
Efficient Learning of Bounded-Treewidth Bayesian
Networks from Complete and Incomplete Data Sets

Mauro Scanagatta

IDSIA, Switzerland

Giorgio Corani

IDSIA, Switzerland

Marco Zaffalon

IDSIA, Switzerland

Jaemin Yoo

Seoul National University

U Kang

Seoul National University

Abstract

Learning a Bayesian networks with bounded treewidth is important for reduc-
ing the complexity of the inferences. We present a novel anytime algorithm (k-
MAX) method for this task, which scales up to thousands of variables. Through
extensive experiments we show that it consistently yields higher-scoring struc-
tures than its competitors on complete data sets. We then consider the problem
of structure learning from incomplete data sets. This can be addressed by struc-
tural EM, which however is computationally very demanding. We thus adopt
the novel k-MAX algorithm in the maximization step of structural EM, obtain-
ing an efficient computation of the expected sufficient statistics. We test the
resulting structural EM method on the task of imputing missing data, compar-
ing it against the state-of-the-art approach based on random forests. Our ap-
proach achieves the same imputation accuracy of the competitors, but in about
one tenth of the time. Furthermore we show that it has worst-case complexity
linear in the input size, and that it is easily parallelizable.
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1. Introduction

The size of an explicit representation of the joint distribution of n categorical
random variables is exponential in n. Bayesian networks [1] compactly represent
joint distributions by exploiting independence relations and encoding them into
a directed acyclic graph (DAG), also referred to as structure. Yet, algorithms5

able to perform structure learning from thousands of variables have been de-
vised only very recently for Bayesian networks [2, 3] and for chordal log-linear
graphical models (that can be exactly mapped on Bayesian networks) [4, 5].

Given a Bayesian network, the task of computing the marginal distribution
of a set of variables, possibly given evidence on another set of variables, is10

called inference. The complexity of exact inference grows exponentially in the
treewidth [1, Chap. 7] of the DAG, under the exponential time hypothesis [6].
In order to allow tractable inference we thus need to learn Bayesian networks
with a bounded-treewidth structure; this problem is NP-hard [7].

Most research on learning bounded-treewidth Bayesian networks adopts a15

score-based approach. The score measures the fit of the DAG to the data;
the goal is hence to find the highest-scoring DAG that respects the treewidth
bound. Exact methods [7, 8, 9] exist, but their applicability is restricted to small
domains. Approximate approaches that scale up to some hundreds of variables
[10, 11] have been more recently proposed. A recent breakthrough has been20

achieved by the k-greedy algorithm [3]. It consistently yields higher-scoring
DAGs than its competitors and it scales to several thousands of variables.

In this paper we present a new algorithm called k-MAX, which improves
over k-greedy. Both k-MAX and k-greedy are anytime algorithms: they can be
stopped at any moment, yielding the current best solution. k-MAX adopts a25

set of more sophisticated heuristics compared to k-greedy; as a result it consis-
tently yields higher-scoring DAGs than both k-greedy and other competitors,
as demonstrated by our extensive experiments on complete data sets.

Structure learning algorithms commonly assume data sets to be complete;
yet real data sets are often incomplete. Structure learning on incomplete data30

sets can be accomplished via the structural expectation-maximization (SEM)
algorithm [12], which alternates between an estimation of the sufficient statis-
tics given the current model (expectation step), and the search of a new model
given the expected sufficient statistics (maximization step). Yet, SEM is com-
putationally demanding: in particular the expectation step requires computing35

several inferences, which might become prohibitive if the model has unbounded
treewidth and/or there are many missing data whose actual value has to be
inferred. We adopt k-MAX as the structure learning algorithm within SEM; in
this way we obtain a fast implementation of SEM, since the bounded-treewidth
structures learned in the different iterations perform efficient inferences. To the40

best of our knowledge, this is the first implementation of SEM that is able to
scale to thousands of variables.
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To test our method, we use the Bayesian networks learned by SEM in or-
der to perform data imputation. We consider as a competitor a recent method
for data imputation based on random forests [13] and we compare the two ap-45

proaches on data sets with different degrees of missingness. The two approaches
achieve the same imputation accuracy, but our approach is faster by almost one
order of magnitude. Furthermore we show that the complexity of our method
scales linearly in the input size (Subsec. 7.4), and that it is easily parallelizable
(Subsec. 7.5). To the best of our knowledge, it is the first approach in the50

literature able to do so.
In Section 2 we present the technical background of the paper. In Section

3 we detail our approach for bounded-treewidth structure learning, k-MAX.
In Section 4 and 5 we evaluate its performance against existing state-of-the-
art approaches. In Section 6 we present how k-MAX can be used in the SEM55

algorithm, obtaining the SEM-k-MAX algorithm. It is evaluated in Section 7
on the task of data imputation against the state-of-the-art approach. Section 8
concludes our paper.

The software of this paper is available from http://ipg.idsia.ch/software/

blip, together with supplementary material containing the detailed results of60

our experiments.

2. Treewidth and k-trees

Intuitively, the treewidth k quantifies the extent to which a graph resembles
a tree. Following the terminology of [14] we now provide a formal definition. Let
us recall that a clique of an undirected graph is a subset of its nodes such that65

every two distinct nodes are linked by an edge. Moreover, a clique is maximal
if it is not a subset of a larger clique.

