andK (t)∩K(t +1) = ;. Also note
here that we ignore for the moment small items that cross the boundary curves
of the subcorridors; they will be taken care of in Section B.4.
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B.3 Partitioning Boxes into Containers

Then we subdivide the boxes into containers. We apply the same decomposition
into containers as in the proof of Lemma 69 to each box with a slight modification.
Assume that we apply it to a box of size a× b containing a set of itemsRbox. Like
above we first remove the items in a thin strip of width 3εb such that via a
shifting argument the items (fully!) contained in this strip have a small profit
of O(ε)p(Rbox). However, in contrast to the setting above the set Rbox contains
not only skewed items but also small items. We call an item i small if there
is no cell C such that i ∈ OPTlarge(C) ∪ OPThor(C) ∪ OPTver(C) and denote by
OPTsmall(Ct) the set of small items. When we choose the strip to be removed we
ensure that the profit of the removed skewed and small items is small. There are
Oε(1) skewed items that partially (but not completely) overlap the strip whose
items we remove. We add those Oε(1) items to K(t+1). Small items that partially
overlap the strip are taken care of later in Section B.4, we ignore them for the
moment. Then we apply Lemma 19. In contrast to the setting above, we do
not only apply it to the skewed items but apply it also to small items that are
contained in the box. Denote by OPT′small(Ct) the set of small items that are
contained in some box of the box partition.

Thus, we obtain an L&C packing for the items in K (t), for a set of items
OPT′skew(Ct) ⊆ OPTskew(Ct), and for a set of items OPT′′small(Ct) ⊆ OPT′small(Ct)
such that

p(OPT′skew(Ct))+p(OPT′′small(Ct))+p(K(t+1))≥ (1−O(ε))p(OPTskew(Ct)∪OPT′small(Ct)).

B.4 Handling Small Items

So far we ignored the small items in OPT′′small(Ct) := OPTsmall(Ct) \OPT′small(Ct).
This set consists of small items that in the original packing intersect a line seg-
ment of the corridor partition, the boundary of a box, or a boundary curve within
a corridor. We describe now how to add them into the empty space of the so far
computed packing. First, we assign each item in OPT′′small(Ct) to a grid cell. We
assign each small item i ∈ OPT′′small(Ct) to the cell C such that in the original
packing i intersects with C and the area of i∩C is not smaller than i∩C ′ for any
cell C ′ (i∩C ′ denotes the part of i intersecting C ′ in the original packing for any
grid cell C ′).

Consider a grid cell C and let OPT′′small(C) denote the small items in OPT′′small(Ct)
assigned to C . Intuitively, we want to pack them into the empty space in the cell
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C that is not used by any of the containers, similarly as above. The following
lemma is an analog of Lemma 69 of the setting above.

Lemma 87. Let C be a cell. The total area of C occupied by containers is at most
(1− 2ε)a(C).

Proof. In our construction of the boxes we moved some of the items (within a
corridor). In particular, it can happen that we moved some items into C that
were originally in some other grid cell C ′. This reduces the empty space in C
for the items in OPT′′small(C). Assume that there is a horizontal subcorridor H
intersecting C such that some items or parts of items within H were moved into
C that were not in C before. Then such items were moved vertically and the
corridor containing H must intersect the upper or lower boundary of C . The
part of this subcorridor lying within C has a height of at most εlarge · h(C). Thus,
the total area of C lost in this way is bounded by O(εlargea(C)) which includes
analogous vertical subcorridors.

Like in Lemma 69 we argue that in each horizontal box of size a × b we
remove a horizontal strip of height 3εb and then the created containers lie in a
box of height (1− 3ε)(1+ εra)b. In particular, if the box does not intersect the
top or bottom edge of C then within C its containers use only a box of dimension
a′ × (1 − 3ε)(1 + εra)b where a′ denotes the width of the box within C , i.e.,
the width of the intersection of the box with C . If the box intersects the top
or bottom edge of C then we cannot guarantee that the free space lies within
C . However, the total area of such boxes is bounded by O(εlargea(C)). We can
apply a symmetric argument to vertical boxes. Then, the total area of C used by
containers is at most (1− 3ε)(1+ εra)a(C) +O(εlargea(C)) ≤ (1− 2ε)a(C). This
gives the claim of the lemma.

Next, we argue that the items in OPT′′small(C) have very small total area. Re-
call that they are the items intersecting C that are not contained in a box. The
total number of boxes and boundary curves intersecting C is Oε,εlarge

(1) and in
particular, this quantity does not depend on εsmall. Hence, by choosing εsmall suf-
ficiently small, we can ensure that a(OPT′′small(C))≤ εa(C). Then, similarly as in
Lemma 18 we can argue that if εsmall is small enough then we can pack the items
in OPT′′small(C) using NFDH into the empty space within C .

B.5 L&C Packings

We iterate the above construction, obtaining pairwise disjoint sets K(1), K(2), ...
until we find a set K(k) such that p(K(k))≤ ε ·OPT. Since the sets K(0), K(1), ...
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are pairwise disjoint there must be such a value k with k ≤ 1/ε. Thus, |K (k −
1)| ≤ Oε(1). We build the grid given by the x- and y-coordinates of K (k − 1),
giving a set of cells Ck. As described above we define the corridor partition,
the partition of the corridors into boxes (with the different orders to process the
subcorridors as described in Section 4.4.2) and finally into containers. Denote
by OPTsmall(Ck) the resulting set of small items.

We consider the candidate packings based on the grid Ck. For each of the
six candidate packings with a degenerate L we can pack almost all small items
of the original packing. We define Rlc and Rsc the sets of items in long and
short subcorridors in the initial corridor partition, respectively. Exactly as in the
cardinality case, a subcorridor is long if it is longer than N/2 and short otherwise.
As before we divide the items into fat and thin items and define the sets OPTSF,
OPTLT, and OPTST accordingly. Moreover, we define the set OPTLF to contain all
items in Rlc that are fat in all candidate packings plus the items in K (k− 1).

Thus, we obtain the respective claims of Lemmas 65, 66, and 67 in the
weighted setting. For the following lemma let OPTsmall := OPTsmall(Ck).

Lemma 88. Let OPTL&C the most profitable solution that is packed by an L&C pack-
ing.

(a) p(OPTL&C)≥ (1−O(ε))(p(OPTLF) + p(OPTSF) + p(OPTsmall))

(b) p(OPTL&C)≥ (1−O(ε))(p(OPTLF) +
p(OPTSF)

2 + p(OPTLT)
2 + p(OPTsmall))

(c) p(OPTL&C)≥ (1−O(ε))(p(OPTLF) +
p(OPTSF)

2 + p(OPTST)
2 + p(OPTsmall)).