Treewidth of an undirected graph. We denote an undirected graph by H =
(V,E) where V is the vertex set and E is the edge set. An undirected graph is
triangulated when every cycle of length greater than or equal to 4 has a chord,70

that is, an edge connecting two non-consecutive nodes in the cycle [1, Def. 9.16].
Triangulated graphs are also called chordal graphs. The triangulation of a graph
is the operation of adding chords until the graph is triangulated. The treewidth
of a triangulated graph is the size of its largest clique minus one. The treewidth
of H is the minimum treewidth among all the possible triangulations of H.75

Treewidth of a Bayesian network. The moral graph of the DAG associated
to a Bayesian network is an undirected graph that includes an edge (i – j) for
every edge (i → j) in the DAG and an edge (p – q) for every pair of edges
(p→ i), (q → i) in the DAG. The treewidth of the DAG is the treewidth of its
moral graph.80

2.1. k-trees

A k-tree is an undirected edge-maximal graph of treewidth k, that is, the ad-
dition of any edge to the k-tree increases its treewidth. It is defined inductively
as follows [15]. Base case: a clique with (k + 1) nodes is a k-tree. Inductive
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step: given a k-tree Hn on n nodes, a k-tree Hn+1 on (n+ 1) nodes is obtained85

by connecting the (n + 1)-th node to a k-clique of Hn (a k-clique is a clique
over k nodes). See Figure 1 for an example. As a final remark, a sub-graph of
a k-tree is called partial k-tree; its treewidth is at most k.
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Figure 1: Iterative construction of a k-tree (k = 2). We start with the clique over the nodes
{A,B,C}; then we add the nodes D, E and F one at a time. When we add a node, we link it
to a 2-clique of the existing graph. On the right we show the decomposition of the graph into
its maximal cliques. All maximal cliques have size three; thus the treewidth of the graph is
two.

3. Structure learning of Bayesian networks

We consider the problem of learning the structure of a Bayesian network90

from a complete data set. The set of n categorical random variables is X =
{X1, ..., Xn}. The goal is to find the highest-scoring bounded-treewidth DAG
G = (V,E), where V is the collection of nodes and E is the collection of arcs.
E can be represented by the set of parents Π1, ...,Πn of all variables.

Structure learning is usually accomplished in two steps. First, parent set95

identification is the identification of a list (cache) Li of candidate parent sets
independently for each variable Xi. Second, structure optimization is the as-
signment of a parent set to each node in order to maximize the score of the
resulting DAG.

The problem of bounded-treewidth structure learning can be casted as fol-
lows:

G∗ = arg max score(G) s.t.

∀i : Πi ∈ Li
G is DAG

treewidth(G) ≤ k.

Different scores can be used to assess the fit of a DAG. We adopt the
Bayesian information criterion (BIC), which is asymptotically proportional to
the posterior probability of the DAG. The BIC score is defined as follows:

BIC(G) =

n∑
i=1

BIC(Xi,Πi) =

n∑
i=1

(LL(Xi|Πi) + Pen(Xi,Πi)) , (1)
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where LL(Xi|Πi) denotes the log-likelihood of Xi and its parent set:

LL(Xi|Πi) =
∑

π∈Πi, x∈Xi
Nx,π log θ̂x|π , (2)

while Pen(Xi,Πi) is the complexity penalization:

Pen(Xi,Πi) = − logN

2
(|Xi| − 1)(|Πi|) . (3)

We denote by θ̂x|π the maximum likelihood estimate of the conditional proba-100

bility P (Xi = x|Πi = π); by Nx,π the number of times that (X = x ∧ Πi = π)
appears in the data set; | · | indicates the size of the Cartesian product space of
the variables given as argument. Thus |Xi| is the number of states of Xi and
|Πi| is the product of the number of states of the parents of Xi.

The BIC score is decomposable, namely it is constituted by the sum of the105

scores of the individual variables given their parents. The k-MAX algorithm,
which we present later, can be applied to any decomposable scoring functions;
see [16] for a discussion of decomposable scoring functions.

3.1. Parent set identification

In order to efficiently prepare the cache Li of candidate parent sets of each
variable Xi we adopt the approach of [2]. The main idea of [2] is to quickly
identify the most promising parent sets through an approximate scoring function
that does not require scanning the data set. The approximate scoring function
is called BIC∗. The BIC∗ of a parent set Π = Π1 ∪Π2 constituted by the union
of two non-empty and disjoint parent sets Π1 and Π2 is:

BIC∗(X,Π1,Π2) = BIC(X,Π1) + BIC(X,Π2) + inter(X,Π1,Π2) , (4)

that is, the sum of the BIC scores of the two parent sets and of an interac-110

tion term, which ensures that the penalty term of BIC∗(X,Π1,Π2) matches the
penalty term of BIC(X,Π1 ∪Π2). In particular, If BIC(X,Π1) and BIC(X,Π2)
are known, then BIC∗ is computed in constant time (with respect to data ac-
cesses). The independence selection algorithm [2] exploits BIC∗ to quickly ap-
proximately score a large number of parent sets without limiting the in-degree,115

which is the maximum number of parents allowed for every node. Eventually, it
computes the actual score of the most promising parent sets. Additionally we
adopt pruning rules [17] in order to avoid computing the score of sub-optimal
parent sets.

3.2. Learning Bayesian networks with bounded treewidth120

Exact methods for bounded-treewidth structure learning of Bayesian net-
works [7, 8, 9] scale to at most a few dozens of variables. Approximate ap-
proaches are therefore needed to scale to larger domains.

The S2 algorithm [10] uniformly samples the space of k-trees; then it assesses
the sampled k-trees through a heuristic scoring function (informative score).125
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The DAG is then obtained by constraining its moral graph to be a sub-graph of
the k-tree with highest informative score. The S2+ algorithm [11] further refines
this idea, obtaining via A* the k-tree guaranteed to maximize the informative
score. In general S2+ recovers higher-scoring DAGs than S2 but its scalability
is limited: for instance it cannot be used with thousands of variables.130

3.2.1. k-greedy

To the best of our knowledge, the state-of-the-art algorithm for bounded-
treewidth learning is so far constituted by k-greedy [3], which consistently yields
higher-scoring DAGs than its competitors. The k-greedy algorithm samples the
space of the orderings of variables, and given an ordering it builds the bounded-135

treewidth DAG inductively as follows.
Initialization. Given an order over the variables and the value of k, k-greedy

initializes the structure with a DAG over the first (k+ 1) variables in the order.
The DAG is learned using either the exact method of [18] or the approximate
method of [19], depending on the value of (k+1) . The treewidth of the learned140

DAG is at most k (its moral graph is a sub-graph of the clique over the same
k + 1 variables, which has treewidth k).

Addition of the following nodes. Given a DAG Gq over q variables, k-greedy
chooses the highest-scoring feasible parent set for the variable (q + 1) in the
order, X≺q+1. A parent set is feasible if it is a k-clique (or a subset of a k-145

clique) of the moral graph of Gq. Once the parent set of X≺q+1 is chosen, we
obtain the DAG Gq+1 over q+ 1 variables. At each iteration the moral graph of
the DAG is a partial k-tree: thus the treewidth of the DAG is bounded by k.

Then k-greedy samples a new ordering and repeats the above procedure.
When a maximum number of iterations or a maximum execution time is met it150

returns the highest-scoring DAG found.

3.3. k-MAX
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Figure 2: Example of a treewidth-bounded (k=2) DAG built by k-MAX. For each iteration we
also show the underlying k-tree graph (white nodes), which allows to check that the treewidth
is indeed bounded by k=2. At iteration (2), m(D) > m(E) and m(E) > m(F ); hence node D
is inserted. Its highest-scoring feasible parent set is constituted by {A,B}. At iteration (3) we
still have m(E) > m(F ) and thus we insert E . Its highest-scoring parent set is constituted by
only {C}, so in the k-tree we choose a k-clique that is a random superset of {C}. At iteration
(4) we insert the last remaining variable F .
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k-MAX shares a fundamental idea with k-greedy: it incrementally grows a
DAG, guaranteeing that at each step its moral graph is a sub-graph of a k-tree.
Differently from k-greedy, k-MAX does not adopt a predefined ordering over
the variables. Instead it ranks the variables that can be inserted in the graph
through the heuristic score m(Xi):

m(Xi) =
scC(Xi)− scW (Xi)

scB(Xi)− scW (Xi)
,

where:

scC(Xi) = max
Π∈L∗i

score(Π) ,

scB(Xi) = max
Π∈Li

score(Π) ,

scW (Xi) = min
Π∈Li

score(Π) .

L∗i is the subset of parent sets that are feasible. Recall that the feasible
parent sets are constituted by the k-cliques of the moral graph of the current
DAG, and by subsets of such k-cliques.155

The m(Xi) heuristic compares for each variable the highest-scoring feasible
parent set with the lowest-scoring and the highest-scoring parent set available in
the cache Li (notice that most parent sets in Li are not feasible when the k-tree
contains a small number of variables). The rationale is to defer the addition of
variables whose m(·) score is low, as it will increase in the subsequent iterations160

due to availability of a larger number of feasible parent sets. The scores scB(Xi)
and scW (Xi) can be found in linear time w.r.t. |Li| and cached. As for scC(Xi),
it needs to be updated each time a new variable is added to the DAG.

We present an outline of k-MAX in Alg. 1. The procedure is repeated until
a specific termination condition is met (for example maximum execution time).165

The highest-scoring DAG found is then returned.

Algorithm 1 k-MAX

1: procedure k-MAX(X // Set of variables)
2: while not termination condition do
3: q ← k + 1
4: Gq ← Initialization(X ) // Learn the initial graph with k+1 variables
5: while q < |X | do
6: Gq+1 ← Addition(Gq) // Add the variable with the highest m(Xi)

score
7: q ← q + 1
8: end while
9: end while

10: // Return the highest-scoring G found
11: end procedure

7



Initialization. We start by building an initial k-tree Kk+1 over k + 1 variables
as follows. We initialize the list of chosen variables I as an empty set, and
we create a set C, which stores the candidate parents: namely every variable
appearing at least in one parent set of Xi ∈ I. We first choose randomly the170

first variable X, we add it to the set I and we add its candidate parents to C.
Then, until I contains k+ 1 variables we: (1) add to it a new variable Z chosen
randomly from C; (2) add all the candidate parents of Z to C.

Finally we learn the initial DAG Gk+1 over the variables contained in I,
either with exact or approximate methods, as in the initialization of k-greedy.175

The moral graph of Gk+1 is a sub-graph of Kk+1 and thus Gk+1 has treewidth
at most k. For each new k-clique added to Kk+1, we update m(Xi) for each
variable X not yet processed.

Addition of the following nodes. Let us denote by Gq and Kq the current DAG
and the k-tree over q nodes.180

The (q + 1)-th variable to be added is:

X = arg max
Z/∈G

m(Z) .

We connect X to the parent set:

ΠC
X = arg max

Π∈L∗i
score(Π) .

This yields the updated DAG Gq+1. We then update the k-tree, connecting X
to the k-clique that is superset of ΠC

X . In the event of several k-cliques sharing
this property, a random one between them is chosen. This yields the k-tree
Kq+1; it contains an additional (k+1)-clique compared to Kq. By construction,
Kq+1 is also a k-tree. For each new k-clique added to Kq+1, we update m(Xi)185

for each variable Xi not yet processed.