For the candidate packing for the non-degenerate-L case (Lemma 68 in Sec-
tion 4.4.2) we first add the small items as described above. Then we remove
the items in K (k − 1). Then, like above, with a random shift we delete items
touching a horizontal and a vertical strip of width 3εN . Like before, each item i
is still contained in the resulting solution with probability 1/2− 15ε (note that
we cannot make such a claim for the items inK (k−1)). For each small item we
can even argue that it still contained in the resulting solution with probability
1 − O(ε) (since it is that small in both dimensions). We proceed with the con-
struction of the boundary L and the assignment of the items into it like in the
unweighted case.

Lemma 89. For the solution OPTL&C we have that p(OPTL&C)≥ (1−O(ε))(3
4p(OPTLT)+

p(OPTST) +
1−O(ε)

2 p(OPTSF) + p(OPTsmall)).
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When we combine Lemmas 88 and 89 we conclude that p(OPTL&C)≥ (17/9+
O(ε))p(OPT). Similarly as before, the worst case is obtained, up to 1−O(ε) fac-
tors, when we have that p(OPTLT) = p(OPTSF) = p(OPTST), p(OPTLF) =

5
4p(OPTLT),

and p(OPTsmall) = 0. This completes the proof of Lemma 59, and consequently
the proof of Theorem 40.



Appendix C

Improved Approximation Algorithm for
Cardinality 2DK without rotations

In this section, we present a refined approximation algorithm for the cardinality
case when rotations are not allowed. More in detail, we prove the following
result.

Theorem 90. There is a polynomial-time 558
325 +ε < 1.72 approximation algorithm

for cardinality 2DK.

Along this section, since the profit of each item is equal to 1, instead of p(R)
for a set of items R we will just write |R|. We will use most of the notation
defined in Section 4.4.2. Recall that for two given constants 0< εsmall < εlarge ≤ 1,
we partition the instance into:

• Rsmall, the set of items with h(R), w(R) ≤ εsmallN , and we denote them as
small items;

• Rlarge, the set of items with h(R), w(R) > εlargeN , and we denote them as
large items;

• Rhor, the set of items with w(R)> εlargeN and h(R)≤ εsmallN , and we denote
them as horizontal items;

• Rver, the set of items with h(R)> εlargeN and w(R)≤ εsmallN , and we denote
them as vertical items;

• Rint, the set of remaining items, and we denote them as intermediate items.

117
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The corresponding intersection with OPT defines the sets OPTsmall, OPTlarge, OPThor,
OPTver and OPTint, respectively. As discussed in Section 4.4.1, since any feasi-
ble solution contains at most 1

ε2
large

large items, we can assume in this case that

OPTlarge = ;. Furthermore, thanks to Lemma 43, εsmall and εlarge can be chosen
in such a way that εsmall ≤ εlarge ≤ ε, εsmall differs from εlarge by a large factor and
|OPTint| ≤ ε|OPT|. Building upon the corridors decomposition from Adamaszek
and Wiese [2013], we will again consider OPTT (thin items), OPTF (fat items)
and OPTK (killed items) as defined in Section 4.4.2. Thanks to Lemma 62,
|OPTK| = Oε(1) and all the involved parameters can be fixed in such a way that
the total height (resp. width) of OPTT ∩ Rhor (resp. OPTT ∩ Rver) is at most
εN . Recall that a subcorridor is called long if its shortest edge has length at least
N
2 and short otherwise. In the analysis of the algorithm we will again use sets
OPTLF, OPTLT, OPTSF and OPTST as defined in Section 4.4.2, corresponding to
items from OPTF inside long corridors, items from OPTT inside long corridors,
items from OPTF inside short corridors and items from OPTT inside short corri-
dors respectively. For a given ` ∈ (N

2 , N], we let Rlong ⊆ R be the items whose
longest side has length longer than ` and Rshort = R \Rlong. We will assume as
in the proof of Lemma 68 that ` =

�

1
2 + 2εlarge

�

N . That way we make sure that
no long item belongs to a short subcorridor (however it is worth remarking that
long corridors may contain short items).

Let us define OPTlong :=Rlong∩OPT and OPTshort :=Rshort∩OPT. Let us define
εL =

p
ε. Note that εL ≥ ε ≥ εlarge ≥ εsmall. For simplicity and readability of the

section, sometimes we will slightly abuse the notation and for any small constant
depending on ε,εlarge,εsmall, we will just use O(εL). Now we give a brief informal
overview of the refinement and the cases before we go to the details.

C.1 Overview of the Refined Packing

For the refined packing we will consider several L&C packings in order to bound
|OPTL&C|, the cardinality of the optimal L&C packing for the instance. Some of
the candidate solutions are just extensions of previous constructions (e.g. from
Theorem 58 and Lemma 88). Then we consider several new L&C packings where
an L-region is packed with items fromRlong and the remaining region is used for
packing items from Rshort using Steinberg theorem (Theorem 5). Note that in
the definition of L&C packing in Section 4.4.2, we assumed the height of the
horizontal part of the L-region and the width of the vertical part of the L-region
to be the same. However, we will consider L-regions where the height of the
horizontal part and width of vertical part may differ. Now several cases arise
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depending on the structure and profit of the L-region. To pack items in OPTshort

we have three options:

1. We can pack items in Rshort using Steinberg theorem into one rectangular
region, in which case we need both sides of the region to be greater than
1
2 + 2εlarge.

2. We can pack items inRshort using Steinberg theorem such that vertical and
horizontal items are packed separately into different vertical and horizontal
rectangular regions inside the knapsack.

3. If a(OPTshort) is large, we might pack only a small region with items in
OPTlong, and use the remaining larger space in the knapsack to pack a sig-
nificant fraction of profit from OPTshort.

Now depending on the structure of the L-packing and a(OPTshort), we arrive
at several different cases. If the L-region has very small width and height, we
have case (1). Else if the L-region has very large width (or height), we have case
(2B), where we pack nearly 1

2 |OPTlong| in the L-region and then pack items from
Rshort in one large rectangular region. Otherwise, we have case (2A), where
either we pack only items from OPTlong ∩ OPTT (See Lemma 93, used in case:
(2Ai)) or nearly 3

4 |OPTlong| (See Lemma 94, used in cases (2Aii), (2Aiiia)) or in
another case, we pack the vertical and horizontal items in OPTshort in two different
regions through a more complicated packing (See case (2Aiiib)). The details of
these cases can be found in the proof of Theorem 90.