Space of learnable DAGs. A reverse topological order is an order X1, ...Xn over
the vertices of a DAG in which each vertex Xi appears before its parents Πi.
The search space of k-MAX contains only DAGs whose reverse topological order,
when used as variable elimination order, has treewidth k. The proof is identical190

to that provided in [3] for k-greedy. The extensive experiments by [3] show that
such limitation does not hurt the empirical performance of k-greedy and thus
we do not further discuss this point.

3.4. Advantages over k-greedy

Initialization. Recall that k-MAX builds iteratively the initial set of (k + 1)195

variables by ensuring that any added variable is a candidate parent of at least
another variable already in the clique.

We prune the available parent sets for each variable by Lemma 1 of [20].
It states that given two parent sets Π1

i and Π2
i for the same variable Xi, such

that Π2
i ⊆ Π1

i and score(Π2
i ) < score(Π1

i ), then Π1
i can be discarded from Li200

as it yields sub-optimal structures. This happens when Π1
i has low mutual
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information with Xi; its contribution to the score is negative since the small
increase in log-likelihood (due to low mutual information) is outweighed by the
complexity penalization of the scoring function. Thus a variable is a candidate
parent only if it appears in at least one non-pruned parent set of Xi (and which205

thus has significant mutual information with Xi).
Instead the initialization of k-greedy randomly samples k+1 variables, ignor-

ing their mutual information. By virtue of the selection process the initial DAG
found by k-MAX is in general higher-scoring than the one found by k-greedy.

Addition of the following nodes. The addition step of k-greedy follows the order,210

which is randomly sampled. Again, this overlooks whether there exists a feasible
parent set given the current k-tree with a good score for the variable being added.
k-MAX instead optimizes the variable to be added at each iteration, by ranking
them according to the m(·) score.

4. Experiments: k-MAX against k-greedy215

Table 1: The 18 real data sets used in the experiments (n is the number of variables, d is the
number of data points).

Name n d Name n d Name n d

Kdd 64 11490 Retail 135 4408 EachMovie 500 591
Plants 69 3482 Pumsb-star 163 2452 WebKB 839 838
Audio 100 3000 DNA 180 1186 Reuters-52 889 1540
Jester 100 4116 Kosarek 190 6675 C20NG 910 3764
Netflix 100 2634 MSWeb 294 5000 BBC 1058 330

Accidents 111 2551 Book 500 1739 Ad 1556 491

Table 2: The 20 known networks from which we sampled synthetic data sets (n is the number
of variables).

Name n Name n Name n

andes 223 r2 2000 r9 4000
diabetes 413 r3 2000 r10 10000

pigs 441 r4 2000 r11 10000
link 724 r5 4000 r12 10000

munin 1041 r6 4000 r13 10000
r0 2000 r7 4000 r14 10000
r1 2000 r8 4000

We consider the 18 data sets listed in Table 1. They have been previously
used in [21] and in other works referenced therein. The data sets are available for
instance from https://github.com/arranger1044/awesome-spn#dataset. Each

9
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data set is split in three subsets; we thus perform 18·3=54 structure learning ex-
periments. The number of instances in each dataset ranges from 226 to 180000.220

Additionally, we compared k-MAX and k-greedy on 20 synthetic data sets
sampled from known networks (Table 2). Five of these are taken from the
literature1 (andes, diabetes, pigs, link, munin) while the other fifteen (r0-r14)
have been generated by us, using the BNgenerator package2. They contain up
to 10,000 variables. From each known network we sample a training data set of225

5000 instances.
We hence consider a total of 74 data sets (54 real ones and 20 synthetic

ones), on which we compare k-greedy and k-MAX. We provide both algorithms
with the same cache of parent sets for each variable, pre-computed using inde-
pendence selection [2]; we then let each algorithm run for one hour on the same230

machine.
In each experiment we measure the difference between the BIC scores (∆BIC)

of the DAG returned by k-MAX and k-greedy. There is an exact mapping be-
tween the values of ∆BIC and the Bayes factor (BF) [22, Sec. 4.3]. The BIC
score of graph G is an approximation of the logarithm of the marginal likelihood
of G, namely P (D|G) =

∫
P (D|G, θ)p(θ)dθ ' BIC(G). Given two graphs G1 and

G2, the Bayes factor (BF) is the ratio of their marginal likelihoods. The log of
the Bayes factor can be approximated by the difference of the BIC scores:

log(BF) = log

(
P (D|G1)

P (D|G2)

)
' BIC(G1)− BIC(G2) = ∆BIC.

A positive ∆BIC provides evidence in favor of G1 and a negative ∆BIC provides
evidence in favor of G2. The posterior probability of G1 is given by

P (G1|D) =
P (D|G1)

P (D|G1) + P (D|G2)
' exp(BIC(G1))

exp(BIC(G1)) + exp(BIC(G2))

For instance a ∆BIC>10 implies a Bayes factor>150 and a posterior probability
P (G1|D) >0.99, conveying very strong evidence in favor of G1. Following the
same logic, the values of ∆BIC can be interpreted [22, Sec. 4.3] according to
this scale:235

• ∆BIC >10: extremely positive evidence;

• 6 <∆BIC <10: strongly positive evidence;

• 2 <∆BIC <6: positive evidence;

• ∆BIC <2: neutral evidence.

We report only the case of positive ∆BIC; negative values of ∆BIC are inter-240

preted in the same way but they have the meaning of negative evidence.

1http://www.bnlearn.com/bnrepository/
2http://sites.poli.usp.br/pmr/ltd/Software/BNGenerator/
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Table 3: Comparison between k-greedy and k-MAX under various treewidths. For each
treewidth we perform 74 structure learning experiments. The results in favor of k-MAX
are statistically significant for each tested treewidth.

treewidth
k-MAX vs k-greedy 2 5 8

∆BIC
extremely positive 71 67 69
strongly positive 0 0 0

positive 0 0 1
neutral 0 0 0
negative 0 0 0

strongly negative 0 0 0
very negative 3 7 5

We perform independent experiments with the treewidths k ∈ {2, 5, 8}. We
summarize the results in Table 3. In most cases there is an extremely positive
evidence for the model learned by k-MAX over the model learned by k-greedy
(∆BIC >10). We further analyze the results through a sign-test, considering245

one method as winning over the other when there is a ∆BIC of at least 2 in its
favor, and treating as ties the cases in which |∆BIC| <2. The number of wins
obtained by k-MAX over k-greedy is significant for every tested treewidth.

Iteration statistics. We further compare k-MAX and k-greedy by analyzing their
iterations. We consider as an example the data set tmovie.test (500 variables)250

with treewidth k=5. As shown in Table 4, k-MAX performs much less iterations
(two orders of magnitude less, in this example) than k-greedy; this is due to the
overhead of updating the m(·) values for all the variables not yet added to the
structure. However this strategy pays off, as the median score of the DAG
retrieved at each iteration is much higher for k-MAX. This is the advantage of255

using the more sophisticated heuristics of k-MAX.

Table 4: Statistics about the execution of k-greedy and k-MAX on the tmovie.test dataset
(500 variables).

k-MAX k-greedy

Number of iterations 1,111 96,226
Median BIC score -36,937 -37,489

Comparison against S2. In [3] it was shown that k-greedy consistently out-
performs S2. k-MAX further increases the gap over S2. In particular k-MAX
achieves ∆BIC >10 compared to S2 for every treewidth and data set considered.

Inference times. We perform some tests about inference times, using Iterative260

Join Graph Propagation [23] as inference engine. We focus first on the net-
works containing 1,000 or more variables provided in Table 2, in which case the
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ground-truth networks are known. Using such large ground-truth networks re-
sults in slow inference even when computing marginals. In several cases we had
no convergence of the inference even after 30 minutes of computation. In these265

cases, even if we could manage to learn the actual DAG with a perfect learner,
the model would be hardly usable due to the slowness of the inference. Con-
versely, the bounded-treewidth models learned by k-MAX compute marginals
consistently in less than 0.1 seconds, even with treewidth 8. By bounding the
treewidth we thus guarantee the efficiency of the inferences.270

Similar considerations hold also for the smaller ground-truth networks, such
as andes, diabetes, etc. In these cases marginals can be efficiently computed us-
ing the ground-truth networks, but slowness problems appear when we compute
the probability of the joint evidence of five variables. This requires (averaging
over data set) about 60 seconds when using the ground-truth networks and less275

than 5 seconds when using bounded-treewidth models with treewidth eight (the
slowest bounded-treewidth model).

5. Comparison with Chordalysis

Chordalysis [24] performs structural learning for log-linear models; such
undirected graphical models are also known as Markov networks. In partic-280

ular Chordalysis learns chordal models, which are at the intersection between
Bayesian networks and Markov networks: given a chordal Markov network it is
possible to obtain a Bayesian network which encodes exactly the same indepen-
dences [25, Sec. 4.5.3].

Chordalysis starts from the empty graph, which contains no edges. It then285

decides which edges to add based on a series of statistical test of indepen-
dence. While classical approaches to log-linear analysis hardly scale beyond
ten variables, Chordalysis scales to high-dimensional data thanks to sophisti-
cated algorithms for efficiently computing the statistics of the test and avoid-
ing the computation of unnecessary tests. We learn the undirected chordal290

graph using the variant of Chordalysis referred in [5] (code available from
https://github.com/fpetitjean) and we subsequently obtain the equivalent
Bayesian network using the algorithm of [25, Sec. 4.5.3].

While score-based structural learning aims at maximizing the predictivity
of the model, structural learning based on hypothesis tests aims at building an295

explanatory model, by controlling the rate of false positive edges among those
which constitute the graph. Thus such two approaches have different goals. Yet,
it does make sense to compare k-MAX and Chordalysis. These are among the
very few methods able to learn PGMs from thousands of variables; moreover,
even if Chordalysis does not formally bound the treewidth, it generally yields300

quite sparse graph that are likely to have low treewidth (see the results shown
later). This happens because the statistical test (corrected for multiple compar-
isons) does not allow adding an arc unless there is strong evidence against the
null hypothesis of independence.
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5.1. Results305

In this comparison we avoid using the BIC score of the resulting networks as a
performance indicator, as Chordalysis does not aim at maximizing it. Instead,
we measure how well the models fit the distribution by computing the log-
likelihood of the instances of the test set, LL =

∑k
i=1 log(P (Di|M)), where

D1, . . . , Dk denote the k instances of the test set and M is the model being310

tested. We then compute the difference in test-set log-likelihood (∆LL) between
the model learned by k-MAX and by Chordalysis. A value greater than 0
indicates that the model learned by k-MAX yields higher likelihood (thus better
fit) than the model learned by Chordalysis, and vice versa.

We first consider the datasets listed in Table 1. Recall that each data315

set is split into three parts; for each dataset, we use a part for learning the
models and the union of the other two parts as a test set. We thus perform 3
experiments for each data set, for a total of 54 experiments. In Fig. 3 (upper
plot) we show the distribution of ∆LL across the data sets for different tested
treewidths. The models learned by Chordalysis provide a fit that is comparable320

to the models learned by k-MAX using treewidth 2. When k-MAX adopts higher
treewidths, such as 5 or 8, it fits better (or even much better) the distribution
than Chordalysis.

We then consider the true networks of Table 2. In Fig. 3 (lower plot) we
see that the same pattern appears for the ∆LL. In this case we sample from the325

networks 5000 instances as the training set and 50000 instances for the test set.