C.2 Design of Candidate Solutions

Let us first start with some extensions of previous solutions. Note that by using
analogous arguments as in the proof of Theorem 58, we can derive the following
inequalities which lead to a

�

16
9 +O(εL)

�

-approximation algorithm.

|OPTL&C| ≥
3
4
|OPTlong| (C.1)

|OPTL&C| ≥
�

1
2
−O(εL)

�

|OPTlong|+
�

3
4
−O(εL)

�

|OPTshort| (C.2)

Now from Lemma 62, items in OPTshort ∩OPTT can be packed into two con-
tainers of size `× εN and εN × `. We can adapt part of the results in Lemma 88
to obtain the following inequalities.
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Proposition 91. The following inequalities hold:

|OPTL&C| ≥ (1−O(εL))(|OPTlong \OPTT|+ |OPTshort \OPTT|). (C.3)

|OPTL&C| ≥ (1−O(εL))(|OPTlong \OPTT|+
1
2
(|OPTshort \OPTT|+ |OPTlong∩OPTT|)).

(C.4)

Proof. Inequality (C.3) follows directly from Lemma 88 since OPTLF ∪ OPTSF ∪
OPTsmall = (OPTlong\OPTT)∪(OPTshort\OPTT) and both sets are disjoint. Inequal-
ity (C.4) follows from Lemma 66: if we consider the sum of the number of packed
items corresponding to the 4 subcases associated with the case “short horizon-
tal/short vertical”, then every i ∈ OPTlong \ OPTT ⊆ OPTLF appears four times,
every i ∈ OPTshort∩OPTLF appears four times, every i ∈ OPTSF appears twice and
every i ∈ OPTlong ∩OPTT appears twice. After including a (1−O(εL)) fraction of
OPTsmall, and since (OPTshort ∩ OPTLF) ∪ OPTSF ∪ OPTsmall = OPTshort \ OPTT, the
inequality follows by averaging the cardinality of the four packings.

We will make use of Steinberg theorem (Theorem 5) to pack items from
OPTshort in order to obtain better solutions. The following is a simple applica-
tion of the theorem.

Corollary 92. Let R ′ be a set of items such that max
i∈R ′

h(i) ≤
�

1
2
+ 2εlarge

�

N and

max
i∈R ′

w(i)≤
�

1
2
+ 2εlarge

�

N. Then for any α,β ≤ 1
2−2εlarge, all ofR ′ can be packed

into a knapsack of width (1−α)N and height (1− β)N if

a(R ′)≤
�1

2
− (α+ β)

�

1
2
+ 2εlarge

�

− 8ε2
large

�

N 2.

Now we prove a stronger version of Lemma 68 for the cardinality case.

Lemma 93. If a(OPTshort \OPTT)≤ γN 2 for any γ≤ 1, then

|OPTL&C| ≥
3
4
|OPTlong∩OPTT|+|OPTshort∩OPTT|+min

§

1,
1−O(εL)

2γ

ª

|OPTshort\OPTT|.

Proof. As in Lemma 68, we can pack 3
4 |OPTlong ∩OPTT|+ |OPTshort ∩OPTT| many

items in a boundary L-region plus two boxes on the other two sides of the knap-
sack and then a free square region with side length (1 − 3ε)N can be used to
pack items from OPTshort \ OPTT. From Corollary 92, any subset of items of
OPTshort \OPTT with total area at most (1−O(εL))N 2/2 can be packed into that
square region of length (1 − 3ε)N . Thus we sort items from OPTshort \ OPTT in
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the order of nondecreasing area and iteratively pick them until their total area
reaches (1−O(εL)−εsmall)N 2/2. Using Steinberg theorem, there exists a packing
of the selected items. If 2γ ≤ 1−O(εL)− εsmall then the profit of this packing is
|OPTshort \OPTT|, and otherwise the total profit is at least 1−O(εL)

2γ |OPTshort \OPTT|.
We can finally obtain an L&C packing similarly to Lemma 68.

Now the following lemma will be useful when a(OPTshort) is large.

Lemma 94. If a(OPTshort)> γN 2 for any γ≥ 3
4 + ε + εlarge, then

|OPTL&C| ≥
3
4
|OPTlong|+

(3γ− 1−O(εL))
4γ

|OPTshort|.

Proof. Similarly to Lemma 56 in Section 4.4.1, we start from the optimal packing
and move all items in OPTlong to the boundary such that all of them are contained
in a boundary ring. Note that unlike the case when we only pack OPTlong∩OPTT

in the boundary region, the boundary ring formed by OPTlong may have width
or height larger than εN . Let us call the 4 stacks in the ring to be subrings.
Let us assume that left and right subrings have width αleftN and αrightN respec-
tively, and bottom and top subrings have height βbottomN and βtopN respectively.
By possibly killing one of the long items, subrings can be arranged such that
αleft,αright,βbottom,βtop ≤

1
2 : If no vertical item intersects the vertical line x = N

2
and no horizontal item intersects the horizontal line y = N

2 this property holds
directly. If one of the previous cases is not satisfied, by deleting such item we can
ensure the desired property at a negligible loss of profit, and notice that it is not
possible that both cases happen at the same time since items are long.

As a(OPTshort) > γN 2, then a(OPTlong) < (1− γ)N 2. Let us define α = αleft +
αright and β = βbottom + βtop. Then (α+ β)N · N

2 ≤ a(OPTlong), which implies that
α+β

2 < 1− γ. Hence, we get the following two inequalities:

(α+ β)≤ 2(1− γ); (C.5)

a(OPTshort)≤ N 2 − a(OPTlong)≤
�

1−
(α+ β)

2

�

N 2. (C.6)

Now consider the case when we remove the top horizontal subring and construct
a boundary L-region as in Lemma 56. We will assume that items in the L-region
are pushed to the left and bottom as much as possible. Then, the boundary L-
region has width (αleft+αright)N and height βbottomN . We will use Steinberg theo-
rem to show the existence of a packing of items from OPTshort in a subregion of the
remaining space with width N − (αleft+αright+ε)N and height N − (βbottom+ε)N ,
and use the rest of the area for resource augmentation to get an L&C packing.
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Since γ ≥ 3
4 + ε + εlarge, we have from (C.5) that α+ β + 2ε ≤ 2(1− γ) + 2ε ≤

1/2−2εlarge. So α+ε ≤ 1/2−2εlarge and β+ε ≤ 1/2−2εlarge. Thus from Corollary
92, in the region with width N−(αleft+αright+ε)N and height N(1−βbottom−ε)we

can pack items from OPTshort of total area at most
�

1
2−

(αleft+αright+βbottom)
2 −O(εL)

�

N 2.
Hence, we can take the items in OPTshort in the order of non-decreasing area until
their total area reaches

�

1
2 −

(αleft+αright+βbottom)
2 −O(εL)− εsmall

�

N 2 and pack at least

|OPTshort| ·
( 1

2−
(αleft+αright+βbottom)

2 −O(εL)−εsmall)

(1− (α+β)2 )
many items using Steinberg theorem.

If we now consider all the four different cases corresponding to removal of
the four different subrings and take the average of profits obtained in each case,
we pack at least

3
4
|OPTlong|+ |OPTshort| ·

�

(1
2 −

3
8(αleft +αright + βbottom + βtop)−O(εL)

(1− (α+β)2 )

�

=
3
4
|OPTlong|+ |OPTshort| ·

�

(1
2 −

3
8(α+ β)−O(εL))

(1− (α+β)2 )

�

≥
3
4
|OPTlong|+ |OPTshort| ·

3γ− 1−O(εL)
4γ

,

where the last inequality follows from (C.5) and the fact that the expression is
decreasing as a function of (α+ β).

Now we can start with the proof of Theorem 90.

Proof of Theorem 90. In the refined analysis, we will consider different solutions
and show that the best of them always achieves the claimed approximation guar-
antee. We will pack some items in a boundary L-region (either a subset of only
OPTlong∩OPTT or a subset of OPTlong) using the PTAS for L-packings described in
Section 4.3, and in the remaining area of the knapsack (outside of the boundary
L-region), we will pack a subset of items from OPTshort.

Consider the ring as constructed in the beginning of the proof of Lemma 94.
Then we remove the least profitable subring and repack the remaining items from
OPTlong in a boundary L-region. W.l.o.g. assume that the horizontal top subring
was the least profitable subring. The other cases are analogous. We will use the
same notation as in Lemma 94, and also define wL = (αleft + αright), hL = βbottom.
Now let us consider two cases (see Figure C.1 for an overview of the subcases of
case 2).
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Case 2: wL > εL or hL > εL

Case 2A:
(wL > εL and hL > εL)

or
(wL > εL, hL ≤ εL and w(V1−2εL) ≤ (12 − 2εlarge)N)

or
(hL > εL, wL ≤ εL and h(H1−2εL) ≤ (12 − 2εlarge)N)

Case 2B:
(hL ≤ εL and wLN ≥ w(V1−2εL) > (12 − 2εlarge)N)

or
(wL ≤ εL and hLN ≥ h(H1−2εL) > (12 − 2εlarge)N)

approximation factor: 1.708

Subcase (i):
a(OPTshort\OPTT ) ≤ 3

5N
2

approximation factor: 1.701

Subcase (ii):
a(OPTshort\OPTT ) > (34 + ε + εlarge)N

2

approximation factor: 1.648

Subcase (iii):
a(OPTshort\OPTT ) ∈ [35N

2, (34 + ε + εlarge)N
2]

Subcase (iii a):

wL ≤ 1
2 and hL ≤ 1

2

approximation factor: 1.716

Subcase (iii b):

wL >
1
2 or hL >

1
2

approximation factor: 1.717

Figure C.1. Summary of the cases.

• Case 1. wL ≤ εL, hL ≤ εL.
In this case, following the proof of Lemma 93 (using γ = 1), we can pack
3
4 |OPTlong|+|OPTshort∩OPTT|+

1−O(εL)
2 |OPTshort\OPTT|. This along with inequalities

(C.2), (C.3) and (C.4) will give us a solution with good enough approximation
factor. Check Section C.3 and Table C.1 for details.
• Case 2. wL > εL or hL > εL.
Let V1−2εL

be the set of vertical items having height strictly larger than (1−2εL)N .
Similarly, let H1−2εL

be the set of horizontal items of width strictly larger than
(1− 2εL)N .
♦ Case 2A.

�

wL > εL and hL > εL

�

or
�

wL > εL, hL ≤ εL, and w(V1−2εL
)≤

�

1
2 − 2εlarge

�

N
�

or
�

hL > εL, wL ≤ εL, and h(H1−2εL
)≤

�

1
2 − 2εlarge

�

N
�

.
We will show that if any of the above three conditions is met, then we can pack
3(1−O(ε))

4 |OPTlong|+ |OPTshort∩OPTT| in a boundary L-region of width close to wLN
and height close to hLN , and then in the remaining area we will pack some items
from OPTshort \OPTT using Steinberg theorem and resource augmentation.
Packing of items from OPTlong ∪ (OPTshort ∩OPTT) into the L-region.
If (wL > εL and hL > εL), we partition the vertical part of the L-region into con-
secutive strips of width εN . Consider the strip that intersects the least number
of vertical items from OPTlong among all strips, and we call it to be the cheapest
εN-width vertical strip (See Figure C.2a). Clearly the cheapest εN -width vertical
strip intersects at most a ε+2εsmall

εL
≤ 3εL fraction of the items in the vertical part

of the L-region, so we can remove all such vertical items intersected by that strip
at a small loss of profit. Similarly, we remove the horizontal items intersected by
the cheapest εN -height horizontal strip in the boundary L-region. We now pack
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` > N
2

` > N
2

wLN > εLN

εN

hLN > εLNεN

(a) Packing inside the L-region us-
ing items from OPTlong. Striped
strips are cheapest εN -width and
cheapest εN -height.

` > N
2

` > N
2

(b) Packing of items in
OPTlong ∪ (OPTshort ∩ OPTT).
Dark gray items are from
OPTshort ∩OPTT.

Figure C.2. The case for wL > εL and hL > εL.

` > N
2

` > N
2

wLN > εLN

εN

hLN ≤ εLN

(a) Packing inside the L-region
using items from OPTlong. The
striped strip is the cheapest εN -
width strip.

` > N
2

` > N
2

(b) Packing of items in
OPTlong ∪ (OPTshort ∩ OPTT).
Dark gray items are from
OPTshort ∩OPTT.