−10 0 10 20 30 40

tw 2

tw 5

tw 8

∆LL (k-MAX - Chordalysis)

(a) Real data sets

−20 −10 0 10 20 30 40

tw 2

tw 5

tw 8

∆LL (k-MAX - Chordalysis)

(b) Synthetic data sets

Figure 3: Difference in test-set log-likelihoods between the models learned by k-MAX (using
various treewidths) and Chordalysis, across the real data sets of Table 1 and the synthetic
data sets of Table 2.
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Figure 4: Comparison of the MAE of the inference (probability of the evidence of five variables)
for the models yielded by Chordalysis and k-MAX under various treewidths.
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Figure 5: Time required to compute the probability of the joint evidence of five variables
using the networks learned by Chordalysis and k-MAX with various treewidths.

Additionally we study the running time and the accuracy of the inference.
As inference we consider the computation of the probability of the evidence P (e)
constituted by five randomly selected variables, which we set in random states.
For each data set we run 100 queries. On each data set we measure the mean
absolute error (MAE) of each model:

MAE =
1

q

∑
i

|Pi(e)− P̂i(e)| ,

where q denotes the total number of queries, Pi(e) and P̂i(e) the probability of
evidence computed by respectively the ground-truth model and the bounded-
treewidth model on the i-th query. As ground-truth we take the probability
of evidence computed on the original network, using the algorithm of Iterative330

Join Graph Propagation [23] and running it until convergence.
We show in Fig. 4 the MAE of the model learned by Chordalysis and the

models learned by k-MAX with the treewidth bound in {2, 5, 8}. The MAE of
the learned models are comparable, with a slight improvement with higher value
of treewidth (not visible in the graph). In Fig. 5 we show the time required to335

compute the probability of evidence. The inference times of the models learned
by k-MAX increase with the treewidth. Yet even the models learned by k-
MAX with treewidth 8 are on average slightly faster than the model learned by
Chordalysis. Generally the k-MAX models with treewidth 5 or 8 yield both a
better fit and a quicker inference than Chordalysis. This shows the soundness340

of k-MAX. We recall that however Chordalysis aims at building explanatory
models rather than predictive ones.
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6. Structural EM

Most works in structure learning assume the data set to be complete. Yet
this is rarely the case in real-word domains. This poses a serious problem, since345

learning a structure from incomplete data is computationally challenging.
The most common approach for structure learning from incomplete data sets

is the structural EM (SEM), originally presented in [26, 27]; a discussion about
this algorithm is given also by [25, Chapter 19].

The key idea of structural EM is to use the current best estimate of the350

distribution to complete the data, and then analyze such complete data. In
a nutshell, structural EM performs search in the joint space of structure and
parameters. It alternates between finding better parameters for the current
structure, or select a new structure. The former case is as a parametric EM
step, while the latter step is a structural EM step. For penalized likelihood355

scoring functions, such as the BIC, this procedure is proven to converge to a
local maximum [26].

More in detail, structural EM proceeds by alternating two steps. In the
expectation step, it computes the expected sufficient statistics given a candidate
structure (the sufficient statistics are the counts of the occurrences of each value360

of a given variable jointly with each possible assignment of its parents). Given
the expected sufficient statistics, the maximization step learns an updated struc-
ture and estimates its parameters. The two steps are alternated until the search
converges to a structure. We present SEM in Alg. 2, adopting the description
of [25, Chapter 19].365

Algorithm 2 Structural EM algorithm

1: procedure Structural-EM(
G0 // Initial Bayesian network structure,
θ0 // Initial set of parameters for G0,
D // Partially observed data set
)

2: for each t = 0, 1, ..., until convergence do
3: // Optional parameter learning step
4: θt

′ ←Expectation-Maximization(Gt,θt,D)
5: // Run EM to generate expected sufficient statistics;
6: // this yields the imputed data D∗Gt,θt′ .
7: Gt+1 ← Structure-Learn(D∗Gt,θt′ )
8: θt+1 ← Estimate-Parameters(D∗Gt,θt′ ,G

t+1)

9: end for
10: end procedure

The most demanding part of SEM is the expectation step, which requires
computing several queries, whose complexity is (in the worst case) exponential
in the treewidth of the model. Thus SEM becomes prohibitive if the model
being learned has unbounded treewidth and there are many missing data. This
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prevents the application of SEM to large data sets. We adopt k-MAX in order to370

perform structure learning within SEM: by learning bounded-treewidth models
we obtain an efficient computation of the expected sufficient statistics. We
call the resulting approach as SEM-kMAX. As far as we know this is the first
implementation of the structural expectation-maximization that scales up to
thousands of variables.375

The Structure-Learn step of Algorithm 2 is constituted by two parts.
Given the (expected) sufficient statistics computed in the previous iteration,
we first compute the cache of best parent sets for each variable using indepen-
dence selection. Then we find the highest-scoring DAG using k-MAX with a
treewidth bound of k = 6. We set an execution time of n seconds (one second380

per variable) for the first step and of n/10 seconds for the second step. Such
time limits are shorter than those adopted on complete data sets, as we need
to perform structure learning at each maximization step of SEM. In Section 7.3
we evaluate the sensitivity of the results on the allowed execution time of both
steps.385

The algorithm reaches convergence when the structure remains unchanged
between the subsequent SEM iterations and hence no improvements are found
on the structure of the previous iteration. As for the choice of the initial network
we adopt a random chain that connects all the variables, as in [12].

6.1. Further implementation details390

A peculiar aspect of our implementation is that we adopt the hard EM [25,
Chap. 19.2.2.6] for the computation of the expected sufficient statistics. While
the standard soft EM produces a probability distribution over the missing data,
hard EM fills-in the missing data with their most probable completion. The
relative merits of hard and soft EM are discussed for instance by [28] and [25,395

Chap. 19.2.2.6]. We adopt the hard EM in order to limit the memory usage
of the algorithm. In fact we cannot foresee which sufficient statistics will be
required by the maximization step, when it looks for a new structure. Keeping
the soft-completed data set in memory is however not feasible: the memory
requirement is, for each instance, exponential in the number of missing values.400

Some workarounds exist [25, Chap. 19.4.3.4], based on severe restrictions on
the type of learnable structures. By adopting the hard EM we radically solve
the memory issues, as the hard-completed data set requires the same memory
of the original data set. This allows us to perform structure learning without
restricting the search space of the structures, apart from the bounded-treewidth405

constraint.
Given an instance of the dataset containing missing values, we can fill the

missing values jointly or independently. The joint approach requires running
a single MPE (most probable explanation) query [25, Chap. 2.1.5.2] for each
incomplete instance. The independent approach requires running a marginal410

query for each missing value, marginalizing out over the missing variables in the
same instance. In the field of multi-label classification (where one has to predict
a set of related labels, given the observed features) it has been pointed out
[29] that the MPE inference maximizes the probability of correctly predicting

16



the whole set of labels, while the marginal inference maximizes the probability415

of correctly predicting each label independently. In practical terms, extensive
experiments in multi-label classification do not show major differences between
the results yielded by the two approaches [30]. There are however applications,
such as message decoding over a noisy channel, where the joint approach is
clearly preferable. In the following, we report results obtained using the joint420

approach.

7. Application to data imputation

We benchmark the performance of SEM-kMAX in the task of data imputa-
tion, which is the process of replacing missing data with the predictions of their
values. Once we run SEM until convergence, we have both a trained model and425

an imputed data set.
A pioneering Bayesian network approach for data imputation is that of [31],

which however requires to order the variables according to their reliability before
performing structure learning; this approach is hardly applicable in data mining
applications, where the number of variables can be in order of the thousands. As430

a state-of-the-art competitor for data imputation we thus consider an approach
based on random forests.

The missForest algorithm [13] recasts the problem of missing data imputa-
tion as a prediction problem. The initial guess is made using mode imputation,
namely by substituting missing values with the most common value of the vari-435

able. The variables are then sorted according to the amount of missing values
and the data are imputed by regressing (using random forest) each variable in
turn against all other variables (starting from the variable with the smallest
missingness). The predictions of missing data for the dependent variable are
used as imputation. The empirical study of [32] compares different imputation440

algorithms based on random forests, concluding that missForest is indeed the
most accurate, but also the slowest. The problem is that at each iteration it
requires fitting n random forests (one for each variable); this becomes slow when
dealing with large number of variables. Thus [32] propose the mRFα algorithm
as a scalable alternative to missForest. It randomly divides the n variables into445

mutually exclusive groups of approximate size αp. Each group in turn acts as
the multivariate response to be regressed on the remaining (1 − α)p variables
at each iteration. Thus at each iteration it trains 1/α random forest models.
We used the implementation of mRFα available in the randomForestSRC R
package, setting α = 0.25, which yields good results in the experiments of [32].450

7.1. Experimental setup

We ran imputation experiments on the 18 data sets of Table 1. On each
dataset we induced missing completely at random (MCAR) missingness: namely,
each observation was made missing with fixed probability, regardless of the val-
ues of the other variables. For each data set we considered the missingness
percentages {1, 2, 3, 5, 8, 10, 12, 15} (meaning, e.g., that in the first setting we
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made missing each value with probability 1%), and we repeated each experi-
ment 5 times. In each repetition we measured the proportion of missing values
that were correctly imputed (imputation accuracy):

imputation accuracy =
1

n

n∑
j=1

∑mj
j=1 1(Xorig

i,j = Ximp
i,j )

mj
,

where Xorig
i,j denotes the value of the variable Xi in instance j in the original

dataset, Ximp
i,j its imputed value, mj the number of values missing in instance

j and n is the total number of instances.

7.2. Comparison with mRFα455

In the comparison with mRFα we used all the available datasets of Table 1.
In two cases (MSWeb and C20NG) mRFα failed to provide a solution in less than
24 hours, and the datasets were removed from the comparison. We conjecture
that this is due to the presence of both a high number of variables and a high
number of data points.460

Figure 6 shows the scatter plots of imputation accuracy and execution times,
which compare SEM-kMAX and mRFα for different missingness levels. The
two approaches offer practically the same imputation accuracy (left plots), but
SEM-kMAX is substantially faster than mRFα (right plots).

We further report their ratio of imputation accuracy in Fig. 7 and their465

ratio of execution times in Fig. 8 by aggregating the experiments performed on
various data sets but having the same level of missingness. Again we can see
that SEM-kMAX achieves an imputation accuracy comparable to mRFα, while
on average reducing the computational time of one order of magnitude.

7.3. Parameter tuning470

As mentioned, one can tune SEM-kMAX by choosing the allowed maximum
execution time for its steps. We will now experimentally evaluate different
possibilities as for this choice. We allow for the parent set indentification step
n·t seconds, and for the structure optimization step (n·t)/10 seconds, comparing
the choices t = 1, t = 5 and t = 10. We denote respectively by SEM1, SEM5475

and SEM10 the resulting variants of structural EM (in the previous experiments
we adopted SEM1, which is a good compromise between imputation accuracy
and required time).