Figure C.3. The case for wL > εL and hL ≤ εL.

the horizontal container for OPTshort∩OPTT in the free region left by the removed
horizontal strip, and the vertical container for OPTshort ∩OPTT in the free region
left by the removed vertical strip. Similarly to the proof of Lemma 56 we can
sort items in the vertical (resp. horizontal) pile of the L-region according to their
height (resp. width), obtaining a feasible L&C packing (See Figure C.2b).
In the other case (wL > εL, hL ≤ εL and w(V1−2εL

)≤
�

1
2 − 2εlarge

�

N), we can again
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remove the cheapest εN -width vertical strip in the boundary L-region and pack
the vertical container for OPTshort ∩OPTT there (See Figure C.3a). We will now
pack items from OPTshort ∩ OPTT. In the packing of the boundary L-region, we
can assume that the vertical items are sorted non-increasingly by height from
left to right and pushed upwards until they touch the top boundary. Then,
since w(V1−2εL

) ≤
�

1
2 − 2εlarge

�

N and (hL ≤ εL), the region
��

1
2 − 2εlarge

�

N , N
�

×
[εLN , 2εLN] will be completely empty and thus we will have enough space to
pack the horizontal container for OPTshort∩OPTT on top of the horizontal part of
the L-region (See Figure C.3b). This leads to a packing in a boundary L-region
of width at most wLN and height at most (hL + εL)N with total profit at least
3(1−O(ε))

4 |OPTlong|+ |OPTshort ∩OPTT|. The last case, when wL ≤ εL, is analogous,
leading to a packing into a boundary L-region of width at most (wL + εL)N and
height at most hLN with at least the same profit. Thus,

|OPTL&C| ≥
3(1−O(εL))

4
|OPTlong|+ |OPTshort ∩OPTT| (C.7)

Packing of items from OPTshort \OPTT into the remaining region.
Note that after packing at least 3(1−O(ε))

4 |OPTlong|+ |OPTshort∩OPTT|many items in
the boundary L-region, the remaining rectangular region of width (1−wL−εL)N
and height (1− hL − εL)N is completely empty. Now we will show the existence
of a packing of some items from OPTshort \ OPTT in the remaining space of the
packing (even using some space from the L-boundary region). Let

(OPTshort \OPTT)hor := ((OPTshort \OPTT)∩Rhor)∪ ((OPTshort \OPTT)∩Rsmall)

and
(OPTshort \OPTT)ver := (OPTshort \OPTT)∩Rver.

Let us assume w.l.o.g. that vertical items are shifted as much as possible to the
left and top of the knapsack and horizontal ones are pushed as much as possible
to the right and bottom. We divide the analysis in three subcases depending on
a(OPTshort \OPTT).
− Subcase (i). If a(OPTshort \OPTT)≤

3
5 N 2, from inequalities (C.2), (C.3), (C.4),

(C.7) and Lemma 93, we get a solution with good enough approximation factor.
Check Section C.3 and Table C.1 for details.
− Subcase (ii). If a(OPTshort \OPTT)> (

3
4 + ε + εlarge)N 2, from inequalities (C.2),

(C.3), (C.4), (C.7) and Lemma 94, we get a solution with good enough approxi-
mation factor. Check Section C.3 and Table C.1 for details.
− Subcase (iii). Finally, if 3

5 N 2 ≤ a(OPTshort \ OPTT) ≤ (
3
4 + ε + εlarge)N 2, from

inequality (C.5) we get α+ β ≤ 2(1− 3
5) =

4
5 . Now we consider two subcases.
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� Subcase (iii a): wL ≤
1
2 and hL ≤

1
2 . Note that in this case if wL ≥

1
2−2εlarge−2εL

(resp., hL ≥
1
2 − 2εlarge − 2εL), we can remove the cheapest 2(εL + εlarge)N -width

vertical (resp., horizontal) strip from the L-region by removing an O(εL) fraction
of items in OPTlong. Otherwise we have wL <

1
2 − 2εlarge − 2εL and hL <

1
2 −

2εlarge − 2εL. So there is a free rectangular region that has both side lengths at
least N(1

2 + 2εlarge + εL); we will keep εLN width and εLN height for resource
augmentation and use the rest of the rectangular region (with both sides length
at least

�

1
2 + 2εlarge

�

N) to apply Steinberg theorem.
Note that this free rectangular region has area at least N 2(1− wL − 2εL)(1−

hL − 2εL). Now consider items from (OPTshort \OPTT)hor sorted non-decreasingly
by area and let us iteratively pick them until their total area becomes at least
min{a((OPTshort\OPTT)hor),

N2(1−wL−2εL)(1−hL−2εL)
2 −εsmallN

2}. Thus their total area is

at most N2(1−wL−2εL)(1−hL−2εL)
2 as the area of any item in (OPTshort\OPTT)hor is at most

εsmallN
2. Hence, from Steinberg theorem, we can pack these items in the free

rectangular region. Similarly, we can pack there items from (OPTshort \OPTT)ver

with total area at least

min{a((OPTshort \OPTT)ver),
N 2(1−wL − 2εL)(1− hL − 2εL)

2
− εsmallN

2}.

Since items are sorted non-decreasingly according to their areas, the total
profit of the aforementioned packings is bounded below by

min{1,
�

(1−wL)(1− hL)
2a((OPTshort \OPTT)hor)

−O(εL)
�

N 2}|(OPTshort \OPTT)hor|

and

min{1,
�

(1−wL)(1− hL)
2a((OPTshort \OPTT)ver)

−O(εL)
�

N 2}|(OPTshort \OPTT)ver|

respectively. We claim that if we keep the best of the two packings, we can
always pack at least

�

7
48 −O(εL)

�

|OPTshort \OPTT| many items. To show this we
will consider the four possible cases:

• If min{1,
�

(1−wL)(1−hL)
2a((OPTshort\OPTT)hor)

−O(εL)
�

N 2}=min{1,
�

(1−wL)(1−hL)
2a((OPTshort\OPTT)ver)

−O(εL)
�

N 2}=
1, then, by an averaging argument, the best among the two packings has
profit at least 1

2(|(OPTshort \OPTT)ver|+ |(OPTshort \OPTT)hor|) =
1
2 |OPTshort \

OPTT|.
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• If
�

(1−wL)(1−hL)
2a((OPTshort\OPTT)hor)

−O(εL)
�

N 2 < 1 and
�

(1−wL)(1−hL)
2a((OPTshort\OPTT)ver)

−O(εL)
�

N 2 <

1, then by an averaging argument we pack at least

N 2

2

�

(1−wL)(1− hL)
2a((OPTshort \OPTT)hor)

−O(εL)
�

|(OPTshort \OPTT)hor|

+
N 2

2

�

(1−wL)(1− hL)
2a((OPTshort \OPTT)ver)

−O(εL)
�

|(OPTshort \OPTT)ver|

≥
N 2

2

�

(1−wL)(1− hL)
2a(OPTshort \OPTT)

−O(εL)
�

|OPTshort \OPTT|

where the inequality follows from the fact that a
b +

c
d ≥

(a+c)
(b+d) for a, b, c, d ≥

0. Since a(OPTshort \ OPTT) ≤ (N 2 − a(OPTlong)) ≤ (1 −
α
2 −

β

2 )N
2 ≤ (1 −

wL
2 −

hL
2 )N

2 and wL + hL ≤ α+ β ≤
4
5 , the amount of items we are packing

from OPTshort \OPTT is bounded below by the minimum of

f (hL, wL) =
�

(1−wL)(1− hL)
(4− 2wL − 2hL)

−O(εL)
�

N 2|OPTshort \OPTT|

over the domain {wL + hL ≤
4
5 , 0 ≤ wL ≤

1
2 , 0 ≤ hL ≤

1
2}. Since ∂ f (hL ,wL)

∂ hL
=

−2(1−wL)2

(4−2wL−2hL)2
≤ 0 and ∂ f (hL ,wL)

∂ wL
= −2(1−hL)2

(4−2wL−2hL)2
≤ 0, the function is decreasing

with respect to both its arguments, implying that the minimum value must
be attained when hL+wL =

4
5 . This in turn implies that the amount of items

from OPTshort \OPTT we are packing is bounded below by the minimum of
f (hL, 4

5 − hL) over the interval [ 3
10 , 1

2]. Since

f (hL,
4
5
− hL) =

�

5
12
(1− hL)(

1
5
− hL)−O(εL)

�

N 2|OPTshort \OPTT|

describes a parabola centered at hL =
2
5 , the minimum value on the afore-

mentioned interval is attained at both limits hL =
3
10 and hL =

1
2 with a

value of
�

7
48 −O(εL)

�

|OPTshort \OPTT|.

• If min{1,
�

(1−wL)(1−hL)
2a((OPTshort\OPTT)hor)

−O(εL)
�

N 2}= 1 and
�

(1−wL)(1−hL)
2a((OPTshort\OPTT)ver)

−O(εL)
�

N 2 <

1 (the remaining case being analogous), then we are packing at least

1
2

�

|(OPTshort \OPTT)hor|+ (
(1−wL)(1− hL)

2a((OPTshort \OPTT)ver)
−O(εL))N

2|(OPTshort \OPTT)ver|
�

≥
N 2

2

�

(1−wL)(1− hL)
2a((OPTshort \OPTT)ver)

−O(εL)
�

(|(OPTshort \OPTT)hor|+ |(OPTshort \OPTT)ver|)

≥
N 2

2

�

(1−wL)(1− hL)
2a(OPTshort \OPTT)

−O(εL)
�

|OPTshort \OPTT|

≥
�

7
48
−O(εL)

�

|OPTshort \OPTT|,
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wLN > N
2

hLN ≤ N
2

γN (12 − 2εlarge)N

λN

AN/2

B(λ− 1
2)N

C

ψN

Region 1

Region 2

Figure C.4. Case 2A(iii)b in the proof of Theorem 90

where the last inequality comes from the analysis of the previous case.

From this we conclude that

|OPTL&C| ≥
3(1−O(εL))

4
|OPTlong|+|OPTshort∩OPTT|+

�

7
48
−O(εL)

�

|OPTshort\OPTT|.

This together with inequalities (C.2), (C.3), (C.4) and Lemma 93 gives us a so-
lution with good enough approximation factor. Check Section C.3 and Table C.1
for details.
� Subcase (iii b): wL >

1
2 (then from inequality (C.5), hL ≤

3
10). Note that

a(OPTlong)≤ (1−
3
5)N

2 = 2
5 N 2.

Let us define some parameters from the current packing to simplify the calcula-
tions. Let λN be the height of the item in the packing that intersects or touches
the vertical line x =

�

1
2 − 2εlarge

�

N (if two items touch such line, we choose that
tallest one) and γN be the total width of vertical items having height greater
than (1− hL)N . We define also the following three regions in the knapsack: A ,
the rectangular region of width wLN and height 1

2 N in the top left corner of the
knapsack; B , the rectangular region of width wLN and height (λ− 1

2)N below
A and left-aligned with the knapsack; and C , the rectangular region of width N
and height hLN touching the bottom boundary of the knapsack. Notice that A
is fully occupied by vertical items, B is almost fully occupied by vertical items
except for the right region of width wLN−

�

1
2 − 2εlarge

�

N , and at least half ofC is
occupied by horizontal items (some vertical items may overlap with this region).
Our goal is to pack some items from OPTshort \OPTT in the L-shaped region out-
side A ∪B ∪C . Let ψ ∈ [λ, 1− hL] be a parameter to be fixed later. We will
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use, when possible, the following regions for packing items from OPTshort \OPTT:
Region 1 on the top right corner of the knapsack with width N(1−wL) and height
ψN and Region 2 which is the rectangular region [0, N]× [hLN , (1−ψ) ·N] (see
Figure C.4). Region 1 is completely free but Region 2 may overlap with vertical
items.

We will now divide Region 2 into a constant number of boxes such that: they
do not overlap with vertical items, the total area inside Region 2 which is neither
overlapping with vertical items nor covered by boxes is at most O(εL)N 2 and each
box has width at least

�

1
2 + 2εlarge

�

N and height at least εN . That way we will
be able to pack items from (OPTshort \OPTT)ver into the box defined by Region 1
and items from (OPTshort \OPTT)hor into the boxes defined inside Region 2 using
almost completely its free space. In order to create the boxes inside Region 2
we first create a monotone chain by doing the following: Let (x1, y1) = (γN , hL).
Starting from position (x1, y1), we draw an horizontal line of length εLN and then
a vertical line from bottom to top until it touches a vertical item, reaching position
(x2, y2). From (x2, y2) we start again the same procedure and iterate until we
reach the vertical line x =

�

1
2 − 2εlarge

�

N or the horizontal line y = (1−ψ)N .
Notice that the area above the monotone chain and below y = (1 − ψ)N

that is not occupied by vertical items, is at most
∑

i εLN(yi+1 − yi) ≤ εLN 2. The
number of points (x i, yi) defined in the previous procedure is at most 1/εL. By
drawing an horizontal line starting from each (x i, yi) up to (N , yi), together with
the drawn lines from the monotone chain and the right limit of the knapsack, we
define k ≤ 1/εL boxes. We discard the boxes having height less than εN , whose
total area is at most ε

εL
N 2 = εLN 2, and have all the desired properties for the

boxes.
Note that the area that is occupied by items from OPTlong in regions A ,B

and C is at least (1
2 wL+(λ−

1
2)(

1
2−2εlarge)+

1
2hL)N 2. Since the total area of items

from OPTlong is at most 2
5 N 2, the total area occupied by items in OPTlong in Region

2 is at most

N 2(
2
5
−

1
2

wL − (λ−
1
2
)(

1
2
− 2εlarge)−

1
2

hL)≤ N 2(
13
20
−

wL

2
−
λ

2
−

hL

2
+ εlarge).