In Figure 9 we plot the total execution time for all the datasets, for the
three configurations. For SEM1 the required time is almost linear in the size of480

the dataset, showing that learning from incomplete data is feasible even for big
datasets with thousands of variables. For SEM5 and SEM10 we see that the
for the largest dataset the total execution time is closer to SEM1. The reason
for this is the cost for executing the expectation step, which remains almost the
same in all the cases.485

From the overall behaviour we can see that the complexity increase in the re-
quired execution time is at most linear in the number of variables. In Figure 10a
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(a) Result obtained with 2% missingness (each point refers to a data set).
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(b) Result obtained with 5% missingness (each point refers to a data set).
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(c) Result obtained with 12% missingness (each point refers to a data set).

Figure 6: Comparison on imputation accuracy (on the left) and on execution times (on the
right, in seconds) between imputation executed with mRFα and SEM-kMAX.

we plot the imputation accuracy of SEM5 against SEM1 and in Figure 10b be-
tween SEM10 against SEM1. The advantage of SEM5 over SEM1 is clear,
while the advantage of SEM10 over SEM5 can be called into question.490

By choosing a value for the parameter t, the user can tune the trade-off
between imputation accuracy and total execution time. We recommend using
SEM1 as it strikes an optimal balance between the two objectives, at least in
our experiments.

7.4. Computational complexity495

We now study the complexity of SEM-kMAX. Let us focus on a single it-
eration of the procedure. Each iteration is composed of three different steps:
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Figure 7: Aggregate comparison of the imputation accuracy ratio between SEM-kMAX and
mRFα imputation.
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Figure 8: Aggregate comparison of the execution time ratio between SEM-kMAX and mRFα

imputation.
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Figure 9: Execution time of SEM-kMAX in relation to the number of variables in the dataset.
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(b) Aggregate comparison of the ratio of imputation accuracy between SEM10

and SEM1.

Figure 10: Experimental comparison between SEM1, SEM5 snd SEM10.

parent set exploration, k-MAX, and data imputation. Recall that n, k and d
represent respectively the number of variables, the bound on the treewidth and
the number of data points in the data set.500

As for the first step, the size of the search space of possible parent sets for
each variable is

(
n
k

)
(without loss of generality, the search can be restricted to

parent sets with a size up to the chosen treewidth). The complete exploration
of this space would be unfeasible except for toy examples. The algorithm BIC*
([2]) was designed exactly to overcome this complexity blowup by guiding the505

exploration to the most promising parent sets in the allowed time. In our
implementation, we choose to allow at most t seconds for the exploration of
each variable. The final cost of this step is then O(n). It should be noted
that in theory the number of parent sets explored in this allowed time depends
also by d, as for a large data sets one has time to compute fewer scores. In510

practice however one can implement the computation of the score of a parent
set with smart intersections on pre-processed arrays, greatly diminishing the
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impact of d. Such was the case in our experiment, where the increase in d had
a negligible effect on the size of the final set of un-pruned parent sets returned
by the algorithm (only the un-pruned parent sets impact on the performance515

of the whole process; the sub-optimal parent sets are discarded). However, in
a practical application of SEM-kMAX that comprises also massive data sets
(millions of data points) one could choose to assign to the first step a maximum
execution time that depends on both n and d, with a final cost of O(nd).

The second step is the execution of k-MAX. This is an iterative algorithm.520

For it to fully explore the search space it would require
(
n
k+1

)
iterations, as it

would have to select all possible combinations of k+ 1 initial cliques from the n
nodes. Again, the complete exploration of this space is unfeasible, and we are
forced to set a maximum execution time. In our implementation we choose to
allow at most t ·n/10 seconds. In every iteration, we first build a core structure525

of k nodes. Since k is constant by choice, the related computation takes constant
time too. The subsequent part of the algorithm adds one node at a time; for
each node we explore all (in the worst case) the pre-computed parent sets for
that node. As we discussed before, the size of the cache of pre-computed parent
sets depends on n. Therefore the overall complexity of one iteration is O(n).530

The last step is data imputation, which amounts to performing an exact
inference on the bounded-treewidth BN for every record containing missing val-
ues. In general the number of queries will then be O(d). The cost of performing
each query is O(nv̄k), where v̄ is the maximum number of states for a variable
in the network. In our application k is a constant by definition, and v̄ can be535

regarded as a constant too, given that it usually does not exceed few tens in
applications. The complexity cost of a query is then O(n), and the final cost of
performing data imputation is then O(nd).

So far we have considered a single iteration of SEM-kMAX. The number
of iterations is usually not very large and in any case can be chosen up to a540

certain maximum amount. Taking this into account, the overall complexity of
SEM-kMAX is O(nd) or, in other words, SEM-kMAX has worst-case complexity
linear in the input size (the data).

7.5. Parallelization

The whole learning procedure can greatly benefit from parallelization. In545

the parent set identification step, each variable can be considered independently
from the others. In the structure optimization k-MAX can be run simultane-
ously on multiple cores, taking into consideration only the best structures found
for each of them. Finally in the expectation phase the queries required for the
estimation of the missing values can be executed independently for each data550

point.

8. Conclusions

We presented a new anytime algorithm (k-MAX) for learning bounded-
treewidth Bayesian networks. Experiments on complete data sets show that
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k-MAX finds structures with significantly higher fit to the data than its com-555

petitors, especially on high-dimensional data sets. Moreover, k-MAX can be
plugged within structural EM in order to perform structure learning from in-
complete data sets; in this case it allows to efficiently compute the expectation
phase thanks to the bounded treewidth. Structural EM with k-MAX achieves
comparable accuracy to state-of-the-art imputation approaches based on ran-560

dom forest, while allowing for a speedup of about one order of magnitude. To
the best of our knowledge, our approach is the first implementation of structural
EM able to efficiently scale to thousands of variables.
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