This implies that the total area of the horizontal boxes is at least N 2(1 −ψ −
hL) − N 2(13

20 −
wL
2 −

λ
2 −

hL
2 ) − O(εL)N 2 and the area of the vertical box is (1 −

wL)ψN 2. Ignoring the O(εlarge)-term, these two areas become equal if we set

ψ = 7+10(wL+λ−hL)
40−20wL

. It is not difficult to verify that in this case ψ ≤ 1 − hL. If
7+10(wL+λ−hL)

40−20wL
≥ λ, then we set ψ= 7+10(wL+λ−hL)

40−20wL
. Otherwise we set ψ= λ.

First, consider the case ψ = 7+10(wL+λ−hL)
40−20wL

. Since ψ ≥ λ, boxes inside Region

2 have width at least
�

1
2 + 2εlarge

�

N and height at least εN � εsmallN (recall that
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εsmall differs by a large factor from εlarge ≤ ε), and the box in Region 1 has height at
least

�

1
2 + 2εlarge

�

N and width at least 1
5 N � εsmallN . By using Steinberg theorem,

we can always pack in these boxes at least
�

min

�

1,
1
2(N −wLN)ψN

a((OPTshort \OPTT)hor)
− εsmallN

2

��

|(OPTshort \OPTT)hor|

+

�

min

�

1,
1
2(N −wLN)ψN

a((OPTshort \OPTT)ver)
− εsmallN

2

��

|(OPTshort \OPTT)ver|.

Note that from each box B′ of height h ≥ εN we can remove the cheapest εh-
horizontal strip and use resource augmentation to get a container based packing
with nearly the same profit as B′. Thus by performing a similar analysis to the
one done in Subcase (iii a), and using the fact that a(OPTshort \ OPTT) ≤ N 2 −
(α2 +(λ−

1
2)

1
2 +

β

2 )N
2 ≤ N 2−N 2(wL

2 +(λ−
1
2)

1
2 +

hL
2 ), we can minimize the whole

expression over the domain {wL
2 + (λ−

1
2)

1
2 +

hL
2 ≤

2
5 ,λ ≤ψ, 1

2 ≤ wL ≤
4
5 , 1

2 ≤ λ ≤
1,0≤ hL ≤

3
10} and prove that this solution has cardinality at least

�

3−O(εL)
4

�

|OPTlong|+|OPTshort∩OPTT|+
�

5
36
−O(εL)

�

|OPTshort\OPTT|. (C.8)

Thus, using the above inequality along with (C.2), (C.3), (C.4) and Lemma 93,
we get a solution with good enough approximation factor. Check Section C.3
and Table C.1 for details.

Finally, if ψ = λ > 7+10(wL+λ−hL)
40−20wL

, the bound for the area of horizontal boxes
will not be equal to the area of the vertical box constructed to pack items from
OPTshort \OPTT. In this case we change the width of the box inside Region 1 to
be w′L < N(1− wL) fixed in such a way that the area of this box is equal to the
bound we have for the area of the boxes in Region 2, i.e.,

N 2(1−λ− hL)− (
13
20
−

wL

2
−

hL

2
−
λ

2
+O(εL))N

2.

Performing the same analysis as before, it can be shown that in this case the
solution has cardinality at least

�

(1−λ− hL)N 2 − (13
20 −

wL
2 −

hL
2 −

λ
2 )N

2

2a(OPTshort \OPTT)
−O(εL)N

2

�

|OPTshort \OPTT|,

which is at least (1
6−O(εL))|OPTshort\OPTT| over the domain {wL

2 +(λ−
1
2)

1
2+

hL
2 ≤

2
5 , 1

2 ≤ wL ≤
4
5 , 7+10(wL+λ−hL)

40−20wL
< λ ≤ 1,0 ≤ hL ≤

3
10} (and this solution leads to a

better bound than (C.8)).
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2εLN

` > N
2

` > N
2

(12 − 2εlarge)N

wLN

w(V1−2εL)

hLN
≤ εLN

(a) Packing inside the L-
region using items from
OPTlong. Striped items are
removed.

2εLN

` > N
2

` > N
2

< wL
2 N

hLN
≤ εLN

(b) Packing of items in OPTlong ∪
(OPTshort∩OPTT). Dark gray rect-
angles correspond to OPTshort ∩
OPTT.

Figure C.5. The case 2B.

♦ Case 2B.
�

hL ≤ εL and wLN ≥ w(V1−2εL
) >

�

1
2 − 2εlarge

�

N
�

or
�

wL ≤ εL and

hLN ≥ h(H1−2εL
)>

�

1
2 − 2εlarge

�

N
�

In the first case, the area of the items in V1−2εL
is larger than

�

1
2 − 2εlarge

�

(1 −
2εL)N 2, and the remaining items in OPTlong have area at least (wL−

1
2+2εlarge)N ·

N
2 .

So, a(OPTlong)>
�

1
2 − 2εlarge

�

(1−2εL)N 2+(wL−
1
2)N ·

N
2 ≥ (

1
4+

wL
2 −εL−2εlarge)N 2.

Thus a(OPTshort \OPTT)≤ a(OPTshort)< (
3
4 −

wL
2 + εL + 2εlarge)N 2.

Now consider the vertical items in the boundary L-region sorted non-increasingly
by width and pick them iteratively until their total width crosses (wL

2 + 3εL +
2εlarge)N . Remove these items and push the remaining vertical items in the L-
region to the left as much as possible. This modified L-region will have profit
at least (1

2 −O(εL))|OPTlong|. Now we can put an εN -strip for the vertical items
from OPTshort ∩ OPTT next to the vertical part of L-region. On the other hand,
the horizontal items of OPTshort ∩ OPTT can be placed on top of the horizontal
part of the L-region. The remaining space will be a free rectangular region of
height at least (1− 2εL)N and width (1− wL

2 + 2εL+ 2εlarge)N . We will use a part
of this rectangular region of height (1− 3εL)N and width (1− wL

2 + εL)N to pack
items from OPTshort \OPTT and the rest of the region for resource augmentation.

Since wL
2 − εL ≤

1
2 − εlarge, we can use Corollary 92 to pack at least

�

(1− wL
2 )/2

3
4−

wL
2
−

O(εL)
�

|OPTshort \OPTT| ≥ (
3
4 −O(εL))|OPTshort \OPTT| short items in this region
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as the expression is increasing with respect to wL and wL >
1
2 − 2εlarge. Thus, we

get,

|OPTL&C| ≥
�

1
2
−O(εL)

�

|OPTlong|+|OPTshort∩OPTT|+
�

3
4
−O(εL)

�

|OPTshort\OPTT|.
(C.9)

On the other hand, as a(OPTshort \ OPTT) ≤ (
3
4 −

wL
2 + εL + 2εlarge)N 2 and wL >

1
2 −2εlarge, we get a(OPTshort \OPTT)≤ (

1
2 +3εlarge+ εL)N 2 and thus from Lemma

93 we get

|OPTL&C| ≥
3
4
|OPTlong ∩OPTT|+ |OPTshort ∩OPTT|+ (1−O(εL))|OPTshort \OPTT|

≥
3
4
|OPTlong ∩OPTT|+ (1−O(εL))|OPTshort|. (C.10)

From inequalities (C.1), (C.3), (C.4), (C.9) and (C.10) we get a solution with
good enough approximation factor. Check Section C.3 and Table C.1 for details.

Now we consider the last case when wL ≤ εL and hLN ≥ h(H1−2εL
)>

�

1
2 − 2εlarge

�

N .
Note that since we assumed the cheapest subring was the top subring, after re-
moving it we might be left with only |OPTlong∩Rhor|/2 profit in the horizontal part
of L-region. So, further removal of items from the horizontal part might not give
us a good solution. Thus we show an alternate good packing. We restart with the
ring packing and delete the cheapest vertical subring instead of the cheapest sub-
ring (i.e., the top subring) and create a new boundary L-region. Here, consider
the horizontal items in the boundary L-region in non-increasing order of height
and take them until their total height becomes at least (

βbottom+βtop

2 + εsmall + ε)N .
Remove these items and push the remaining horizontal items to the bottom as
much as possible. Then, following similar arguments as before, we will obtain
the same bounds for the constructed solution.

C.3 Bounding the Approximation Factor

In each one of the cases listed before we are developing a set of different solutions
in order to achieve a good approximation factor. Let z = |OPTL&C|/|OPT|, x1 =
|OPTlong∩OPTT|/|OPT|, x2 = |OPTlong\OPTT|/|OPT|, x3 = |OPTshort∩OPTT|/|OPT|
and x4 = |OPTshort \OPTT|/|OPT|. The following list enumerates all the obtained
inequalities in this section, and it is worth remarking that not all of them hold
simultaneously.

1. z ≥ 3
4 x1 +

3
4 x2 + x3 +

�

1
2 −O(εL)

�

x4;
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2. z ≥ 3
4 x1 +

3
4 x2;

3. z ≥
�

1
2 −O(εL)

�

(x1 + x2) +
�

3
4 −O(εL)

�

(x3 + x4);

4. z ≥ (1−O(εL))(x2 + x4);

5. z ≥ (1−O(εL))
�

1
2 x1 + x2 +

1
2 x4

�

;

6. z ≥
�

3
4 −O(εL)

�

(x1 + x2) + x3;

7. z ≥ 3
4 x1 + x3 +

�

5
6 −O(εL)

�

x4;

8. z ≥ 3
4(x1 + x2) +

�

5
12 −O(εL)

�

(x3 + x4);

9. z ≥ 3
4 x1 + x3 +

�

2
3 −O(εL)

�

x4;

10. z ≥ 3
4(x1 + x2) + x3 +

�

7
48 −O(εL)

�

x4;

11. z ≥
�

3
4 −O(εL)

�

(x1 + x2) + x3 +
�

5
36 −O(εL)

�

x4;

12. z ≥
�

1
2 −O(εL)

�

(x1 + x2) + x3 +
�

3
4 −O(εL)

�

x4;

13. z ≥ 3
4 x1 + (1−O(εL))(x3 + x4).

For each case i, let Ai be the set of indexes of valid inequalities for case
i. Then we can write the following linear program to compute the obtained
approximation factor in that case:

min z
s.t. Inequalities indexed byAi

4
∑

i=1

x i = 1

z, x i ≥ 0 for i = 1, 2,3, 4.

Let c j,k be the coefficient accompanying xk in the constraint j ∈Ai, k = 1, 2,3, 4.
The dual of the program for case i has the form

max −w
s.t.

∑

j∈Ai

y j ≤ 1
∑

j∈Ai

c j,k y j +w≥ 0 for k = 1, 2,3, 4

y j ≥ 0 for j ∈Ai

w ∈ R
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Any feasible solution for the dual program of case i is a lower bound on the frac-
tion of OPT packed in that case. Table C.1 summarizes the analysis described
along this section for all the cases, stating the valid inequalities and the approx-
imation factor obtained in each one of them, together with a dual feasible so-
lution. It is not difficult to see that the worst case is 2A(iii)b, implying that
|OPTL&C| ≥ (

325
558−O(εL))|OPT|. Applying the algorithm described in Section 4.2.1

concludes the proof of Theorem 90.

Case Valid inequalities Dual feasible solution
Fraction of

OPT
packed (w)

1 1, 3,4, 5 y1 =
1
2 , y3 =

1
2 , y4 = 0, y5 = 0 5

8 −O(εL)

2A(i) 3,4, 5,6, 7 y3 =
17
54 , y4 = 0, y5 =

1
3 , y6 =

7
54 , y7 =

2
9

127
216 −O(εL)

2A(ii) 3,4, 5,6, 8 y3 =
4
7 , y4 = 0, y5 = 0, y6 = 0, y8 =

3
7

17
28 −O(εL)

2A(iii)a 3, 4,5, 9,10 y3 =
124
369 , y4 = 0, y5 =

1
3 , y9 =

2
9 , y10 =

40
369

215
369 −O(εL)

2A(iii)b 3, 4,5, 9,11 y3 =
94
279 , y4 = 0, y5 =

1
3 , y9 =

2
9 , y11 =

10
93

325
558 −O(εL)

2B 2,4, 5,12, 13 y2 =
8
41 , y4 = 0, y5 =

9
41 , y12 =

18
41 , y13 =

6
41

24
41 −O(εL)

Table C.1. Summary of the case analysis in Theorem 90.
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